1
|
Yang C, Hu M, Hu C, Mi X, Luo S. Visible Light Promoted de Mayo Type Reaction of Bicyclo[1.1.0]butanes. Chemistry 2024; 30:e202402965. [PMID: 39174490 DOI: 10.1002/chem.202402965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 08/24/2024]
Abstract
We reported herein a visible light mediated de Mayo-type reaction between 1,3-diketones and BCB. The reaction proceeds through a [2π+2σ] cycloaddition and retro-aldol sequence, producing cis-difunctionalized cyclobutanes in high yields with good regio- and diastereoselectivity.
Collapse
Affiliation(s)
- Chunming Yang
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Minmin Hu
- College of Chemistry, Beijing Normal University, Beijing, 1000875, China
| | - Chaoqin Hu
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xueling Mi
- College of Chemistry, Beijing Normal University, Beijing, 1000875, China
| | - Sanzhong Luo
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
2
|
Xiao Y, Wu F, Tang L, Zhang X, Wei M, Wang G, Feng JJ. Divergent Synthesis of Sulfur-Containing Bridged Cyclobutanes by Lewis Acid Catalyzed Formal Cycloadditions of Pyridinium 1,4-Zwitterionic Thiolates and Bicyclobutanes. Angew Chem Int Ed Engl 2024; 63:e202408578. [PMID: 38818620 DOI: 10.1002/anie.202408578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/01/2024]
Abstract
Bridged cyclobutanes and sulfur heterocycles are currently under intense investigation as building blocks for pharmaceutical drug design. Two formal cycloaddition modes involving bicyclobutanes (BCBs) and pyridinium 1,4-zwitterionic thiolate derivatives were described to rapidly expand the chemical space of sulfur-containing bridged cyclobutanes. By using Ni(ClO4)2 as the catalyst, an uncommon higher-order (5+3) cycloaddition of BCBs with quinolinium 1,4-zwitterionic thiolate was achieved with broad substrate scope under mild reaction conditions. Furthermore, the first Lewis acid-catalyzed asymmetric polar (5+3) cycloaddition of BCB with pyridazinium 1,4-zwitterionic thiolate was accomplished. In contrast, pyridinium 1,4-zwitterionic thiolates undergo an Sc(OTf)3-catalyzed formal (3+3) reaction with BCBs to generate thia-norpinene products, which represent the initial instance of synthesizing 2-thiabicyclo[3.1.1]heptanes (thia-BCHeps) from BCBs. Moreover, we have successfully used this (3+3) protocol to rapidly prepare thia-BCHeps-substituted analogues of the bioactive molecule Pitofenone. Density functional theory (DFT) computations imply that kinetic factors govern the (5+3) cycloaddition reaction between BCB and quinolinium 1,4-zwitterionic thiolate, whereas the (3+3) reaction involving pyridinium 1,4-zwitterionic thiolates is under thermodynamic control.
Collapse
Affiliation(s)
- Yuanjiu Xiao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Feng Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Lei Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Xu Zhang
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, 225002, P.R. China
| | - Mengran Wei
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Guoqiang Wang
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Jian-Jun Feng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| |
Collapse
|
3
|
Guin A, Deswal S, Harariya MS, Biju AT. Lewis acid-catalyzed diastereoselective formal ene reaction of thioindolinones/thiolactams with bicyclobutanes. Chem Sci 2024; 15:12473-12479. [PMID: 39118603 PMCID: PMC11304820 DOI: 10.1039/d4sc02194k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/25/2024] [Indexed: 08/10/2024] Open
Abstract
Bicyclo[1.1.0]butanes (BCBs), featuring two fused cyclopropane rings, have found widespread application in organic synthesis. Their versatile reactivity towards radicals, nucleophiles, cations, and carbenes makes them suitable for various reactions, including ring-opening and annulation strategies. Despite this versatility, their potential as enophiles in an ene reaction remains underexplored. Considering this and given the challenges of achieving diastereoselectivity in ring-opening reactions of BCBs, herein, we present a unique method utilizing BCBs as enophiles in a mild and diastereoselective Sc(OTf)3-catalyzed formal ene reaction with thioindolinones/thiolactams, delivering 1,3-disubstituted cyclobutane derivatives in high yields and excellent regio- and diastereoselectivity. Notably, structurally different thiolactam derivatives underwent diastereoselective addition to BCBs, affording the corresponding cyclobutanes. The synthesized thioindole-substituted cyclobutanes could serve as a versatile tool for subsequent functional group manipulations.
Collapse
Affiliation(s)
- Avishek Guin
- Department of Organic Chemistry, Indian Institute of Science Bangalore 560012 India https://atbiju.in/
| | - Shiksha Deswal
- Department of Organic Chemistry, Indian Institute of Science Bangalore 560012 India https://atbiju.in/
| | - Mahesh Singh Harariya
- Department of Organic Chemistry, Indian Institute of Science Bangalore 560012 India https://atbiju.in/
| | - Akkattu T Biju
- Department of Organic Chemistry, Indian Institute of Science Bangalore 560012 India https://atbiju.in/
| |
Collapse
|
4
|
Gao XY, Tang L, Zhang X, Feng JJ. Palladium-catalyzed decarboxylative (4 + 3) cycloadditions of bicyclobutanes with 2-alkylidenetrimethylene carbonates for the synthesis of 2-oxabicyclo[4.1.1]octanes. Chem Sci 2024:d4sc02998d. [PMID: 39139738 PMCID: PMC11317905 DOI: 10.1039/d4sc02998d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/01/2024] [Indexed: 08/15/2024] Open
Abstract
While cycloaddition reactions of bicyclobutanes (BCBs) have emerged as a potent method for synthesizing (hetero-)bicyclo[n.1.1]alkanes (usually n ≤ 3), their utilization in the synthesis of bicyclo[4.1.1]octane derivatives (BCOs) is still underdeveloped. Here, a palladium-catalyzed formal (4 + 3) reaction of BCBs with 1,4-O/C dipole precursors for the synthesis of oxa-BCOs is described. Unlike previous catalytic polar (3 + X) cycloadditions of BCBs, which are typically achieved through the activation of BCB substrates, the current reaction represents a novel strategy for realizing the cycloaddition of BCBs through the activation of the "X" cycloaddition partner. Moreover, the obtained functionalized oxa-BCOs products can be readily modified through various synthetic transformations.
