1
|
Zhang Z, Ma Q, Yang X, Zhang S, Guo K, Zhao L. A computational mechanistic study on the formation of aryl sulfonyl fluorides via Bi(III) redox-neutral catalysis and further rational design. J Comput Chem 2024; 45:2979-2990. [PMID: 39240057 DOI: 10.1002/jcc.27501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/07/2024]
Abstract
Sulfonyl fluorides hold significant importance as highly valued intermediates in chemical biology due to their optimal balance of biocompatibility with both aqueous stability and protein reactivity. The Cornella group introduced a one-pot strategy for synthesizing aryl sulfonyl fluorides via Bi(III) redox-neutral catalysis, which facilitates the transmetallation and direct insertion of SO2 into the BiC(sp2) bond giving the aryl sulfonyl fluorides. We report herein a comprehensive computational investigation of the redox-neutral Bi(III) catalytic mechanism, disclose the critical role of the Bi(III) catalyst and base (i.e., K3PO4), and uncover the origin of SO2 insertion into the Bi(III)C(sp2) bond. The entire catalysis can be characterized via three stages: (i) transmetallation generating the Bi(III)-phenyl intermediate IM3 facilitated by K3PO4. (ii) SO2 insertion into IM3 leading to the formation of Bi(III)-OSOAr intermediate IM5. (iii) IM5 undergoes S(IV)-oxidation yielding the aryl sulfonyl fluoride product 4 and liberating the Bi(III) catalyst for the next catalytic cycle. Each stage is kinetically and thermodynamically feasible. Moreover, we explored other some small molecules (NO2, CO2, H2O, N2O, etc.) insertion reactions mediated by the Bi(III)-complex, and found that NO2 insertions could be easily achieved due to the low insertion barriers (i.e., 17.5 kcal/mol). Based on the detailed mechanistic study, we further rationally designed additional Bi(III) and Sb(III) catalysts, and found that some of which exhibit promising potential for experimental realization due to their low barriers (<16.4 kcal/mol). In this regard, our study contributes significantly to enhancing current Bi(III)-catalytic systems and paving the way for novel Bi(III)-catalyzed aryl sulfonyl fluoride formation reactions.
Collapse
Affiliation(s)
- Zhaoyin Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, China
| | - Qin Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, China
| | - Xing Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, China
| | - Shuqi Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Lili Zhao
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, China
| |
Collapse
|
2
|
Sun H, Meng W, Ma X, Cheng Z, Chen C, Ni Y, Yan F, Zhu Q, Zhang P, Sui X. Photoredox-Catalyzed Three-Component Construction of Aryl Sulfonyl Fluoride Using KHF 2: Late-Stage Drug Fluorosulfonylation. J Org Chem 2024; 89:16594-16599. [PMID: 39482942 DOI: 10.1021/acs.joc.4c01892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Aryl sulfonyl fluorides are prominently featured in organic synthesis and medicinal chemistry. Herein, a metal-free photoredox-catalyzed three-component assembly of aryl sulfonyl fluoride via aryl sulfonyl ammonium salt intermediate has been reported. A variety of structurally diverse aryl sulfonyl fluorides were synthesized rapidly from dibenzothiophenium (DBT) salts under mild conditions by using KHF2 as the fluorine source. Notably, this methodology can be employed as an efficient and sustainable approach for late-stage drug fluorosulfonylation. Good yields and broad functionality tolerance were the features of this methodology. Moreover, the derivatization of aryl sulfonyl fluoride molecules was also demonstrated to showcase its synthetic utility.
Collapse
Affiliation(s)
- Hanhan Sun
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Wanqing Meng
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Xiaoxu Ma
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Zhiling Cheng
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Cheng Chen
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Yan Ni
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Fengying Yan
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Qiaomei Zhu
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Ping Zhang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Xianwei Sui
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| |
Collapse
|
3
|
Hong J, Wang X, Zhao K, Chen X, Feng R, Li C, Wei C, Gong X, Zheng F, Zheng C. Nickel-Catalyzed Direct Fluorosulfonylation of Vinyl Bromides and Benzyl Bromides for Sulfonyl Fluorides. Org Lett 2024. [PMID: 39511949 DOI: 10.1021/acs.orglett.4c03820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
An efficient nickel-catalyzed direct fluorosulfonylation of vinyl bromides and benzyl bromides under mild reaction conditions has been developed for sulfonyl fluorides utilizing Na2S2O4 and NFSI as the sulfur dioxide and fluorine sources, respectively. This reaction system tolerates organic bromide compounds, such as β-styryl bromides, alkyl vinyl bromides, and benzyl bromides, to achieve corresponding sulfonyl fluorides in moderate to good yields, with convenient operation, mild conditions, broad substrate scope, good functional group compatibility, and excellent retention of configuration to vinyl bromides.
Collapse
Affiliation(s)
- Jianquan Hong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Xiaoyu Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Kui Zhao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Xifei Chen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Ruilong Feng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Chunxiang Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Chongbin Wei
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Xinxin Gong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Feng Zheng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Changge Zheng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| |
Collapse
|
4
|
Mato M, Stamoulis A, Cleto Bruzzese P, Cornella J. Activation and C-C Coupling of Aryl Iodides via Bismuth Photocatalysis. Angew Chem Int Ed Engl 2024:e202418367. [PMID: 39436157 DOI: 10.1002/anie.202418367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/23/2024]
Abstract
Within the emerging field of bismuth redox catalysis, the catalytic formation of C-C bonds using aryl halides would be highly desirable; yet such a process remains a synthetic challenge. Herein, we present a chemoselective bismuth-photocatalyzed activation and subsequent coupling of (hetero)aryl iodides with pyrrole derivatives to access C(sp2)-C(sp2) linkages through C-H functionalization. This unique reactivity is the result of the bismuth complex featuring two redox state-dependent interactions with light, which 1) activates the Bi(I) complex for oxidative addition via MLCT, and 2) promotes the homolytic cleavage of aryl Bi(III) intermediates through a LLCT process.
Collapse
Affiliation(s)
- Mauro Mato
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Alexios Stamoulis
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Paolo Cleto Bruzzese
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Josep Cornella
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| |
Collapse
|
5
|
Wang R, Martínez S, Schwarzmann J, Zhao CZ, Ramler J, Lichtenberg C, Wang YM. Transition Metal Mimetic π-Activation by Cationic Bismuth(III) Catalysts for Allylic C-H Functionalization of Olefins Using C═O and C═N Electrophiles. J Am Chem Soc 2024; 146:22122-22128. [PMID: 39102739 PMCID: PMC11328129 DOI: 10.1021/jacs.4c06235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
The discovery and utilization of main-group element catalysts that behave similarly to transition metal (TM) complexes have become increasingly active areas of investigation in recent years. Here, we report a series of Lewis acidic bismuth(III) complexes that allow for the catalytic allylic C(sp3)-H functionalization of olefins via an organometallic complexation-assisted deprotonation mechanism to generate products containing new C-C bonds. This heretofore unexplored mode of main-group reactivity was applied to the regioselective functionalization of 1,4-dienes and allylbenzene substrates. Experimental and computational mechanistic studies support the key steps of the proposed catalytic cycle, including the intermediacy of elusive Bi-olefin complexes and allylbismuth species.
