1
|
Louie S, Jiang Q, Wisniewski DJ, Bao ST, Zhang H, Chivukula K, Fang Q, Garudapalli A, Docherty SR, Ng F, Steigerwald M, Zhong Y, Khodagholy D, Nuckolls C. Contorted acene ribbons for stable and ultrasensitive neural probes. SCIENCE ADVANCES 2025; 11:eadu2356. [PMID: 40173228 PMCID: PMC11963965 DOI: 10.1126/sciadv.adu2356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 02/27/2025] [Indexed: 04/04/2025]
Abstract
Organic materials that conduct both electrons and ions are integral to implantable bioelectronics because of their conformable nature. There is a dearth of these materials that are highly sensitive to cations, which are the majority ions on the surface of neurons. This manuscript offers a solution using an extended ribbon structure that is defect-free, providing high electronic mobility along its fused backbone, while the edge structure of these ribbons promotes high ionic conductivity. We incorporated these mixed ion/electron conductors into neural probes and implanted them in a rodent brain where they offer a suite of useful properties: high cation sensitivity, stability over several weeks after implantation, and biocompatibility. These materials represent an innovative class of implantable biosensors.
Collapse
Affiliation(s)
- Shayan Louie
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Qifeng Jiang
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Duncan J. Wisniewski
- Department of Electrical Engineering, Columbia University, New York, NY 10027, USA
- Samueli School of Engineering, University of California, Irvine, Irvine, CA 92697, USA
| | - Si Tong Bao
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Honghu Zhang
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Kaushik Chivukula
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Qiyi Fang
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Ashutosh Garudapalli
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Scott R. Docherty
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Fay Ng
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | | | - Yu Zhong
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Dion Khodagholy
- Samueli School of Engineering, University of California, Irvine, Irvine, CA 92697, USA
| | - Colin Nuckolls
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| |
Collapse
|
2
|
Sotome H, Higashi M, Tanaka Y, Shinokubo H, Kobori Y, Fukui N. Effect of structural bending on the photophysical properties of perylene bisimide. J Chem Phys 2025; 162:114305. [PMID: 40105140 DOI: 10.1063/5.0255756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 02/26/2025] [Indexed: 03/20/2025] Open
Abstract
The effect of nonplanarity on the electronic properties of π-systems has been difficult to study systematically because of the limited availability of suitable model compounds. Our group recently synthesized a series of end-to-end bent perylene bisimide (PBI) cyclophanes, whose degree of bending is adjustable by modifying the internal alkyl tethers. Herein, we subjected these bent PBI derivatives to theoretical calculations and time-resolved spectroscopy. The current study has offered rational explanations for several unique photophysical characteristics of bent PBIs: (1) the redshifts of the S0-S1 transitions, (2) the decrease in extinction coefficients, (3) the broadening of spectral shapes, and (4) the suppression of nonradiative decay processes. Furthermore, the investigation of the S1 states and radical anions has revealed that structural bending also substantially alters the energy levels of upper molecular orbitals such as LUMO+2.
Collapse
Affiliation(s)
- Hikaru Sotome
- Division of Frontier Materials Science and Center for Advanced Interdisciplinary Research, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Masahiro Higashi
- Department of Complex Systems Science, Graduate School of Informatics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Yuki Tanaka
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, and Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Hiroshi Shinokubo
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, and Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Yasuhiro Kobori
- Molecular Photoscience Research Center, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
- CREST, Japan Science and Technology Agency (JST), Honcho 4-1-8, Kawaguchi, Saitama 332-0012, Japan
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Norihito Fukui
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, and Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
- PRESTO, JST, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
3
|
Wang R, Qian B, Xu Y, Zhao D, Chen Q, Wei Y, Zhang C, Liang W, Jiang YB, Zhang HJ, Lin J. Self-Assembled Bent Perylenediimides. Angew Chem Int Ed Engl 2025; 64:e202421871. [PMID: 39578966 DOI: 10.1002/anie.202421871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 11/24/2024]
Abstract
The properties of π-functional materials are predominantly influenced by both their molecular structures and interactions between π-systems. Recent advancements have focused on modifying the geometry or topology of π-molecules from planar to nonplanar conformations to tailor molecular properties. However, the interactions among nonplanar π-molecules remain largely unexplored, likely due to the significant reduction in contact surfaces arising from their curved structures. Herein, we investigated the electro-optical properties and π-stacking behaviors of a series of bent perylenediimides (B-PDIs) with gradual changes in bending angles, achieved by altering the lengths of linear alkyl chains connecting the two nitrogen positions of each PDI. Curvature-dependent self-assembly of these bent PDIs is observed, which is primarily driven by dipole-dipole interactions rather than dispersion forces. More importantly, fine-tuning intermolecular coupling through bending enables excited-state symmetry-breaking charge separation in [n]B-PDIs (n = 16, 12) in the crystalline solid state.
