1
|
Wei R, Rao Y, Venkatesh A, Emsley L. Solid Effect Dynamic Nuclear Polarization Enhancement of >500 at 9.4 T. J Phys Chem Lett 2024; 15:12408-12415. [PMID: 39656937 DOI: 10.1021/acs.jpclett.4c03147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Efficient polarizing agents for dynamic nuclear polarization (DNP) enhanced magic angle spinning (MAS) NMR spectroscopy are of high current interest due to the potential to significantly boost NMR sensitivity. While most efforts have centered on cross-effect (CE) or Overhauser effect (OE) mechanisms, yielding enhancement factors up to ∼300 at 9.4 T, radicals yielding solid effect (SE) DNP have seen less development. Here we model the comparative performance of OE and SE mechanisms and then measure 1H enhancement factors up to 500 from 1,3-bisdiphenylene-2-phenylallyl (BDPA) in an ortho-terphenyl (OTP) matrix at 9.4 T, 100 K, achieved via increased microwave power across the sample volume. The measured SE and OE performances are in good agreement with the predictions. We note that both the experimental and theoretical analyses indicate that SE DNP remains saturation limited, particularly at elevated temperatures, and we envisage that further improvements in microwave power will further increase SE DNP enhancement factors.
Collapse
Affiliation(s)
- Ran Wei
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Yu Rao
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Amrit Venkatesh
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Lyndon Emsley
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
2
|
Stern Q, Verhaeghe G, El Daraï T, Montarnal D, Huu Le N, Veyre L, Thieuleux C, Bocquelet C, Cala O, Jannin S. Dynamic Nuclear Polarization with Conductive Polymers. Angew Chem Int Ed Engl 2024; 63:e202409510. [PMID: 39264818 DOI: 10.1002/anie.202409510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/14/2024]
Abstract
The low sensitivity of liquid-state nuclear magnetic resonance (NMR) can be overcome by hyperpolarizing nuclear spins by dissolution dynamic nuclear polarization (dDNP). It consists of transferring the near-unity polarization of unpaired electron spins of stable radicals to the nuclear spins of interest at liquid helium temperatures, below 2 K, before melting the sample in view of hyperpolarized liquid-state magnetic resonance experiments. Reaching such a temperature is challenging and requires complex instrumentation, which impedes the deployment of dDNP. Here, we propose organic conductive polymers such as polyaniline (PANI) as a new class of polarizing matrices and report 1H polarizations of up to 5 %. We also show that 13C spins of a host solution impregnated in porous conductive polymers can be hyperpolarized by relayed DNP. Such conductive polymers can be synthesized as chiral and display current induced spin selectivity leading to electron spin hyperpolarization close to unity without the need for low temperatures nor high magnetic fields. Our results show the feasibility of solid-state DNP in conductive polymers that are known to exhibit chirality-induced spin selectivity.
Collapse
Affiliation(s)
- Quentin Stern
- Université Claude Bernard Lyon 1, CRMN UMR-5082, CNRS, ENS Lyon, Villeurbanne, 69100, France
| | - Guillaume Verhaeghe
- Université Claude Bernard Lyon 1, CRMN UMR-5082, CNRS, ENS Lyon, Villeurbanne, 69100, France
| | - Théo El Daraï
- Université Claude Bernard Lyon 1, CRMN UMR-5082, CNRS, ENS Lyon, Villeurbanne, 69100, France
- Université de Lyon, Institut de Chimie de Lyon, Laboratory of Catalysis, Polymerization, Processes and Materials, CP2M UMR 5128 CNRS-UCB Lyon 1 CPE Lyon 43 Bd du 11 Novembre 1918, 69616, Villeurbanne, France
| | - Damien Montarnal
- Université de Lyon, Institut de Chimie de Lyon, Laboratory of Catalysis, Polymerization, Processes and Materials, CP2M UMR 5128 CNRS-UCB Lyon 1 CPE Lyon 43 Bd du 11 Novembre 1918, 69616, Villeurbanne, France
| | - Nghia Huu Le
- Université de Lyon, Institut de Chimie de Lyon, Laboratory of Catalysis, Polymerization, Processes and Materials, CP2M UMR 5128 CNRS-UCB Lyon 1 CPE Lyon 43 Bd du 11 Novembre 1918, 69616, Villeurbanne, France
| | - Laurent Veyre
- Université de Lyon, Institut de Chimie de Lyon, Laboratory of Catalysis, Polymerization, Processes and Materials, CP2M UMR 5128 CNRS-UCB Lyon 1 CPE Lyon 43 Bd du 11 Novembre 1918, 69616, Villeurbanne, France
| | - Chloé Thieuleux
- Université de Lyon, Institut de Chimie de Lyon, Laboratory of Catalysis, Polymerization, Processes and Materials, CP2M UMR 5128 CNRS-UCB Lyon 1 CPE Lyon 43 Bd du 11 Novembre 1918, 69616, Villeurbanne, France
| | - Charlotte Bocquelet
- Université Claude Bernard Lyon 1, CRMN UMR-5082, CNRS, ENS Lyon, Villeurbanne, 69100, France
| | - Olivier Cala
- Université Claude Bernard Lyon 1, CRMN UMR-5082, CNRS, ENS Lyon, Villeurbanne, 69100, France
| | - Sami Jannin
- Université Claude Bernard Lyon 1, CRMN UMR-5082, CNRS, ENS Lyon, Villeurbanne, 69100, France
| |
Collapse
|
3
|
Mardini M, George C, Palani RS, Du X, Tan KO, Sergeyev I, Liu Y, Griffin RG. Proton hyperfine couplings and Overhauser DNP. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 369:107797. [PMID: 39566367 DOI: 10.1016/j.jmr.2024.107797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/08/2024] [Accepted: 11/10/2024] [Indexed: 11/22/2024]
Abstract
We have prepared trityl radicals with protons at the positions of the -COOH group in the phenyl rings and examined their EPR spectra, which show large - hyperfine couplings, and their dynamic nuclear polarization (DNP) Zeeman field profiles . By assessing these polarizing agents for high-field and Overhauser effect DNP, we gain insight into the roles that these hyperfine couplings and other molecular properties play in the DNP performance of these radicals. Interestingly, we do not observe OE DNP in any of the three molecules we examined. This suggests that hyperfine couplings by themselves are not sufficient to support OE DNP. In this case the electron spin density is ∼75 % localized on the central carbon atom rather than being distributed uniformly over the aromatic rings. This is in contrast to BDPA where the distribution is delocalized. Our findings do not suggest that any of these radicals are particularly well-suited to high-field DNP. Furthermore, we emphasize that polarizing agents can be extremely sensitive to their solvent environment, even obscuring the intrinsic magnetic properties of the radical.
Collapse
Affiliation(s)
- Michael Mardini
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Christy George
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ravi Shankar Palani
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Xizi Du
- Department of Medicinal Chemistry, Tianjin Medical University, Tianjin 300070, China
| | - Kong Ooi Tan
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Yangping Liu
- Department of Medicinal Chemistry, Tianjin Medical University, Tianjin 300070, China
| | - Robert G Griffin
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
4
|
Ladizhansky V, Palani RS, Mardini M, Griffin RG. Dipolar Recoupling in Rotating Solids. Chem Rev 2024; 124:12844-12917. [PMID: 39504237 DOI: 10.1021/acs.chemrev.4c00373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Magic angle spinning (MAS) nuclear magnetic resonance (NMR) has evolved significantly over the past three decades and established itself as a vital tool for the structural analysis of biological macromolecules and materials. This review delves into the development and application of dipolar recoupling techniques in MAS NMR, which are crucial for obtaining detailed structural and dynamic information. We discuss a variety of homonuclear and heteronuclear recoupling methods which are essential for measuring spatial restraints and explain in detail the spin dynamics that these sequences generate. We also explore recent developments in high spinning frequency MAS, proton detection, and dynamic nuclear polarization, underscoring their importance in advancing biomolecular NMR. Our aim is to provide a comprehensive account of contemporary dipolar recoupling methods, their principles, and their application to structural biology and materials, highlighting significant contributions to the field and emerging techniques that enhance resolution and sensitivity in MAS NMR spectroscopy.
