1
|
Brissaud C, Jain S, Henrotte O, Pouget E, Pauly M, Naldoni A, Comesaña-Hermo M. Plasmonic Chirality Meets Reactivity: Challenges and Opportunities. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2025; 129:3361-3373. [PMID: 40008194 PMCID: PMC11849436 DOI: 10.1021/acs.jpcc.4c08454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/27/2025] [Accepted: 01/30/2025] [Indexed: 02/27/2025]
Abstract
The unique optoelectronic features associated with plasmonic nanomaterials in a broad energy range of the electromagnetic spectrum have the potential to overcome the current limitations in the development of heterogeneous photocatalytic systems with enantioselective capabilities. Recent advancements in creating plasmonic structures with strong chiroptical features have already enabled asymmetric recognition of molecular substrates or even polarization-sensitive chemical reactivity under visible and near-infrared irradiation. Nevertheless, important developments need to be achieved to attain real enantioselective reactivity solely driven by plasmons. This Perspective discusses current trends in the formation of chiral plasmonic materials and their application as photocatalysts to achieve stereocontrol in photochemical reactions. We summarize the challenges in this field and offer insight into future opportunities that could enhance the effectiveness of these innovative systems.
Collapse
Affiliation(s)
| | - Swareena Jain
- Department
of Chemistry and NIS Centre, University
of Turin, Turin 10125, Italy
| | - Olivier Henrotte
- Regional
Centre of Advanced Technologies and Materials Department, Czech Advanced
Technology and Research Institute, Palacký
University Olomouc, Šlechtitelů 27, Olomouc 78371, Czech Republic
- Nanoinstitut
München, Fakultät für Physik, Ludwig-Maximilians-Universität München, Königinstraße 10, 80539 München, Germany
| | - Emilie Pouget
- Université
of Bordeaux, CNRS, Bordeaux
INP, CBMN, UMR 5248, F-33600 Pessac, France
| | - Matthias Pauly
- Université
de Strasbourg, CNRS, Institut Charles Sadron UPR22, F-67000 Strasbourg, France
- ENS
de Lyon, CNRS, LCH, UMR
5182, F-69342 Lyon
Cedex 07, France
| | - Alberto Naldoni
- Department
of Chemistry and NIS Centre, University
of Turin, Turin 10125, Italy
| | | |
Collapse
|
2
|
Pu Y, Wang T, Lin C, Wang D, Liu Z, Tian Y, Wang J. Enhancement of photocatalytic CO 2 reduction in BiOBr through chirality-induced electron spin polarization regulation. Chem Commun (Camb) 2025; 61:2580-2583. [PMID: 39820929 DOI: 10.1039/d4cc06009a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Severe photogenerated charge carrier recombination involved in photocatalytic CO2 reduction leads to low photocatalytic efficiency. Here we demonstrate that a chiral hierarchical structure could facilitate charge separation in BiOBr, thus suppressing charge recombination and enhancing photocatalytic performance. Chiral helical flower-like BiOBr nanospheres were prepared via a D/L-sorbitol-assisted hydrothermal process, exhibiting a 1.1-fold increase in photocatalytic CO2 reduction activity compared to the achiral counterparts. This enhancement is attributed to the chiral-induced electron spin polarization regulation, as confirmed by photoluminescence and electrochemical characterizations. This work opens an alternative avenue for the design of high-performance photocatalysts.
Collapse
Affiliation(s)
- Yong Pu
- Department of School of Chemical Engineering and Technology, Hainan University, Haikou, China
| | - Tianyue Wang
- Department of School of Chemical Engineering and Technology, Hainan University, Haikou, China
| | - Chang Lin
- Department of School of Chemical Engineering and Technology, Hainan University, Haikou, China
| | - Dun Wang
- Department of School of Chemical Engineering and Technology, Hainan University, Haikou, China
| | - Zhongxin Liu
- Department of School of Chemical Engineering and Technology, Hainan University, Haikou, China
| | - Yue Tian
- School of Marine Science and Engineering, Hainan University, Haikou, China.
| | - Jieqiong Wang
- School of Marine Science and Engineering, Hainan University, Haikou, China.
| |
Collapse
|
3
|
Yu LQ, Guo RT, Xia C, Guo SH, Yan JS, Liu YF. Bismuth-Metal and Carbon Quantum Dot Co-Doped NiAl-LDH Heterojunctions for Promoting the Photothermal Catalytic Reduction of CO 2. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409901. [PMID: 39690807 DOI: 10.1002/smll.202409901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/03/2024] [Indexed: 12/19/2024]
Abstract
The quest for sustainable photocatalytic CO2 reduction reactions (CRR) emphasizes the development of high-efficiency, economically viable, and durable photocatalysts. A novel approach involving the synthesis of Bi-CDs/LDH heterojunctions, incorporating plasma metals and carbon quantum dots via hydrothermal and co-precipitation methods, yields remarkable results. The optimized BCL-4 photocatalyst demonstrates exceptional performance, with C2H4 and C2H6 yields of 1.35 and 2.17 µmol g-1 h-1, respectively, representing substantial enhancements of 11.25 and 14.47 times compared to the LDH monomer. Moreover, the catalyst exhibits a notable selectivity of 36.6% for C2 products. Plasmonic Bi with high conductivity and carbon quantum dots synergistically enhances visible light absorption and generated additional hot electrons. The electron-trapping ability of carbon quantum dots is pivotal in creating elevated electron and CO2 concentrations at the catalyst interface, fostering conditions conducive to promoting C─C coupling reactions for the generation of C2 products.
Collapse
Affiliation(s)
- Ling-Qi Yu
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
| | - Rui-Tang Guo
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
- Shanghai Non-Carbon Energy Conversion and Utilization Institute, Shanghai, 200090, P. R. China
| | - Cheng Xia
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
| | - Sheng-Hui Guo
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
| | - Ji-Song Yan
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
| | - Yi-Fu Liu
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
| |
Collapse
|
4
|
Zhang Y, Sun Y, Ren X, Hu J, Yu H, Liu J, Huang H, Han J. Chiral Polar Bifunctional Polyimide Enantiomers for Asymmetric Photo- and Piezo-Catalysis. Angew Chem Int Ed Engl 2025; 64:e202416221. [PMID: 39370777 DOI: 10.1002/anie.202416221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/27/2024] [Accepted: 10/06/2024] [Indexed: 10/08/2024]
Abstract
Chiral catalysts for asymmetric catalysis represent a crucial research focus in chemistry and materials science. However, a few cases about chiral-dependent photocatalysts primarily focus on plasmonic noble metals. Particularly, developing chiral nano-catalysts that can be driven by mechanical energy remains in the blank stage. Herein, organic polymer-based enantiomers, chiral polar polyimide (PI) microspheric nano-assembly are synthesized as novel bifunctional catalysts for asymmetric photocatalysis and piezocatalysis. The PI catalyst enantiomers present enantioselectivity towards left- and right-circularly polarized light, demonstrating chiral-dependent H2O2 photoproduction. Interestingly, enantioselectivity of the catalyst reverses under irradiation of different bands, presenting tunability in the interaction between chiral catalysts and circularly polarized light. For the first time, enantioselective piezocatalytic behavior is demonstrated by the chiral polar PI catalysts. They show remarkable chiral preference for asymmetric Diels-Alder reaction and enantioselective conversion of tyrosine substrates under ultrasonic vibration. The findings provide a new perspective into exploring metal-free chiral catalysts and their asymmetric catalysis applications across multiple energy forms.
Collapse
Affiliation(s)
- Yan Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, 225002, Yangzhou, P. R. China
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences, 100083, Beijing, P. R. China
| | - Yemeng Sun
- School of Chemistry and Chemical Engineering, Yangzhou University, 225002, Yangzhou, P. R. China
| | - Xi Ren
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences, 100083, Beijing, P. R. China
| | - Jun Hu
- School of Chemistry and Chemical Engineering, Yangzhou University, 225002, Yangzhou, P. R. China
| | - Hongjian Yu
- School of Chemistry and Chemical Engineering, Yangzhou University, 225002, Yangzhou, P. R. China
| | - Jingang Liu
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences, 100083, Beijing, P. R. China
| | - Hongwei Huang
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences, 100083, Beijing, P. R. China
| | - Jie Han
- School of Chemistry and Chemical Engineering, Yangzhou University, 225002, Yangzhou, P. R. China
| |
Collapse
|
5
|
Yang G, Tao Y, Cheng Q, Liu C, Zhang B, Sun X, Yang Y, Lu D, Yang J, Deng LL, Sun L, Xu H, Xie SY, Zhang Q. Shell Dependence of Highly Tunable Circular Dichroism in Chiral Hybrid Plasmonic Nanomaterials for Chiroptical Applications. ACS NANO 2025; 19:2961-2974. [PMID: 39783260 DOI: 10.1021/acsnano.4c17484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Chiral plasmonic nanomaterials with fascinating physical and chemical properties show emerging chirality-dependent applications in photonics, catalysis, and sensing. The capability to precisely manipulate the plasmonic chirality in a broad spectral range plays a crucial role in enabling the applications of chiral nanomaterials in diverse and complex scenarios; however, it remains a challenge yet to be addressed. Here we demonstrate a strategy to significantly enhance the tunability of circular dichroism (CD) spectra of chiral nanomaterials by constructing core-shell hybrid metal-semiconductor structures with tailored shells. In a typical case, chiral Au@Cu2O nanostructures exhibit shell-dependent tunable CD signals in both asymmetry factors and band wavelengths. The shell-dependent CD was demonstrated experimentally by CD and single-particle spectroscopy and theoretically through numerical simulations. By deliberately controlling the geometry of the chiral core and the composition of the achiral shell, we show the versatility of our strategy for constructing chiral hybrid nanostructures with increasing architectural and compositional complexity as well as enhanced plasmonic chirality. Furthermore, the chiral Au@Cu2O nanostructure exhibits intriguing asymmetric color modulation. This work opens an advancing strategy and provides an important knowledge framework for the rational design of multifunctional chiral hybrid nanostructures toward emerging chirality-dependent applications.
Collapse
Affiliation(s)
- Guizeng Yang
- College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University, Wuhan 430072, China
| | - Yunlong Tao
- College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University, Wuhan 430072, China
| | - Qingqing Cheng
- College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University, Wuhan 430072, China
| | - Chuang Liu
- College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University, Wuhan 430072, China
| | - Binbin Zhang
- College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University, Wuhan 430072, China
| | - Xuehao Sun
- College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University, Wuhan 430072, China
| | - Yahui Yang
- College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University, Wuhan 430072, China
| | - Dandan Lu
- College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University, Wuhan 430072, China
| | - Jian Yang
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Lin-Long Deng
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Lichao Sun
- College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University, Wuhan 430072, China
- Suzhou Institute of Wuhan University, Suzhou 215123, China
| | - Hongxing Xu
- The Institute of Advanced Studies, School of Physics and Technology, Center for Nanoscience and Nanotechnology, Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Su-Yuan Xie
- State Key Lab for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Xiamen University, Xiamen 361005, China
| | - Qingfeng Zhang
- College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University, Wuhan 430072, China
| |
Collapse
|
6
|
Wang F, Yang W, Ding Q, Xing X, Xu L, Lin H, Xu C, Li S. Chiral Au@CeO 2 Helical Nanorods with Spatially Separated Structures for Polarization-Dependent N 2 Photofixation. Angew Chem Int Ed Engl 2025; 64:e202415031. [PMID: 39320103 DOI: 10.1002/anie.202415031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/15/2024] [Accepted: 09/23/2024] [Indexed: 09/26/2024]
Abstract
Chiral photocatalytic nanomaterials possess numerous unique properties and hold promise for various applications in chemical synthesis, environmental protection, energy conversion, and photoelectric devices. Nevertheless, it is uncommon to develop effective means to enhance the asymmetric catalytic performances of chiral plasmonic nanomaterials. In this study, a type of L/D-Au@CeO2 helical nanorods (HNRs) was fabricated by selectively growing CeO2 on the surface of Au HNRs via a facile wet-chemistry construction method. Chiral Au@CeO2 HNRs, featuring Au and CeO2 with spatially separated structures, exhibited the highest photocatalytic performance for N2 fixation, being 50.80±2.64 times greater than that of Au HNRs. Furthermore, when L-Au@CeO2 HNRs were exposed to left circularly polarized light (CPL) and D-Au@CeO2 HNRs were exposed to right CPL, their photocatalytic efficiency was enhanced by 3.06±0.06 times compared to the samples illuminated with the opposite CPL, which can be attributed to the asymmetrical generation of hot carriers upon CPL excitation. This study not only offers a simple approach to enhance the photocatalytic performance of chiral plasmonic nanomaterials but also demonstrates the potential of chiral plasmonic materials for application in specific photocatalytic reactions, such as N2 fixation.