Collapse
Affiliation(s)
- Rui Wang
- Department of Chemistry, College of Chemistry and Chemical Engineering, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen, 361005, P. R. China
| | - Baiyang Qian
- Department of Chemistry, College of Chemistry and Chemical Engineering, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen, 361005, P. R. China
| | - Yuchuan Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Di Zhao
- Department of Chemistry, College of Chemistry and Chemical Engineering, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen, 361005, P. R. China
| | - Qiqi Chen
- Department of Chemistry, College of Chemistry and Chemical Engineering, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen, 361005, P. R. China
| | - Yifei Wei
- Department of Chemistry, College of Chemistry and Chemical Engineering, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen, 361005, P. R. China
| | - Cankun Zhang
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, P. R. China
| | - WanZhen Liang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Yun-Bao Jiang
- Department of Chemistry, College of Chemistry and Chemical Engineering, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen, 361005, P. R. China
| | - Hui-Jun Zhang
- Department of Chemistry, College of Chemistry and Chemical Engineering, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen, 361005, P. R. China
| | - Jianbin Lin
- Department of Chemistry, College of Chemistry and Chemical Engineering, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
4
|
Brown SJ, Zhao J, Forehand E, Dobrzycki L, Roy R, Hasan AMM, Ding W, Schaack C, Evans AM. Readily Accessible, Versatile, and Adaptive Biaxially Chiral Chromophores. J Am Chem Soc 2025; 147:3769-3775. [PMID: 39817847 DOI: 10.1021/jacs.4c16566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Precisely controlling quantum states is relevant in next-generation quantum computing, encryption, and sensing. Chiral organic chromophores host unique light-matter interactions, which allow them to manipulate the quantized circular polarization of photons. Axially chiral organic scaffolds, such as helicenes or twisted acenes, are powerful motifs in chiral light manipulation. However, these systems usually require complex syntheses and small-scale (10 mg) enantiomer separations, typically complicating systematic investigations of their structure-property relationships. We report here the straightforward synthesis of both enantiomers (R/S) of 10 different axially chiral chromophores. This protocol relies on a readily accessible, enantiomerically pure, and axially chiral contorting element, benzodinaptho[1,4]dioxicine-2,3-diamine (DODA), that we synthesize in two steps with high purity and good yield at gram scale. Subsequent derivation of DODA transfers the chirality from one axis to twist the dominant chromophore around a second, orthogonal axis. Using this biaxial contortion design element, we produce 10 enantiopure biaxial chromophores, without the need for chromatographic separations, and no observable compromise to chiroptical integrity. These chromophores exhibit broadband single-handed absorption without Cotton effects from 265 to 485 nm, indicating chiral excitonic character that forms between the DODA and twisted core chromophore. This platform is responsive to solvent polarity in the excited state, displaying >50 nm bathochromic shifts in the photoluminescence spectra. In addition, this scaffold intensely interacts with changes in pH, which allows us to ultimately access monosignate circular dichroism absorption over a 300 nm range.