Collapse
Affiliation(s)
- Vladimir Ladizhansky
- Biophysics Interdepartmental Group and Department of Physics, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Ravi Shankar Palani
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Michael Mardini
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Robert G Griffin
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
5
|
Palani RS, Mardini M, Quan Y, Ouyang Y, Mishra A, Griffin RG. Dynamic Nuclear Polarization with P1 Centers in Diamond. J Phys Chem Lett 2024; 15:11504-11509. [PMID: 39514770 DOI: 10.1021/acs.jpclett.4c02612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Substitutional nitrogen impurities within the diamond lattice, known as P1 centers, have unpaired electrons that can mediate microwave driven dynamic nuclear polarization (DNP). In this paper we explore DNP of the bulk 13C spins in micrometer-sized P1 diamond particles and demonstrate a 550-fold DNP enhancement of the bulk 13C spins at room temperature in a 9 T magnetic field or 250 GHz for g ≈ 2 electrons. We study the DNP mechanisms, exploring their dependence on sample spinning frequency and microwave irradiation frequency using both continuous wave and frequency swept microwave irradiation, and discuss the results alongside recent DNP studies in the literature. Even with a modest microwave irradiation power of 160 mW from our frequency swept solid-state microwave source, we achieve a significant 13C signal enhancement, ε = 270 at room temperature. The enhancements were found to increase with the magic angle spinning (MAS) frequency, ωr/2π, and the results provide mechanistic insights into how different electron populations contribute to the observed DNP efficiency. These findings are inherently interesting and of practical importance in view of the recently reported diamond rotors fabricated from P1 high-pressure, high-temperature (HPHT) diamond.
Collapse
Affiliation(s)
- Ravi Shankar Palani
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Michael Mardini
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yifan Quan
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yifu Ouyang
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Aditya Mishra
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Robert G Griffin
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
6
|
Levien M, De Biasi F, Karthikeyan G, Casano G, Visegrádi M, Ouari O, Emsley L. Mechanism of Solid-State 1H Photochemically Induced Dynamic Nuclear Polarization in a Synthetic Donor-Chromophore-Acceptor at 0.3 T. J Phys Chem Lett 2024; 15:11097-11103. [PMID: 39471392 PMCID: PMC11552079 DOI: 10.1021/acs.jpclett.4c02805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/01/2024]
Abstract
1H photochemically induced dynamic nuclear polarization (photo-CIDNP) has recently emerged as a tool to enhance bulk 1H nuclear magnetic resonance (NMR) signals in solids at magnetic fields ranging from 0.3 to 21.1 T, using synthetic donor-chromophore-acceptor (D-C-A) molecules as optically active polarizing agents (PAs). However, the mechanisms at play for the generation of spin polarization in these systems have not been determined but are essential for an in-depth understanding and further development of the process. Here, we introduce site-selective deuteration to identify the 1H photo-CIDNP mechanisms at 85 K and 0.3 T in D-C-A molecule PhotoPol. We find that the protons on the acceptor moiety are essential for the generation of polarization, establishing differential relaxation as the main mechanism. These results establish selective deuteration as a tool to identify and suppress polarization transfer mechanisms, which opens up pathways for further optimization of the optical PA at both low and high magnetic fields.
Collapse
Affiliation(s)
- Marcel Levien
- Institut
des Sciences et Ingenierie Chimiques, École
Polytechnique Fedérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Federico De Biasi
- Institut
des Sciences et Ingenierie Chimiques, École
Polytechnique Fedérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Ganesan Karthikeyan
- Aix-Marseille
Université, Centre National de la Recherche Scientifique (CNRS),
Institut de Chimie Radicalaire, 13013 Marseille, France
| | - Gilles Casano
- Aix-Marseille
Université, Centre National de la Recherche Scientifique (CNRS),
Institut de Chimie Radicalaire, 13013 Marseille, France
| | - Máté Visegrádi
- Institut
des Sciences et Ingenierie Chimiques, École
Polytechnique Fedérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Olivier Ouari
- Aix-Marseille
Université, Centre National de la Recherche Scientifique (CNRS),
Institut de Chimie Radicalaire, 13013 Marseille, France
| | - Lyndon Emsley
- Institut
des Sciences et Ingenierie Chimiques, École
Polytechnique Fedérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
7
|
Yang X, Guo A, Yang J, Chen J, Meng K, Hu S, Duan R, Zhu M, Shi W, Qin Y, Zhang R, Yang H, Li J, Guo L, Sun X, Liu Y, Guo Y. Halogenated-edge polymeric semiconductor for efficient spin transport. Nat Commun 2024; 15:8368. [PMID: 39333497 PMCID: PMC11436804 DOI: 10.1038/s41467-024-52770-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 09/19/2024] [Indexed: 09/29/2024] Open
Abstract
Organic semiconductors (OSCs) are featured by weak spin-orbit coupling due to their light chemical element composition, which enables them to maintain spin orientation for a long spin lifetime and show significant potential in room-temperature spin transport. Carrier mobility and spin lifetime are the two main factors of the spin transport performance of OSCs, however, their ambiguous mechanisms with molecular structure make the development of spintronic materials really stagnant. Herein, the effects of halogen substitution in bay-annulated indigo-based polymers on carrier mobility and spin relaxation have been systematically investigated. The enhanced carrier mobility with an undiminished spin lifetime contributes to a 3.7-fold increase in spin diffusion length and a record-high magnetoresistance of 8.7% at room temperature. By analyzing the spin-orbit coupling and hyperfine interaction, it was found that the distance of the substitution site from the conjugated center and the nitrogen atoms in the molecules play crucial roles in spin relaxation. Based on the above results, we proposed a molecular design strategy of halogen substitution far from conjugate center to enhance spin transport efficiency, presenting a promising avenue for advancing the field of organic spintronics.
Collapse
Affiliation(s)
- Xueli Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Ankang Guo
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Jie Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jinyang Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Ke Meng
- Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Shunhua Hu
- Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Ran Duan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Science, Beijing, 100190, P. R. China
| | - Mingliang Zhu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Wenkang Shi
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Yang Qin
- Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Rui Zhang
- Beijing Key Laboratory of Microstructure and Property of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Haijun Yang
- Department of Chemistry, Tsinghua University, 100084, Beijing, P. R. China
| | - Jikun Li
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Science, Beijing, 100190, P. R. China
| | - Lidan Guo
- Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China.
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China.
| | - Xiangnan Sun
- Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China.
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China.
| | - Yunqi Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China.
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China.
| | - Yunlong Guo
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China.
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China.
| |
Collapse
|
8
|
Chen S, Zhang L, Li S, Yuan Y, Jiang B, Jiang Z, Zhang X, Zhou X, Liu M. Detecting biomarkers by dynamic nuclear polarization enhanced magnetic resonance. Natl Sci Rev 2024; 11:nwae228. [PMID: 39144741 PMCID: PMC11321254 DOI: 10.1093/nsr/nwae228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/26/2024] [Accepted: 06/16/2024] [Indexed: 08/16/2024] Open
Abstract
Hyperpolarization stands out as a technique capable of significantly enhancing the sensitivity of nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI). Dynamic nuclear polarization (DNP), among various hyperpolarization methods, has gained prominence for its efficacy in real-time monitoring of metabolism and physiology. By administering a hyperpolarized substrate through dissolution DNP (dDNP), the biodistribution and metabolic changes of the DNP agent can be visualized spatiotemporally. This approach proves to be a distinctive and invaluable tool for non-invasively studying cellular metabolism in vivo, particularly in animal models. Biomarkers play a pivotal role in influencing the growth and metastasis of tumor cells by closely interacting with them, and accordingly detecting pathological alterations of these biomarkers is crucial for disease diagnosis and therapy. In recent years, a range of hyperpolarized DNP molecular bioresponsive agents utilizing various nuclei, such as 13C, 15N, 31P, 89Y, etc., have been developed. In this context, we explore how these magnetic resonance signals of nuclear spins enhanced by DNP respond to biomarkers, including pH, metal ions, enzymes, or redox processes. This review aims to offer insights into the design principles of responsive DNP agents, target selection, and the mechanisms of action for imaging. Such discussions aim to propel the future development and application of DNP-based biomedical imaging agents.