Collapse
Affiliation(s)
- Xin-Yu Gao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| | - Lei Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| | - Xu Zhang
- School of Chemistry & Chemical Engineering, Yangzhou University Yangzhou 225002 P.R. China
| | - Jian-Jun Feng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| |
Collapse
|
5
|
Tsien J, Hu C, Merchant RR, Qin T. Three-dimensional saturated C(sp 3)-rich bioisosteres for benzene. Nat Rev Chem 2024; 8:605-627. [PMID: 38982260 DOI: 10.1038/s41570-024-00623-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2024] [Indexed: 07/11/2024]
Abstract
Benzenes, the most ubiquitous structural moiety in marketed small-molecule drugs, are frequently associated with poor 'drug-like' properties, including metabolic instability, and poor aqueous solubility. In an effort to overcome these limitations, recent developments in medicinal chemistry have demonstrated the improved physicochemical profiles of C(sp3)-rich bioisosteric scaffolds relative to arenes. In the past two decades, we have witnessed an exponential increase in synthetic methods for accessing saturated bioisosteres of monosubstituted and para-substituted benzenes. However, until recent discoveries, analogous three-dimensional ortho-substituted and meta-substituted biososteres have remained underexplored, owing to their ring strain and increased s-character hybridization. This Review summarizes the emerging synthetic methodologies to access such saturated motifs and their impact on the application of bioisosteres for ortho-substituted, meta-substituted and multi-substituted benzene rings. It concludes with a perspective on the development of next-generation bioisosteres, including those within novel chemical space.
Collapse
Affiliation(s)
- Jet Tsien
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chao Hu
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rohan R Merchant
- Department of Discovery Chemistry, Merck & Co., Inc., South San Francisco, CA, USA
| | - Tian Qin
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
6
|
Jiang Q, Dong J, Wang C, Li F, Zhou X, Wang Y, Liao H, Dang J, Li G, Xue D. Light-Induced, Cs 2CO 3 Promoted C-S Cleavage of Heteroaryl Sulfones for Benzyl Heteroarylation of [1.1.1]Propellane. Org Lett 2024; 26:6230-6235. [PMID: 39011564 DOI: 10.1021/acs.orglett.4c02171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
In this study, we developed a light-induced difunctionalization of [1.1.1]propellane with heteroaryl sulfones acting as difunctional reagents, allowing the introduction of alkyl and heteroaryl units across bicyclo[1.1.1]pentane frameworks. It features a broad substrate scope and can be used to functionalize structurally complex natural products. Mechanistic investigations indicate the Cs2CO3 promoted homolytic cleavage of heteroaryl sulfone C-S bonds by light. Moreover, the benzothiazolyl moiety in the products can serve as a formyl precursor, indicating the robust transformability of the products, owing to the ability of aldehydes to undergo a wide variety of organic transformations.
Collapse
Affiliation(s)
- Qin Jiang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Jianyang Dong
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Chenya Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Fei Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Xuechen Zhou
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Yuying Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Huijuan Liao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Jiayi Dang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Gang Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Dong Xue
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| |
Collapse
|
7
|
Tyler J, Schäfer F, Shao H, Stein C, Wong A, Daniliuc CG, Houk KN, Glorius F. Bicyclo[1.1.0]butyl Radical Cations: Synthesis and Application to [2π + 2σ] Cycloaddition Reactions. J Am Chem Soc 2024; 146:16237-16247. [PMID: 38811005 PMCID: PMC11177261 DOI: 10.1021/jacs.4c04403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/31/2024]
Abstract
As the chemistry that surrounds the field of strained hydrocarbons, such as bicyclo[1.1.0]butane, continues to expand, it becomes increasingly advantageous to develop alternative reactivity modes that harness their unique properties to access new regions of chemical space. Herein, we report the use of photoredox catalysis to promote the single-electron oxidation of bicyclo[1.1.0]butanes. The synthetic utility of the resulting radical cations is highlighted by their ability to undergo highly regio- and diastereoselective [2π + 2σ] cycloaddition reactions. The most notable feature of this transformation is the breadth of alkene classes that can be employed, including nonactivated alkenes, which have so far been elusive for previous strategies. A rigorous mechanistic investigation, in conjunction with DFT computation, was undertaken in order to better understand the physical nature of bicyclo[1.1.0]butyl radical cations and thus provides a platform from which further studies into the synthetic applications of these intermediates can be built upon.
Collapse
Affiliation(s)
- Jasper
L. Tyler
- Organisch-Chemisches
Institut, Universität Münster, 48149 Münster, Germany
| | - Felix Schäfer
- Organisch-Chemisches
Institut, Universität Münster, 48149 Münster, Germany
| | - Huiling Shao
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, California 90095-1569, United States
| | - Colin Stein
- Organisch-Chemisches
Institut, Universität Münster, 48149 Münster, Germany
| | - Audrey Wong
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, California 90095-1569, United States
| | | | - K. N. Houk
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, California 90095-1569, United States
| | - Frank Glorius
- Organisch-Chemisches
Institut, Universität Münster, 48149 Münster, Germany
| |
Collapse
|
8
|
Suresh R, Orbach N, Marek I. Synthesis of Stereodefined Polysubstituted Bicyclo[1.1.0]butanes. J Am Chem Soc 2024; 146:13748-13753. [PMID: 38722207 PMCID: PMC11117409 DOI: 10.1021/jacs.4c04438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/04/2024] [Accepted: 05/06/2024] [Indexed: 05/23/2024]
Abstract
We report a highly diastereoselective synthesis of polysubstituted bicyclobutanes possessing up to three stereodefined quaternary centers and five substituents. Our strategy involves a diastereoselective carbometalation of cyclopropenes followed by a cyclization to furnish the bicyclobutane ring system. This straightforward approach allows for the incorporation of a diverse range of substituents and functional groups, notably without the need for electron-withdrawing functionalities.
Collapse
Affiliation(s)
- Rahul Suresh
- Schulich Faculty of Chemistry
and The Resnick Sustainability Center for Catalysis, Technion−Israel Institute of Technology, Technion City, Haifa 32000, Israel
| | - Noam Orbach
- Schulich Faculty of Chemistry
and The Resnick Sustainability Center for Catalysis, Technion−Israel Institute of Technology, Technion City, Haifa 32000, Israel
| | - Ilan Marek
- Schulich Faculty of Chemistry
and The Resnick Sustainability Center for Catalysis, Technion−Israel Institute of Technology, Technion City, Haifa 32000, Israel
| |
Collapse
|
9
|
Yang L, Wang H, Lang M, Wang J, Peng S. B(C 6F 5) 3-Catalyzed Formal ( n + 3) ( n = 5 and 6) Cycloaddition of Bicyclo[1.1.0]butanes to Medium Bicyclo[ n.1.1]alkanes. Org Lett 2024; 26:4104-4110. [PMID: 38700913 DOI: 10.1021/acs.orglett.4c01219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Herein, a B(C6F5)3-catalyzed formal (n + 3) (n = 5 and 6) cycloaddition of bicyclo[1.1.0]butanes (BCBs) with imidazolidines/hexahydropyrimidines is described. The reaction provides a modular, atom-economical, and efficient strategy to two libraries of synthetically challenging medium-bridged rings, 2,5-diazabicyclo[5.1.1]nonanes and 2,6-diazabicyclo[6.1.1]decanes, in moderate to excellent yields. This reaction also features simple operation, mild reaction conditions, and broad substrate scope. A scale-up experiment and various synthetic transformations of products further highlight the synthetic utility.