Collapse
Affiliation(s)
- Summer J Brown
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Jiaoyan Zhao
- Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina 27109, United States
- Center for Functional Materials, Wake Forest University, Winston-Salem, North Carolina 27109, United States
| | - Ellen Forehand
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Lukasz Dobrzycki
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Rupam Roy
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - A M Mahmudul Hasan
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Wendu Ding
- Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina 27109, United States
- Center for Functional Materials, Wake Forest University, Winston-Salem, North Carolina 27109, United States
| | - Cedric Schaack
- Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina 27109, United States
- Center for Functional Materials, Wake Forest University, Winston-Salem, North Carolina 27109, United States
| | - Austin M Evans
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
- Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
5
|
Kim HJ, Lee C, Schuck PJ, Kaufman LJ. Aggregation pathway complexity in a simple perylene diimide. Sci Rep 2024; 14:31989. [PMID: 39738440 DOI: 10.1038/s41598-024-83525-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/16/2024] [Indexed: 01/02/2025] Open
Abstract
This study characterizes the influence of self-assembly conditions on the aggregation pathway and resulting photophysical properties of one-dimensional aggregates of the simple imide-substituted perylene diimide, N, N'-didodecyl-3,4,9,10-perylenedicarboximide (ddPDI). We show that ddPDI, which has symmetric alkyl chains at the imide positions, assembles into fibers with distinct morphology, emission spectra, and temperature-dependent behavior as a function of preparation conditions. In all conditions explored, aggregates are one-dimensional; however, assembly conditions can bias formation to either J-like or H-like aggregates. Specifically, a solvent phase interfacial (SPI) method yields two types of aggregates with distinct morphology and photophysical properties while a surface and solvent vapor assisted method (SSVA) generates more uniform aggregates with H-dominant behavior. A combined SPI and SSVA approach facilitates the simultaneous generation and in situ characterization of distinct ddPDI assemblies, some of which assemble via seeded growth. Microscopic and spectroscopic imaging unveil the heterogeneity among ddPDI aggregates, each with unique photophysical properties including H-dominant aggregates with a very high degree of molecular alignment and uniformity in intermolecular organization. Overall, this study highlights the pathway complexity in self-assembly of even the simplest PDI molecules, paving the way for utilization of simple PDI aggregates in applications that demand diverse photophysical behavior.
Collapse
Affiliation(s)
- Hyung Jun Kim
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
- Department of Chemistry, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02139, USA
| | - Changhwan Lee
- Department of Mechanical Engineering, Columbia University, New York, NY, 10027, USA
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 34141 Daejeon, Republic of Korea
| | - P James Schuck
- Department of Mechanical Engineering, Columbia University, New York, NY, 10027, USA
| | - Laura J Kaufman
- Department of Chemistry, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
6
|
Singh Bisht P, Garg R, Nakka N, Mondal AK. Spin Filtering and Amplification in Self-Assembled Nanofibers Based on Chiral Asymmetric Building Blocks. J Phys Chem Lett 2024; 15:6605-6610. [PMID: 38885451 DOI: 10.1021/acs.jpclett.4c01423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
The cooperativity in artificial self-assembling systems can be enhanced to expand their applications and redesign their properties. Recently, chiral molecules have garnered renewed attention due to their potential as highly efficient spin filters through the chiral-induced spin selectivity (CISS) effect. However, the potential of asymmetric building blocks based on chiral perylene diimides (PDIs) self-assembled materials to generate a spin-polarized current is still not widely acknowledged. In this work, we have demonstrated that nanofibers derived from "asymmetric PDIs" molecules have been found to exhibit promising spin-filtering property and the amplification of spin polarization at room temperature. Also, the exploration of chiral amplification and correlating it with the amplification of spin polarization have been reported for the first time through this work. These findings underscore the significance of self-assembled materials in the realm of spintronics, as they offer fascinating platforms with evolving structure-property relationship. It also provides the feasible possibility of enhancing the CISS-based spintronic devices that can accomplish controllability and high spin-filtering efficiency simultaneously.
Collapse
Affiliation(s)
- Pravesh Singh Bisht
- Institute of Nano Science and Technology (INST), Mohali, Sector 81, Sahibzada Ajit Singh Nagar, Punjab 140306, India
| | - Rabia Garg
- Institute of Nano Science and Technology (INST), Mohali, Sector 81, Sahibzada Ajit Singh Nagar, Punjab 140306, India
| | - Nagaraju Nakka
- Institute of Nano Science and Technology (INST), Mohali, Sector 81, Sahibzada Ajit Singh Nagar, Punjab 140306, India
| | - Amit Kumar Mondal
- Institute of Nano Science and Technology (INST), Mohali, Sector 81, Sahibzada Ajit Singh Nagar, Punjab 140306, India
| |
Collapse
|
7
|
Tanaka Y, Tajima K, Kusumoto R, Kobori Y, Fukui N, Shinokubo H. End-to-End Bent Perylene Bisimide Cyclophanes by Double Sulfur Extrusion. J Am Chem Soc 2024; 146:16332-16339. [PMID: 38813992 PMCID: PMC11177258 DOI: 10.1021/jacs.4c05358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024]
Abstract
Bending inherently planar π-cores consisting of only six-membered rings has traditionally been challenging because a powerful transformation is required to compensate for the significant strain energy associated with bending. Herein, we demonstrate that sulfur extrusion can achieve substantial molecular bending of a perylene structure to form a substructure of a Vögtle belt, a proposed yet hitherto elusive carbon nanotube fragment. Bent perylene bisimide (PBI) derivatives were synthesized through a double-sulfur-extrusion reaction from the corresponding sulfur-containing V-shaped precursors with an internal alkyl tether. The effect of bending the inherently planar PBI core, which is a recent topic of interest for the design of advanced organic electronic and optoelectronic materials, was investigated systematically. Increasing the curvature leads to a red shift in the absorption and emission spectra, while the fluorescence quantum yields remain high. This stands in contrast with the nonemissive features of previously reported nonplanar PBI derivatives based on conjugative tethers. Detailed photophysical measurements indicated that the increasing curvature with shorter alkyl tethers (i) slightly facilitates intersystem crossing and (ii) significantly suppresses the internal conversion in the excited state of the present bent PBI derivatives. The latter characteristics originate from the restricted dynamic motion associated with the charge-transfer (CT) character between the core chromophores and the N-aryl units.