Collapse
Affiliation(s)
- Fang Wang
- International Joint Research Center for Photo-responsive Molecules and Materials, Jiangnan University, Wuxi, Jiangsu, 214122, P.R. China
| | - Weimin Yang
- International Joint Research Center for Photo-responsive Molecules and Materials, Jiangnan University, Wuxi, Jiangsu, 214122, P.R. China
| | - Qi Ding
- International Joint Research Center for Photo-responsive Molecules and Materials, Jiangnan University, Wuxi, Jiangsu, 214122, P.R. China
| | - Xinhe Xing
- International Joint Research Center for Photo-responsive Molecules and Materials, Jiangnan University, Wuxi, Jiangsu, 214122, P.R. China
| | - Liguang Xu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P.R. China
| | - Hengwei Lin
- International Joint Research Center for Photo-responsive Molecules and Materials, Jiangnan University, Wuxi, Jiangsu, 214122, P.R. China
| | - Chuanlai Xu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P.R. China
| | - Si Li
- International Joint Research Center for Photo-responsive Molecules and Materials, Jiangnan University, Wuxi, Jiangsu, 214122, P.R. China
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P.R. China
| |
Collapse
|
7
|
Wang Y, Ai B, Jiang Y, Wang Z, Chen C, Xiao Z, Xiao G, Zhang G. Swiss roll nanoarrays for chiral plasmonic photocatalysis. J Colloid Interface Sci 2025; 678:818-826. [PMID: 39217697 DOI: 10.1016/j.jcis.2024.08.215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/25/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Manipulating the chirality at nanoscale has drawn great attention among scientists, considering its pivotal role in various applications of current interest, including nano-optics, biomedicine, and photocatalysis. In this work, we delve into this arena by fabricating chiral Swiss roll nanoarray (SRNA) continuous films employing colloidal lithography. The technique permits the dimension of Swiss roll metamaterials to reduce to nanoscale, thus achieving chiroptical response (circular dichroism (CD)) in the visible region. The interplay between the CD signals and plasmon resonance modes is revealed through theoretical simulations, enabling a deep understanding of chiral plasmonic metamaterials. The polarization-sensitive photocatalytic activity of chiral SRNAs is investigated, noting a marked increase in the reaction rate when the chirality of SRNAs matches with the handedness of circularly polarized light (CPL). Notably, the SRNA continuous films based on substrate possess integration and reusability without complex recycling process, enhancing their practicality in applications like sensing and plasmonic nanochemistry, particularly toward polarization-dependent photocatalysis.
Collapse
Affiliation(s)
- Yu Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China; College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051, PR China
| | - Bin Ai
- School of Microelectronics and Communication Engineering, Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, Chongqing University, Chongqing 400044, PR China
| | - Yun Jiang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Zengyao Wang
- School of Pharmacy, Weifang Medical University, Weifang 261053, PR China
| | - Chong Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Zifan Xiao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Ge Xiao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Gang Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China.
| |
Collapse
|
8
|
Liu W, Fang X, Ju X, Gao K, Wang D, Xu H, Wang J. Amino acid-induced synthesis of chiral AgAuPt nanoparticles with branched structure for circularly polarized enantioselective photoelectrocatalytic water splitting. J Colloid Interface Sci 2024; 675:74-83. [PMID: 38964126 DOI: 10.1016/j.jcis.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Chiral Plasmonic nanomaterials have gradually illustrated intriguing circularly polarized light (CPL)-dependent properties in photocatalysis due to their unique chiral optical activity. However, the connection between chiral characteristics and catalytic performance of these materials in cooperative systems is rarely reported and remains a challenge task. In this work, branched AgAuPt nanoparticles induced by L/d-cysteine (Cys) with strong and perfectly symmetric circular dichroism (CD) signals are synthesized. Chiral branched AgAuPt nanoparticles firstly exhibit superior typical electrocatalytic performance. In the photoelectrocatalytic system, chiral branched AgAuPt nanoparticles demonstrate selective catalytic water splitting performance. Specifically, chiral branched AgAuPt with related CPL irradiation exhibits enhanced acidic hydrogen evolution reaction (HER) performance. Under the continuous irradiation of related CPL, the chiral catalyst generates more heat, which further increases the catalytic activity. This contribution of heat is supported by density functional theory (DFT) calculation results. The changes in chiroptical activity during this process are recorded by variable temperature CD spectra. This work provides a novel paradigm for designing chiral catalysis systems and emphasizes the profound promise of chiral plasmonic nanomaterials as chiral catalysts.
Collapse
Affiliation(s)
- Wenliang Liu
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Xiaoyu Fang
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Xinfeng Ju
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Kang Gao
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Dong Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Hai Xu
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China.
| | - Jiqian Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China.
| |
Collapse
|
9
|
Sun Y, Zhang Y, Ni J, Shen Y, Yu H, Lee HK, Hu J, Zhan X, Zhou C, Han J. Chiral Inorganic Polar BaTiO 3/BaCO 3 Nanohybrids with Spin Selection for Asymmetric Photocatalysis. NANO LETTERS 2024. [PMID: 39561320 DOI: 10.1021/acs.nanolett.4c04295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Chirality-dependent photocatalysis is an emerging domain that leverages unique chiral light-matter interactions for enabling asymmetric catalysis driven by spin polarization induced by circularly polarized light selection. Herein, we synthesize chiral inorganic polar BaTiO3/BaCO3 nanohybrids for asymmetric photocatalysis via a hydrothermal method employing chiral glucose as a structural inducer. When excited by opposite circularly polarized light, the same material exhibits significant asymmetric catalysis, while enantiomers present an opposite polarization preference. More importantly, the preferred circularly polarized light undergoes reversal with reversal of the CD signal. Systematic experimental results demonstrate that more photogenerated carriers are generated in chiral semiconductors under suitable circularly polarized light irradiation, including more spin-polarized electrons, which inhibits the recombination of electron-hole pairs and promotes the activation of oxygen molecules into reactive oxygen species, thus inducing this asymmetric photocatalytic feature. This study provides valuable insights for the development of highly efficient polarization-sensitive chiral perovskite nanostructures as promising candidates for next-generation, multifunctional chiral device applications.
Collapse
Affiliation(s)
- Yemeng Sun
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Yan Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences (Beijing), Beijing 100083, China
| | - Jingren Ni
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Yihui Shen
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Hongjian Yu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Hiang Kwee Lee
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Jun Hu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Xiuqin Zhan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Chuanqiang Zhou
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Jie Han
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| |
Collapse
|
10
|
Tan L, Wen Z, Jin Y, Fu W, Gao Q, Xiao C, Chen Z, Wang PP. A Family of Twisted Chiral Engineered Inorganic Nanoarchitectures. NANO LETTERS 2024; 24:13678-13685. [PMID: 39423301 DOI: 10.1021/acs.nanolett.4c03627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Chiral inorganic materials possess unique asymmetric properties that could significantly impact various fields. However, their practical application has been hindered by challenges in creating structurally robust chiral materials. We report the synthesis of well-defined chiral-shaped hollow cobalt oxide nanostructures, extendable to a family of chalcogenides including sulfide, selenide, and telluride through topological transformations. Taking chiral cobalt oxide nanostructures as a representative material, we demonstrate precise control over their chiral architectures, enabling fine-tuning of parameters, such as twist degrees, handedness, and compositions. These chiral nanostructures exhibit high spin selectivity effects that influence the electron transfer processes in catalytic reactions. Leveraging this spin-selective behavior, the chiral cobalt oxide nanoarchitectures demonstrate enhanced electrocatalytic performance in the oxygen evolution reaction compared to their achiral counterparts. Our findings not only expand the library of chiral inorganic materials but also advance the application of chiral effects in fields such as catalysis, spintronics, and beyond.
Collapse
Affiliation(s)
- Lili Tan
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Zhihao Wen
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Yiran Jin
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Wenlong Fu
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Qi Gao
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Chengyu Xiao
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Zhi Chen
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Peng-Peng Wang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| |
Collapse
|
11
|
Stefancu A, Aizpurua J, Alessandri I, Bald I, Baumberg JJ, Besteiro LV, Christopher P, Correa-Duarte M, de Nijs B, Demetriadou A, Frontiera RR, Fukushima T, Halas NJ, Jain PK, Kim ZH, Kurouski D, Lange H, Li JF, Liz-Marzán LM, Lucas IT, Meixner AJ, Murakoshi K, Nordlander P, Peveler WJ, Quesada-Cabrera R, Ringe E, Schatz GC, Schlücker S, Schultz ZD, Tan EX, Tian ZQ, Wang L, Weckhuysen BM, Xie W, Ling XY, Zhang J, Zhao Z, Zhou RY, Cortés E. Impact of Surface Enhanced Raman Spectroscopy in Catalysis. ACS NANO 2024; 18:29337-29379. [PMID: 39401392 PMCID: PMC11526435 DOI: 10.1021/acsnano.4c06192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/30/2024]
Abstract
Catalysis stands as an indispensable cornerstone of modern society, underpinning the production of over 80% of manufactured goods and driving over 90% of industrial chemical processes. As the demand for more efficient and sustainable processes grows, better catalysts are needed. Understanding the working principles of catalysts is key, and over the last 50 years, surface-enhanced Raman Spectroscopy (SERS) has become essential. Discovered in 1974, SERS has evolved into a mature and powerful analytical tool, transforming the way in which we detect molecules across disciplines. In catalysis, SERS has enabled insights into dynamic surface phenomena, facilitating the monitoring of the catalyst structure, adsorbate interactions, and reaction kinetics at very high spatial and temporal resolutions. This review explores the achievements as well as the future potential of SERS in the field of catalysis and energy conversion, thereby highlighting its role in advancing these critical areas of research.