Collapse
Affiliation(s)
- Shizhen Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Biomedical Engineering, Hainan University, Haikou 570228, China
| | - Lei Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sha Li
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaping Yuan
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Jiang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongxing Jiang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xu Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xin Zhou
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Biomedical Engineering, Hainan University, Haikou 570228, China
| | - Maili Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Giannoulis A, Butbul K, Carmieli R, Kim J, Montrazi ET, Singh K, Frydman L. Cryogenic and Dissolution DNP NMR on γ-Irradiated Organic Molecules. J Am Chem Soc 2024; 146:20758-20769. [PMID: 39029111 PMCID: PMC11295201 DOI: 10.1021/jacs.4c04041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/21/2024]
Abstract
Nuclear magnetic resonance (NMR) plays a central role in the elucidation of chemical structures but is often limited by low sensitivity. Dissolution dynamic nuclear polarization (dDNP) emerges as a transformative methodology for both solution-state NMR and metabolic NMR imaging, which could overcome this limitation. Typically, dDNP relies on combining a stable radical with the analyte within a uniform glass under cryogenic conditions. The electron polarization is then transferred through microwave irradiation to the nuclei. The present study explores the use of radicals introduced via γ-irradiation, as bearers of the electron spins that will enhance 1H or 13C nuclides. 1H solid-state NMR spectra of γ-irradiated powders at 1-5 K revealed, upon microwave irradiation, signal enhancements that, in general, were higher than those achieved through conventional glass-based DNP. Transfer of these samples to a solution-state NMR spectrometer via a rapid dissolution driven by a superheated water provided significant enhancements of solution-state 1H NMR signals. Enhancements of 13C signals in the γ-irradiated solids were more modest, as a combined consequence of a low radical concentration and of the dilute concentration of 13C in the natural abundant samples examined. Nevertheless, ca. 700-800-fold enhancements in 13C solution NMR spectra of certain sites recorded at 11.7 T could still be achieved. A total disappearance of the radicals upon performing a dDNP-like aqueous dissolution and a high stability of the samples were found. Overall, the study showcases the advantages and limitations of γ-irradiated radicals as candidates for advancing spectroscopic dDNP-enhanced NMR.
Collapse
Affiliation(s)
- Angeliki Giannoulis
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, 234 Herzl Street, Rehovot 7610001, Israel
| | - Korin Butbul
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, 234 Herzl Street, Rehovot 7610001, Israel
| | - Raanan Carmieli
- Department
of Chemical Research Support, Weizmann Institute
of Science, 234 Herzl
Street, Rehovot 7610001, Israel
| | - Jihyun Kim
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, 234 Herzl Street, Rehovot 7610001, Israel
- Department
of Chemistry Education, Kyungpook National
University, Daegu 41566, Republic of Korea
| | - Elton Tadeu Montrazi
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, 234 Herzl Street, Rehovot 7610001, Israel
| | - Kawarpal Singh
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, 234 Herzl Street, Rehovot 7610001, Israel
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, U.K.
| | - Lucio Frydman
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, 234 Herzl Street, Rehovot 7610001, Israel
| |
Collapse
|
10
|
Equbal A, Ramanathan C, Han S. Dipolar Order Induced Electron Spin Hyperpolarization. J Phys Chem Lett 2024; 15:5397-5406. [PMID: 38739470 PMCID: PMC11129302 DOI: 10.1021/acs.jpclett.4c00294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/04/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024]
Abstract
The structure of coupled electron spin systems is of fundamental interest to many applications, including dynamic nuclear polarization (DNP), enhanced nuclear magnetic resonance (NMR), the generation of electron spin qubits for quantum information science (QIS), and quantitative studies of paramagnetic systems by electron paramagnetic resonance (EPR). However, the characterization of electron spin coupling networks is nontrivial, especially at high magnetic fields. This study focuses on a system containing high concentrations of trityl radicals that give rise to a DNP enhancement profile of 1H NMR characteristic of the presence of electron spin clusters. When this system is subject to selective microwave saturation through pump-probe ELectron DOuble Resonance (ELDOR) experiments, electron spin hyperpolarization is observed. We show that the generation of an out-of-equilibrium longitudinal dipolar order is responsible for the transient hyperpolarization of electron spins. Notably, the coupled electron spin system needs to form an AX-like system (where the difference in the Zeeman interactions of two spins is larger than their coupling interaction) such that selective microwave irradiation can generate signatures of electron spin hyperpolarization. We show that the extent of dipolar order, as manifested in the extent of electron spin hyperpolarization generated, can be altered by tuning the pump or probe pulse length, or the interpulse delay in ELDOR experiments that change the efficiency to generate or readout longitudinal dipolar order. Pump-probe ELDOR with selective saturation is an effective means for characterizing coupled electron spins forming AX-type spin systems that are foundational for DNP and quantum sensing.
Collapse
Affiliation(s)
- Asif Equbal
- Department
of Chemistry, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
- Center
for Quantum and Topological Systems, New
York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Chandrasekhar Ramanathan
- Department
of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Songi Han
- Department
of Chemistry and Biochemistry, University
of California, Santa Barbara, Santa
Barbara, California 93106, United States
- Department
of Chemical Engineering, University of California,
Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
11
|
Tobar C, Albanese K, Chaklashiya R, Equbal A, Hawker C, Han S. Multi Electron Spin Cluster Enabled Dynamic Nuclear Polarization with Sulfonated BDPA. J Phys Chem Lett 2023; 14:11640-11650. [PMID: 38108283 DOI: 10.1021/acs.jpclett.3c02428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Dynamic nuclear polarization (DNP) can amplify the solid-state nuclear magnetic resonance (NMR) signal by several orders of magnitude. The mechanism of DNP utilizing α,γ-bisdiphenylene-β-phenylallyl (BDPA) variants as Polarizing Agents (PA) has been the subject of lively discussions on account of their remarkable DNP efficiency with low demand for microwave power. We propose that electron spin clustering of sulfonated BDPA is responsible for its DNP performance, as revealed by the temperature-dependent shape of the central DNP profile and strong electron-electron (e-e) crosstalk seen by Electron Double Resonance. We demonstrate that a multielectron spin cluster can be modeled with three coupled spins, where electron J (exchange) coupling between one of the e-e pairs matching the NMR Larmor frequency induces the experimentally observed absorptive central DNP profile, and the electron T1e modulated by temperature and magic-angle spinning alters the shape between an absorptive and dispersive feature. Understanding the microscopic origin is key to designing new PAs to harness the microwave-power-efficient DNP effect observed with BDPA variants.
Collapse
Affiliation(s)
- Celeste Tobar
- Department of Chemistry and Biochemistry, University of California, Santa Barbara 93106, California, United States
| | - Kaitlin Albanese
- Materials Department, University of California, Santa Barbara 93106, California, United States
| | - Raj Chaklashiya
- Materials Department, University of California, Santa Barbara 93106, California, United States
| | - Asif Equbal
- Department of Chemistry, NYU Abu Dhabi, Saadiyat Campus, PO Box 129188, Abu Dhabi 00000, United Arab Emirates
| | - Craig Hawker
- Materials Department, University of California, Santa Barbara 93106, California, United States
| | - Songi Han
- Department of Chemistry, Northwestern University, Evanston 60208, Illinois, United States
| |
Collapse
|
12
|
Quan Y, Ouyang Y, Mardini M, Palani RS, Banks D, Kempf J, Wenckebach WT, Griffin RG. Resonant Mixing Dynamic Nuclear Polarization. J Phys Chem Lett 2023; 14:7007-7013. [PMID: 37523253 DOI: 10.1021/acs.jpclett.3c01869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
We propose a mechanism for dynamic nuclear polarization that is different from the well-known Overhauser effect, solid effect, cross effect, and thermal mixing processes. We term it Resonant Mixing (RM), and we show that it arises from the evolution of the density matrix for a simple electron-nucleus coupled spin pair subject to weak microwave irradiation, the same interactions as the solid effect. However, the SE is optimal when the microwave field is off-resonance, whereas RM is optimal when the microwave field is on-resonance and involves the mixing of states by the microwave field together with the electron-nuclear coupling. Finally, we argue that this mechanism is responsible for the observed dispersive-shaped DNP field profile for trityl samples near the electron paramagnetic resonance center.