Collapse
Affiliation(s)
- Liangliang Yang
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Haiyang Wang
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Ming Lang
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Jian Wang
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, People's Republic of China
| | - Shiyong Peng
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| |
Collapse
|
10
|
Yan J, Dong L, Yang Y, Zhang D. DFT Insight into a Strain-Release Mechanism in Bicyclo[1.1.0]butanes via Concerted Activation of Central and Lateral C-C Bonds with Rh(III) Catalysis. Inorg Chem 2024; 63:8879-8888. [PMID: 38676642 DOI: 10.1021/acs.inorgchem.4c00800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2024]
Abstract
Transition-metal-catalyzed, strain-release-driven transformations of "spring-loaded" bicyclo[1.1.0]butanes (BCBs) are considered potent tools in synthetic organic chemistry. Previously proposed strain-release mechanisms involve either the insertion of the central C-C bond of BCBs into a metal-carbon bond, followed by β-C elimination, or the oxidative addition of the central or lateral C-C bond on the transition metal center, followed by reductive elimination. This study, employing DFT calculations on a Rh(III)-catalyzed model system in a three-component protocol involving oxime ether, BCB ester, and ethyl glyoxylate for constructing diastereoselective quaternary carbon centers, introduces an unusual strain-release mechanism for BCBs. In this mechanism, the catalytic reaction is initiated by the simultaneous cleavage of two C-C bonds (the central and lateral C-C bonds), resulting in the formation of a Rh-carbene intermediate. The new mechanism exhibits a barrier of 21.0 kcal/mol, making it energetically more favorable by 11.1 kcal/mol compared to the previously suggested most favorable pathway. This unusual reaction mode rationalizes experimental observation of the construction of quaternary carbon centers, including the excellent E-selectivity and diastereoselectivity. The newly proposed strain-release mechanism holds promise in advancing our understanding of transition-metal-catalyzed C-C bond activation mechanisms and facilitating the synthesis of transition metal carbene complexes.
Collapse
Affiliation(s)
- Jing Yan
- School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan 250013, Shandong, China
| | - Lihua Dong
- School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan 250013, Shandong, China
| | - Yiying Yang
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Dongju Zhang
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
11
|
Bai D, Guo X, Wang X, Xu W, Cheng R, Wei D, Lan Y, Chang J. Umpolung reactivity of strained C-C σ-bonds without transition-metal catalysis. Nat Commun 2024; 15:2833. [PMID: 38565533 PMCID: PMC10987681 DOI: 10.1038/s41467-024-47169-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 03/22/2024] [Indexed: 04/04/2024] Open
Abstract
Umpolung is an old and important concept in organic chemistry, which significantly expands the chemical space and provides unique structures. While, previous research focused on carbonyls or imine derivatives, the umpolung reactivity of polarized C-C σ-bonds still needs to explore. Herein, we report an umpolung reaction of bicyclo[1.1.0]butanes (BCBs) with electron-deficient alkenes to construct the C(sp3)-C(sp3) bond at the electrophilic position of C-C σ-bonds in BCBs without any transition-metal catalysis. Specifically, this transformation relies on the strain-release driven bridging σ-bonds in bicyclo[1.1.0]butanes (BCBs), which are emerged as ene components, providing an efficient and straightforward synthesis route of various functionalized cyclobutenes and conjugated dienes, respectively. The synthetic utilities of this protocol are performed by several transformations. Preliminary mechanistic studies including density functional theory (DFT) calculation support the concerted Alder-ene type process of C-C σ-bond cleavage with hydrogen transfer. This work extends the umpolung reaction to C-C σ-bonds and provides high-value structural motifs.
Collapse
Affiliation(s)
- Dachang Bai
- State Key Laboratory of Antiviral Drugs, State Key Laboratory of Antiviral Drugs, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Pingyuan Laboratory, Henan Normal University, Xinxiang, 453007, China.
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Xiuli Guo
- State Key Laboratory of Antiviral Drugs, State Key Laboratory of Antiviral Drugs, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Pingyuan Laboratory, Henan Normal University, Xinxiang, 453007, China
| | - Xinghua Wang
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, Zhengzhou, Henan, China
| | - Wenjie Xu
- State Key Laboratory of Antiviral Drugs, State Key Laboratory of Antiviral Drugs, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Pingyuan Laboratory, Henan Normal University, Xinxiang, 453007, China
| | - Ruoshi Cheng
- State Key Laboratory of Antiviral Drugs, State Key Laboratory of Antiviral Drugs, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Pingyuan Laboratory, Henan Normal University, Xinxiang, 453007, China
| | - Donghui Wei
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, Zhengzhou, Henan, China
| | - Yu Lan
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, Zhengzhou, Henan, China
| | - Junbiao Chang
- State Key Laboratory of Antiviral Drugs, State Key Laboratory of Antiviral Drugs, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Pingyuan Laboratory, Henan Normal University, Xinxiang, 453007, China.
| |
Collapse
|
12
|
Zhang J, Su JY, Zheng H, Li H, Deng WP. Eu(OTf) 3 -Catalyzed Formal Dipolar [4π+2σ] Cycloaddition of Bicyclo-[1.1.0]butanes with Nitrones: Access to Polysubstituted 2-Oxa-3-azabicyclo[3.1.1]heptanes. Angew Chem Int Ed Engl 2024; 63:e202318476. [PMID: 38288790 DOI: 10.1002/anie.202318476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Indexed: 02/21/2024]
Abstract
Herein, we have synthesized multifunctionalized 2-oxa-3-azabicyclo[3.1.1]heptanes, which are considered potential bioisosteres for meta-substituted arenes, through Eu(OTf)3 -catalyzed formal dipolar [4π+2σ] cycloaddition of bicyclo[1.1.0]butanes with nitrones. This methodology represents the initial instance of fabricating bicyclo[3.1.1]heptanes adorned with multiple heteroatoms. The protocol exhibits both mild reaction conditions and a good tolerance for various functional groups. Computational density functional theory calculations support that the reaction mechanism likely involves a nucleophilic addition of nitrones to bicyclo[1.1.0]butanes, succeeded by an intramolecular cyclization. The synthetic utility of this novel protocol has been demonstrated in the concise synthesis of the analogue of Rupatadine.