Collapse
Affiliation(s)
- Ruihan Wang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Sebastián Martínez
- Department of Chemistry, Philipps-University Marburg, Hans-Meerwein-Str. 4, 35032 Marburg, Germany
| | - Johannes Schwarzmann
- Department of Chemistry, Philipps-University Marburg, Hans-Meerwein-Str. 4, 35032 Marburg, Germany
| | - Christopher Z Zhao
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Jacqueline Ramler
- Department of Chemistry, Philipps-University Marburg, Hans-Meerwein-Str. 4, 35032 Marburg, Germany
| | - Crispin Lichtenberg
- Department of Chemistry, Philipps-University Marburg, Hans-Meerwein-Str. 4, 35032 Marburg, Germany
| | - Yi-Ming Wang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
6
|
Szlosek R, Marquardt C, Hegen O, Balázs G, Riesinger C, Timoshkin AY, Scheer M. Synthesis of bismuthanyl-substituted monomeric triel hydrides. Chem Sci 2024:d4sc03926b. [PMID: 39184294 PMCID: PMC11342148 DOI: 10.1039/d4sc03926b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 08/09/2024] [Indexed: 08/27/2024] Open
Abstract
The syntheses and characterizations of the first bismuthanylborane monomers stabilized only by a donor in D·BH2Bi(SiMe3)2 (D = DMAP 1a, IDipp 1b, IMe41c; DMAP = 4-dimethylaminopyridine, IDipp = 1,3-bis(2,6-diisopropylphenyl)-imidazolin-2-ylidene, IMe4 = 1,3,4,5-tetramethylimidazol-2-ylidene) are presented. All compounds were synthesized by salt metathesis reactions between D·BH2I and KBi(SiMe3)2(THF)0.3 and represent some of the extremely rare compounds featuring a 2c-2e B-Bi bond in a molecular compound. The products display high sensitivity towards air and light and slowly decompose in solution even at -80 °C. By the reaction of IDipp·GaH2(SO3CF3) with KBi(SiMe3)2(THF)0.3, the synthesis of the first bismuthanylgallane IDipp·GaH2Bi(SiMe3)2 (2) stabilized only by a 2-electron donor was possible, as evident from single crystal X-ray structure determination, NMR spectroscopy and mass spectrometry. Computational studies shed light on the stability of the products and the electronic nature of the compounds.
Collapse
Affiliation(s)
- Robert Szlosek
- Institute of Inorganic Chemistry, University of Regensburg 93053 Regensburg Germany
| | - Christian Marquardt
- Institute of Inorganic Chemistry, University of Regensburg 93053 Regensburg Germany
| | - Oliver Hegen
- Institute of Inorganic Chemistry, University of Regensburg 93053 Regensburg Germany
| | - Gábor Balázs
- Institute of Inorganic Chemistry, University of Regensburg 93053 Regensburg Germany
| | - Christoph Riesinger
- Institute of Inorganic Chemistry, University of Regensburg 93053 Regensburg Germany
| | - Alexey Y Timoshkin
- Institute of Chemistry, St. Petersburg State University Universitetskaya nab. 7/9 199034 St. Petersburg Russia
| | - Manfred Scheer
- Institute of Inorganic Chemistry, University of Regensburg 93053 Regensburg Germany
| |
Collapse
|
7
|
Zhang Y, Feng Q, Zheng Y, Lu Y, Liao S, Huang S. Radical Hydro-Fluorosulfonylation of Propargylic Alcohols via Electron Donor-Acceptor Photoactivation. Org Lett 2024; 26:1410-1415. [PMID: 38358353 DOI: 10.1021/acs.orglett.4c00010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
A radical hydro-fluorosulfonylation of propargyl alcohols with FSO2Cl is presented based on the photoactivation of the electron donor-acceptor (EDA) complex. The reaction avoids the requirement for photocatalysts, bases, hydrogen donor reagents, any other additives, and harsh conditions, enabling the facile synthesis of various functionalized γ-hydroxy (E)-alkenylsulfonyl fluorides. These multifunctional sulfonyl fluorides can be further diversified, providing access to various privileged molecules of biological relevance.
Collapse
Affiliation(s)
- Yingyin Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Qingyuan Feng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yu Zheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yanju Lu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Saihu Liao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, Fujian 361005, China
| | - Shenlin Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education of China, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, China
| |
Collapse
|
8
|
Mato M, Cornella J. Bismuth in Radical Chemistry and Catalysis. Angew Chem Int Ed Engl 2024; 63:e202315046. [PMID: 37988225 DOI: 10.1002/anie.202315046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 11/23/2023]
Abstract
Whereas indications of radical reactivity in bismuth compounds can be traced back to the 19th century, the preparation and characterization of both transient and persistent bismuth-radical species has only been established in recent decades. These advancements led to the emergence of the field of bismuth radical chemistry, mirroring the progress seen for other main-group elements. The seminal and fundamental studies in this area have ultimately paved the way for the development of catalytic methodologies involving bismuth-radical intermediates, a promising approach that remains largely untapped in the broad landscape of synthetic organic chemistry. In this review, we delve into the milestones that eventually led to the present state-of-the-art in the field of radical bismuth chemistry. Our focus aims at outlining the intrinsic discoveries in fundamental inorganic/organometallic chemistry and contextualizing their practical applications in organic synthesis and catalysis.
Collapse
Affiliation(s)
- Mauro Mato
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Josep Cornella
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| |
Collapse
|
9
|
Rathod AB, Borade BR, Sambherao PI, Kontham R. Bi(OTf) 3-promoted cascade annulation of hydroxy-pyranones and unsaturated γ-ketoesters for the construction of polycyclic bridged pyrano-furopyranones. Org Biomol Chem 2024; 22:496-500. [PMID: 38165227 DOI: 10.1039/d3ob01862h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
An efficient protocol for constructing complex three dimensional polycyclic bridged chromano-furopyranones and pyrano-furopyranones (closely related to bioactive natural products) via bismuth(III)-catalyzed cascade annulation of hydroxy-pyranones and unsaturated γ-ketoesters is presented. This process involves intermolecular Michael addition, intramolecular hemiketalization, lactonization, formation of one C-C bond and two C-O bonds, rings, and contiguous stereocenters.
Collapse
Affiliation(s)
- Akshay B Rathod
- Organic Chemistry Division, CSIR-National Chemical Laboratory Dr Homi Bhabha Road, Pune-411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Balasaheb R Borade
- Organic Chemistry Division, CSIR-National Chemical Laboratory Dr Homi Bhabha Road, Pune-411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Pooja I Sambherao
- Organic Chemistry Division, CSIR-National Chemical Laboratory Dr Homi Bhabha Road, Pune-411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Ravindar Kontham
- Organic Chemistry Division, CSIR-National Chemical Laboratory Dr Homi Bhabha Road, Pune-411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
10
|
Feng Q, He T, Qian S, Xu P, Liao S, Huang S. Electroreductive hydroxy fluorosulfonylation of alkenes. Nat Commun 2023; 14:8278. [PMID: 38092768 PMCID: PMC10719349 DOI: 10.1038/s41467-023-44029-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/28/2023] [Indexed: 12/17/2023] Open
Abstract
An electroreductive strategy for radical hydroxyl fluorosulfonylation of alkenes with sulfuryl chlorofluoride and molecular oxygen from air is described. This mild protocol displays excellent functional group compatibility, broad scope, and good scalability, providing convenient access to diverse β-hydroxy sulfonyl fluorides. These β-hydroxy sulfonyl fluoride products can be further converted to valuable aliphatic sulfonyl fluorides, β-keto sulfonyl fluorides, and β-alkenyl sulfonyl fluorides. Further, some of these products showed excellent inhibitory activity against Botrytis cinerea or Bursaphelenchus xylophilus, which could be useful for potent agrochemical discovery. Preliminary mechanistic studies indicate that this transformation is achieved through rapid O2 interception by the alkyl radical and subsequent reduction of the peroxy radical, which outcompete other side reactions such as chlorine atom transfer, hydrogen atom transfer, and Russell fragmentation.