Collapse
Affiliation(s)
- Yifan Quan
- Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yifu Ouyang
- Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Michael Mardini
- Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ravi Shankar Palani
- Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Daniel Banks
- Bruker Biospin, 15 Fortune Drive, Billerica, Massachusetts 01821, United States
| | - James Kempf
- Bruker Biospin, 15 Fortune Drive, Billerica, Massachusetts 01821, United States
| | - W Tom Wenckebach
- Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
- National High Magnetic Field Laboratory, University of Florida, Gainesville, Florida 32310, United States
| | - Robert G Griffin
- Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
13
|
Mardini M, Palani RS, Ahmad IM, Mandal S, Jawla SK, Bryerton E, Temkin RJ, Sigurdsson ST, Griffin RG. Frequency-swept dynamic nuclear polarization. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 353:107511. [PMID: 37385067 PMCID: PMC11549732 DOI: 10.1016/j.jmr.2023.107511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/01/2023]
Abstract
Dynamic nuclear polarization (DNP) improves the sensitivity of NMR spectroscopy by the transfer of electron polarization to nuclei via irradiation of electron-nuclear transitions with microwaves at the appropriate frequency. For fields > 5 T and using g ∼ 2 electrons as polarizing agents, this requires the availability of microwave sources operating at >140 GHz. Therefore, microwave sources for DNP have generally been continuous-wave (CW) gyrotrons, and more recently solid state, oscillators operating at a fixed frequency and power. This constraint has limited the DNP mechanisms which can be exploited, and stymied the development of new time domain mechanisms. We report here the incorporation of a microwave source enabling facile modulation of frequency, amplitude, and phase at 9 T (250 GHz microwave frequency), and we have used the source for magic-angle spinning (MAS) NMR experiments. The experiments include investigations of CW DNP mechanisms, the advantage of frequency-chirped irradiation, and a demonstration of an Overhauser enhancement of ∼25 with a recently reported water-soluble BDPA radical, highlighting the potential for affordable and compact microwave sources to achieve significant enhancement in aqueous samples, including biological macromolecules. With the development of suitable microwave amplifiers, it should permit exploration of multiple new avenues involving time domain experiments.
Collapse
Affiliation(s)
- Michael Mardini
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Ravi Shankar Palani
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Iram M Ahmad
- Department of Chemistry, Science Institute, University of Iceland, Reykjavik, Iceland
| | - Sucharita Mandal
- Department of Chemistry, Science Institute, University of Iceland, Reykjavik, Iceland
| | - Sudheer K Jawla
- Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Eric Bryerton
- Virginia Diodes Corporation, Charlottesville, VA 22902, United States
| | - Richard J Temkin
- Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Snorri Th Sigurdsson
- Department of Chemistry, Science Institute, University of Iceland, Reykjavik, Iceland
| | - Robert G Griffin
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, United States.
| |
Collapse
|
14
|
Dubroca T, Wang X, Mentink-Vigier F, Trociewitz B, Starck M, Parker D, Sherwin MS, Hill S, Krzystek J. Terahertz EPR spectroscopy using a 36-tesla high-homogeneity series-connected hybrid magnet. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 353:107480. [PMID: 37331305 DOI: 10.1016/j.jmr.2023.107480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/24/2023] [Accepted: 05/13/2023] [Indexed: 06/20/2023]
Abstract
Electron Paramagnetic Resonance (EPR) is a powerful technique to study materials and biological samples on an atomic scale. High-field EPR in particular enables extracting very small g-anisotropies in organic radicals and half-filled 3d and 4f metal ions such as MnII (3d5) or GdIII (4f7), and resolving EPR signals from unpaired spins with very close g-values, both of which provide high-resolution details of the local atomic environment. Before the recent commissioning of the high-homogeneity Series Connected Hybrid magnet (SCH, superconducting + resistive) at the National High Magnetic Field Laboratory (NHMFL), the highest-field, high-resolution EPR spectrometer available was limited to 25 T using a purely resistive "Keck" magnet at the NHMFL. Herein, we report the first EPR experiments performed using the SCH magnet capable of reaching the field of 36 T, corresponding to an EPR frequency of 1 THz for g = 2. The magnet's intrinsic homogeneity (25 ppm, that is 0.9 mT at 36 T over 1 cm diameter, 1 cm length cylinder) was previously established by NMR. We characterized the magnet's temporal stability (5 ppm, which is 0.2 mT at 36 T over one-minute, the typical acquisition time) using 2,2-diphenyl-1-picrylhydrazyl (DPPH). This high resolution enables resolving the weak g-anisotropy of 1,3-bis(diphenylene)-2-phenylallyl (BDPA), Δg = 2.5 × 10-4 obtained from measurements at 932 GHz and 33 T. Subsequently, we recorded EPR spectra at multiple frequencies for two GdIII complexes with potential applications as spin labels. We demonstrated a significant reduction in line broadening in Gd[DTPA], attributed to second order zero field splitting, and a resolution enhancement of g-tensor anisotropy for Gd[sTPATCN]-SL.
Collapse
Affiliation(s)
- Thierry Dubroca
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA.
| | - Xiaoling Wang
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA; Center for Molecular Magnetic Quantum Materials, University of Florida, Gainesville, FL 32611, USA
| | - Frédéric Mentink-Vigier
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA
| | - Bianca Trociewitz
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA
| | - Matthieu Starck
- Department of Chemistry, University of Durham, Durham DH13LE, UK
| | - David Parker
- Department of Chemistry, University of Durham, Durham DH13LE, UK
| | - Mark S Sherwin
- Department of Physics, University of California Santa Barbara, CA 93106, USA
| | - Stephen Hill
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA; Center for Molecular Magnetic Quantum Materials, University of Florida, Gainesville, FL 32611, USA; Department of Physics, Florida State University, Tallahassee FL 32306, USA
| | - J Krzystek
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA.
| |
Collapse
|
15
|
Menzildjian G, Schlagnitweit J, Casano G, Ouari O, Gajan D, Lesage A. Polarizing agents for efficient high field DNP solid-state NMR spectroscopy under magic-angle spinning: from design principles to formulation strategies. Chem Sci 2023; 14:6120-6148. [PMID: 37325158 PMCID: PMC10266460 DOI: 10.1039/d3sc01079a] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/09/2023] [Indexed: 06/17/2023] Open
Abstract
Dynamic Nuclear Polarization (DNP) has recently emerged as a cornerstone approach to enhance the sensitivity of solid-state NMR spectroscopy under Magic Angle Spinning (MAS), opening unprecedented analytical opportunities in chemistry and biology. DNP relies on a polarization transfer from unpaired electrons (present in endogenous or exogenous polarizing agents) to nearby nuclei. Developing and designing new polarizing sources for DNP solid-state NMR spectroscopy is currently an extremely active research field per se, that has recently led to significant breakthroughs and key achievements, in particular at high magnetic fields. This review describes recent developments in this area, highlighting key design principles that have been established over time and led to the introduction of increasingly more efficient polarizing sources. After a short introduction, Section 2 presents a brief history of solid-state DNP, highlighting the main polarization transfer schemes. The third section is devoted to the development of dinitroxide radicals, discussing the guidelines that were progressively established to design the fine-tuned molecular structures in use today. In Section 4, we describe recent efforts in developing hybrid radicals composed of a narrow EPR line radical covalently linked to a nitroxide, highlighting the parameters that modulate the DNP efficiency of these mixed structures. Section 5 reviews recent advances in the design of metal complexes suitable for DNP MAS NMR as exogenous electron sources. In parallel, current strategies that exploit metal ions as endogenous polarization sources are discussed. Section 6 briefly describes the recent introduction of mixed-valence radicals. In the last part, experimental aspects regarding sample formulation are reviewed to make best use of these polarizing agents in a broad panel of application fields.