Collapse
Affiliation(s)
- Jian Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, China
| | - Jia-Yi Su
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Hanliang Zheng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, China
| | - Hao Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Wei-Ping Deng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, China
| |
Collapse
|
13
|
Anderson JM, Poole DL, Cook GC, Murphy JA, Measom ND. Organometallic Bridge Diversification of Bicyclo[1.1.1]pentanes. Chemistry 2024; 30:e202304070. [PMID: 38117748 DOI: 10.1002/chem.202304070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 12/22/2023]
Abstract
Bicyclo[1.1.1]pentane (BCP) derivatives have attracted significant recent interest in drug discovery as alkyne, tert-butyl and arene bioisosteres, where their incorporation is frequently associated with increased compound solubility and metabolic stability. While strategies for functionalisation of the bridgehead (1,3) positions are extensively developed, platforms allowing divergent substitution at the bridge (2,4,5) positions remain limited. Recent reports have introduced 1-electron strategies for arylation and incorporation of a small range of other substituents, but are limited in terms of scope, yields or practical complexity. Herein, we show the synthesis of diverse 1,2,3-trifunctionalised BCPs through lithium-halogen exchange of a readily accessible BCP bromide. When coupled with medicinally relevant product derivatisations, our developed 2-electron "late stage" approach provides rapid and straightforward access to unprecedented BCP structural diversity (>20 hitherto-unknown motifs reported). Additionally, we describe a method for the synthesis of enantioenriched "chiral-at-BCP" bicyclo[1.1.1]pentanes through a novel stereoselective bridgehead desymmetrisation.
Collapse
Affiliation(s)
- Joseph M Anderson
- Medicinal Chemistry, GSK, GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, UK, SG1 2NY
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, UK, G1 1XL
| | - Darren L Poole
- Medicinal Chemistry, GSK, GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, UK, SG1 2NY
| | - Gemma C Cook
- Medicinal Chemistry, GSK, GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, UK, SG1 2NY
| | - John A Murphy
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, UK, G1 1XL
| | - Nicholas D Measom
- Medicinal Chemistry, GSK, GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, UK, SG1 2NY
| |
Collapse
|
14
|
Yang Y, Tsien J, Dykstra R, Chen SJ, Wang JB, Merchant RR, Hughes JME, Peters BK, Gutierrez O, Qin T. Programmable late-stage functionalization of bridge-substituted bicyclo[1.1.1]pentane bis-boronates. Nat Chem 2024; 16:285-293. [PMID: 37884667 PMCID: PMC10922318 DOI: 10.1038/s41557-023-01342-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 09/08/2023] [Indexed: 10/28/2023]
Abstract
Modular functionalization enables versatile exploration of chemical space and has been broadly applied in structure-activity relationship (SAR) studies of aromatic scaffolds during drug discovery. Recently, the bicyclo[1.1.1]pentane (BCP) motif has increasingly received attention as a bioisosteric replacement of benzene rings due to its ability to improve the physicochemical properties of prospective drug candidates, but studying the SARs of C2-substituted BCPs has been heavily restricted by the need for multistep de novo synthesis of each analogue of interest. Here we report a programmable bis-functionalization strategy to enable late-stage sequential derivatization of BCP bis-boronates, opening up opportunities to explore the SARs of drug candidates possessing multisubstituted BCP motifs. Our approach capitalizes on the inherent chemoselectivity exhibited by BCP bis-boronates, enabling highly selective activation and functionalization of bridgehead (C3)-boronic pinacol esters (Bpin), leaving the C2-Bpin intact and primed for subsequent derivatization. These selective transformations of both BCP bridgehead (C3) and bridge (C2) positions enable access to C1,C2-disubstituted and C1,C2,C3-trisubstituted BCPs that encompass previously unexplored chemical space.
Collapse
Affiliation(s)
- Yangyang Yang
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jet Tsien
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ryan Dykstra
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
| | - Si-Jie Chen
- Department of Discovery Chemistry, Merck & Co., Inc., South San Francisco, CA, USA
| | - James B Wang
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rohan R Merchant
- Department of Discovery Chemistry, Merck & Co., Inc., South San Francisco, CA, USA
| | - Jonathan M E Hughes
- Department of Process Research and Development, Merck & Co., Inc., Rahway, NJ, USA
| | - Byron K Peters
- Department of Process Research and Development, Merck & Co., Inc., Rahway, NJ, USA
| | - Osvaldo Gutierrez
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA.
- Department of Chemistry, Texas A&M University, College Station, TX, USA.
| | - Tian Qin
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
15
|
McNamee RE, Frank N, Christensen KE, Duarte F, Anderson EA. Taming nonclassical carbocations to control small ring reactivity. SCIENCE ADVANCES 2024; 10:eadj9695. [PMID: 38215201 PMCID: PMC10786418 DOI: 10.1126/sciadv.adj9695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 12/13/2023] [Indexed: 01/14/2024]
Abstract
Prediction of the outcome of ring opening of small organic rings under cationic conditions can be challenging due to the intermediacy of nonclassical carbocations. For example, the solvolysis of cyclobutyl or cyclopropylmethyl derivatives generates up to four products on nucleophilic capture or elimination via cyclopropylcarbinyl and bicyclobutonium ions. Here, we show that such reaction outcomes can be controlled by subtle changes to the structure of nonclassical carbocation. Using bicyclo[1.1.0]butanes as cation precursors, the regio- and stereochemistry of ring opening is shown to depend on the degree and nature of the substituents on the cationic intermediates. Reaction outcomes are rationalized using computational models, resulting in a flowchart to predict product formation from a given cation precursor.
Collapse
Affiliation(s)
| | | | | | - Fernanda Duarte
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | | |
Collapse
|
16
|
McNamee RE, Dasgupta A, Christensen KE, Anderson EA. Bridge Cross-Coupling of Bicyclo[1.1.0]butanes. Org Lett 2024; 26:360-364. [PMID: 38156902 PMCID: PMC10789093 DOI: 10.1021/acs.orglett.3c04030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Bicyclo[1.1.0]butanes (BCBs) have gained growing popularity in "strain release" chemistry for the synthesis of four-membered-ring systems and para- and meta-disubstituted arene bioisosteres as well as applications in chemoselective bioconjugation. However, functionalization of the bridge position of BCBs can be challenging due to the inherent strain of the ring system and reactivity of the central C-C bond. Here we report the first late-stage bridge cross-coupling of BCBs, mediated by directed metalation/palladium catalysis.