Collapse
Affiliation(s)
- Andrei Stefancu
- Nanoinstitute
Munich, Faculty of Physics, Ludwig-Maximilians-Universität
München, 80539 Munich, Germany
| | - Javier Aizpurua
- IKERBASQUE,
Basque Foundation for Science, 48011 Bilbao, Basque Country Spain
- Donostia
International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 San Sebastián-Donostia, Basque Country Spain
- Department
of Electricity and Electronics, University
of the Basque Country, 20018 San Sebastián-Donostia, Basque Country Spain
| | - Ivano Alessandri
- INSTM,
UdR Brescia, Via Branze
38, Brescia 25123, Italy
- Department
of Information Engineering (DII), University
of Brescia, Via Branze
38, Brescia 25123, Italy
- INO−CNR, Via Branze 38, Brescia 25123, Italy
| | - Ilko Bald
- Institute
of Chemistry, University of Potsdam, Karl-Liebknecht-Strasse 24−25, D-14476 Potsdam, Germany
| | - Jeremy J. Baumberg
- Nanophotonics
Centre, Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, England U.K.
| | | | - Phillip Christopher
- Department
of Chemical Engineering, University of California
Santa Barbara, Santa
Barbara, California 93106, United States
| | - Miguel Correa-Duarte
- CINBIO,
Universidade de Vigo, Vigo 36310, Spain
- Biomedical
Research Networking Center for Mental Health (CIBERSAM), Southern Galicia Institute of Health Research (IISGS), Vigo 36310, Spain
| | - Bart de Nijs
- Nanophotonics
Centre, Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, England U.K.
| | - Angela Demetriadou
- School
of Physics and Astronomy, University of
Birmingham, Edgbaston, Birmingham, B15 2TT, U.K.
| | - Renee R. Frontiera
- Department
of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Tomohiro Fukushima
- Department
of Chemistry, Faculty of Science, Hokkaido
University, Sapporo 060-0810, Japan
- JST-PRESTO, Tokyo, 332-0012, Japan
| | - Naomi J. Halas
- Department
of Chemistry, Rice University, Houston, Texas 77005, United States
- Department
of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
- Department
of Physics and Astronomy, Rice University, Houston, Texas 77005, United States
- Technical
University of Munich (TUM) and Institute for Advanced Study (IAS), Lichtenbergstrasse 2 a, D-85748, Garching, Germany
| | - Prashant K. Jain
- Department
of Chemistry, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
- Materials
Research Laboratory, University of Illinois
Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Zee Hwan Kim
- Department
of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Dmitry Kurouski
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
- Department
of Biomedical Engineering, Texas A&M
University, College
Station, Texas 77843, United States
| | - Holger Lange
- Institut
für Physik und Astronomie, Universität
Potsdam, 14476 Potsdam, Germany
- The Hamburg
Centre for Ultrafast Imaging, 22761 Hamburg, Germany
| | - Jian-Feng Li
- State
Key
Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College
of Chemistry and Chemical Engineering, College of Energy, College
of Materials, Xiamen University, Xiamen 361005, China
| | - Luis M. Liz-Marzán
- IKERBASQUE,
Basque Foundation for Science, 48011 Bilbao, Basque Country Spain
- CINBIO,
Universidade de Vigo, Vigo 36310, Spain
- CIC biomaGUNE,
Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20014, Spain
- Centro
de Investigación Biomédica en Red, Bioingeniería,
Biomateriales y Nanomedicina (CIBER-BBN), Donostia-San Sebastián 20014, Spain
| | - Ivan T. Lucas
- Nantes
Université, CNRS, IMN, F-44322 Nantes, France
| | - Alfred J. Meixner
- Institute
of Physical and Theoretical Chemistry, University
of Tubingen, 72076 Tubingen, Germany
| | - Kei Murakoshi
- Department
of Chemistry, Faculty of Science, Hokkaido
University, Sapporo 060-0810, Japan
| | - Peter Nordlander
- Department
of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
- Department
of Physics and Astronomy, Rice University, Houston, Texas 77005, United States
- Technical
University of Munich (TUM) and Institute for Advanced Study (IAS), Lichtenbergstrasse 2 a, D-85748, Garching, Germany
| | - William J. Peveler
- School of
Chemistry, Joseph Black Building, University
of Glasgow, Glasgow, G12 8QQ U.K.
| | - Raul Quesada-Cabrera
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
- Department
of Chemistry, Institute of Environmental Studies and Natural Resources
(i-UNAT), Universidad de Las Palmas de Gran
Canaria, Campus de Tafira, Las Palmas de GC 35017, Spain
| | - Emilie Ringe
- Department
of Materials Science and Metallurgy and Department of Earth Sciences, University of Cambridge, Cambridge CB3 0FS, United Kingdom
| | - George C. Schatz
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Sebastian Schlücker
- Physical
Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), Universität Duisburg-Essen, 45141 Essen, Germany
| | - Zachary D. Schultz
- Department
of Chemistry and Biochemistry, The Ohio
State University, Columbus, Ohio 43210, United States
| | - Emily Xi Tan
- School of
Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Nanyang, 637371, Singapore
| | - Zhong-Qun Tian
- State
Key
Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College
of Chemistry and Chemical Engineering, College of Energy, College
of Materials, Xiamen University, Xiamen 361005, China
| | - Lingzhi Wang
- Shanghai
Engineering Research Center for Multi-media Environmental Catalysis
and Resource Utilization, East China University
of Science and Technology, 130 Meilong Road, Shanghai, 200237 P. R. China
- Key
Laboratory
for Advanced Materials and Joint International Research Laboratory
of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize
Scientist Joint Research Center, School of Chemistry and Molecular
Engineering, East China University of Science
and Technology, 130 Meilong Road, Shanghai, 200237 P. R. China
| | - Bert M. Weckhuysen
- Debye Institute
for Nanomaterials Science and Institute for Sustainable and Circular
Chemistry, Department of Chemistry, Utrecht
University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Wei Xie
- Key Laboratory
of Advanced Energy Materials Chemistry (Ministry of Education), Renewable
Energy Conversion and Storage Center, College of Chemistry, Nankai University, Weijin Rd. 94, Tianjin 300071, China
| | - Xing Yi Ling
- School of
Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Nanyang, 637371, Singapore
- School
of
Chemical and Material Engineering, Jiangnan
University, Wuxi, 214122, People’s Republic
of China
- Lee Kong
Chian School of Medicine, Nanyang Technological
University, 59 Nanyang Drive, Singapore, 636921, Singapore
- Institute
for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Jinlong Zhang
- Shanghai
Engineering Research Center for Multi-media Environmental Catalysis
and Resource Utilization, East China University
of Science and Technology, 130 Meilong Road, Shanghai, 200237 P. R. China
- Key
Laboratory
for Advanced Materials and Joint International Research Laboratory
of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize
Scientist Joint Research Center, School of Chemistry and Molecular
Engineering, East China University of Science
and Technology, 130 Meilong Road, Shanghai, 200237 P. R. China
| | - Zhigang Zhao
- Key
Lab
of Nanodevices and Applications, Suzhou Institute of Nano-Tech and
Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- Nano Science
and Technology Institute, University of
Science and Technology of China (USTC), Suzhou 215123, China
| | - Ru-Yu Zhou
- State
Key
Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College
of Chemistry and Chemical Engineering, College of Energy, College
of Materials, Xiamen University, Xiamen 361005, China
| | - Emiliano Cortés
- Nanoinstitute
Munich, Faculty of Physics, Ludwig-Maximilians-Universität
München, 80539 Munich, Germany
| |
Collapse
|
12
|
Lv X, Tian Y, Wu F, Luan X, Li F, Shen Z, Xu G, Liu K, Niu W. Chiral plasmonic-dielectric coupling enables strong near-infrared chiroptical responses from helicoidal core-shell nanoparticles. Nat Commun 2024; 15:9234. [PMID: 39455559 PMCID: PMC11511876 DOI: 10.1038/s41467-024-53705-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Helicoid plasmonic nanoparticles with intrinsic chirality are an emerging class of artificial chiral materials with tailorable properties. The ability to extend their chiroplasmonic responses to the near-infrared (NIR) range is critically important for biomedical and nanophotonic applications, yet the rational design of such materials remains challenging. Herein, a strategy employing chiral plasmon-dielectric coupling is proposed to manipulate the chiroptical responses into the NIR region with high optical anisotropy. Through this strategy, the helicoid Au@Cu2O nanoparticles with structural chirality are designed and synthesized with tunable and enriched NIR chiroptical responses. Specially, a high optical anisotropy (g-factor) with a value of 0.35 is achieved in the NIR region, and multi-band chiroptical behaviors are observed. Spectral and electromagnetic simulations elucidate that strong coupling between chiroplasmonic core and chiral dielectric shell with high refractive index contributes to the rich and strong chiroptical responses, which are related to the interplay between various emerged and enhanced electric and magnetic multipolar resonance modes proved by multipole expansion analysis. Moreover, the helicoid Au@Cu2O nanoparticles display greater polarization rotation capability than the helicoid Au nanoparticles. This work offers mechanistic insights into chiral plasmon-dielectric coupling and suggests a general approach of creating NIR chiroplasmonic materials.
Collapse
Affiliation(s)
- Xiali Lv
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China
| | - Yu Tian
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Fengxia Wu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Xiaoxi Luan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China
| | - Fenghua Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Zhili Shen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China
| | - Kun Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| | - Wenxin Niu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
13
|
Wang S, Gou X, Shi P, Lin M, Yang A, Du L, Yuan X. Unveiling the Loss Mode Enabled Tunable Plasmonic Chirality at Flat Metal Surface. ACS NANO 2024; 18:27503-27510. [PMID: 39324866 DOI: 10.1021/acsnano.4c08246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Plasmonic chirality has garnered significant interest in the past decade due to its enhanced chiral light-matter interactions. Current methods for achieving plasmonic chirality often rely on complex nanostructures or metamaterials, which are hampered by intricate fabrication processes. In this work, we present an approach to generate plasmonic chiral structured surface plasmon polariton (s-SPP) fields on a single, flat metal surface, bypassing elaborate fabrication techniques. The plasmonic chiral s-SPP fields are excited by the superposition of multiple differently oriented transverse magnetic polarized plane waves. We demonstrate, both theoretically and experimentally, the flexible tuning of chiral plasmonic patterns by adjusting the symmetry and phase differences of the incident waves. This method provides a facile mean to optically tailor plasmonic chiral properties on a subwavelength scale, offering potential applications in sensing, enantioselective reactions, imaging, and reconfigurable chiral switches.
Collapse
Affiliation(s)
- Shuangshuang Wang
- Nanophotonics Research Center, Institute of Microscale Optoelectronics & State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
| | - Xinxin Gou
- Nanophotonics Research Center, Institute of Microscale Optoelectronics & State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
| | - Peng Shi
- Nanophotonics Research Center, Institute of Microscale Optoelectronics & State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
| | - Min Lin
- Nanophotonics Research Center, Institute of Microscale Optoelectronics & State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
| | - Aiping Yang
- Research Institute of Interdisciplinary Sciences (RISE) and School of Materials Science & Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Luping Du
- Nanophotonics Research Center, Institute of Microscale Optoelectronics & State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
| | - Xiaocong Yuan
- Nanophotonics Research Center, Institute of Microscale Optoelectronics & State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
14
|
Chae K, Mohamad NARC, Kim J, Won DI, Lin Z, Kim J, Kim DH. The promise of chiral electrocatalysis for efficient and sustainable energy conversion and storage: a comprehensive review of the CISS effect and future directions. Chem Soc Rev 2024; 53:9029-9058. [PMID: 39158537 DOI: 10.1039/d3cs00316g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
The integration of chirality, specifically through the chirality-induced spin selectivity (CISS) effect, into electrocatalytic processes represents a pioneering approach for enhancing the efficiency of energy conversion and storage systems. This review delves into the burgeoning field of chiral electrocatalysis, elucidating the fundamental principles, historical development, theoretical underpinnings, and practical applications of the CISS effect across a spectrum of electrocatalytic reactions, including the oxygen evolution reaction (OER), oxygen reduction reaction (ORR), and hydrogen evolution reaction (HER). We explore the methodological advancements in inducing the CISS effect through structural and surface engineering and discuss various techniques for its measurement, from magnetic conductive atomic force microscopy (mc-AFM) to hydrogen peroxide titration. Furthermore, this review highlights the transformative potential of the CISS effect in addressing the key challenges of the NRR and CO2RR processes and in mitigating singlet oxygen formation in metal-air batteries, thereby improving their performance and durability. Through this comprehensive overview, we aim to underscore the significant role of incorporating chirality and spin polarization in advancing electrocatalytic technologies for sustainable energy applications.