Collapse
Affiliation(s)
- Georges Menzildjian
- Centre de RMN à, Très Hauts Champs, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1) 5 Rue de la doua 69100 Villeurbanne France
| | - Judith Schlagnitweit
- Centre de RMN à, Très Hauts Champs, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1) 5 Rue de la doua 69100 Villeurbanne France
| | - Gilles Casano
- Aix Marseille Univ., CNRS, Institut de Chimie Radicalaire, UMR 7273 Marseille France
| | - Olivier Ouari
- Aix Marseille Univ., CNRS, Institut de Chimie Radicalaire, UMR 7273 Marseille France
| | - David Gajan
- Centre de RMN à, Très Hauts Champs, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1) 5 Rue de la doua 69100 Villeurbanne France
| | - Anne Lesage
- Centre de RMN à, Très Hauts Champs, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1) 5 Rue de la doua 69100 Villeurbanne France
| |
Collapse
|
16
|
Lends A, Birlirakis N, Cai X, Daskalov A, Shenoy J, Abdul-Shukkoor MB, Berbon M, Ferrage F, Liu Y, Loquet A, Tan KO. Efficient 18.8 T MAS-DNP NMR reveals hidden side chains in amyloid fibrils. JOURNAL OF BIOMOLECULAR NMR 2023:10.1007/s10858-023-00416-5. [PMID: 37289306 DOI: 10.1007/s10858-023-00416-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/02/2023] [Indexed: 06/09/2023]
Abstract
Amyloid fibrils are large and insoluble protein assemblies composed of a rigid core associated with a cross-β arrangement rich in β-sheet structural elements. It has been widely observed in solid-state NMR experiments that semi-rigid protein segments or side chains do not yield easily observable NMR signals at room temperature. The reasons for the missing peaks may be due to the presence of unfavorable dynamics that interfere with NMR experiments, which result in very weak or unobservable NMR signals. Therefore, for amyloid fibrils, semi-rigid and dynamically disordered segments flanking the amyloid core are very challenging to study. Here, we show that high-field dynamic nuclear polarization (DNP), an NMR hyperpolarization technique typically performed at low temperatures, can circumvent this issue because (i) the low-temperature environment (~ 100 K) slows down the protein dynamics to escape unfavorable detection regime, (ii) DNP improves the overall NMR sensitivity including those of flexible side chains, and (iii) efficient cross-effect DNP biradicals (SNAPol-1) optimized for high-field DNP (≥ 18.8 T) are employed to offer high sensitivity and resolution suitable for biomolecular NMR applications. By combining these factors, we have successfully established an impressive enhancement factor of ε ~ 50 on amyloid fibrils using an 18.8 T/ 800 MHz magnet. We have compared the DNP efficiencies of M-TinyPol, NATriPol-3, and SNAPol-1 biradicals on amyloid fibrils. We found that SNAPol-1 (with ε ~ 50) outperformed the other two radicals. The MAS DNP experiments revealed signals of flexible side chains previously inaccessible at conventional room-temperature experiments. These results demonstrate the potential of MAS-DNP NMR as a valuable tool for structural investigations of amyloid fibrils, particularly for side chains and dynamically disordered segments otherwise hidden at room temperature.
Collapse
Affiliation(s)
- Alons Lends
- CNRS, Chemistry and Biology of Membranes and Nanoobjects (CBMN), UMR 5348, Institut Europeen de Chimie et Biologie (IECB), University of Bordeaux, 33600, Pessac, France
| | - Nicolas Birlirakis
- Laboratoire des Biomolécules, LBM, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Xinyi Cai
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Asen Daskalov
- CNRS, Chemistry and Biology of Membranes and Nanoobjects (CBMN), UMR 5348, Institut Europeen de Chimie et Biologie (IECB), University of Bordeaux, 33600, Pessac, France
| | - Jayakrishna Shenoy
- CNRS, Chemistry and Biology of Membranes and Nanoobjects (CBMN), UMR 5348, Institut Europeen de Chimie et Biologie (IECB), University of Bordeaux, 33600, Pessac, France
| | - Muhammed Bilal Abdul-Shukkoor
- CNRS, Chemistry and Biology of Membranes and Nanoobjects (CBMN), UMR 5348, Institut Europeen de Chimie et Biologie (IECB), University of Bordeaux, 33600, Pessac, France
| | - Mélanie Berbon
- CNRS, Chemistry and Biology of Membranes and Nanoobjects (CBMN), UMR 5348, Institut Europeen de Chimie et Biologie (IECB), University of Bordeaux, 33600, Pessac, France
| | - Fabien Ferrage
- Laboratoire des Biomolécules, LBM, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Yangping Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Antoine Loquet
- CNRS, Chemistry and Biology of Membranes and Nanoobjects (CBMN), UMR 5348, Institut Europeen de Chimie et Biologie (IECB), University of Bordeaux, 33600, Pessac, France.
| | - Kong Ooi Tan
- Laboratoire des Biomolécules, LBM, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France.
| |
Collapse
|
17
|
Sezer D. The solid effect of dynamic nuclear polarization in liquids. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2023; 4:153-174. [PMID: 37904804 PMCID: PMC10583289 DOI: 10.5194/mr-4-153-2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/23/2023] [Indexed: 11/01/2023]
Abstract
The solid-state effect of dynamic nuclear polarization (DNP) is operative also in viscous liquids where the dipolar interaction between the electronic and nuclear spins is partially averaged. The proper way to quantify the degree of averaging, and thus calculate the efficiency of the effect, should be based on the time-correlation function of the dipolar interaction. Here we use the stochastic Liouville equation formalism to develop a general theoretical description of the solid effect in liquids. The derived expressions can be used with different dipolar correlations functions depending on the assumed motional model. At high magnetic fields, the theory predicts DNP enhancements at small offsets, far from the classical solid-effect positions that are displaced by one nuclear Larmor frequency from the electronic resonance. The predictions are in quantitative agreement with such enhancement peaks observed at 9.4 T . These non-canonical peaks are not due to thermal mixing or the cross effect but exactly follow the dispersive component of the EPR line.
Collapse
Affiliation(s)
- Deniz Sezer
- Institute of Physical and Theoretical Chemistry, Goethe University, 60438 Frankfurt am Main, Germany
| |
Collapse
|
18
|
Armstrong CM, Snively EC, Shumail M, Nantista C, Li Z, Tantawi S, Loo BW, Temkin RJ, Griffin RG, Feng J, Dionisio R, Mentgen F, Ayllon N, Henderson MA, Goodman TP. Frontiers in the Application of RF Vacuum Electronics. IEEE TRANSACTIONS ON ELECTRON DEVICES 2023; 70:2643-2655. [PMID: 37250956 PMCID: PMC10216895 DOI: 10.1109/ted.2023.3239841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The application of radio frequency (RF) vacuum electronics for the betterment of the human condition began soon after the invention of the first vacuum tubes in the 1920s and has not stopped since. Today, microwave vacuum devices are powering important applications in health treatment, material and biological science, wireless communication-terrestrial and space, Earth environment remote sensing, and the promise of safe, reliable, and inexhaustible energy. This article highlights some of the exciting application frontiers of vacuum electronics.
Collapse
Affiliation(s)
| | - Emma C Snively
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025 USA
| | | | | | - Zenghai Li
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025 USA
| | - Sami Tantawi
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025 USA
| | - Bill W Loo
- Department of Radiation Oncology and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Richard J Temkin
- Department of Physics and the Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Robert G Griffin
- Department of Chemistry and the Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Jinjun Feng
- Beijing Vacuum Electronics Research Institute, Beijing 100015, China
| | - Roberto Dionisio
- RF Equipment and Technologies Section, European Space Agency (ESA), NL-2200 AG Noordwijk, The Netherlands
| | - Felix Mentgen
- RF Equipment and Technologies Section, European Space Agency (ESA), NL-2200 AG Noordwijk, The Netherlands
| | - Natanael Ayllon
- RF Equipment and Technologies Section, European Space Agency (ESA), NL-2200 AG Noordwijk, The Netherlands
| | - Mark A Henderson
- United Kingdom Atomic Energy Authority, Culham Science Centre, OX14 3DB Abingdon, U.K
| | - Timothy P Goodman
- Swiss Plasma Center, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
19
|
Perras FA, Matsuki Y, Southern SA, Dubroca T, Flesariu DF, Van Tol J, Constantinides CP, Koutentis PA. Mechanistic origins of methyl-driven Overhauser DNP. J Chem Phys 2023; 158:154201. [PMID: 37093991 DOI: 10.1063/5.0149664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 03/31/2023] [Indexed: 04/26/2023] Open
Abstract
The Overhauser effect in the dynamic nuclear polarization (DNP) of non-conducting solids has drawn much attention due to the potential for efficient high-field DNP as well as a general interest in the underlying principles that enable the Overhauser effect in small molecules. We recently reported the observation of 1H and 2H Overhauser effects in H3C- or D3C-functionalized Blatter radical analogs, which we presumed to be caused by methyl rotation. In this work, we look at the mechanism for methyl-driven Overhauser DNP in greater detail, considering methyl librations and tunneling in addition to classical rotation. We predict the temperature dependence of these mechanisms using density functional theory and spin dynamics simulations. Comparisons with results from ultralow-temperature magic angle spinning-DNP experiments revealed that cross-relaxation at temperatures above 60 K originates from both libration and rotation, while librations dominate at lower temperatures. Due to the zero-point vibrational nature of these motions, they are not quenched by very low temperatures, and methyl-driven Overhauser DNP is expected to increase in efficiency down to 0 K, predominantly due to increases in nuclear relaxation times.