Collapse
Affiliation(s)
- Qingyuan Feng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, China
| | - Tianyu He
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, China
| | - Shencheng Qian
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, China
| | - Peng Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, China
| | - Saihu Liao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, China
| | - Shenlin Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
11
|
Wu X, Gao B. Hydrosulfonylation of Unactivated Alkenes and Alkynes by Halogen-Atom Transfer (XAT) Cleavage of S VI-F Bond. Org Lett 2023. [PMID: 38019153 DOI: 10.1021/acs.orglett.3c03628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
A photochemical halogen-atom transfer (XAT) method for generating sulfonyl radicals from aryl sulfonyl fluorides has been developed. It allows the hydrosulfonylation of unactivated alkenes, which was challenging to achieve through our previous single-electron transfer route. This reaction has excellent functional group tolerance and substrate scope under mild conditions.
Collapse
Affiliation(s)
- Xing Wu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Bing Gao
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
12
|
Tsuruta T, Spinnato D, Moon HW, Leutzsch M, Cornella J. Bi-Catalyzed Trifluoromethylation of C(sp 2)-H Bonds under Light. J Am Chem Soc 2023; 145:25538-25544. [PMID: 37963280 PMCID: PMC10690797 DOI: 10.1021/jacs.3c10333] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/16/2023]
Abstract
We disclose a Bi-catalyzed C-H trifluoromethylation of (hetero)arenes using CF3SO2Cl under light irradiation. The catalytic method permits the direct functionalization of various heterocycles bearing distinct functional groups. The structural and computational studies suggest that the process occurs through an open-shell redox manifold at bismuth, comprising three unusual elementary steps for a main group element. The catalytic cycle starts with rapid oxidative addition of CF3SO2Cl to a low-valent Bi(I) catalyst, followed by a light-induced homolysis of Bi(III)-O bond to generate a trifluoromethyl radical upon extrusion of SO2, and is closed with a hydrogen-atom transfer to a Bi(II) radical intermediate.
Collapse
Affiliation(s)
- Takuya Tsuruta
- Max-Planck-Institut für
Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an
der Ruhr, 45470, Germany
| | - Davide Spinnato
- Max-Planck-Institut für
Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an
der Ruhr, 45470, Germany
| | - Hye Won Moon
- Max-Planck-Institut für
Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an
der Ruhr, 45470, Germany
| | - Markus Leutzsch
- Max-Planck-Institut für
Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an
der Ruhr, 45470, Germany
| | - Josep Cornella
- Max-Planck-Institut für
Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an
der Ruhr, 45470, Germany
| |
Collapse
|
13
|
Wang H, Li Z, Dai R, Jiao N, Song S. An efficient and mild oxidative approach from thiols to sulfonyl derivatives with DMSO/HBr. Chem Sci 2023; 14:13228-13234. [PMID: 38023524 PMCID: PMC10664549 DOI: 10.1039/d3sc04945k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
A mild and practical method for synthesizing sulfonyl derivatives, which have a wide range of applications in pharmaceuticals, materials, and organic synthesis, was described through the oxidative functionalization of thiols with DMSO/HBr. The simple conditions, low cost and ready availability of DMSO/HBr, as well as the versatility of the transformations, make this strategy very powerful in synthesizing a variety of sulfonyl derivatives including sulfonamides, sulfonyl fluorides, sulfonyl azides, and sulfonates. Mechanistic studies revealed that DMSO served as the terminal oxidant, and HBr acted as both a nucleophile and a redox mediator to transfer the oxygen atom.
Collapse
Affiliation(s)
- Hongye Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Xue Yuan Rd 38 Beijing 100191 China +86-10-82805294
| | - Zhaoting Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Xue Yuan Rd 38 Beijing 100191 China +86-10-82805294
| | - Rongheng Dai
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Xue Yuan Rd 38 Beijing 100191 China +86-10-82805294
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Xue Yuan Rd 38 Beijing 100191 China +86-10-82805294
| | - Song Song
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Xue Yuan Rd 38 Beijing 100191 China +86-10-82805294
| |
Collapse
|
14
|
Kong X, Chen Y, Chen X, Ma C, Chen M, Wang W, Xu YQ, Ni SF, Cao ZY. Organomediated electrochemical fluorosulfonylation of aryl triflates via selective C-O bond cleavage. Nat Commun 2023; 14:6933. [PMID: 37907478 PMCID: PMC10618246 DOI: 10.1038/s41467-023-42699-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 10/19/2023] [Indexed: 11/02/2023] Open
Abstract
Although aryl triflates are essential building blocks in organic synthesis, the applications as aryl radical precursors are limited. Herein, we report an organomediated electrochemical strategy for the generation of aryl radicals from aryl triflates, providing a useful method for the synthesis of aryl sulfonyl fluorides from feedstock phenol derivatives under very mild conditions. Mechanistic studies indicate that key to success is to use catalytic amounts of 9, 10-dicyanoanthracene as an organic mediator, enabling to selectively active aryl triflates to form aryl radicals via orbital-symmetry-matching electron transfer, realizing the anticipated C-O bond cleavage by overcoming the competitive S-O bond cleavage. The transition-metal-catalyst-free protocol shows good functional group tolerance, and may overcome the shortages of known methods for aryl sulfonyl fluoride synthesis. Furthermore, this method has been used for the modification and formal synthesis of bioactive molecules or tetraphenylethylene (TPE) derivative with improved quantum yield of fluorescence.
Collapse
Affiliation(s)
- Xianqiang Kong
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, 213032, Changzhou, China.
| | - Yiyi Chen
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, 213032, Changzhou, China
| | - Xiaohui Chen
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, 213032, Changzhou, China
| | - Cheng Ma
- Department of Chemistry, Shantou University, 515063, Shantou, Guangdong, China
| | - Ming Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 21 Gehu Road, 213164, Changzhou, China
| | - Wei Wang
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, 213032, Changzhou, China
| | - Yuan-Qing Xu
- College of Chemistry and Molecular Sciences, Henan University, 475004, Kaifeng, China
| | - Shao-Fei Ni
- Department of Chemistry, Shantou University, 515063, Shantou, Guangdong, China.
| | - Zhong-Yan Cao
- College of Chemistry and Molecular Sciences, Henan University, 475004, Kaifeng, China.