Collapse
Affiliation(s)
- Ryan E. McNamee
- Chemistry Research Laboratory,
Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| | - Ayan Dasgupta
- Chemistry Research Laboratory,
Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| | - Kirsten E. Christensen
- Chemistry Research Laboratory,
Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| | - Edward A. Anderson
- Chemistry Research Laboratory,
Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| |
Collapse
|
17
|
Dasgupta A, Bhattacharjee S, Tong Z, Guin A, McNamee RE, Christensen KE, Biju AT, Anderson EA. Stereoselective Alder-Ene Reactions of Bicyclo[1.1.0]butanes: Facile Synthesis of Cyclopropyl- and Aryl-Substituted Cyclobutenes. J Am Chem Soc 2024; 146:1196-1203. [PMID: 38157245 PMCID: PMC10786042 DOI: 10.1021/jacs.3c13080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 01/03/2024]
Abstract
Bicyclo[1.1.0]butanes (BCBs), strained carbocycles comprising two fused cyclopropane rings, have become well-established building blocks in organic synthesis, medicinal chemistry, and chemical biology due to their diverse reactivity profile with radicals, nucleophiles, cations, and carbenes. The constraints of the bicyclic ring system confer high p-character on the interbridgehead C-C bond, leading to this broad reaction profile; however, the use of BCBs in pericyclic processes has to date been largely overlooked in favor of such stepwise, non-concerted additions. Here, we describe the use of BCBs as substrates for ene-like reactions with strained alkenes and alkynes, which give rise to cyclobutenes decorated with highly substituted cyclopropanes and arenes. The former products are obtained from highly stereoselective reactions with cyclopropenes, generated in situ from vinyl diazoacetates under blue light irradiation (440 nm). Cyclobutenes featuring a quaternary aryl-bearing carbon atom are prepared from equivalent reactions with arynes, which proceed in high yields under mild conditions. Mechanistic studies highlight the importance of electronic effects in this chemistry, while computational investigations support a concerted pathway and rationalize the excellent stereoselectivity of reactions with cyclopropenes.
Collapse
Affiliation(s)
- Ayan Dasgupta
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| | - Subrata Bhattacharjee
- Department
of Organic Chemistry, Indian Institute of
Science, Bangalore 560012, India
| | - Zixuan Tong
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| | - Avishek Guin
- Department
of Organic Chemistry, Indian Institute of
Science, Bangalore 560012, India
| | - Ryan E. McNamee
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| | - Kirsten E. Christensen
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| | - Akkattu T. Biju
- Department
of Organic Chemistry, Indian Institute of
Science, Bangalore 560012, India
| | - Edward A. Anderson
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| |
Collapse
|
18
|
Patel K, Oginetz L, Marek I. Highly Diastereoselective Preparation of Tertiary Alkyl Thiocyanates en Route to Thiols by Stereoinvertive Nucleophilic Substitution at Nonclassical Carbocations. Org Lett 2023; 25:8474-8477. [PMID: 37982581 DOI: 10.1021/acs.orglett.3c03396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
An effective InBr3-catalyzed nucleophilic thiocyanation of cyclopropyl alcohols has been developed. The reaction takes place at the quaternary carbon stereocenter of the cyclopropyl carbinol with a complete inversion of configuration, offering a novel pathway for the creation of complex tertiary alkyl thiocyanates with high diastereopurity. These substitution reactions proceed under mild reaction conditions and tolerate several functional groups. Additionally, thiocyanates were converted to thiols using lithium aluminum hydride.
Collapse
Affiliation(s)
- Kaushalendra Patel
- Schulich Faculty of Chemistry and Resnick Sustainability Center for Catalysis, Technion - Israel Institute of Technology, Technion City, Haifa 3200009, Israel
| | - Lior Oginetz
- Schulich Faculty of Chemistry and Resnick Sustainability Center for Catalysis, Technion - Israel Institute of Technology, Technion City, Haifa 3200009, Israel
| | - Ilan Marek
- Schulich Faculty of Chemistry and Resnick Sustainability Center for Catalysis, Technion - Israel Institute of Technology, Technion City, Haifa 3200009, Israel
| |
Collapse
|
19
|
Nguyen TVT, Bossonnet A, Wodrich MD, Waser J. Photocatalyzed [2σ + 2σ] and [2σ + 2π] Cycloadditions for the Synthesis of Bicyclo[3.1.1]heptanes and 5- or 6-Membered Carbocycles. J Am Chem Soc 2023; 145:25411-25421. [PMID: 37934629 DOI: 10.1021/jacs.3c09789] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
We report the use of photocatalysis for the homolytic ring-opening of carbonyl cyclopropanes. In contrast to previous studies, our approach does not require a metal cocatalyst or a strong reductant. The carbonyl cyclopropanes can be employed for both [2σ + 2σ] and [2σ + 2π] annulation with either alkenes/alkynes or bicyclo[1.1.0]butanes, yielding cyclopent-anes/-enes and bicyclo[3.1.1]heptanes (BCHs), respectively. BCHs are promising bioisosteres for 1,2,4,5 tetra-substituted aromatic rings. Mechanistic studies, including density functional theory computation and a trapping experiment with DMPO, support a 1,3-biradical generated from cyclopropane as a key intermediate for these transformations.
Collapse
Affiliation(s)
- Tin V T Nguyen
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemistry and Chemical Engineering, Ecole Polytechnique Federale de Lausanne, Lausanne Ch-1015, Switzerland
| | - André Bossonnet
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemistry and Chemical Engineering, Ecole Polytechnique Federale de Lausanne, Lausanne Ch-1015, Switzerland
| | - Matthew D Wodrich
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemistry and Chemical Engineering, Ecole Polytechnique Federale de Lausanne, Lausanne Ch-1015, Switzerland
| | - Jerome Waser
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemistry and Chemical Engineering, Ecole Polytechnique Federale de Lausanne, Lausanne Ch-1015, Switzerland
| |
Collapse
|
20
|
Lin SL, Chen YH, Liu HH, Xiang SH, Tan B. Enantioselective Synthesis of Chiral Cyclobutenes Enabled by Brønsted Acid-Catalyzed Isomerization of BCBs. J Am Chem Soc 2023; 145:21152-21158. [PMID: 37732875 DOI: 10.1021/jacs.3c06525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Chiral cyclobutene units are commonly found in natural products and biologically active molecules. Transition-metal-catalysis has been extensively used in asymmetric synthesis of such structures, while organocatalytic approaches remain elusive. In this study, bicyclo[1.1.0]butanes are involved in enantioselective transformation for the first time to offer a highly efficient route toward cyclobutenes with good regio- and enantiocontrol. The utilization of N-triflyl phosphoramide as a chiral Brønsted acid promoter enables this isomerization process to proceed under mild conditions with low catalyst loading as well as good functional group compatibility. The resulting chiral cyclobutenes could serve as platform molecules for downstream manipulations with excellent reservation of stereochemical integrity, demonstrating the synthetic practicality of the developed method. Control experiments have also been performed to verify the formation of a key carbocation intermediate at the benzylic position.