Collapse
Affiliation(s)
- Kyunghee Chae
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea.
| | - Nur Aqlili Riana Che Mohamad
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea.
| | - Jeonghyeon Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea.
| | - Dong-Il Won
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea.
| | - Zhiqun Lin
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea.
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore.
| | - Jeongwon Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea.
| | - Dong Ha Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea.
| |
Collapse
|
15
|
Wang Q, Yue A, Wang F, Shan S, He Y, Chi Z, Wu W, Ran X, Guo L. GSH Oligomer-Directed Chiral Au-Helicoid Nanoparticles for Discriminating Penicillamine Enantiomers. Inorg Chem 2024; 63:16206-16216. [PMID: 39168940 DOI: 10.1021/acs.inorgchem.4c02034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Preparing chiral plasmonic nanoparticles (NPs) with strong chiroptical responses is crucial in numerous fields including constructing optical materials, chiral sensing, and chiral-dependent biological processes. However, precise regulation over the chiral optical activity and chiral configuration of plasmonic NPs is still a challenge. In this work, we report Au helicoid NPs with different chiral structures and reversal chirality directed by the oligomeric structure of inducer glutathione (GSH). By precisely controlling the oligomeric structure of GSH and other synthetic parameters, we successfully prepared chiral Au helicoid NPs with a high anisotropy factor of 0.03. The obtained chiral Au NPs demonstrated an excellent performance in discriminating penicillamine (Pen) enantiomers. Our findings provide a construction strategy for chiral Au NPs and contribute insight into the regulation effect of chiral inducers on the growth of chiral metal NPs.
Collapse
Affiliation(s)
- Qian Wang
- School of Physics and Electronics, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Henan University, Kaifeng 475004, China
| | - Anyu Yue
- School of Physics and Electronics, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Henan University, Kaifeng 475004, China
| | - Fengchun Wang
- School of Physics and Electronics, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Henan University, Kaifeng 475004, China
| | - Songwang Shan
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng 475001, China
| | - Yulu He
- School of Physics and Electronics, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Henan University, Kaifeng 475004, China
| | - Zhen Chi
- School of Physics and Electronics, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Henan University, Kaifeng 475004, China
| | - Wenqiang Wu
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng 475001, China
| | - Xia Ran
- School of Physics and Electronics, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Henan University, Kaifeng 475004, China
| | - Lijun Guo
- School of Physics and Electronics, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Henan University, Kaifeng 475004, China
| |
Collapse
|
16
|
Ma S, Lee H, Moon J. Chirality-Induced Spin Selectivity Enables New Breakthrough in Electrochemical and Photoelectrochemical Reactions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405685. [PMID: 38963061 DOI: 10.1002/adma.202405685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/27/2024] [Indexed: 07/05/2024]
Abstract
To facilitate the transition from a carbon-energy-dependent society to a sustainable society, conventional engineering strategies, which encounter limitations associated with intrinsic material properties, should undergo the paradigm shift. From a theoretical viewpoint, the spin-dependent feature of oxygen evolution reaction (OER) reveals the potential of a spin-polarization strategy in enhancing the performance of electrochemical (EC) reactions. The chirality-induced spin selectivity (CISS) phenomenon attracts unprecedented attention owing to its potential utility in achieving novel breakthroughs. This paper starts with the experimental results aimed at enhancing the efficiency of the spin-dependent OER focusing on the EC system based on the CISS phenomenon. The applicability of spin-polarization to EC system is verified through various analytical methodologies to clarify the theoretical groundwork and mechanisms underlying the spin-dependent reaction pathway. The discussion is then extended to effective spin-control strategies in photoelectrochemical system based on the CISS effect. Exploring the influence of spin-state control on the kinetic and thermodynamic aspects, this perspective also discusses the effect of spin polarization induced by the CISS phenomenon on spin-dependent OER. Lastly, future directions for enhancing the performance of spin-dependent redox systems are discussed, including expansion to various chemical reactions and the development of materials with spin-control capabilities.
Collapse
Affiliation(s)
- Sunihl Ma
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Hyungsoo Lee
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jooho Moon
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul, 03722, Republic of Korea
| |
Collapse
|
17
|
Zhang Y, Ma Y, Sun W, Li W, Li G. Structural and Electronic Chirality in Inorganic Crystals: from Construction to Application. Chemistry 2024; 30:e202400436. [PMID: 38571318 DOI: 10.1002/chem.202400436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/31/2024] [Accepted: 04/03/2024] [Indexed: 04/05/2024]
Abstract
Chirality represents a fundamental characteristic inherent in nature, playing a pivotal role in the emergence of homochirality and the origin of life. While the principles of chirality in organic chemistry are well-documented, the exploration of chirality within inorganic crystal structures continues to evolve. This ongoing development is primarily due to the diverse nature of crystal/amorphous structures in inorganic materials, along with the intricate symmetrical and asymmetrical relationships in the geometry of their constituent atoms. In this review, we commence with a summary of the foundational concept of chirality in molecules and solid states matters. This is followed by an introduction of structural chirality and electronic chirality in three-dimensional and two-dimensional inorganic materials. The construction of chirality in inorganic materials is classified into physical photolithography, wet-chemistry method, self-assembly, and chiral imprinting. Highlighting the significance of this field, we also summarize the research progress of chiral inorganic materials for applications in optical activity, enantiomeric recognition and chiral sensing, selective adsorption and enantioselective separation, asymmetric synthesis and catalysis, and chirality-induced spin polarization. This review aims to provide a reference for ongoing research in chiral inorganic materials and potentially stimulate innovative strategies and novel applications in the realm of chirality.
Collapse
Affiliation(s)
- Yudi Zhang
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Yuzhe Ma
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Wen Sun
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Wei Li
- CISRI & NIMTE Joint Innovation Center for Rare Earth Permanent Magnets, Chinese Academy of Sciences, Ningbo Institute of Material Technology and Engineering, Ningbo, 315201, China
| | - Guowei Li
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| |
Collapse
|
18
|
Liu C, Sun L, Yang G, Cheng Q, Wang C, Tao Y, Sun X, Wang Z, Zhang Q. Chiral Au-Pd Alloy Nanorods with Tunable Optical Chirality and Catalytically Active Surfaces. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310353. [PMID: 38150652 DOI: 10.1002/smll.202310353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/13/2023] [Indexed: 12/29/2023]
Abstract
Integrating the plasmonic chirality with excellent catalytic activities in plasmonic hybrid nanostructures provides a promising strategy to realize the chiral nanocatalysis toward many chemical reactions. However, the controllable synthesis of catalytically active chiral plasmonic nanoparticles with tailored geometries and compositions remains a significant challenge. Here it is demonstrated that chiral Au-Pd alloy nanorods with tunable optical chirality and catalytically active surfaces can be achieved by a seed-mediated coreduction growth method. Through manipulating the chiral inducers, Au nanorods selectively transform into two different intrinsically chiral Au-Pd alloy nanorods with distinct geometric chirality and tunable optical chirality. By further adjusting several key synthetic parameters, the optical chirality, composition, and geometry of the chiral Au-Pd nanorods are fine-tailored. More importantly, the chiral Au-Pd alloy nanorods exhibit appealing chiral catalytic activities as well as polarization-dependent plasmon-enhanced nanozyme catalytic activity, which has great potential for chiral nanocatalysis and plasmon-induced chiral photochemistry.
Collapse
Affiliation(s)
- Chuang Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Lichao Sun
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Guizeng Yang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Qingqing Cheng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Chen Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yunlong Tao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Xuehao Sun
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Zixu Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Qingfeng Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
19
|
Kuznetsova V, Coogan Á, Botov D, Gromova Y, Ushakova EV, Gun'ko YK. Expanding the Horizons of Machine Learning in Nanomaterials to Chiral Nanostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308912. [PMID: 38241607 PMCID: PMC11167410 DOI: 10.1002/adma.202308912] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/10/2024] [Indexed: 01/21/2024]
Abstract
Machine learning holds significant research potential in the field of nanotechnology, enabling nanomaterial structure and property predictions, facilitating materials design and discovery, and reducing the need for time-consuming and labor-intensive experiments and simulations. In contrast to their achiral counterparts, the application of machine learning for chiral nanomaterials is still in its infancy, with a limited number of publications to date. This is despite the great potential of machine learning to advance the development of new sustainable chiral materials with high values of optical activity, circularly polarized luminescence, and enantioselectivity, as well as for the analysis of structural chirality by electron microscopy. In this review, an analysis of machine learning methods used for studying achiral nanomaterials is provided, subsequently offering guidance on adapting and extending this work to chiral nanomaterials. An overview of chiral nanomaterials within the framework of synthesis-structure-property-application relationships is presented and insights on how to leverage machine learning for the study of these highly complex relationships are provided. Some key recent publications are reviewed and discussed on the application of machine learning for chiral nanomaterials. Finally, the review captures the key achievements, ongoing challenges, and the prospective outlook for this very important research field.
Collapse
Affiliation(s)
- Vera Kuznetsova
- School of Chemistry, CRANN and AMBER Research Centres, Trinity College Dublin, College Green, Dublin, D02 PN40, Ireland
| | - Áine Coogan
- School of Chemistry, CRANN and AMBER Research Centres, Trinity College Dublin, College Green, Dublin, D02 PN40, Ireland
| | - Dmitry Botov
- Everypixel Media Innovation Group, 021 Fillmore St., PMB 15, San Francisco, CA, 94115, USA
- Neapolis University Pafos, 2 Danais Avenue, Pafos, 8042, Cyprus
| | - Yulia Gromova
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford St., Cambridge, MA, 02138, USA
| | - Elena V Ushakova
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Yurii K Gun'ko
- School of Chemistry, CRANN and AMBER Research Centres, Trinity College Dublin, College Green, Dublin, D02 PN40, Ireland
| |
Collapse
|
20
|
Wang L, Zheng J, Wang K, Khan M, Hu N, Li H, Li L, Wang J, Ni W. Circular Differential Photocurrent Mapping of Hot Electron Response from Individual Plasmonic Nanohelicoids. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38687553 DOI: 10.1021/acsami.4c03457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Chiral plasmonic nanocrystals have recently attracted increasing attention in circular polarization-dependent photocatalysis driven by hot carriers. While being concealed in traditional ensemble measurements, the individual chiral photocatalytic activity of nanocrystals can exclusively be revealed by directly correlating the circular differential photocurrent response to helical morphologies using single-particle techniques. Herein, we develop a method named circular differential photocurrent mapping (CDPM) and demonstrate that CDPM can be used to characterize the circular differential hot electron (CDHE) response from individual Au nanohelicoids (AuNHs) on a TiO2 photoanode in a photoelectrochemical cell. The single-particle circular differential scattering and CDHE measurements were interpreted with calculations performed on a model in direct correlation to the helical morphologies of the nanocrystal. While CDHE response was found inactive at a dipolar resonance of 750 nm, helicity-convoluted sites of HE generation were identified on the AuNH at a specific higher-order mode of 550 nm, resulting in a significant response of CDHE in association with the handedness of the AuNH. Details of circular differential contributions were further resolved by examining the efficiencies of individual AuNHs in terms of g-factors. Our study provides a powerful microscopic method at the single-particle level for the photocatalytic characterization of chiral nanocrystals, gaining fundamental insights into the photocatalysis of chirality, especially toward plasmon-induced asymmetrical photochemistry or photoelectrochemistry.