| |
Collapse
|
15
|
Hao Q, Li Z, Shi Y, Li R, Li Y, Wang L, Yuan H, Ouyang S, Zhang T. Plasmon-Induced Radical-Radical Heterocoupling Boosts Photodriven Oxidative Esterification of Benzyl Alcohol over Nitrogen-Doped Carbon-Encapsulated Cobalt Nanoparticles. Angew Chem Int Ed Engl 2023; 62:e202312808. [PMID: 37684740 DOI: 10.1002/anie.202312808] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/10/2023]
Abstract
Selective oxidation of alcohols under mild conditions remains a long-standing challenge in the bulk and fine chemical industry, which usually requires environmentally unfriendly oxidants and bases that are difficult to separate. Here, a plasmonic catalyst of nitrogen-doped carbon-encapsulated metallic Co nanoparticles (Co@NC) with an excellent catalytic activity towards selective oxidation of alcohols is demonstrated. With light as only energy input, the plasmonic Co@NC catalyst effectively operates via combining action of the localized surface-plasmon resonance (LSPR) and the photothermal effects to achieve a factor of 7.8 times improvement compared with the activity of thermocatalysis. A high turnover frequency (TOF) of 15.6 h-1 is obtained under base-free conditions, which surpasses all the reported catalytic performances of thermocatalytic analogues in the literature. Detailed characterization reveals that the d states of metallic Co gain the absorbed light energy, so the excitation of interband d-to-s transitions generates energetic electrons. LSPR-mediated charge injection to the Co@NC surface activates molecular oxygen and alcohol molecules adsorbed on its surface to generate the corresponding radical species (e.g., ⋅O2 - , CH3 O⋅ and R-⋅CH-OH). The formation of multi-type radical species creates a direct and forward pathway of oxidative esterification of benzyl alcohol to speed up the production of esters.
Collapse
Affiliation(s)
- Quanguo Hao
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Zhenhua Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yiqiu Shi
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Ruizhe Li
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Yuan Li
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Liang Wang
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Hong Yuan
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Shuxin Ouyang
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Tierui Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
16
|
Deng X, Zhu X. Recent Advances of S- 18F Radiochemistry for Positron Emission Tomography. ACS OMEGA 2023; 8:37720-37730. [PMID: 37867643 PMCID: PMC10586020 DOI: 10.1021/acsomega.3c05594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023]
Abstract
The click chemistry of sulfur(VI) fluoride exchange (SuFEx) has facilitated the widespread application of sulfur-fluoride compounds such as sulfonyl fluorides, fluorosulfates, and sulfamoyl fluorides in various fields, especially in the development of 18F ligands for PET (positron emission tomography) imaging. In recent years, the prominent progress of sulfur-[18F]fluoride compounds has been achieved through the combination of 18F and sulfur-fluoride chemistry. These compounds serve as potential 18F tracers, 18F synthons, and reagents for 18F-fluorination, thereby complementing the range of 18F ligands, typically C-18F structures, used in PET studies. This review aims to provide an overview of S-18F labeling reactions through examples of relevant 18F compounds and highlight the advancements and breakthroughs achieved in the past decade.
Collapse
Affiliation(s)
- Xiaoyun Deng
- Department of Nuclear Medicine,
Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Xiaohua Zhu
- Department of Nuclear Medicine,
Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| |
Collapse
|
17
|
Pedersen PS, Blakemore DC, Chinigo GM, Knauber T, MacMillan DWC. One-Pot Synthesis of Sulfonamides from Unactivated Acids and Amines via Aromatic Decarboxylative Halosulfonylation. J Am Chem Soc 2023; 145:21189-21196. [PMID: 37729614 PMCID: PMC10680120 DOI: 10.1021/jacs.3c08218] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
The coupling of carboxylic acids and amines to form amide linkages is the most commonly performed reaction in the pharmaceutical industry. Herein, we report a new strategy that merges these traditional amide coupling partners to generate sulfonamides, important amide bioisosteres. This method leverages copper ligand-to-metal charge transfer (LMCT) to convert aromatic acids to sulfonyl chlorides, followed by one-pot amination to form the corresponding sulfonamide. This process requires no prefunctionalization of the native acid or amine and extends to a diverse set of aryl, heteroaryl, and s-rich aliphatic substrates. Further, we extend this strategy to the synthesis of (hetero)aryl sulfonyl fluorides, which have found utility as "click" handles in chemical probes and programmable bifunctional reagents. Finally, we demonstrate the utility of these protocols in pharmaceutical analogue synthesis.
Collapse
Affiliation(s)
- P Scott Pedersen
- Merck Center for Catalysis, Princeton University, Princeton, New Jersey 08544, United States
| | - David C Blakemore
- Worldwide Research and Development, Pfizer, Inc., Eastern Point Road, Groton, Connecticut 06340, United States
| | - Gary M Chinigo
- Worldwide Research and Development, Pfizer, Inc., Eastern Point Road, Groton, Connecticut 06340, United States
| | - Thomas Knauber
- Worldwide Research and Development, Pfizer, Inc., Eastern Point Road, Groton, Connecticut 06340, United States
| | - David W C MacMillan
- Merck Center for Catalysis, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
18
|
Hyvl J. Hypervalent organobismuth complexes: pathways toward improved reactivity, catalysis, and applications. Dalton Trans 2023; 52:12597-12603. [PMID: 37670510 DOI: 10.1039/d3dt02313c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Hypervalent (three-center, four-electron) bonding in organobismuth complexes has been extensively studied due to its ability to affect molecular geometry, dynamic behavior, or to stabilize the ligand scaffold. This work addresses the effects of this bonding on reactivity, catalytic activity, redox processes, and its potential applications in biosciences, materials science, and small molecule activation.
Collapse
Affiliation(s)
- Jakub Hyvl
- Department of Chemistry, University of Hawai'i at Mānoa, 2545 McCarthy Mall, Honolulu, Hawaii 96822, USA.
| |
Collapse
|
19
|
Kasama K, Koike Y, Dai H, Yakura T. Bismuth(III)-Catalyzed Oxidative Cross-Coupling of 3-Hydroxycarbazoles with Arenols under an Oxygen Atmosphere. Org Lett 2023; 25:6501-6505. [PMID: 37638653 DOI: 10.1021/acs.orglett.3c02211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
A Bi(OTf)3-catalyzed oxidative cross-coupling reaction of 3-hydroxycarbazoles with arenols was developed under mild conditions. Both substrates were used in a 1:1 molar ratio in the presence of a catalytic amount of Bi(OTf)3. The reaction was carried out under an oxygen atmosphere at 30 °C to afford C1-symmetric hydroxybiaryls in good yields (up to 94%) with high chemo- and regioselectivity.
Collapse
Affiliation(s)
- Kengo Kasama
- Faculty of Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194, Japan
| | - Yuta Koike
- Faculty of Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194, Japan
| | - Haoyang Dai
- Faculty of Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194, Japan
| | - Takayuki Yakura
- Faculty of Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194, Japan
| |
Collapse
|
20
|
Zeng D, Deng WP, Jiang X. Advances in the construction of diverse SuFEx linkers. Natl Sci Rev 2023; 10:nwad123. [PMID: 37441224 PMCID: PMC10335383 DOI: 10.1093/nsr/nwad123] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 12/02/2022] [Accepted: 01/30/2023] [Indexed: 07/15/2023] Open
Abstract
Sulfur fluoride exchange (SuFEx), a new generation of click chemistry, was first presented by Sharpless, Dong and co-workers in 2014. Owing to the high stability and yet efficient reactivity of the SVI-F bond, SuFEx has found widespread applications in organic synthesis, materials science, chemical biology and drug discovery. A diverse collection of SuFEx linkers has emerged, involving gaseous SO2F2 and SOF4 hubs; SOF4-derived iminosulfur oxydifluorides; O-, N- and C-attached sulfonyl fluorides and sulfonimidoyl fluorides; and novel sulfondiimidoyl fluorides. This review summarizes the progress of these SuFEx connectors, with an emphasis on analysing the advantages and disadvantages of synthetic strategies of these connectors based on the SuFEx concept, and it is expected to be beneficial to researchers to rapidly and correctly understand this field, thus inspiring further development in SuFEx chemistry.