Collapse
Affiliation(s)
- Si-Li Lin
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ye-Hui Chen
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Huan-Huan Liu
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shao-Hua Xiang
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bin Tan
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
21
|
Abstract
The concept of strain in organic compounds is as old as modern organic chemistry and was initially introduced to justify the synthetic setbacks along the synthesis of small ring systems (pars construens of strain). In the last decades, chemists have developed an arsenal of strain-release reactions (pars destruens of strain) which can generate─with significant driving force─rigid aliphatic systems that can act as three-dimensional alternatives to (hetero)arenes. Photocatalysis added an additional dimension to strain-release processes by leveraging the energy of photons to create chemical complexity under mild conditions. This perspective presents the latest advancements in strain-release photocatalysis─with emphases on mechanisms, catalytic cycles, and current limitations─the unique chemical architectures that can be produced, and possible future directions.
Collapse
Affiliation(s)
- Peter Bellotti
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
- Department of Pharmacology, Weill Cornell Medicine, 1300 York Avenue, New York 10021, New York United States
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| |
Collapse
|
22
|
Guin A, Bhattacharjee S, Harariya MS, Biju AT. Lewis acid-catalyzed diastereoselective carbofunctionalization of bicyclobutanes employing naphthols. Chem Sci 2023; 14:6585-6591. [PMID: 37350821 PMCID: PMC10284142 DOI: 10.1039/d3sc01373a] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/22/2023] [Indexed: 06/24/2023] Open
Abstract
Traditional radical-mediated ring-opening of bicyclo[1.1.0]butanes (BCBs) for cyclobutane synthesis suffers from poor diastereoselectivity. Although few reports on BCB ring-opening via polar mechanisms are available, the Lewis acid-catalyzed diastereoselective ring-opening of BCBs using carbon nucleophiles is still underdeveloped. Herein, we report a mild and diastereoselective Bi(OTf)3-catalyzed ring-opening of BCBs employing 2-naphthols. The anticipated carbofunctionalized trisubstituted cyclobutanes were obtained via a bicoordinated bismuth complex and the products are formed in good to excellent yields with high regio- and diastereoselectivity. The scope of the reaction was further extended using electron-rich phenols and naphthylamine. The functionalization of the synthesized trisubstituted cyclobutanes shows the synthetic utility of the present method.
Collapse
Affiliation(s)
- Avishek Guin
- Department of Organic Chemistry, Indian Institute of Science Bangalore 560012 India https://orgchem.iisc.ac.in/atbiju/
| | - Subrata Bhattacharjee
- Department of Organic Chemistry, Indian Institute of Science Bangalore 560012 India https://orgchem.iisc.ac.in/atbiju/
| | - Mahesh Singh Harariya
- Department of Organic Chemistry, Indian Institute of Science Bangalore 560012 India https://orgchem.iisc.ac.in/atbiju/
| | - Akkattu T Biju
- Department of Organic Chemistry, Indian Institute of Science Bangalore 560012 India https://orgchem.iisc.ac.in/atbiju/
| |
Collapse
|
23
|
Tyler JL, Aggarwal VK. Synthesis and Applications of Bicyclo[1.1.0]butyl and Azabicyclo[1.1.0]butyl Organometallics. Chemistry 2023; 29:e202300008. [PMID: 36786481 PMCID: PMC10947034 DOI: 10.1002/chem.202300008] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/11/2023] [Accepted: 02/14/2023] [Indexed: 02/15/2023]
Abstract
The use of metalated (aza)bicyclo[1.1.0]butanes in synthesis is currently experiencing a renaissance, as evidenced by the numerous reports in the last 5 years that have relied on such intermediates to undergo unique transformations or generate novel fragments. Since their discovery, these species have been demonstrated to participate in a wide range of reactions with carbon and heteroatom electrophiles, as well as metal complexes, to facilitate the rapid diversification of (aza)bicyclo[1.1.0]butane-containing compounds. Key to this is the relative acidity of the bridgehead C-H bonds which promotes facile deprotonation and subsequent functionalization of an unsubstituted position on the carbon framework via the intermediacy of a metalated (aza)bicyclo[1.1.0]butane. Additionally, the late-stage incorporation of deuterium atoms in strained fragments has led to the elucidation of numerous reaction mechanisms that involve strained bicycles. The continued investigation into the inimitable reactivity of metalated bicycles will cement their importance within the field of organometallic chemistry.
Collapse
Affiliation(s)
- Jasper L. Tyler
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | | |
Collapse
|
24
|
Chen X, Marek I. Highly Diastereoselective Preparation of Tertiary Alkyl Isonitriles by Stereoinvertive Nucleophilic Substitution at a Nonclassical Carbocation. Org Lett 2023; 25:2285-2288. [PMID: 36976777 PMCID: PMC10088034 DOI: 10.1021/acs.orglett.3c00583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Indexed: 03/29/2023]
Abstract
A highly efficient SnCl4-catalyzed nucleophilic isocyanation of cyclopropyl ethers has been developed. The reaction proceeds at the quaternary carbon stereocenter of the cyclopropane with a complete inversion of configuration, providing a new avenue for the construction of synthetically challenging tertiary alkyl isonitriles with high diastereopurity. The diversity of the incorporated isocyanide group has been demonstrated by the transformation of tertiary alkyl isonitriles into the corresponding tertiary alkyl amines, amides, and cyclic ketoimines.
Collapse
Affiliation(s)
- Xu Chen
- Schulich Faculty of Chemistry and Resnick
Sustainability Center for Catalysis, Technion
- Israel Institute of Technology, Technion City, Haifa 3200009, Israel
| | - Ilan Marek
- Schulich Faculty of Chemistry and Resnick
Sustainability Center for Catalysis, Technion
- Israel Institute of Technology, Technion City, Haifa 3200009, Israel
| |
Collapse
|
25
|
Anderson JM, Measom ND, Murphy JA, Poole DL. Bridge Heteroarylation of Bicyclo[1.1.1]pentane Derivatives. Org Lett 2023; 25:2053-2057. [PMID: 36929825 DOI: 10.1021/acs.orglett.3c00412] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Herein, we report the decarboxylative Minisci heteroarylation of bicyclo[1.1.1]pentane (BCP) and 2-oxabicyclo[2.1.1]hexane (oBCH) derivatives at the bridge positions. In an operationally simple, photocatalyst-free process, free bridge carboxylic acids are directly coupled with nonprefunctionalized heteroarenes to provide rare examples of polysubstituted BCP and oBCH derivatives in synthetically useful yields. Additionally, the impact of the BCP core on the physicochemical properties of a representative example compared to those of its all-aromatic ortho- and meta-substituted analogues is evaluated.