Collapse
Affiliation(s)
- Frédéric A Perras
- Chemical and Biological Sciences Division, Ames National Laboratory, Ames, Iowa 50011, USA
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA
| | - Yoh Matsuki
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Scott A Southern
- Chemical and Biological Sciences Division, Ames National Laboratory, Ames, Iowa 50011, USA
| | - Thierry Dubroca
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, USA
| | - Dragos F Flesariu
- Department of Chemistry, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| | - Johan Van Tol
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, USA
| | | | | |
Collapse
|
20
|
Shankar Palani R, Mardini M, Quan Y, Griffin RG. Dynamic nuclear polarization with trityl radicals. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 349:107411. [PMID: 36893654 DOI: 10.1016/j.jmr.2023.107411] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Despite the expanding applications of dynamic nuclear polarization (DNP) to problems in biological and materials science, there remain unresolved questions concerning DNP mechanisms. In this paper, we investigate the Zeeman DNP frequency profiles obtained with trityl radicals, OX063 and its partially deuterated analog OX071, in two commonly used glassing matrices based on glycerol and dimethyl sulfoxide (DMSO). When microwave irradiation is applied in the neighborhood of the narrow EPR transition, we observe a dispersive shape in the 1H Zeeman field and the effects are larger in DMSO than in glycerol. With the help of direct DNP observations on 13C and 2H nuclei, we investigate the origin of this dispersive field profile. In particular, we observe a weak nuclear Overhauser effect between 1H and 13C in the sample, which, when irradiating at the positive 1H solid effect (SE) condition, results in a negative enhancement of 13C spins. This observation is not consistent with thermal mixing (TM) being the mechanism responsible for the dispersive shape in the 1H DNP Zeeman frequency profile. Instead, we propose a new mechanism, resonant mixing, involving mixing of nuclear and electron spin states in a simple two-spin system without invoking electron-electron dipolar interactions.
Collapse
Affiliation(s)
- Ravi Shankar Palani
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Michael Mardini
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Yifan Quan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Robert G Griffin
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States.
| |
Collapse
|
21
|
Amerein C, Banerjee U, Pang Z, Lu W, Pimenta V, Tan KO. In-house fabrication of 1.3 to 7 mm MAS drive caps using desktop 3D printers. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 348:107391. [PMID: 36801500 DOI: 10.1016/j.jmr.2023.107391] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
The 3D-printing technology has emerged as a well-developed method to produce parts with considerably low cost and yet with high precision (<100 μm). Recent literature has shown that the 3D-printing technology can be exploited to fabricate a magic-angle spinning (MAS) system in solid-state nuclear magnetic resonance (NMR) spectroscopy. In particular, it was demonstrated that advanced industry-grade 3D printers could fabricate 3.2 mm MAS drive caps with intricate features, and the caps were shown to spin > 20 kHz. Here, we show that not only lab-affordable benchtop 3D printers can produce 3.2 mm drive caps with a similar quality as the commercialized version, but also smaller 2.5 mm and 1.3 mm MAS drive caps-despite a slight compromise in performance. All in-house fabricated drive caps (1.3 to 7 mm) can be consistently reproduced (>90 %) and achieve excellent spinning performances. In summary, the > 3.2 mm systems have similar performances as the commercial systems, while the 2.5- and 1.3-mm caps can spin up to 26 kHz ± 2 Hz, and 46 kHz ± 1 Hz, respectively. The low-cost and fast in-house fabrication of MAS drive caps allows easy prototyping of new MAS drive cap models and, possibly, new NMR applications. For instance, we have fabricated a 4 mm drive cap with a center hole that could allow better light penetration or sample insertion during MAS. Besides, an added groove design on the drive cap allows an airtight seal suitable for probing air- or moisture-sensitive materials. Moreover, the 3D-printed cap was shown to be robust for low-temperature MAS experiments at ∼ 100 K, making it suitable for DNP experiments.
Collapse
Affiliation(s)
- Cyriaque Amerein
- Laboratoire des Biomolécules, LBM, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Utsab Banerjee
- Laboratoire des Biomolécules, LBM, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Zhenfeng Pang
- Laboratoire des Biomolécules, LBM, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Wenqing Lu
- Institut des Matériaux Poreux de Paris, Ecole Normale Supérieure, ESPCI Paris, CNRS, PSL University, 75005 Paris, France
| | - Vanessa Pimenta
- Institut des Matériaux Poreux de Paris, Ecole Normale Supérieure, ESPCI Paris, CNRS, PSL University, 75005 Paris, France
| | - Kong Ooi Tan
- Laboratoire des Biomolécules, LBM, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France.
| |
Collapse
|
22
|
Eills J, Budker D, Cavagnero S, Chekmenev EY, Elliott SJ, Jannin S, Lesage A, Matysik J, Meersmann T, Prisner T, Reimer JA, Yang H, Koptyug IV. Spin Hyperpolarization in Modern Magnetic Resonance. Chem Rev 2023; 123:1417-1551. [PMID: 36701528 PMCID: PMC9951229 DOI: 10.1021/acs.chemrev.2c00534] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Indexed: 01/27/2023]
Abstract
Magnetic resonance techniques are successfully utilized in a broad range of scientific disciplines and in various practical applications, with medical magnetic resonance imaging being the most widely known example. Currently, both fundamental and applied magnetic resonance are enjoying a major boost owing to the rapidly developing field of spin hyperpolarization. Hyperpolarization techniques are able to enhance signal intensities in magnetic resonance by several orders of magnitude, and thus to largely overcome its major disadvantage of relatively low sensitivity. This provides new impetus for existing applications of magnetic resonance and opens the gates to exciting new possibilities. In this review, we provide a unified picture of the many methods and techniques that fall under the umbrella term "hyperpolarization" but are currently seldom perceived as integral parts of the same field. Specifically, before delving into the individual techniques, we provide a detailed analysis of the underlying principles of spin hyperpolarization. We attempt to uncover and classify the origins of hyperpolarization, to establish its sources and the specific mechanisms that enable the flow of polarization from a source to the target spins. We then give a more detailed analysis of individual hyperpolarization techniques: the mechanisms by which they work, fundamental and technical requirements, characteristic applications, unresolved issues, and possible future directions. We are seeing a continuous growth of activity in the field of spin hyperpolarization, and we expect the field to flourish as new and improved hyperpolarization techniques are implemented. Some key areas for development are in prolonging polarization lifetimes, making hyperpolarization techniques more generally applicable to chemical/biological systems, reducing the technical and equipment requirements, and creating more efficient excitation and detection schemes. We hope this review will facilitate the sharing of knowledge between subfields within the broad topic of hyperpolarization, to help overcome existing challenges in magnetic resonance and enable novel applications.