Collapse
Affiliation(s)
- Daming Zeng
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | | | | |
Collapse
|
21
|
Zhao X, Chen D, Zhu S, Luo J, Liao S, Zheng B, Huang S. Fluorosulfonylvinylation of Unactivated C(sp 3)-H via Electron Donor-Acceptor Photoactivation. Org Lett 2023; 25:3109-3113. [PMID: 37083288 DOI: 10.1021/acs.orglett.3c00950] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
An electron donor-acceptor (EDA) complex photoactivation strategy for radical fluorosulfonylation is disclosed for the first time. Simply upon blue light irradiation, the FSO2 radical can be generated efficiently under catalyst-free, base-free, and additive-free conditions, which enables facile access to 6-keto alkenylsulfonyl fluorides from readily available propargyl alcohols and FSO2Cl. The 6-keto alkenylsulfonyl fluoride motif has been showcased as a versatile SuFEx hub with diverse follow-up derivatizations.
Collapse
Affiliation(s)
- Xueyan Zhao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Dengfeng Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Shengzhen Zhu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jinyue Luo
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Saihu Liao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, Fujian 361005, China
| | - Binnan Zheng
- Ningxia Best Pharmaceutical Chemical Co., Ltd., Yinchuan, Ningxia Hui Autonomous Region 750411, China
| | - Shenlin Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| |
Collapse
|
22
|
Deng X, Wang Z, Zhou H, Liu J, Yu B, Zhu X. Radiosynthesis of 18F-Labeled Arenesulfonyl Fluorides through Two-Bond Construction with [ 18F]Fluoride. Org Lett 2023; 25:1969-1973. [PMID: 36920257 DOI: 10.1021/acs.orglett.3c00516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
A novel 18F labeling strategy was developed to directly construct aryl-SO2-18F from arenediazonium tosylates with a SO2 source and [18F]fluoride. This approach is compatible with a wide range of substrates and enabled the production of 18F-labeled drug-like derivatives through late-stage 18F fluorination, representing a significant advance in the radiosynthesis of 18F-labeled arenesulfonyl fluorides. A reactive 18F labeling synthon, bearing a maleimide-based prosthetic group, allowed for the generation of 18F-labeled temperature-sensitive biomolecules containing cysteine residues via maleimide-cysteine chemistry.
Collapse
Affiliation(s)
- Xiaoyun Deng
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, 430030 Wuhan, China
| | - Ziqiang Wang
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, 430030 Wuhan, China
| | - Huimin Zhou
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, 430030 Wuhan, China
| | - Junyi Liu
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, 430030 Wuhan, China
| | - Bo Yu
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, 430030 Wuhan, China
| | - Xiaohua Zhu
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, 430030 Wuhan, China
| |
Collapse
|
23
|
Carneiro SN, Khasnavis SR, Lee J, Butler TW, Majmudar JD, Am Ende CW, Ball ND. Sulfur(VI) fluorides as tools in biomolecular and medicinal chemistry. Org Biomol Chem 2023; 21:1356-1372. [PMID: 36662157 PMCID: PMC9929716 DOI: 10.1039/d2ob01891h] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/05/2023] [Indexed: 01/21/2023]
Abstract
Recent advances in the synthesis of sulfur(VI)-fluorides has enabled incredible growth in their application in biomolecular chemistry. This review aims to serve as a primer highlighting synthetic strategies toward a diversity of S(VI) fluorides and their application in chemical biology, bioconjugation, and medicinal chemistry.
Collapse
Affiliation(s)
- Sabrina N Carneiro
- Department of Chemistry, Pomona College, Claremont, California 91711, USA.
| | - Samuel R Khasnavis
- Department of Chemistry, Pomona College, Claremont, California 91711, USA.
| | - Jisun Lee
- Pfizer Worldwide Research, Development, Groton, Connecticut 06340, USA.
| | - Todd W Butler
- Pfizer Worldwide Research, Development, Groton, Connecticut 06340, USA.
| | - Jaimeen D Majmudar
- Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139, USA
| | | | - Nicholas D Ball
- Department of Chemistry, Pomona College, Claremont, California 91711, USA.
| |
Collapse
|
24
|
Wong WHM, Guo X, Chan HT, Yang T, Lin Z. Understanding the Organometallic Step: SO 2 Insertion into Bi(III)-C(Ph) Bond. Chem Asian J 2023; 18:e202201218. [PMID: 36639231 DOI: 10.1002/asia.202201218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/30/2022] [Indexed: 01/15/2023]
Abstract
Heavier main-group element-catalyzed reactions provide an increasingly attractive tool to perform transformations mimicking the behaviors of transition metal catalysts. Recently, Magre and Cornella reported a Bi-catalyzed synthesis of aryl sulfonyl fluorides, which involves a fundamental organometallic step of SO2 insertion into the Bi-Ph bond. Our theoretical studies reveal that i) the ability of hypervalent coordination of the Bi(III) center allows facile coordination sphere expansion for the SO2 coordination via one oxygen atom; and ii) the high polarity of the Bi-Ph bond makes the Ph migration from the Bi(III) center feasible. These features enable the heavier main group element to resemble the transition metal having flexibility for ligand association and dissociation. Furthermore, iii) the available π electron pair of the migrating Ph group stabilizes the SO2 insertion transition state by maintaining interaction with the Bi(III) center during migration. The insight helps us better understand the heavier main-group catalysis.
Collapse
Affiliation(s)
- Wing Hei Marco Wong
- Department of Chemistry, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong
| | - Xueying Guo
- Department of Chemistry, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong
| | - Hok Tsun Chan
- Department of Chemistry, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong
| | - Tilong Yang
- Department of Chemistry, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong
| | - Zhenyang Lin
- Department of Chemistry, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
25
|
Kong X, Chen Y, Liu Q, Wang W, Zhang S, Zhang Q, Chen X, Xu YQ, Cao ZY. Selective Fluorosulfonylation of Thianthrenium Salts Enabled by Electrochemistry. Org Lett 2023; 25:581-586. [PMID: 36695525 DOI: 10.1021/acs.orglett.2c03956] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A practical electrochemically driven method for fluorosulfonylation of both aryl and alkyl thianthrenium salts has been disclosed. The strategy does not need external redox reagents or metal catalysts. In combination with C-H thianthrenation of aromatics, this method provides a new tool for the site-selective fluorosulfonylation of drugs.