Collapse
Affiliation(s)
- Le Wang
- Jiangsu Key Laboratory of Frontier Material Physics and Devices, School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu 215006, China
| | - Jiapeng Zheng
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Kaiyu Wang
- Jiangsu Key Laboratory of Frontier Material Physics and Devices, School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu 215006, China
| | - Majid Khan
- Jiangsu Key Laboratory of Frontier Material Physics and Devices, School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu 215006, China
| | - Ningneng Hu
- Jiangsu Key Laboratory of Frontier Material Physics and Devices, School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu 215006, China
| | - Hao Li
- Jiangsu Key Laboratory of Frontier Material Physics and Devices, School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu 215006, China
| | - Liang Li
- Jiangsu Key Laboratory of Frontier Material Physics and Devices, School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu 215006, China
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Weihai Ni
- Jiangsu Key Laboratory of Frontier Material Physics and Devices, School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu 215006, China
| |
Collapse
|
21
|
Li S, Xu X, Xu L, Lin H, Kuang H, Xu C. Emerging trends in chiral inorganic nanomaterials for enantioselective catalysis. Nat Commun 2024; 15:3506. [PMID: 38664409 PMCID: PMC11045795 DOI: 10.1038/s41467-024-47657-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
Asymmetric transformations and synthesis have garnered considerable interest in recent decades due to the extensive need for chiral organic compounds in biomedical, agrochemical, chemical, and food industries. The field of chiral inorganic catalysts, garnering considerable interest for its contributions to asymmetric organic transformations, has witnessed remarkable advancements and emerged as a highly innovative research area. Here, we review the latest developments in this dynamic and emerging field to comprehensively understand the advances in chiral inorganic nanocatalysts and stimulate further progress in asymmetric catalysis.
Collapse
Affiliation(s)
- Si Li
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Xinxin Xu
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China.
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China.
| | - Liguang Xu
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China.
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China.
| | - Hengwei Lin
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Hua Kuang
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Chuanlai Xu
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China.
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China.
| |
Collapse
|
22
|
Liang X, Liang K, Deng X, He C, Zhou P, Li J, Qin J, Jin L, Yu L. The Mechanism of Manipulating Chirality and Chiral Sensing Based on Chiral Plexcitons in a Strong-Coupling Regime. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:705. [PMID: 38668199 PMCID: PMC11053506 DOI: 10.3390/nano14080705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/16/2024] [Accepted: 04/16/2024] [Indexed: 04/29/2024]
Abstract
Manipulating plasmonic chirality has shown promising applications in nanophotonics, stereochemistry, chirality sensing, and biomedicine. However, to reconfigure plasmonic chirality, the strategy of constructing chiral plasmonic systems with a tunable morphology is cumbersome and complicated to apply for integrated devices. Here, we present a simple and effective method that can also manipulate chirality and control chiral light-matter interactions only via strong coupling between chiral plasmonic nanoparticles and excitons. This paper presents a chiral plexcitonic system consisting of L-shaped nanorod dimers and achiral molecule excitons. The circular dichroism (CD) spectra in our strong-coupling system can be calculated by finite element method simulations. We found that the formation of the chiral plexcitons can significantly modulate the CD spectra, including the appearance of new hybridized peaks, double Rabi splitting, and bisignate anti-crossing behaviors. This phenomenon can be explained by our extended coupled-mode theory. Moreover, we explored the applications of this method in enantiomer ratio sensing by using the properties of the CD spectra. We found a strong linear dependence of the CD spectra on the enantiomer ratio. Our work provides a facile and efficient method to modulate the chirality of nanosystems, deepens our understanding of chiral plexcitons in nanosystems, and facilitates the development of chiral devices and chiral sensing.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Li Yu
- State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China; (X.L.); (K.L.); (X.D.); (C.H.); (P.Z.); (J.L.); (J.Q.); (L.J.)
| |
Collapse
|
23
|
Wan J, Sun L, Sun X, Liu C, Yang G, Zhang B, Tao Y, Yang Y, Zhang Q. Cu 2+-Dominated Chirality Transfer from Chiral Molecules to Concave Chiral Au Nanoparticles. J Am Chem Soc 2024; 146:10640-10654. [PMID: 38568727 DOI: 10.1021/jacs.4c00322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
Foreign ions as additives are of great significance for realizing excellent control over the morphology of noble metal nanostructures in the state-of-the-art seed-mediated growth method; however, they remain largely unexplored in chiral synthesis. Here, we report on a Cu2+-dominated chiral growth strategy that can direct the growth of concave chiral Au nanoparticles with C3-dominant chiral centers. The introduction of trace amounts of Cu2+ ions in the seed-mediated chiral growth process is found to dominate the chirality transfer from chiral molecules to chiral nanoparticles, leading to the formation of chiral nanoparticles with a concave VC geometry. Both experimental and theoretical results further demonstrate the correlation between the nanoparticle structure and optical chirality for the concave chiral nanoparticle. The Cu2+ ion is found to dominate the chiral growth by selectively activating the deposition of Au atoms along the [110] and [111] directions, facilitating the formation of the concave VC. We further demonstrate that the Cu2+-dominated chiral growth strategy can be employed to generate a variety of concave chiral nanoparticles with enriched geometric chirality and desired chiroptical properties. Concave chiral nanoparticles also exhibit appealing catalytic activity and selectivity toward electrocatalytic oxidation of enantiomers in comparison to helicoidal nanoparticles. The ability to tune the geometric chirality in a controlled manner by simply manipulating the Cu2+ ions as additives opens up a promising strategy for creating chiral nanomaterials with increasing architectural diversity for chirality-dependent optical and catalytic applications.
Collapse
Affiliation(s)
- Jinling Wan
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Lichao Sun
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xuehao Sun
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Chuang Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Guizeng Yang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Binbin Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yunlong Tao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yahui Yang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Qingfeng Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
24
|
Sun X, Sun L, Lin L, Guo S, Yang Y, Zhang B, Liu C, Tao Y, Zhang Q. Tuning the Geometry and Optical Chirality of Pentatwinned Au Nanoparticles with 5-Fold Rotational Symmetry. ACS NANO 2024; 18:9543-9556. [PMID: 38518176 DOI: 10.1021/acsnano.3c12637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
Chirality transfer from chiral molecules to chiral nanomaterials represents an important topic for exploring the origin of chirality in many natural and artificial systems. Moreover, developing a promising class of chiral nanomaterials holds great significance for various applications, including sensing, photonics, catalysis, and biomedicine. Here we demonstrate the geometric control and tunable optical chirality of chiral pentatwinned Au nanoparticles with 5-fold rotational symmetry using the seed-mediated chiral growth method. A distinctive growth pathway and optical chirality are observed using pentatwinned decahedra as seeds, in comparison with the single-crystal Au seeds. By employing different peptides as chiral inducers, pentatwinned Au nanoparticles with two distinct geometric chirality (pentagonal nanostars and pentagonal prisms) are obtained. The intriguing formation and evolution of geometric chirality with the twinned structure are analyzed from a crystallographic perspective upon maneuvering the interplay of chiral molecules, surfactants, and reducing agents. Moreover, the interesting effects of the molecular structure of peptides on tuning the geometric chirality of pentatwinned Au nanoparticles are also explored. Finally, we theoretically and experimentally investigate the far-field and near-field optical properties of chiral pentatwinned Au nanoparticles through numerical simulations and single-particle chiroptical measurements. The ability to tune the geometric chirality in a controlled manner represents an important step toward the development of chiral nanomaterials with increasing architectural complexity for chiroptical applications.
Collapse
Affiliation(s)
- Xuehao Sun
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Lichao Sun
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Lifei Lin
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Shaoyuan Guo
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yiming Yang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Binbin Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Chuang Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yunlong Tao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Qingfeng Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
25
|
Lee S, Fan C, Movsesyan A, Bürger J, Wendisch FJ, de S Menezes L, Maier SA, Ren H, Liedl T, Besteiro LV, Govorov AO, Cortés E. Unraveling the Chirality Transfer from Circularly Polarized Light to Single Plasmonic Nanoparticles. Angew Chem Int Ed Engl 2024; 63:e202319920. [PMID: 38236010 DOI: 10.1002/anie.202319920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 01/19/2024]
Abstract
Due to their broken symmetry, chiral plasmonic nanostructures have unique optical properties and numerous applications. However, there is still a lack of comprehension regarding how chirality transfer occurs between circularly polarized light (CPL) and these structures. Here, we thoroughly investigate the plasmon-assisted growth of chiral nanoparticles from achiral Au nanocubes (AuNCs) via CPL without the involvement of any chiral molecule stimulators. We identify the structural chirality of our synthesized chiral plasmonic nanostructures using circular differential scattering (CDS) spectroscopy, which is correlated with scanning electron microscopy imaging at both the single-particle and ensemble levels. Theoretical simulations, including hot-electron surface maps, reveal that the plasmon-induced chirality transfer is mediated by the asymmetric distribution of hot electrons on achiral AuNCs under CPL excitation. Furthermore, we shed light on how this plasmon-induced chirality transfer can also be utilized for chiral growth in bimetallic systems, such as Ag or Pd on AuNCs. The results presented here uncover fundamental aspects of chiral light-matter interaction and have implications for the future design and optimization of chiral sensors and chiral catalysis, among others.
Collapse
Affiliation(s)
- Seunghoon Lee
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539, München, Germany
- Department of Chemistry, Dong-A University, Busan, 49315, South Korea
- Department of Chemical Engineering (BK21 FOUR Graduate Program), Dong-A University, Busan, 49315, South Korea)
| | - Chenghao Fan
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539, München, Germany
| | - Artur Movsesyan
- Department of Physics and Astronomy, Ohio University, Athens, Ohio, 45701, United States
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Johannes Bürger
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539, München, Germany
| | - Fedja J Wendisch
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539, München, Germany
| | - Leonardo de S Menezes
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539, München, Germany
- Departamento de Física, Universidade Federal de Pernambuco, 50670-901, Recife-PE, Brazil
- Faculty of Physics and Center for Nanoscience, Ludwig-Maximilians-University München, 80539, München, Germany
| | - Stefan A Maier
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539, München, Germany
- School of Physics and Astronomy, Monash University, Clayton, Victoria, 3800, Australia
- The Blackett Laboratory, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Haoran Ren
- School of Physics and Astronomy, Monash University, Clayton, Victoria, 3800, Australia
| | - Tim Liedl
- Department of Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, Amalienstrasse 54, 80799, München, Germany
| | | | - Alexander O Govorov
- Department of Physics and Astronomy, Ohio University, Athens, Ohio, 45701, United States
- Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, Ohio, 45701, United States
| | - Emiliano Cortés
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539, München, Germany
| |
Collapse
|
26
|
Adorinni S, Gentile S, Bellotto O, Kralj S, Parisi E, Cringoli MC, Deganutti C, Malloci G, Piccirilli F, Pengo P, Vaccari L, Geremia S, Vargiu AV, De Zorzi R, Marchesan S. Peptide Stereochemistry Effects from p Ka-Shift to Gold Nanoparticle Templating in a Supramolecular Hydrogel. ACS NANO 2024; 18:3011-3022. [PMID: 38235673 DOI: 10.1021/acsnano.3c08004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
The divergent supramolecular behavior of a series of tripeptide stereoisomers was elucidated through spectroscopic, microscopic, crystallographic, and computational techniques. Only two epimers were able to effectively self-organize into amphipathic structures, leading to supramolecular hydrogels or crystals, respectively. Despite the similarity between the two peptides' turn conformations, stereoconfiguration led to different abilities to engage in intramolecular hydrogen bonding. Self-assembly further shifted the pKa value of the C-terminal side chain. As a result, across the pH range 4-6, only one epimer predominated sufficiently as a zwitterion to reach the critical molar fraction, allowing gelation. By contrast, the differing pKa values and higher dipole moment of the other epimer favored crystallization. The four stereoisomers were further tested for gold nanoparticle (AuNP) formation, with the supramolecular hydrogel being the key to control and stabilize AuNPs, yielding a nanocomposite that catalyzed the photodegradation of a dye. Importantly, the AuNP formation occurred without the use of reductants other than the peptide, and the redox chemistry was investigated by LC-MS, NMR, and infrared scattering-type near field optical microscopy (IR s-SNOM). This study provides important insights for the rational design of simple peptides as minimalistic and green building blocks for functional nanocomposites.