Collapse
Affiliation(s)
- James Eills
- Institute
for Bioengineering of Catalonia, Barcelona
Institute of Science and Technology, 08028Barcelona, Spain
| | - Dmitry Budker
- Johannes
Gutenberg-Universität Mainz, 55128Mainz, Germany
- Helmholtz-Institut,
GSI Helmholtzzentrum für Schwerionenforschung, 55128Mainz, Germany
- Department
of Physics, UC Berkeley, Berkeley, California94720, United States
| | - Silvia Cavagnero
- Department
of Chemistry, University of Wisconsin, Madison, Madison, Wisconsin53706, United States
| | - Eduard Y. Chekmenev
- Department
of Chemistry, Integrative Biosciences (IBio), Karmanos Cancer Institute
(KCI), Wayne State University, Detroit, Michigan48202, United States
- Russian
Academy of Sciences, Moscow119991, Russia
| | - Stuart J. Elliott
- Molecular
Sciences Research Hub, Imperial College
London, LondonW12 0BZ, United Kingdom
| | - Sami Jannin
- Centre
de RMN à Hauts Champs de Lyon, Université
de Lyon, CNRS, ENS Lyon, Université Lyon 1, 69100Villeurbanne, France
| | - Anne Lesage
- Centre
de RMN à Hauts Champs de Lyon, Université
de Lyon, CNRS, ENS Lyon, Université Lyon 1, 69100Villeurbanne, France
| | - Jörg Matysik
- Institut
für Analytische Chemie, Universität
Leipzig, Linnéstr. 3, 04103Leipzig, Germany
| | - Thomas Meersmann
- Sir
Peter Mansfield Imaging Centre, University Park, School of Medicine, University of Nottingham, NottinghamNG7 2RD, United Kingdom
| | - Thomas Prisner
- Institute
of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic
Resonance, Goethe University Frankfurt, , 60438Frankfurt
am Main, Germany
| | - Jeffrey A. Reimer
- Department
of Chemical and Biomolecular Engineering, UC Berkeley, and Materials Science Division, Lawrence Berkeley National
Laboratory, Berkeley, California94720, United States
| | - Hanming Yang
- Department
of Chemistry, University of Wisconsin, Madison, Madison, Wisconsin53706, United States
| | - Igor V. Koptyug
- International Tomography Center, Siberian
Branch of the Russian Academy
of Sciences, 630090Novosibirsk, Russia
| |
Collapse
|
23
|
Qiu Y, Equbal A, Lin C, Huang Y, Brown PJ, Young RM, Krzyaniak MD, Wasielewski MR. Optical Spin Polarization of a Narrow-Linewidth Electron-Spin Qubit in a Chromophore/Stable-Radical System. Angew Chem Int Ed Engl 2023; 62:e202214668. [PMID: 36469535 PMCID: PMC10107609 DOI: 10.1002/anie.202214668] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/29/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Photoexcited organic chromophores appended to stable radicals can serve as qubit and/or qudit candidates for quantum information applications. 1,6,7,12-Tetra-(4-tert-butylphenoxy)-perylene-3,4 : 9,10-bis(dicarboximide) (tpPDI) linked to a partially deuterated α,γ-bisdiphenylene-β-phenylallyl radical (BDPA-d16 ) was synthesized and characterized by time-resolved optical and electron paramagnetic resonance (EPR) spectroscopies. Photoexcitation of tpPDI-BDPA-d16 results in ultrafast radical-enhanced intersystem crossing to produce a quartet state (Q) followed by formation of a spin-polarized doublet ground state (D0 ). Pulse-EPR experiments confirmed the spin multiplicity of Q and yielded coherence times of Tm =2.1±0.1 μs and 2.8±0.2 μs for Q and D0 , respectively. BDPA-d16 eliminates the dominant 1 H hyperfine couplings, resulting in a single narrow line for both the Q and D0 states, which enhances the spectral resolution needed for good qubit addressability.
Collapse
Affiliation(s)
- Yunfan Qiu
- Department of Chemistry, Center for Molecular Quantum Transduction, Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, IL 60208-3113, USA
| | - Asif Equbal
- Department of Chemistry, Center for Molecular Quantum Transduction, Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, IL 60208-3113, USA
| | - Chenjian Lin
- Department of Chemistry, Center for Molecular Quantum Transduction, Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, IL 60208-3113, USA
| | - Yuheng Huang
- Department of Chemistry, Center for Molecular Quantum Transduction, Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, IL 60208-3113, USA
| | - Paige J Brown
- Department of Chemistry, Center for Molecular Quantum Transduction, Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, IL 60208-3113, USA
| | - Ryan M Young
- Department of Chemistry, Center for Molecular Quantum Transduction, Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, IL 60208-3113, USA
| | - Matthew D Krzyaniak
- Department of Chemistry, Center for Molecular Quantum Transduction, Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, IL 60208-3113, USA
| | - Michael R Wasielewski
- Department of Chemistry, Center for Molecular Quantum Transduction, Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, IL 60208-3113, USA
| |
Collapse
|
24
|
Palani RS, Mardini M, Delage-Laurin L, Banks D, Ouyang Y, Bryerton E, Kempf JG, Swager TM, Griffin RG. Amplified Overhauser DNP with Selective Deuteration: Attenuation of Double-Quantum Cross-Relaxation. J Phys Chem Lett 2023; 14:95-100. [PMID: 36573841 PMCID: PMC9903202 DOI: 10.1021/acs.jpclett.2c03087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
We recently used selective 2H labeling of BDPA to investigate the Overhauser Effect (OE) dynamic nuclear polarization (DNP) mechanism in insulating solids doped with 1,3-bis(diphenylene)-2-phenylallyl (BDPA), and established that the α and γ 1H spins on the fluorene rings are responsible for generating a zero quantum (ZQ) mediated positive bulk polarization. Here, we establish that the phenyl 1H spins relax via double-quantum (DQ) processes and therefore contribute negative enhancements which attenuate the OE-DNP. With measurements at different magnetic field strengths, we show that phenyl-d5-BDPA offers >50% improvement in OE-DNP enhancement compared to h21-BDPA attaining a maximum of ∼90 at 14.1 T and 5 kHz MAS, the highest observed OE-DNP enhancement to date under these conditions. The approach may be utilized to optimize other polarizing agents exhibiting an OE, an important DNP mechanism with a favorable field and spinning frequency dependence.
Collapse
Affiliation(s)
| | | | | | - Daniel Banks
- Bruker Biospin Corporation, Billerica, Massachusetts 01821, United States
| | | | - Eric Bryerton
- Virginia Diodes Corporation, Charlottesville, Virginia 22902, United States
| | - James G Kempf
- Bruker Biospin Corporation, Billerica, Massachusetts 01821, United States
| | | | | |
Collapse
|
25
|
Tan KO, Yang L, Mardini M, Boon Cheong C, Driesschaert B, Dincă M, Griffin RG. Observing Nearby Nuclei on Paramagnetic Trityls and MOFs via DNP and Electron Decoupling. Chemistry 2022; 28:e202202556. [PMID: 36089532 PMCID: PMC9795816 DOI: 10.1002/chem.202202556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Indexed: 12/30/2022]
Abstract
Dynamic nuclear polarization (DNP) is an NMR sensitivity enhancement technique that mediates polarization transfer from unpaired electrons to NMR-active nuclei. Despite its success in elucidating important structural information on biological and inorganic materials, the detailed polarization-transfer pathway from the electrons to the nearby and then the bulk solvent nuclei, and finally to the molecules of interest-remains unclear. In particular, the nuclei in the paramagnetic polarizing agent play significant roles in relaying the enhanced NMR polarizations to more remote nuclei. Despite their importance, the direct NMR observation of these nuclei is challenging because of poor sensitivity. Here, we show that a combined DNP and electron decoupling approach can facilitate direct NMR detection of these nuclei. We achieved an ∼80 % improvement in NMR intensity via electron decoupling at 0.35 T and 80 K on trityl radicals. Moreover, we recorded a DNP enhancement factor ofϵ ${\varepsilon{} }$ ∼90 and ∼11 % higher NMR intensity using electron decoupling on paramagnetic metal-organic framework, magnesium hexaoxytriphenylene (MgHOTP MOF).