Collapse
Affiliation(s)
- Xianqiang Kong
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou 213032, China
| | - Yiyi Chen
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou 213032, China
| | - Qianwen Liu
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou 213032, China
| | - WenJie Wang
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou 213032, China
| | - Shuangquan Zhang
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou 213032, China
| | - Qian Zhang
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou 213032, China
| | - Xiaohui Chen
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou 213032, China.,Jiangsu Key Laboratory of Materials Surface Science and Technology, Changzhou University, Jiangsu 213164, China
| | - Yuan-Qing Xu
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Zhong-Yan Cao
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| |
Collapse
|
26
|
Švec P, Vránová I, Růžičková Z, Samsonov MA, Dostál L, Růžička A. C, N-CHELATED ANTIMONY AND BISMUTH COMPLEXES; OXIDATION AND FLUORINATION. J Organomet Chem 2023. [DOI: 10.1016/j.jorganchem.2023.122644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
27
|
Fujii T, Kusukawa T, Imoto H, Naka K. Pnictogen-Bridged Diphenyl Sulfones as Photoinduced Pnictogen Bond Forming Emission Motifs. Chemistry 2023; 29:e202202572. [PMID: 36125391 DOI: 10.1002/chem.202202572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Indexed: 01/04/2023]
Abstract
In this study, pnictogen (Pn)-bridged diphenyl sulfones were synthesized as motifs for photoinduced dynamic rearrangement. The newly synthesized sulfones exhibited dual fluorescence at 298 K. Density functional theory calculations revealed that the longer-wavelength fluorescence was derived from the geometries after structural relaxation through photo-driven pnictogen bond formation between the O atom lone pair of the sulfonyl moiety and the antibonding orbital of the Pn-C bond. This is the first report on emission dynamics driven by pnictogen bond formation upon photoexcitation.
Collapse
Affiliation(s)
- Toshiki Fujii
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Takahiro Kusukawa
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Hiroaki Imoto
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Kensuke Naka
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan.,Materials Innovation Lab, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| |
Collapse
|
28
|
Idris MA, Lee S. Highly Reactive Palladium-Catalyzed and Acetonitrile-Mediated Three-Component Reactions for Arylsulfone Synthesis. Org Lett 2022; 24:8520-8525. [DOI: 10.1021/acs.orglett.2c03430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Muhammad Aliyu Idris
- Department of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sunwoo Lee
- Department of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
29
|
Lou TS, Kawamata Y, Ewing T, Correa‐Otero GA, Collins MR, Baran PS. Scalable, Chemoselective Nickel Electrocatalytic Sulfinylation of Aryl Halides with SO 2. Angew Chem Int Ed Engl 2022; 61:e202208080. [PMID: 35819400 PMCID: PMC9452475 DOI: 10.1002/anie.202208080] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Indexed: 11/16/2022]
Abstract
Simple access to aryl sulfinates from aryl iodides and bromides is reported using an inexpensive Ni-electrocatalytic protocol. The reaction exhibits a broad scope, uses stock solution of simple SO2 as sulfur source, and can be scaled up in batch and recycle flow settings. The limitations of this reaction are clearly shown and put into context by benchmarking with state-of-the-art Pd-based methods.
Collapse
Affiliation(s)
- Terry Shing‐Bong Lou
- Department of ChemistryScripps Research10550 North Torrey Pines RoadLa JollaCA 92037USA
| | - Yu Kawamata
- Department of ChemistryScripps Research10550 North Torrey Pines RoadLa JollaCA 92037USA
| | - Tamara Ewing
- Department of ChemistryScripps Research10550 North Torrey Pines RoadLa JollaCA 92037USA
| | | | - Michael R. Collins
- Oncology Medicinal Chemistry DepartmentPfizer Pharmaceuticals10770 Science Center DriveSan DiegoCA 92121USA
| | - Phil S. Baran
- Department of ChemistryScripps Research10550 North Torrey Pines RoadLa JollaCA 92037USA
| |
Collapse
|
30
|
Planas O, Peciukenas V, Leutzsch M, Nöthling N, Pantazis DA, Cornella J. Mechanism of the Aryl-F Bond-Forming Step from Bi(V) Fluorides. J Am Chem Soc 2022; 144:14489-14504. [PMID: 35921250 PMCID: PMC9394462 DOI: 10.1021/jacs.2c01072] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Indexed: 01/10/2023]
Abstract
In this article, we describe a combined experimental and theoretical mechanistic investigation of the C(sp2)-F bond formation from neutral and cationic high-valent organobismuth(V) fluorides, featuring a dianionic bis-aryl sulfoximine ligand. An exhaustive assessment of the substitution pattern in the ligand, the sulfoximine, and the reactive aryl on neutral triarylbismuth(V) difluorides revealed that formation of dimeric structures in solution promotes facile Ar-F bond formation. Noteworthy, theoretical modeling of reductive elimination from neutral bismuth(V) difluorides agrees with the experimentally determined kinetic and thermodynamic parameters. Moreover, the addition of external fluoride sources leads to inactive octahedral anionic Bi(V) trifluoride salts, which decelerate reductive elimination. On the other hand, a parallel analysis for cationic bismuthonium fluorides revealed the crucial role of tetrafluoroborate anion as fluoride source. Both experimental and theoretical analyses conclude that C-F bond formation occurs through a low-energy five-membered transition-state pathway, where the F anion is delivered to a C(sp2) center, from a BF4 anion, reminiscent of the Balz-Schiemann reaction. The knowledge gathered throughout the investigation permitted a rational assessment of the key parameters of several ligands, identifying the simple sulfone-based ligand family as an improved system for the stoichiometric and catalytic fluorination of arylboronic acid derivatives.
Collapse
Affiliation(s)
- Oriol Planas
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| | - Vytautas Peciukenas
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| | - Markus Leutzsch
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| | - Nils Nöthling
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| | - Dimitrios A. Pantazis
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| | - Josep Cornella
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| |
Collapse
|
31
|
Lou TSB, Kawamata Y, Ewing T, Correa-Otero GA, Collins MR, Baran PS. Scalable, Chemoselective Nickel Electrocatalytic Sulfinylation of Aryl Halides with SO2. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Yu Kawamata
- The Scripps Research Institute Chemistry 10950 N. Torrey Pines Rd 92037 La Jolla UNITED STATES
| | - Tamara Ewing
- The Scripps Research Institute chemistry UNITED STATES
| | | | - Michael R. Collins
- Pfizer Global Pharmaceuticals: Pfizer Inc Oncology Medicinal Chemistry Department UNITED STATES
| | - Phil S. Baran
- The Scripps Research Institute Department of Chemistry 10550 North Torrey pines RoadBCC-169 92037 La Jolla UNITED STATES
| |
Collapse
|
32
|
Huang Y, Zhao X, Chen D, Zheng Y, Luo J, Huang S. Access to Sulfocoumarins via Three‐Component Reaction of β‐Keto Sulfonyl Fluorides, Arynes, and DMF. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yuan Huang
- Nanjing Forestry University International Innovation Center for Forest Chemicals and Materials Nanjing CHINA
| | - Xueyan Zhao
- Nanjing Forestry University International Innovation Center for Forest Chemicals and Materials Nanjing CHINA
| | - Dengfeng Chen
- Nanjing Forestry University International Innovation Center for Forest Chemicals and Materials Nanjing CHINA
| | - Yu Zheng
- Nanjing Forestry University Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources Nanjing CHINA
| | - Jinyue Luo
- Nanjing Forestry University International Innovation Center for Forest Chemicals and Materials Nanjing CHINA
| | - Shenlin Huang
- Nanjing Forestry University College of Chemical Engineering No. 159, Longpan Road 210037 Nanjing CHINA
| |
Collapse
|
33
|
Wang P, Zhang H, Nie X, Xu T, Liao S. Photoredox catalytic radical fluorosulfonylation of olefins enabled by a bench-stable redox-active fluorosulfonyl radical precursor. Nat Commun 2022; 13:3370. [PMID: 35690603 PMCID: PMC9188602 DOI: 10.1038/s41467-022-31089-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/25/2022] [Indexed: 01/15/2023] Open
Abstract
Sulfonyl fluorides have attracted considerable and growing research interests from various disciplines, which raises a high demand for novel and effective methods to access this class of compounds. Radical flurosulfonylation is recently emerging as a promising approach for the synthesis of sulfonyl fluorides. However, the scope of applicable substrate and reaction types are severely restricted by limited known radical reagents. Here, we introduce a solid state, redox-active type of fluorosulfonyl radical reagents, 1-fluorosulfonyl 2-aryl benzoimidazolium triflate (FABI) salts, which enable the radical fluorosulfonylation of olefins under photoredox conditions. In comparison with the known radical precursor, gaseous FSO2Cl, FABI salts are bench-stable, easy to handle, affording high yields in the radical fluorosulfonylation of olefins with before challenging substrates. The advantage of FABIs is further demonstrated in the development of an alkoxyl-fluorosulfonyl difunctionalization reaction of olefins, which forges a facile access to useful β-alkoxyl sulfonyl fluorides and related compounds, and would thus benefit the related study in the context of chemical biology and drug discovery in the future.