Collapse
Affiliation(s)
- Simone Adorinni
- Chemical Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
| | - Serena Gentile
- Chemical Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
| | - Ottavia Bellotto
- Chemical Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
| | - Slavko Kralj
- Materials Synthesis Department, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Evelina Parisi
- Chemical Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
| | - Maria C Cringoli
- Chemical Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
| | - Caterina Deganutti
- Chemical Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
| | - Giuliano Malloci
- Physics Department, University of Cagliari, 09042 Monserrato, Cagliari, Italy
| | - Federica Piccirilli
- Elettra Sincrotrone Trieste, 34149 Basovizza, Italy
- Area Science Park, Padriciano 99, 34149 Trieste, Italy
| | - Paolo Pengo
- Chemical Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
| | - Lisa Vaccari
- Elettra Sincrotrone Trieste, 34149 Basovizza, Italy
| | - Silvano Geremia
- Chemical Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
| | - Attilio V Vargiu
- Physics Department, University of Cagliari, 09042 Monserrato, Cagliari, Italy
| | - Rita De Zorzi
- Chemical Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
| | - Silvia Marchesan
- Chemical Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
- Unit of Trieste, INSTM, 34127 Trieste, Italy
| |
Collapse
|
27
|
Yang G, Sun L, Zhang Q. Multicomponent chiral plasmonic hybrid nanomaterials: recent advances in synthesis and applications. NANOSCALE ADVANCES 2024; 6:318-336. [PMID: 38235081 PMCID: PMC10790966 DOI: 10.1039/d3na00808h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/30/2023] [Indexed: 01/19/2024]
Abstract
Chiral hybrid nanomaterials with multiple components provide a highly promising approach for the integration of desired chirality with other functionalities into one single nanoscale entity. However, precise control over multicomponent chiral plasmonic hybrid nanomaterials to enable their application in diverse and complex scenarios remains a significant challenge. In this review, our focus lies on the recent advances in the preparation and application of multicomponent chiral plasmonic hybrid nanomaterials, with an emphasis on synthetic strategies and emerging applications. We first systematically elucidate preparation methods for multicomponent chiral plasmonic hybrid nanomaterials encompassing the following approaches: physical deposition approach, galvanic replacement reaction, chiral molecule-mediated, chiral heterostructure, circularly polarized light-mediated, magnetically induced, and chiral assembly. Furthermore, we highlight emerging applications of multicomponent chiral plasmonic hybrid nanomaterials in chirality sensing, enantioselective catalysis, and biomedicine. Finally, we provide an outlook on the challenges and opportunities in the field of multicomponent chiral plasmonic hybrid nanomaterials. In-depth investigations of these multicomponent chiral hybrid nanomaterials will pave the way for the rational design of chiral hybrid nanostructures with desirable functionalities for emerging technological applications.
Collapse
Affiliation(s)
- Guizeng Yang
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Lichao Sun
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Qingfeng Zhang
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| |
Collapse
|
28
|
Wang F, Wang X, Lu X, Huang C. Nanophotonic Enhanced Chiral Sensing and Its Biomedical Applications. BIOSENSORS 2024; 14:39. [PMID: 38248416 PMCID: PMC11154488 DOI: 10.3390/bios14010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/03/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024]
Abstract
Chiral sensing is crucial in the fields of biology and the pharmaceutical industry. Many naturally occurring biomolecules, i.e., amino acids, sugars, and nucleotides, are inherently chiral. Their enantiomers are strongly associated with the pharmacological effects of chiral drugs. Owing to the extremely weak chiral light-matter interactions, chiral sensing at an optical frequency is challenging, especially when trace amounts of molecules are involved. The nanophotonic platform allows for a stronger interaction between the chiral molecules and light to enhance chiral sensing. Here, we review the recent progress in nanophotonic-enhanced chiral sensing, with a focus on the superchiral near-field and enhanced circular dichroism (CD) spectroscopy generated in both the dielectric and in plasmonic structures. In addition, the recent applications of chiral sensing in biomedical fields are discussed, including the detection and treatment of difficult diseases, i.e., Alzheimer's disease, diabetes, and cancer.
Collapse
Affiliation(s)
- Fei Wang
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xue Wang
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China;
| | - Xinchao Lu
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China;
| | - Chengjun Huang
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
29
|
Tan L, Fu W, Gao Q, Wang PP. Chiral Plasmonic Hybrid Nanostructures: A Gateway to Advanced Chiroptical Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309033. [PMID: 37944554 DOI: 10.1002/adma.202309033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/04/2023] [Indexed: 11/12/2023]
Abstract
Chirality introduces a new dimension of functionality to materials, unlocking new possibilities across various fields. When integrated with plasmonic hybrid nanostructures, this attribute synergizes with plasmonic and other functionalities, resulting in unprecedented chiroptical materials that push the boundaries of the system's capabilities. Recent advancements have illuminated the remarkable chiral light-matter interactions within chiral plasmonic hybrid nanomaterials, allowing for the harnessing of their tunable optical activity and hybrid components. These advancements have led to applications in areas such as chiral sensing, catalysis, and spin optics. Despite these promising developments, there remains a need for a comprehensive synthesis of the current state-of-the-art knowledge, as well as a thorough understanding of the construction techniques and practical applications in this field. This review begins with an exploration of the origins of plasmonic chirality and an overview of the latest advancements in the synthesis of chiral plasmonic hybrid nanostructures. Furthermore, representative emerging categories of hybrid nanomaterials are classified and summarized, elucidating their versatile applications. Finally, the review engages with the fundamental challenges associated with chiral plasmonic hybrid nanostructures and offer insights into the future prospects of this advanced field.
Collapse
Affiliation(s)
- Lili Tan
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Wenlong Fu
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Qi Gao
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Peng-Peng Wang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
30
|
Negrín-Montecelo Y, Geneidy AHA, Govorov AO, Alvarez-Puebla RA, Besteiro LV, Correa-Duarte MA. Balancing Near-Field Enhancement and Hot Carrier Injection: Plasmonic Photocatalysis in Energy-Transfer Cascade Assemblies. ACS PHOTONICS 2023; 10:3310-3320. [PMID: 37743943 PMCID: PMC10516266 DOI: 10.1021/acsphotonics.3c00733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Indexed: 09/26/2023]
Abstract
Photocatalysis stands as a very promising alternative to photovoltaics in exploiting solar energy and storing it in chemical products through a single-step process. A central obstacle to its broad implementation is its low conversion efficiency, motivating research in different fields to bring about a breakthrough in this technology. Using plasmonic materials to photosensitize traditional semiconductor photocatalysts is a popular strategy whose full potential is yet to be fully exploited. In this work, we use CdS quantum dots as a bridge system, reaping energy from Au nanostructures and delivering it to TiO2 nanoparticles serving as catalytic centers. The quantum dots can do this by becoming an intermediate step in a charge-transfer cascade initiated in the plasmonic system or by creating an electron-hole pair at an improved rate due to their interaction with the enhanced near-field created by the plasmonic nanoparticles. Our results show a significant acceleration in the reaction upon combining these elements in hybrid colloidal photocatalysts that promote the role of the near-field enhancement effect, and we show how to engineer complexes exploiting this approach. In doing so, we also explore the complex interplay between the different mechanisms involved in the photocatalytic process, highlighting the importance of the Au nanoparticles' morphology in their photosensitizing capabilities.
Collapse
Affiliation(s)
- Yoel Negrín-Montecelo
- Department
of Physical and Inorganic Chemistry, Universitat
Rovira i Virgili, Carrer de Marcel•lí Domingo s/n, 43007 Tarragona, Spain
| | | | - Alexander O. Govorov
- Department
of Physics and Astronomy, Ohio University, Athens, Ohio 45701, United States
| | - Ramon A. Alvarez-Puebla
- Department
of Physical and Inorganic Chemistry, Universitat
Rovira i Virgili, Carrer de Marcel•lí Domingo s/n, 43007 Tarragona, Spain
- ICREA, Passeig Lluís
Companys 23, 08010 Barcelona, Spain
| | - Lucas V. Besteiro
- CINBIO,
University of Vigo, Campus
Universitario de Vigo, Lagoas Marcosende, 36310 Vigo, Spain
| | - Miguel A. Correa-Duarte
- CINBIO,
University of Vigo, Campus
Universitario de Vigo, Lagoas Marcosende, 36310 Vigo, Spain
- Southern
Galicia Institute of Health Research (IISGS) and Biomedical Research
Networking Center for Mental Health (CIBERSAM), Universidade de Vigo, 36310 Vigo, Spain
| |
Collapse
|
31
|
Fu W, Tan L, Wang PP. Chiral Inorganic Nanomaterials for Photo(electro)catalytic Conversion. ACS NANO 2023; 17:16326-16347. [PMID: 37540624 DOI: 10.1021/acsnano.3c04337] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2023]
Abstract
Chiral inorganic nanomaterials due to their unique asymmetric nanostructures have gradually demonstrated intriguing chirality-dependent performance in photo(electro)catalytic conversion, such as water splitting. However, understanding the correlation between chiral inorganic characteristics and the photo(electro)catalytic process remains challenging. In this perspective, we first highlight the chirality source of inorganic nanomaterials and briefly introduce photo(electro)catalysis systems. Then, we delve into an in-depth discussion of chiral effects exerted by chiral nanostructures and their photo-electrochemistry properties, while emphasizing the emerging chiral inorganic nanomaterials for photo(electro)catalytic conversion. Finally, the challenges and opportunities of chiral inorganic nanomaterials for photo(electro)catalytic conversion are prospected. This perspective provides a comprehensive overview of chiral inorganic nanomaterials and their potential in photo(electro)catalytic conversion, which is beneficial for further research in this area.
Collapse
Affiliation(s)
- Wenlong Fu
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Lili Tan
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Peng-Peng Wang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| |
Collapse
|
32
|
Sun L, Tao Y, Yang G, Liu C, Sun X, Zhang Q. Geometric Control and Optical Properties of Intrinsically Chiral Plasmonic Nanomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2306297. [PMID: 37572380 DOI: 10.1002/adma.202306297] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/03/2023] [Indexed: 08/14/2023]
Abstract
Intrinsically chiral plasmonic nanomaterials exhibit intriguing geometry-dependent chiroptical properties, which is due to the combination of plasmonic features with geometric chirality. Thus, chiral plasmonic nanomaterials have become promising candidates for applications in biosensing, asymmetric catalysis, biomedicine, photonics, etc. Recent advances in geometric control and optical tuning of intrinsically chiral plasmonic nanomaterials have further opened up a unique opportunity for their widespread applications in many emerging technological areas. Here, the recent developments in the geometric control of chiral plasmonic nanomaterials are reviewed with special attention given to the quantitative understanding of the chiroptical structure-property relationship. Several important optical spectroscopic tools for characterizing the optical chirality of plasmonic nanomaterials at both ensemble and single-particle levels are also discussed. Three emerging applications of chiral plasmonic nanomaterials, including enantioselective sensing, enantioselective catalysis, and biomedicine, are further highlighted. It is envisioned that these advanced studies in chiral plasmonic nanomaterials will pave the way toward the rational design of chiral nanomaterials with desired optical properties for diverse emerging technological applications.