Collapse
Affiliation(s)
- Joseph M Anderson
- Medicinal Chemistry, GSK Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, U.K.,Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, U.K
| | - Nicholas D Measom
- Medicinal Chemistry, GSK Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, U.K
| | - John A Murphy
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, U.K
| | - Darren L Poole
- Medicinal Chemistry, GSK Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, U.K
| |
Collapse
|
26
|
Di Filippo M, Baumann M. Carbene-controlled regioselectivity in photochemical cascades. Org Biomol Chem 2023; 21:2930-2934. [PMID: 36745509 DOI: 10.1039/d3ob00122a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A highly regioselective route to complex carbocyclic scaffolds through a continuous photochemical process is reported. Crucially, we uncovered that ortho substitutents on the right-hand aryl ring are placed away from a transient carbene species which induces the exclusive regioselectivity observed. By varying the non-symmetrically substituted aryl moiety, we demonstrate how the product outcome favors cyclobutenes for electron-poor and neutral substituents and cycloheptatrienes for more electron-rich systems. Additionally, a photochemically induced rearrangement was uncovered for highly electron-rich substrates that ultimately generates complex hydroperoxides. Overall, this facile one-step process is fast and high yielding and demonstrates the power of photochemistry towards the exploration of new chemical space.
Collapse
Affiliation(s)
- Mara Di Filippo
- University College Dublin, School of Chemistry, Science Centre South, Belfield, Dublin 4, Ireland.
| | - Marcus Baumann
- University College Dublin, School of Chemistry, Science Centre South, Belfield, Dublin 4, Ireland.
| |
Collapse
|
27
|
Takebe H, Yoshino N, Shimada Y, Williams CM, Matsubara S. Chiral Auxiliary-Directed Site-Selective Deprotonation of the Cubane Skeleton. Org Lett 2023; 25:27-30. [PMID: 36594869 DOI: 10.1021/acs.orglett.2c03659] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The first diastereoselective synthesis of trisubstituted cubanes was achieved using a chiral auxiliary. To establish chirality within the cubane skeleton, at least three substituents must be introduced at the appropriate positions. Ready conversion of cubane carboxylic acid to a chiral amide followed by sequential ortho-selective deprotonations and electrophilic trapping afforded the corresponding 1,2,3-trisubstituted cubanes with high diastereoselectivity. This route opens new possibilities for the preparation of enantio-enriched cubanes.
Collapse
Affiliation(s)
- Hiyori Takebe
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-Katsura, Nishikyo, Kyoto615-8510, Japan
| | - Nana Yoshino
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-Katsura, Nishikyo, Kyoto615-8510, Japan
| | - Yukako Shimada
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-Katsura, Nishikyo, Kyoto615-8510, Japan
| | - Craig M Williams
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane4072, Queensland, Australia
| | - Seijiro Matsubara
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-Katsura, Nishikyo, Kyoto615-8510, Japan
| |
Collapse
|
28
|
Bicyclobutanes as unusual building blocks for complexity generation in organic synthesis. Commun Chem 2023; 6:9. [PMID: 36697911 PMCID: PMC9837078 DOI: 10.1038/s42004-022-00811-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/28/2022] [Indexed: 01/13/2023] Open
Abstract
Bicyclobutanes are among the most highly strained isolable organic compounds and their associated low activation barriers to reactivity make them intriguing building-blocks in organic chemistry. In recent years, numerous creative synthetic strategies exploiting their heightened reactivity have been presented and these discoveries have often gone hand-in-hand with the development of more practical routes for their synthesis. Their proclivity as strain-release reagents through their weak central C-C bond has been harnessed in a variety of addition, rearrangement and insertion reactions, providing rapid access to a rich tapestry of complex molecular scaffolds. This review will provide an overview of the different options available for bicyclobutane synthesis, the main classes of compounds that can be prepared from bicyclobutanes, and the associated modes of reactivity used.
Collapse
|
29
|
Zheng Y, Huang W, Dhungana RK, Granados A, Keess S, Makvandi M, Molander GA. Photochemical Intermolecular [3σ + 2σ]-Cycloaddition for the Construction of Aminobicyclo[3.1.1]heptanes. J Am Chem Soc 2022; 144:23685-23690. [PMID: 36523116 PMCID: PMC10413992 DOI: 10.1021/jacs.2c11501] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The development of synthetic strategies for the preparation of bioisosteric compounds is a demanding undertaking in medicinal chemistry. Numerous strategies have been developed for the synthesis of bicyclo[1.1.1]pentanes (BCPs), bridge-substituted BCPs, and bicyclo[2.1.1]hexanes. However, progress on the synthesis of bicyclo[3.1.1]heptanes, which serve as meta-substituted arene bioisosteres, has not been previously explored. Herein, we disclose the first photoinduced [3σ + 2σ] cycloaddition for the synthesis of trisubstituted bicyclo[3.1.1]heptanes using bicyclo[1.1.0]butanes and cyclopropylamines. This transformation not only uses mild and operationally simple conditions but also provides unique meta-substituted arene bioisosteres. The applicability of this method is showcased by simple derivatization reactions.
Collapse
Affiliation(s)
- Yongxiang Zheng
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Weichen Huang
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Roshan K. Dhungana
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Albert Granados
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Sebastian Keess
- Medicinal Chemistry Department, Neuroscience Discovery Research, AbbVie Deutschland GmbH & Co. KG, 67061 Ludwigshafen, Germany
| | - Mehran Makvandi
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Gary A. Molander
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
30
|
Livingstone K, Siebold K, Meyer S, Martín-Heras V, Daniliuc CG, Gilmour R. Skeletal Ring Contractions via I(I)/I(III) Catalysis: Stereoselective Synthesis of cis-α,α-Difluorocyclopropanes. ACS Catal 2022; 12:14507-14516. [PMID: 36504915 PMCID: PMC9724094 DOI: 10.1021/acscatal.2c04511] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/17/2022] [Indexed: 11/12/2022]
Abstract
The clinical success of α,α-difluorocyclopropanes, combined with limitations in the existing synthesis portfolio, inspired the development of an operationally simple, organocatalysis-based strategy to access cis-configured derivatives with high levels of stereoselectivity (up to >20:1 cis:trans). Leveraging an I(I)/I(III)-catalysis platform in the presence of an inexpensive HF source, it has been possible to exploit disubstituted bicyclobutanes (BCBs) as masked cyclobutene equivalents for this purpose. In situ generation of this strained alkene, enabled by Brønsted acid activation, facilitates an unprecedented 4 → 3 fluorinative ring contraction, to furnish cis-α,α-difluorinated cyclopropanes in a highly stereoselective manner (up to 88% yield). Mechanistic studies are disclosed together with conformational analysis (X-ray crystallography and NMR) to validate cis-α,α-difluorocyclopropanes as isosteres of the 1,4-dicarbonyl moiety. Given the importance of this unit in biology and the foundational no → π* interactions that manifest themselves in this conformation (e.g., collagen), it is envisaged that the title motif will find application in focused molecular design.