Collapse
Affiliation(s)
- Peng Wang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 350108, Fuzhou, China
| | - Honghai Zhang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 350108, Fuzhou, China
| | - Xingliang Nie
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 350108, Fuzhou, China
| | - Tianxiao Xu
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 350108, Fuzhou, China
| | - Saihu Liao
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 350108, Fuzhou, China.
- Beijing National Laboratory of Molecular Science (BNLMS), 100190, Beijing, China.
| |
Collapse
|
34
|
Magre M, Ni S, Cornella J. (Hetero)aryl-S VI Fluorides: Synthetic Development and Opportunities. Angew Chem Int Ed Engl 2022; 61:e202200904. [PMID: 35303387 PMCID: PMC9322316 DOI: 10.1002/anie.202200904] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Indexed: 12/12/2022]
Abstract
(Hetero)arylsulfur compounds where the S atom is in the oxidation state VI represent a large percentage of the molecular functionalities present in organic chemistry. More specifically, (hetero)aryl-SVI fluorides have recently received enormous attention because of their potential as chemical biology probes, as a result of their reactivity in a simple, modular, and efficient manner. Whereas the synthesis and application of the level 1 fluorination at SVI atoms (sulfonyl and sulfonimidoyl fluorides) have been widely studied and reviewed, the synthetic strategies towards higher levels of fluorination (levels 2 to 5) are somewhat more limited. This Minireview evaluates and summarizes the progress in the synthesis of highly fluorinated aryl-SVI compounds at all levels, discussing synthetic strategies, reactivity, the advantages and disadvantages of the synthetic procedures, the proposed mechanisms, and the potential upcoming opportunities.
Collapse
Affiliation(s)
- Marc Magre
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Shengyang Ni
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Josep Cornella
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| |
Collapse
|
35
|
Feng Q, Fu Y, Zheng Y, Liao S, Huang S. Electrochemical Synthesis of β-Keto Sulfonyl Fluorides via Radical Fluorosulfonylation of Vinyl Triflates. Org Lett 2022; 24:3702-3706. [PMID: 35579434 DOI: 10.1021/acs.orglett.2c01336] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Electrochemical synthesis of versatile β-keto sulfonyl fluorides is accomplished by radical fluorosulfonylation of vinyl triflates with FSO2Cl as the fluorosulfonyl radical source. This electroreductive protocol uses inexpensive graphite felt as electrodes, thus avoiding the use of a sacrificial anode. Moreover, this protocol, featuring metal-free, mild conditions and easy scalability, allows expedient access to valuable β-keto sulfonyl fluorides from readily available precursors, as well as the cyclic ones that are otherwise inaccessible using prior methods.
Collapse
Affiliation(s)
- Qingyuan Feng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Yuanyuan Fu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Yu Zheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Saihu Liao
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Shenlin Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| |
Collapse
|
36
|
Kuziola J, Magre M, Nöthling N, Cornella J. Synthesis and Structure of Mono-, Di-, and Trinuclear Fluorotriarylbismuthonium Cations. Organometallics 2022; 41:1754-1762. [PMID: 36156903 PMCID: PMC9490813 DOI: 10.1021/acs.organomet.2c00135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
A series of cationic
fluorotriarylbismuthonium salts bearing differently
substituted aryl groups (Ar = 9,9-Me2-9H-xanthene, Ph,
Mes, and 3,5-tBu-C6H3) have
been synthesized and characterized. While the presence of simple phenyl
substituents around the Bi center results in a polymeric structure
with three Bi centers in the repeating monomer, substituents at the ortho- and meta-positions lead to cationic
mono- and dinuclear fluorobismuthonium complexes, respectively. Preparation
of all compounds is accomplished by fluoride abstraction from the
parent triaryl Bi(V) difluorides using NaBArF (BArF– = B[C6H3-3,5-(CF3)2]4–). Structural
parameters were obtained via single crystal X-ray diffraction (XRD),
and their behavior in solution was studied by NMR spectroscopy. Trinuclear
and binuclear complexes are held together through one bridging fluoride
(μ-F) between two Bi(V) centers. In contrast, the presence of
Me groups in both ortho-positions of the aryl ring
provides the adequate steric encumbrance to isolate a unique mononuclear
nonstabilized fluorotriarylbismuthonium cation. This compound features
a distorted tetrahedral geometry and is remarkably stable at room
temperature both in solution (toluene, benzene and THF) and in the
solid state.
Collapse
Affiliation(s)
- Jennifer Kuziola
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| | - Marc Magre
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| | - Nils Nöthling
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| | - Josep Cornella
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| |
Collapse
|
37
|
Zhang L, Cheng X, Zhou Q. Electrochemical Synthesis of Sulfonyl Fluorides with Triethylamine Hydrofluoride. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Lei Zhang
- State Key Laboratory and Institute of Elemento‐Organic Chemistry, College of Chemistry Nankai University Tianjin 300071 China
| | - Xu Cheng
- Institute of Chemistry and Biomedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, National Demon‐stration Center for Experimental Chemistry Education, School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Qi‐Lin Zhou
- State Key Laboratory and Institute of Elemento‐Organic Chemistry, College of Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
38
|
Magre M, Ni S, Cornella J. (Hetero)aryl‒S(VI) Fluorides: Synthetic Development and Opportunities. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Marc Magre
- Max-Planck-Institut für Kohlenforschung: Max-Planck-Institut fur Kohlenforschung Organometallic Chemistry Kaiser-Wilhelm-Platz 1Muelheim an der Ruhr 45470 Muelheim an der Ruhr GERMANY
| | - Shengyang Ni
- Max-Planck-Institut für Kohlenforschung: Max-Planck-Institut fur Kohlenforschung Organometallic Chemistry Kaiser-Wilhelm-Platz 1Muelheim an der Ruhr 45470 Muelheim an der Ruhr GERMANY
| | - Josep Cornella
- Max-Planck-Institut für Kohlenforschung Organometallic Chemistry Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr GERMANY
| |
Collapse
|
39
|
Chen ZD, Zhou X, Yi JT, Diao HJ, Chen QL, Lu G, Weng J. Catalytic Decarboxylative Fluorosulfonylation Enabled by Energy-Transfer-Mediated Photocatalysis. Org Lett 2022; 24:2474-2478. [PMID: 35263111 DOI: 10.1021/acs.orglett.2c00459] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Sulfonyl fluorides are useful building blocks in a wide array of fields. Herein, we report a catalytic decarboxylative fluorosulfonylation approach for converting abundant aliphatic carboxylic acids to the corresponding sulfonyl fluorides. This transformation is enabled by simple preactivation as aldoxime esters and energy-transfer-mediated photocatalysis. This operationally simple method proceeds with high functional-group tolerance under mild and redox-neutral conditions.