Collapse
Affiliation(s)
- Lichao Sun
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yunlong Tao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Guizeng Yang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Chuang Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Xuehao Sun
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Qingfeng Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
33
|
Huang J, Guo W, He S, Mulcahy JR, Montoya A, Goodsell J, Wijerathne N, Angerhofer A, Wei WD. Elucidating the Origin of Plasmon-Generated Hot Holes in Water Oxidation. ACS NANO 2023; 17:7813-7820. [PMID: 37053524 DOI: 10.1021/acsnano.3c00758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Plasmon-generated hot electrons in metal/oxide heterostructures have been used extensively for driving photochemistry. However, little is known about the origin of plasmon-generated hot holes in promoting photochemical reactions. Herein, we discover that, during the nonradiative plasmon decay, the interband excitation rather than the intraband excitation generates energetic hot holes that enable to drive the water oxidation at the Au/TiO2 interface. Distinct from lukewarm holes via the intraband excitation that only remain on Au, hot holes from the interband excitation are found to be transferred from Au into TiO2 and stabilized by surface oxygen atoms on TiO2, making them available to oxidize adsorbed water molecules. Taken together, our studies provide spectroscopic evidence to clarify the photophysical process for exciting plasmon-generated hot holes, unravel their atomic-level accumulation sites to maintain the strong oxidizing power in metal/oxide heterostructures, and affirm their crucial functions in governing photocatalytic oxidation reactions.
Collapse
Affiliation(s)
- Jiawei Huang
- Department of Chemistry and Center for Catalysis, University of Florida, Gainesville, Florida 32611, United States
| | - Wenxiao Guo
- Department of Chemistry and Center for Catalysis, University of Florida, Gainesville, Florida 32611, United States
| | - Shuai He
- Department of Chemistry and Center for Catalysis, University of Florida, Gainesville, Florida 32611, United States
| | - Justin R Mulcahy
- Department of Chemistry and Center for Catalysis, University of Florida, Gainesville, Florida 32611, United States
| | - Alvaro Montoya
- Department of Chemistry and Center for Catalysis, University of Florida, Gainesville, Florida 32611, United States
| | - Justin Goodsell
- Department of Chemistry and Center for Catalysis, University of Florida, Gainesville, Florida 32611, United States
| | - Namodhi Wijerathne
- Department of Chemistry and Center for Catalysis, University of Florida, Gainesville, Florida 32611, United States
| | - Alexander Angerhofer
- Department of Chemistry and Center for Catalysis, University of Florida, Gainesville, Florida 32611, United States
| | - Wei David Wei
- Department of Chemistry and Center for Catalysis, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
34
|
Tao Y, Sun L, Liu C, Yang G, Sun X, Zhang Q. Site-Selective Chiral Growth of Anisotropic Au Triangular Nanoplates for Tuning the Optical Chirality. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2301218. [PMID: 37029697 DOI: 10.1002/smll.202301218] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/02/2023] [Indexed: 06/19/2023]
Abstract
Site-selective chiral growth of anisotropic nanoparticles is of great importance to realize the plasmonic nanostructures with delicate geometry and desired optical chirality; however, it remains largely unexplored. This work demonstrates a controlled site-selective chiral growth system based on the seed-mediated growth of anisotropic Au triangular nanoplates. The site-selective chiral growth involves two distinct underlying pathways, faceted growth and island growth, which are interswitchable upon maneuvering the interplay of chiral molecules, surfactants, and reducing agents. The pathway switch governs the geometric and chirality evolution of Au triangular nanoplates, giving rise to tailorable circular dichroism spectra. The ability to tune the optical chirality in a controlled manner by manipulating the site-selective chiral growth pathway opens up a promising strategy for exploiting chiral metamaterials with increasing architectural complexity in chiroptical applications.
Collapse
Affiliation(s)
- Yunlong Tao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Lichao Sun
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Chuang Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Guizeng Yang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Xuehao Sun
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Qingfeng Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
35
|
Lu X, Wang X, Wang S, Ding T. Polarization-directed growth of spiral nanostructures by laser direct writing with vector beams. Nat Commun 2023; 14:1422. [PMID: 36918571 PMCID: PMC10015062 DOI: 10.1038/s41467-023-37048-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 03/01/2023] [Indexed: 03/16/2023] Open
Abstract
Chirality is pivotal in nature which attracts wide research interests from all disciplines and creating chiral matter is one of the central themes for chemists and material scientists. Despite of significant efforts, a simple, cost-effective and general method that can produce different kinds of chiral metamaterials with high regularity and tailorability is still demanding but greatly missing. Here, we introduce polarization-directed growth of spiral nanostructures via vector beams, which is simple, tailorable and generally applicable to both plasmonic and dielectric materials. The self-aligned near field enhances the photochemical growth along the polarization, which is crucial for the oriented growth. The obtained plasmonic chiral nanostructures present prominent optical activity with a g-factor up to 0.4, which can be tuned by adjusting the spirality of the vector beams. These spiral plasmonic nanostructures can be used for the sensing of different chiral enantiomers. The dielectric chiral metasurfaces can also be formed in arrays of sub-mm scale, which exhibit a g-factor over 0.1. However, photoluminescence of chiral cadmium sulfide presents a very weak luminescence g-factor with the excitation of linearly polarized light. A number of applications can be envisioned with these chiral nanostructures such as chiral sensing, chiral separation and chiral information storage.
Collapse
Affiliation(s)
- Xiaolin Lu
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Xujie Wang
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Shuangshuang Wang
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Tao Ding
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
36
|
Li H, Zhang J, Jiang L, Yuan R, Yang X. Chiral plasmonic Au-Ag core shell nanobipyramid for SERS enantiomeric discrimination of biologically relevant small molecules. Anal Chim Acta 2023; 1239:340740. [PMID: 36628734 DOI: 10.1016/j.aca.2022.340740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
The identification of enantiomers is of great importance in chiral separations and medicinal chemistry. While Surface-enhanced Raman spectroscopy (SERS) is a technique that provides vibrational fingerprints of analytes. The enantiomers identification relies on the SERS difference between left and right-handed circularly polarized light or additional selectors for indirect distinction. In this work, Au-Ag core shell nanobipyramid (L/D-Au@Ag BPs) were synthesized guiding by chiral encoder of L/D-cysteine. L/D-Au@Ag BPs produced plasmon-induced circular dichroism signals in the plasmon resonance absorption band, which can be tuned by modulation the amount of cysteine. Moreover, the chiral anisotropy factor of L/D-Au@Ag BPs at 532 nm can reach 5.11 × 10-3. Due to the selective resonance coupling between L/D-Au@Ag BPs and different enantiomers, L/D-Au@Ag BPs were further used as SERS substrates for efficient discrimination of biologically relevant small molecules. Chiral Au@Ag BPs display the potential for chiral drug identification.
Collapse
Affiliation(s)
- Hongying Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, PR China
| | - Jiale Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, PR China
| | - Lingling Jiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, PR China
| | - Xia Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, PR China.
| |
Collapse
|
37
|
Wang S, Liu X, Mourdikoudis S, Chen J, Fu W, Sofer Z, Zhang Y, Zhang S, Zheng G. Chiral Au Nanorods: Synthesis, Chirality Origin, and Applications. ACS NANO 2022; 16:19789-19809. [PMID: 36454684 DOI: 10.1021/acsnano.2c08145] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Chiral Au nanorods (c-Au NRs) with diverse architectures constitute an interesting nanospecies in the field of chiral nanophotonics. The numerous possible plasmonic behaviors of Au NRs can be coupled with chirality to initiate, tune, and amplify their chiroptical response. Interdisciplinary technologies have boosted the development of fabrication and applications of c-Au NRs. Herein, we have focused on the role of chirality in c-Au NRs which helps to manipulate the light-matter interaction in nontraditional ways. A broad overview on the chirality origin, chirality transfer, chiroptical activities, artificially synthetic methodologies, and circularly polarized applications of c-Au NRs will be summarized and discussed. A deeper understanding of light-matter interaction in c-Au NRs will help to manipulate the chirality at the nanoscale, reveal the natural evolution process taking place, and set up a series of circularly polarized applications.
Collapse
Affiliation(s)
- Shenli Wang
- School of Food Science and Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou, 450001, P. R. China
| | - Xing Liu
- School of Physics and Microelectronics, Key Laboratory of Material Physics, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Stefanos Mourdikoudis
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, 16628, Prague 6, Czech Republic
| | - Jie Chen
- School of Food Science and Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou, 450001, P. R. China
| | - Weiwei Fu
- School of Physics and Microelectronics, Key Laboratory of Material Physics, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Zdeněk Sofer
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, 16628, Prague 6, Czech Republic
| | - Yuan Zhang
- School of Physics and Microelectronics, Key Laboratory of Material Physics, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Shunping Zhang
- School of Physics and Technology and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan430072, P. R. China
| | - Guangchao Zheng
- School of Physics and Microelectronics, Key Laboratory of Material Physics, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
38
|
Lee H, Park Y, Song K, Park JY. Surface Plasmon-Induced Hot Carriers: Generation, Detection, and Applications. Acc Chem Res 2022; 55:3727-3737. [DOI: 10.1021/acs.accounts.2c00623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Hyunhwa Lee
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), 291 Daehak-ro, Daejeon 31414, Republic of Korea
| | - Yujin Park
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), 291 Daehak-ro, Daejeon 31414, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea
| | - Kyoungjae Song
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), 291 Daehak-ro, Daejeon 31414, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea
| | - Jeong Young Park
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), 291 Daehak-ro, Daejeon 31414, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea
| |
Collapse
|
39
|
Sun X, Yang J, Sun L, Yang G, Liu C, Tao Y, Cheng Q, Wang C, Xu H, Zhang Q. Tunable Reversal of Circular Dichroism in the Seed-Mediated Growth of Bichiral Plasmonic Nanoparticles. ACS NANO 2022; 16:19174-19186. [PMID: 36251931 DOI: 10.1021/acsnano.2c08381] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Plasmonic nanoparticles with an intrinsic chiral structure have emerged as a promising chiral platform for applications in biosensing, medicine, catalysis, separation, and photonics. Quantitative understanding of the correlation between nanoparticle structure and optical chirality becomes increasingly important but still represents a significantly challenging task. Here we demonstrate that tunable signal reversal of circular dichroism in the seed-mediated chiral growth of plasmonic nanoparticles can be achieved through the hybridization of bichiral centers without inverting the geometric chirality. Both experimental and theoretical results demonstrated the opposite sign of circular dichroism of two different bichiral geometries. Chiral molecules were found to not only contribute to the chirality transfer from molecules to nanoparticles but also manipulate the structural evolution of nanoparticles that synergistically drive the formation of two different chiral centers. By deliberately adjusting the concentration of chiral molecules and other synthetic parameters, such as the reducing agent concentration, the capping surfactant concentration, and the amount of Au precursor, we have been able to fine-tune the circular dichroism reversal of bichiral Au nanoparticles. We further demonstrate that the structure of chiral molecules and the crystal structure of Au seeds play crucial roles in the formation of Au nanoparticles with bichiral centers. The insights gained from this work not only shed light on the underlying mechanisms dictating the intriguing geometric and chirality evolution of bichiral plasmonic nanoparticles but also provide an important knowledge framework that guides the rational design of bichiral plasmonic nanostructures toward chiroptical applications.