Collapse
|
31
|
Liang Y, Kleinmans R, Daniliuc CG, Glorius F. Synthesis of Polysubstituted 2-Oxabicyclo[2.1.1]hexanes via Visible-Light-Induced Energy Transfer. J Am Chem Soc 2022; 144:20207-20213. [DOI: 10.1021/jacs.2c09248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yujie Liang
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstraße 40, 48149 Münster, Germany
| | - Roman Kleinmans
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstraße 40, 48149 Münster, Germany
| | - Constantin G. Daniliuc
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstraße 40, 48149 Münster, Germany
| | - Frank Glorius
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstraße 40, 48149 Münster, Germany
| |
Collapse
|
32
|
Kelly CB, Milligan JA, Tilley LJ, Sodano TM. Bicyclobutanes: from curiosities to versatile reagents and covalent warheads. Chem Sci 2022; 13:11721-11737. [PMID: 36320907 PMCID: PMC9580472 DOI: 10.1039/d2sc03948f] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/24/2022] [Indexed: 09/16/2023] Open
Abstract
The unique chemistry of small, strained carbocyclic systems has long captivated organic chemists from a theoretical and fundamental standpoint. A resurgence of interest in strained carbocyclic species has been prompted by their potential as bioisosteres, high fraction of sp3 carbons, and limited appearance in the patent literature. Among strained ring systems, bicyclo[1.1.0]butane (BCB) stands apart as the smallest bicyclic carbocycle and is amongst the most strained carbocycles known. Despite the fact that BCBs have been synthesized and studied for well over 50 years, they have long been regarded as laboratory curiosities. However, new approaches for preparing, functionalizing, and using BCBs in "strain-release" transformations have positioned BCBs to be powerful synthetic workhorses. Further, the olefinic character of the bridgehead bond enables BCBs to be elaborated into various other ring systems and function as covalent warheads for bioconjugation. This review will discuss the recent developments in the synthesis and functionalization of BCBs as well as the applications of these strained rings in synthesis and drug discovery. An overview of the properties and the historical context of this interesting structure will be provided.
Collapse
Affiliation(s)
- Christopher B Kelly
- Discovery Process Research, Janssen Research & Development LLC 1400 McKean Road, Spring House PA 19477 USA
| | - John A Milligan
- Department of Biological and Chemical Sciences, College of Life Sciences, Thomas Jefferson University 4201 Henry Avenue Philadelphia PA 19144 USA
| | - Leon J Tilley
- Department of Chemistry, Stonehill College 320 Washington Street Easton MA 02357 USA
| | - Taylor M Sodano
- Therapeutics Discovery, Janssen Research & Development LLC 1400 McKean Road, Spring House PA 19477 USA
| |
Collapse
|
33
|
Lai W, Zhong K, Liu S, Liu S, Chen H, Ni H, Zeng Z, Zhao Z, Lan Y, Bai R. How Strain-Release Determines Chemoselectivity: A Mechanistic Study of Rhodium-Catalyzed Bicyclo[1.1.0]butane Activation. J Phys Chem Lett 2022; 13:7694-7701. [PMID: 35960186 DOI: 10.1021/acs.jpclett.2c01528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bicyclo[1.1.0]butane (BCB) derivatives are versatile coupling partners, and various reaction modes for their activation and transformation have been proposed. In this work, three BCB-activation modes in Rh-catalyzed BCB transformations that construct diastereoselective α-quaternary β-lactones were investigated by density functional theory calculations. Our results show that, compared with C1-C3 insertion and C-C3 oxidative addition, C2-C3 oxidative addition is more favorable. The whole catalytic cycle involves five main steps: C-H activation, oxidative addition, β-C elimination/reductive elimination, Rh walking, and aldehyde insertion/protonation. Independent gradient model, intrinsic reaction coordinate, distortion-interaction energy, and Laplacian electron-density analyses were carried out to investigate the mode of BCB activation. Our calculation also showed that aldehyde-insertion is the diastereoselectivity determining step, which is controlled by the steric effect between the ligand, methyl group, and aldehyde.
Collapse
Affiliation(s)
- Wei Lai
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, P. R. China
| | - Kangbao Zhong
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, P. R. China
| | - Song Liu
- Chongqing Key Laboratory of Environmental Materials and Remediation Technologies, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, Chongqing, 402160, P. R. China
| | - Shihan Liu
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, P. R. China
| | - Haohua Chen
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, P. R. China
| | - Hao Ni
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, P. R. China
| | - Zhen Zeng
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, P. R. China
| | - Zhuang Zhao
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, P. R. China
| | - Yu Lan
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, P. R. China
- College of Chemistry, and Institute of Green Catalysis, Zhengzhou University, Zhengzhou 450001, CP. R. China
| | - Ruopeng Bai
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, P. R. China
| |
Collapse
|
34
|
Bychek R, Mykhailiuk PK. A Practical and Scalable Approach to Fluoro-Substituted Bicyclo[1.1.1]pentanes. Angew Chem Int Ed Engl 2022; 61:e202205103. [PMID: 35638404 PMCID: PMC9401599 DOI: 10.1002/anie.202205103] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Indexed: 12/27/2022]
Abstract
After more than 20 years of trials, a practical scalable approach to fluoro-substituted bicyclo[1.1.1]pentanes (F-BCPs) has been developed. The physicochemical properties of the F-BCPs have been studied, and the core was incorporated into the structure of the anti-inflammatory drug Flurbiprofen in place of the fluorophenyl ring.
Collapse
|
35
|
Bychek R, Mykhailiuk PK. A Practical and Scalable Approach to Fluoro‐Substituted Bicyclo[1.1.1]pentanes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Roman Bychek
- Enamine Ltd. Chervonotkatska 60 02094 Kyiv Ukraine
| | | |
Collapse
|
36
|
Abstract
Sulfone-substituted bicyclo[1.1.0]butanes and housanes have found widespread application in organic synthesis due to their bench stability and high reactivity in strain-releasing processes in the presence of nucleophiles or radical species. Despite their increasing utility, their preparation typically requires multiple steps in low overall yield. In this work, we report an expedient and general one-pot procedure for the synthesis of 1-sulfonylbicyclo[1.1.0]butanes from readily available methyl sulfones and inexpensive epichlorohydrin via the dialkylmagnesium-mediated formation of 3-sulfonylcyclobutanol intermediates. Furthermore, the process was extended to the formation of 1-sulfonylbicyclo[2.1.0]pentane (housane) analogues when 4-chloro-1,2-epoxybutane was used as the electrophile instead of epichlorohydrin. Both procedures could be applied on a gram scale with similar efficiency and are shown to be fully stereospecific in the case of housanes when an enantiopure epoxide was employed, leading to a streamlined access to highly valuable optically active strain-release reagents.
Collapse
Affiliation(s)
- Myunggi Jung
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27695, United States
| | - Vincent N G Lindsay
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27695, United States
| |
Collapse
|