Collapse
Affiliation(s)
- Zhi-Da Chen
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Xiang Zhou
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Ji-Tao Yi
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Hong-Juan Diao
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Qi-Long Chen
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Gui Lu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Jiang Weng
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| |
Collapse
|
40
|
Louis-Goff T, Trinh HV, Chen E, Rheingold AL, Ehm C, Hyvl J. Stabilizing Effect of Pre-equilibria: A Trifluoromethyl Complex as a CF 2 Reservoir in Catalytic Olefin Difluorocarbenation. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Thomas Louis-Goff
- Department of Chemistry, University of Hawai‘i at Ma̅noa, 2545 McCarthy Mall, Honolulu, Hawaii 96822, United States
| | - Huu Vinh Trinh
- Department of Chemistry, University of Hawai‘i at Ma̅noa, 2545 McCarthy Mall, Honolulu, Hawaii 96822, United States
| | - Eileen Chen
- Department of Chemistry, University of Hawai‘i at Ma̅noa, 2545 McCarthy Mall, Honolulu, Hawaii 96822, United States
| | - Arnold L. Rheingold
- Department of Chemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Christian Ehm
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Via Cintia, 80126 Napoli, Italy
| | - Jakub Hyvl
- Department of Chemistry, University of Hawai‘i at Ma̅noa, 2545 McCarthy Mall, Honolulu, Hawaii 96822, United States
| |
Collapse
|
41
|
Tran VH, Kim HK. One‐Pot Manganese (IV)‐Mediated Synthesis of Sulfonyl Fluorides from Arylhydrazines. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Van Hieu Tran
- Jeonbuk National University Department of Nuclear Medicine KOREA, REPUBLIC OF
| | - Hee-Kwon Kim
- Jeonbuk National University Department of Nuclear Medicine Geonji-ro 20 54907 Jeonju KOREA, REPUBLIC OF
| |
Collapse
|
42
|
Moon HW, Cornella J. Bismuth Redox Catalysis: An Emerging Main-Group Platform for Organic Synthesis. ACS Catal 2022; 12:1382-1393. [PMID: 35096470 PMCID: PMC8787757 DOI: 10.1021/acscatal.1c04897] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/09/2021] [Indexed: 12/11/2022]
Abstract
![]()
Bismuth has recently
been shown to be able to maneuver between
different oxidation states, enabling access to unique redox cycles
that can be harnessed in the context of organic synthesis. Indeed,
various catalytic Bi redox platforms have been discovered and revealed
emerging opportunities in the field of main group redox catalysis.
The goal of this perspective is to provide an overview of the synthetic
methodologies that have been developed to date, which capitalize on
the Bi redox cycling. Recent catalytic methods via low-valent Bi(II)/Bi(III),
Bi(I)/Bi(III), and high-valent Bi(III)/Bi(V) redox couples are covered
as well as their underlying mechanisms and key intermediates. In addition,
we illustrate different design strategies stabilizing low-valent and
high-valent bismuth species, and highlight the characteristic reactivity
of bismuth complexes, compared to the lighter p-block
and d-block elements. Although it is not redox catalysis
in nature, we also discuss a recent example of non-Lewis acid, redox-neutral
Bi(III) catalysis proceeding through catalytic organometallic steps.
We close by discussing opportunities and future directions in this
emerging field of catalysis. We hope that this Perspective will provide
synthetic chemists with guiding principles for the future development
of catalytic transformations employing bismuth.
Collapse
Affiliation(s)
- Hye Won Moon
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr, 45470, Germany
| | - Josep Cornella
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr, 45470, Germany
| |
Collapse
|
43
|
Ma Y, Hussein AA. Unveiling the origin of the chemoselectivity of bismacycle-mediated C–H arylation of phenols: from mechanism concept to new coupling design. Org Chem Front 2022. [DOI: 10.1039/d2qo00981a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
DFT calculations for the bismacycle-catalyzed C–H arylation of phenols explain the origin of high chemoselectivity. The reducive elimination is polar, which allows the design of new coupling modes.
Collapse
Affiliation(s)
- Yumiao Ma
- BSJ Institute, Haidian, Beijing, 100084, People's Republic of China
- Hangzhou Yanqu Information Technology Co., Ltd, Xihu District, Hangzhou City, Zhejiang Province, 310003, People's Republic of China
| | - Aqeel A. Hussein
- Department of Biomedical Science, College of Science, Komar University of Science and Technology, 46001 Sulaymaniyah, Kurdistan Region, Iraq
| |
Collapse
|
44
|
Song X, He Y, Wang B, Peng S, Pan X, Wei M, Liu Q, Qin HL, Tang H. Synthesis of aryl sulfonyl fluorides from aryl sulfonyl chlorides using sulfuryl fluoride (SO2F2) as fluoride provider. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
45
|
Geng M, Kuang J, Fang W, Miao M, Ma Y. Facile construction of C, N-disulfonated 5-amino pyrazoles through an iodine-catalyzed cascade reaction. Org Biomol Chem 2022; 20:8187-8191. [DOI: 10.1039/d2ob01647h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A green and facile synthesis of previously unreported C,N-disulfonated 5-amino pyrazoles was established through an iodine-catalyzed cascade reaction.
Collapse
Affiliation(s)
- Meiqi Geng
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang 318000, Zhejiang, China
| | - Jinqiang Kuang
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang 318000, Zhejiang, China
| | - Weiwei Fang
- International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China
| | - Maozhong Miao
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| | - Yongmin Ma
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang 318000, Zhejiang, China
| |
Collapse
|
46
|
Cui J, Ke S, Zhao J, Wu S, Luo W, Xu S, Su X, Li Y. Photocatalytic access to aromatic keto sulfonyl fluorides from vinyl fluorosulfates. Org Chem Front 2022. [DOI: 10.1039/d2qo00416j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A photocatalytic transformation of vinyl fluorosulfates to aromatic β-keto sulfonyl fluorides is developed using 1 mol% of Ir catalyst irradiated by 3 W blue LEDs. This methodology provides an efficient and readily scalable approach to aromatic β-keto sulfonyl fluorides.
Collapse
Affiliation(s)
- Jianchao Cui
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Sen Ke
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Jia Zhao
- Fuzhou Institute of Technology, Fuzhou 350506, China
| | - Shufeng Wu
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Wencheng Luo
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Shinuo Xu
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Xiaolong Su
- Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji, Shaanxi 721013, China
| | - Yi Li
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|