Collapse
Affiliation(s)
- Kong Ooi Tan
- Department of ChemistryMassachusetts Institute of TechnologyCambridgeMA-02139USA
- Francis Bitter Magnet LaboratoryMassachusetts Institute of TechnologyCambridgeMA-02139USA
- Laboratoire des BiomoléculesLBMDépartement de ChimieÉcole Normale SupérieurePSL UniversitySorbonne Université, CNRS75005ParisFrance
| | - Luming Yang
- Department of ChemistryMassachusetts Institute of TechnologyCambridgeMA-02139USA
- Research Group EPR SpectroscopyMax Planck Institute for Multidisciplinary SciencesGöttingen37077Germany
| | - Michael Mardini
- Department of ChemistryMassachusetts Institute of TechnologyCambridgeMA-02139USA
- Francis Bitter Magnet LaboratoryMassachusetts Institute of TechnologyCambridgeMA-02139USA
| | - Choon Boon Cheong
- Department of ChemistryMassachusetts Institute of TechnologyCambridgeMA-02139USA
- Francis Bitter Magnet LaboratoryMassachusetts Institute of TechnologyCambridgeMA-02139USA
- Institute of Sustainability for ChemicalsEnergy and Environment1 Pesek Road, Jurong IslandSingapore627833Singapore
| | - Benoit Driesschaert
- Department of Pharmaceutical SciencesSchool of PharmacyWest Virginia UniversityMorgantownWV-2650USA
| | - Mircea Dincă
- Department of ChemistryMassachusetts Institute of TechnologyCambridgeMA-02139USA
| | - Robert G. Griffin
- Department of ChemistryMassachusetts Institute of TechnologyCambridgeMA-02139USA
- Francis Bitter Magnet LaboratoryMassachusetts Institute of TechnologyCambridgeMA-02139USA
| |
Collapse
|
26
|
Quan Y, Steiner J, Ouyang Y, Tan KO, Wenckebach WT, Hautle P, Griffin RG. Integrated, Stretched, and Adiabatic Solid Effects. J Phys Chem Lett 2022; 13:5751-5757. [PMID: 35714050 PMCID: PMC9938721 DOI: 10.1021/acs.jpclett.2c01147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
This paper presents a theory describing the dynamic nuclear polarization (DNP) process associated with an arbitrary frequency swept microwave pulse. The theory is utilized to explain the integrated solid effect (ISE) as well as the newly discovered stretched solid effect (SSE) and adiabatic solid effect (ASE). It is verified with experiments performed at 9.4 GHz (0.34 T) on single crystals of naphthalene doped with pentacene-d14. It is shown that the SSE and ASE can be more efficient than the ISE. Furthermore, the theory predicts that the efficiency of the SSE improves at high magnetic fields, where the EPR line width is small compared to the nuclear Larmor frequency. In addition, we show that the ISE, SSE, and ASE are based on similar physical principles and we suggest definitions to distinguish among them.
Collapse
Affiliation(s)
- Yifan Quan
- Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jakob Steiner
- Paul Scherrer Institute (PCI), 5232 Villigen, Switzerland
| | - Yifu Ouyang
- Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Kong Ooi Tan
- Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Currently at Laboratoire des Biomolécules, LBM, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - W Thomas Wenckebach
- Paul Scherrer Institute (PCI), 5232 Villigen, Switzerland
- National High Magnetic Field Laboratory, University of Florida, Gainesville, Florida 32310, United States
| | - Patrick Hautle
- Paul Scherrer Institute (PCI), 5232 Villigen, Switzerland
| | - Robert G Griffin
- Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
27
|
Perras FA, Flesariu DF, Southern SA, Nicolaides C, Bazak JD, Washton NM, Trypiniotis T, Constantinides CP, Koutentis PA. Methyl-Driven Overhauser Dynamic Nuclear Polarization. J Phys Chem Lett 2022; 13:4000-4006. [PMID: 35482607 DOI: 10.1021/acs.jpclett.2c00748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The Overhauser effect is unique among DNP mechanisms in that it requires the modulation of the electron-nuclear hyperfine interactions. While it dominates DNP in liquids and metals, where unpaired electrons are highly mobile, Overhauser DNP is possible in insulating solids if rapid structural modulations are linked to a modulation in hyperfine coupling. Herein, we report that Overhauser DNP can be triggered by the strategic addition of a methyl group, demonstrated here in a Blatter's radical. The rotation of the methyl group leads to a modulation of the hyperfine coupling to its protons, which in turn facilitates electron-nuclear cross-relaxation. Removal of the methyl protons, through deuteration, quenches the process, as does the reduction of the hyperfine coupling strength. This result suggests the possibility for the design of tailor-made Overhauser DNP polarizing agents for high-field MAS-DNP.
Collapse
Affiliation(s)
| | - Dragos F Flesariu
- Department of Chemistry, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| | | | | | - J David Bazak
- Physical & Computational Science Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Nancy M Washton
- Physical & Computational Science Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | | | - Christos P Constantinides
- Department of Natural Sciences, University of Michigan-Dearborn, 4901 Evergreen Road, Dearborn, Michigan 48128-1491, United States
| | | |
Collapse
|
28
|
Tan KO, Griffin RG. Observation of a Four-Spin Solid Effect. J Chem Phys 2022; 156:174201. [PMID: 35525661 PMCID: PMC9068241 DOI: 10.1063/5.0091663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The two-spin solid effect (2SSE) is one of the established continuous wave dynamic nuclear polarization mechanisms that enables enhancement of nuclear magnetic resonance signals. It functions via a state-mixing mechanism that mediates the excitation of forbidden transitions in an electron–nuclear spin system. Specifically, microwave irradiation at frequencies ωμw ∼ ω0S ± ω0I, where ω0S and ω0I are electron and nuclear Larmor frequencies, respectively, yields enhanced nuclear spin polarization. Following the recent rediscovery of the three-spin solid effect (3SSE) [Tan et al., Sci. Adv. 5, eaax2743 (2019)], where the matching condition is given by ωμw = ω0S ± 2ω0I, we report here the first direct observation of the four-spin solid effect (4SSE) at ωμw = ω0S ± 3ω0I. The forbidden double- and quadruple-quantum transitions were observed in samples containing trityl radicals dispersed in a glycerol–water mixture at 0.35 T/15 MHz/9.8 GHz and 80 K. We present a derivation of the 4SSE effective Hamiltonian, matching conditions, and transition probabilities. Finally, we show that the experimental observations agree with the results from numerical simulations and analytical theory.
Collapse
Affiliation(s)
| | - Robert G. Griffin
- Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, United States of America
| |
Collapse
|
29
|
Kuzhelev AA, Dai D, Denysenkov V, Prisner TF. Solid-like Dynamic Nuclear Polarization Observed in the Fluid Phase of Lipid Bilayers at 9.4 T. J Am Chem Soc 2022; 144:1164-1168. [PMID: 35029974 DOI: 10.1021/jacs.1c12837] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dynamic nuclear polarization (DNP) is a powerful method to enhance NMR sensitivity. Much progress has been achieved recently to optimize DNP performance at high magnetic fields in solid-state samples, mostly by utilizing the solid or the cross effect. In liquids, only the Overhauser mechanism is active, which exhibits a DNP field profile matching the EPR line shape of the radical, distinguishable from other DNP mechanisms. Here, we observe DNP enhancements with a field profile indicative of the solid effect and thermal mixing at ∼320 K and a magnetic field of 9.4 T in the fluid phase of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) lipid bilayers doped with the radical BDPA (1,3-bis(diphenylene)-2-phenylallyl). This interesting observation might open up new perspectives for DNP applications in macromolecular systems at ambient temperatures.
Collapse
Affiliation(s)
- Andrei A Kuzhelev
- Goethe University Frankfurt am Main, Institute of Physical and Theoretical Chemistry and Center for Biomolecular Magnetic Resonance, Max von Laue Str. 7, 60438 Frankfurt am Main, Germany
| | - Danhua Dai
- Goethe University Frankfurt am Main, Institute of Physical and Theoretical Chemistry and Center for Biomolecular Magnetic Resonance, Max von Laue Str. 7, 60438 Frankfurt am Main, Germany
| | - Vasyl Denysenkov
- Goethe University Frankfurt am Main, Institute of Physical and Theoretical Chemistry and Center for Biomolecular Magnetic Resonance, Max von Laue Str. 7, 60438 Frankfurt am Main, Germany
| | - Thomas F Prisner
- Goethe University Frankfurt am Main, Institute of Physical and Theoretical Chemistry and Center for Biomolecular Magnetic Resonance, Max von Laue Str. 7, 60438 Frankfurt am Main, Germany
| |
Collapse
|