Collapse
Affiliation(s)
- Xuehao Sun
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Jian Yang
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
| | - Lichao Sun
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Guizeng Yang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Chuang Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yunlong Tao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Qingqing Cheng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Chen Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Hongxing Xu
- The Institute of Advanced Studies, School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Qingfeng Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
40
|
Wang Y, Ai B, Wang Z, Guan Y, Chen X, Zhang G. Chiral nanohelmet array films with Three-Dimensional (3D) resonance cavities. J Colloid Interface Sci 2022; 626:334-344. [DOI: 10.1016/j.jcis.2022.06.160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/21/2022] [Accepted: 06/27/2022] [Indexed: 11/28/2022]
|
41
|
Zhao X, Li J, Kong X, Li C, Lin B, Dong F, Yang G, Shao G, Xue C. Carbon Dots Mediated In Situ Confined Growth of Bi Clusters on g-C 3 N 4 Nanomeshes for Boosting Plasma-Assisted Photoreduction of CO 2. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204154. [PMID: 36216577 DOI: 10.1002/smll.202204154] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Synthesis of high-efficiency, cost-effective, and stable photocatalysts has long been a priority for sustainable photocatalytic CO2 reduction reactions (CRR), given its importance in achieving carbon neutrality goals under the new development philosophy. Fundamentally, the sluggish interface charge transportation and poor selectivity of products remain a challenge in the CRR progress. Herein, this work unveils a synergistic effect between high-density monodispersed Bi/carbon dots (CDs) and ultrathin graphite phase carbon nitride (g-C3 N4 ) nanomeshes for plasma-assisted photocatalytic CRR. The optimal g-C3 N4 /Bi/CDs heterojunction displays a high selectivity of 98% for CO production with a yield up to 22.7 µmol g-1 without any sacrificial agent. The in situ confined growth of plasmonic Bi clusters favors the production of more hot carriers and improves the conductivity of g-C3 N4 . Meanwhile, a built-in electric field driving force modulates the directional injection photogenerated holes from plasmonic Bi clusters and g-C3 N4 photosensitive units to adjacent CDs reservoirs, thus promoting the rapid separation and oriented transfer in the CRR process. This work sheds light on the mechanism of plasma-assisted photocatalytic CRR and provides a pathway for designing highly efficient plasma-involved photocatalysts.
Collapse
Affiliation(s)
- Xinyang Zhao
- State Centre for International Cooperation on Designer Low-carbon and Environmental Materials, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Jun Li
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, China
| | - Xiangguang Kong
- State Centre for International Cooperation on Designer Low-carbon and Environmental Materials, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Changchang Li
- State Centre for International Cooperation on Designer Low-carbon and Environmental Materials, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Bo Lin
- XJTU-Oxford International Joint Laboratory for Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Fan Dong
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Guidong Yang
- XJTU-Oxford International Joint Laboratory for Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Guosheng Shao
- State Centre for International Cooperation on Designer Low-carbon and Environmental Materials, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Chao Xue
- State Centre for International Cooperation on Designer Low-carbon and Environmental Materials, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
42
|
Yang Z, Wei Y, Wei J, Yang Z. Chiral superstructures of inorganic nanorods by macroscopic mechanical grinding. Nat Commun 2022; 13:5844. [PMID: 36195762 PMCID: PMC9532428 DOI: 10.1038/s41467-022-33638-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/27/2022] [Indexed: 11/08/2022] Open
Abstract
The development of mechanochemistry substantially expands the traditional synthetic realm at the molecular level. Here, we extend the concept of mechanochemistry from atomic/molecular solids to the nanoparticle solids, and show how the macroscopic grinding is being capable of generating chirality in self-assembled nanorod (NR) assemblies. Specifically, the weak van der Waals interaction is dominated in self-assembled NR assemblies when their surface is coated with aliphatic chains, which can be overwhelmed by a press-and-rotate mechanic force macroscopically. The chiral sign of the NR assemblies can be well-controlled by the rotating directions, where the clockwise and counter-clockwise rotation leads to the positive and negative Cotton effect in circular dichroism and circularly polarized luminescence spectra, respectively. Importantly, we show that the present approach can be applied to NRs of diverse inorganic materials, including CdSe, CdSe/CdS, and TiO2. Equally important, the as-prepared chiral NR assemblies could be served as porous yet robust chiral substrates, which enable to host other molecular materials and induce the chirality transfer from substrate to the molecular system.
Collapse
Affiliation(s)
- Zhiwei Yang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, PR China
| | - Yanze Wei
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, PR China
| | - Jingjing Wei
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, PR China
| | - Zhijie Yang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, PR China.
| |
Collapse
|
43
|
Negrín-Montecelo Y, Brissaud C, Piquemal JY, Govorov AO, Correa-Duarte MA, Besteiro LV, Comesaña-Hermo M. Plasmonic photocatalysis in aqueous solution: assessing the contribution of thermal effects and evaluating the role of photogenerated ROS. NANOSCALE 2022; 14:11612-11618. [PMID: 35866634 DOI: 10.1039/d2nr02431d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Plasmon-induced photocatalysis can drive photochemical processes with an unprecedented control of reactivity, using light as sole energy source. Nevertheless, disentangling the relative importance of thermal and non-thermal features upon plasmonic excitation remains a difficult task. In this work we intend to separate the role played by the photogenerated charge carriers from thermal mechanisms in the plasmonic photo-oxidation of a model organic substrate in aqueous solution and using a metal-semiconductor hybrid as model photocatalyst. Accordingly, we present a simple set of experimental procedures and simulations that allow us to discard the thermal dissipation upon plasmonic excitation as the main driving force behind these chemical reactions. Moreover, we also study the photogeneration of reactive oxygen species (ROS), discussing their fundamental role in photo-oxidation reactions and the information they provide regarding the reactivity of the photogenerated electrons and holes.
Collapse
Affiliation(s)
- Yoel Negrín-Montecelo
- CINBIO, Universidade de Vigo, Department of Physical Chemistry, 36310 Vigo, Spain.
- Galicia Sur Health Research Institute (IISGS), CIBERSAM, 36310 Vigo, Spain
| | | | | | - Alexander O Govorov
- Department of Physics and Astronomy, Ohio University, Athens, 45701 Ohio, USA
| | - Miguel A Correa-Duarte
- CINBIO, Universidade de Vigo, Department of Physical Chemistry, 36310 Vigo, Spain.
- Galicia Sur Health Research Institute (IISGS), CIBERSAM, 36310 Vigo, Spain
| | - Lucas V Besteiro
- CINBIO, Universidade de Vigo, Department of Physical Chemistry, 36310 Vigo, Spain.
- Galicia Sur Health Research Institute (IISGS), CIBERSAM, 36310 Vigo, Spain
| | | |
Collapse
|
44
|
Iwao S, Kurono N, Higashiguchi W, Hayakawa T, Ohta N, Kamitani K, Fujii S, Nakamura Y, Hirai T. Ordered Silica Nanostructure by the Calcination of Block Copolymer with Polyhedral Oligomeric Silsesquioxane (POSS) Side Chain. CHEM LETT 2022. [DOI: 10.1246/cl.220180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Sota Iwao
- Depaertment of Applied Chemistry, Faculty of Engineering and Graduate School of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Naoki Kurono
- Depaertment of Applied Chemistry, Faculty of Engineering and Graduate School of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Wataru Higashiguchi
- Depaertment of Applied Chemistry, Faculty of Engineering and Graduate School of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Teruaki Hayakawa
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-S8-36 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Noboru Ohta
- Japan Synchrotron Radiation Research Institute, SPring-8, Sayo, Hyogo 679-5198, Japan
| | - Kazutaka Kamitani
- Aichi Synchrotron Radiation Center, Aichi Science & Technlogy Foudation, 250-3 Minamiyamaguchi-cho, Seto, Aichi 489-0965, Japan
| | - Syuji Fujii
- Depaertment of Applied Chemistry, Faculty of Engineering and Graduate School of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Yoshinobu Nakamura
- Depaertment of Applied Chemistry, Faculty of Engineering and Graduate School of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Tomoyasu Hirai
- Depaertment of Applied Chemistry, Faculty of Engineering and Graduate School of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| |
Collapse
|
45
|
Rtimi M, Beydoun N, Movsesyan A, Akil S, Kostcheev S, Gassmann X, Lajnef M, Chtourou R, Jradi S. Enhanced Photocatalytic Activity and Photoluminescence of ZnO Nano-Wires Coupled with Aluminum Nanostructures. NANOMATERIALS 2022; 12:nano12111941. [PMID: 35683800 PMCID: PMC9182769 DOI: 10.3390/nano12111941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/23/2022] [Accepted: 05/27/2022] [Indexed: 02/04/2023]
Abstract
In this study, we fabricated a hybrid plasmonic/semiconductor material by combining the chemical bath deposition of zinc oxide nanowires (ZnONWs) with the physical vapor deposition of aluminum nanostructures (AlNSs) under controlled temperature and atmosphere. The morphological and the optical properties of the ZnONWs/AlNSs hybrid material fabricated at different temperatures (250, 350, and 450 °C) and thicknesses (5, 7, and 9 nm) of Al layers were investigated. By adjusting the deposition and annealing parameters, it was possible to tune the size distribution of the AlNSs. The resonant coupling between the plasmonic AlNSs and ZnONWs leads to an enhanced photoluminescence response. The photocatalytic activity was studied through photodegradation under UV-light irradiation of methylene blue (MB) adsorbed at the surface of ZnO. The MB photodegradation experiment reveals that the ZnONWs covered with 7 nm aluminum film and annealed at 450 °C exhibit the highest degradation efficiency. The comparison between ZnONws and ZnONws/AlNSs shows a photoluminescence enhancement factor of 1.7 and an increase in the kinetics constant of photodegradation with a factor of 4.
Collapse
Affiliation(s)
- Mondher Rtimi
- Laboratory Light, Nanomaterials & Nanotechnologies (L2n—CNRS-EMR 7004), University of Technology of Troyes, 10004 Troyes, France; (M.R.); (N.B.); (A.M.); (S.K.); (X.G.)
- Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 2092, Tunisia
- Research and Technology Centre of Energy, Borj Cedria B.P N° 95, Hammam-Lif 2050, Tunisia; (M.L.); (R.C.)
| | - Nour Beydoun
- Laboratory Light, Nanomaterials & Nanotechnologies (L2n—CNRS-EMR 7004), University of Technology of Troyes, 10004 Troyes, France; (M.R.); (N.B.); (A.M.); (S.K.); (X.G.)
| | - Artur Movsesyan
- Laboratory Light, Nanomaterials & Nanotechnologies (L2n—CNRS-EMR 7004), University of Technology of Troyes, 10004 Troyes, France; (M.R.); (N.B.); (A.M.); (S.K.); (X.G.)
| | - Suzanna Akil
- LCP-A2MC Laboratory, Jean Barriol Institute, University of Lorraine, 1 Bd Arago, 57070 Metz, France;
| | - Sergei Kostcheev
- Laboratory Light, Nanomaterials & Nanotechnologies (L2n—CNRS-EMR 7004), University of Technology of Troyes, 10004 Troyes, France; (M.R.); (N.B.); (A.M.); (S.K.); (X.G.)
| | - Xavier Gassmann
- Laboratory Light, Nanomaterials & Nanotechnologies (L2n—CNRS-EMR 7004), University of Technology of Troyes, 10004 Troyes, France; (M.R.); (N.B.); (A.M.); (S.K.); (X.G.)
| | - Mohamed Lajnef
- Research and Technology Centre of Energy, Borj Cedria B.P N° 95, Hammam-Lif 2050, Tunisia; (M.L.); (R.C.)
| | - Radhouane Chtourou
- Research and Technology Centre of Energy, Borj Cedria B.P N° 95, Hammam-Lif 2050, Tunisia; (M.L.); (R.C.)
| | - Safi Jradi
- Laboratory Light, Nanomaterials & Nanotechnologies (L2n—CNRS-EMR 7004), University of Technology of Troyes, 10004 Troyes, France; (M.R.); (N.B.); (A.M.); (S.K.); (X.G.)
- Correspondence:
| |
Collapse
|
46
|
Ma J, Huang L, Zhou B, Yao L. Construction and Catalysis Advances of Inorganic Chiral Nanostructures. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a22070308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|