Collapse
Affiliation(s)
- Yuki Tanaka
- Department
of Molecular and Macromolecular Chemistry, Graduate School of Engineering,
and Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Keita Tajima
- Department
of Molecular and Macromolecular Chemistry, Graduate School of Engineering,
and Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Ryota Kusumoto
- Department
of Chemistry, Graduate School of Science, Kobe University, 1-1,
Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Yasuhiro Kobori
- Department
of Chemistry, Graduate School of Science, Kobe University, 1-1,
Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
- Molecular
Photoscience Research Center, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
- CREST,
JST, Honcho 4-1-8, Kawaguchi ,Saitama332-0012, Japan
| | - Norihito Fukui
- Department
of Molecular and Macromolecular Chemistry, Graduate School of Engineering,
and Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
- PRESTO,
Japan Science and Technology Agency (JST), Kawaguchi ,Saitama332-0012, Japan
| | - Hiroshi Shinokubo
- Department
of Molecular and Macromolecular Chemistry, Graduate School of Engineering,
and Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| |
Collapse
|
8
|
Atienza CM, Sánchez L. Increasing Dimensionality in Self-Assembly: Toward Two-Dimensional Supramolecular Polymers. Chemistry 2024; 30:e202400379. [PMID: 38525912 DOI: 10.1002/chem.202400379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 03/26/2024]
Abstract
Different approaches to achieve 2D supramolecular polymers, as an alternative to the covalent bottom-up approaches reported for the preparation of 2D materials, are reviewed. The significance of the operation of weak non-covalent forces to induce a lateral growth of a number of self-assembling units is collected. The examples of both thermodynamically and kinetically controlled formation of 2D supramolecular polymers showed in this review demonstrate the utility of this strategy to achieve new 2D materials with biased morphologies (nanosheets, scrolls, porous surfaces) and showing elegant applications like chiral recognition, enantioselective uptake or asymmetric organic transformations. Furthermore, elaborated techniques like seeded or living supramolecular polymerizations have been demonstrated to give rise to complex 2D nanostructures.
Collapse
Affiliation(s)
- Carmen M Atienza
- Departmento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040, -Madrid, Spain
| | - Luis Sánchez
- Departmento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040, -Madrid, Spain
| |
Collapse
|
9
|
Davis AN, Parui K, Butala MM, Evans AM. Supramolecular design as a route to high-performing organic electrodes. NANOSCALE 2024; 16:10142-10154. [PMID: 38669191 DOI: 10.1039/d4nr00292j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Organic electrodes may someday replace transition metals oxides, the current standard in electrochemical energy storage, including those with severe issues of availability, cost, and recyclability. To realize this more sustainable future, a thorough understanding of structure-property relationships and design rules for organic electrodes must be developed. Further, it is imperative that supramolecular interactions between organic species, which are often overlooked, be included in organic electrode design. In this review, we showcase how molecular and polymeric electrodes that host non-covalent interactions outperform materials without these features. Using select examples from the literature, we emphasize how dispersion forces, hydrogen-bonding, and radical pairing can be leveraged to improve the stability, capacity, and energy density of organic electrodes. Throughout this review, we identify potential next-generation designs and opportunities for continued investigation. We hope that this review will serve as a catalyst for collaboration between synthetic chemists and the energy storage community, which we view as a prerequisite to achieving high-performing supramolecular electrode materials.
Collapse
Affiliation(s)
- Ani N Davis
- George and Josephine Butler Polymer Laboratory, Department of Chemistry, USA.
| | - Kausturi Parui
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Megan M Butala
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Austin M Evans
- George and Josephine Butler Polymer Laboratory, Department of Chemistry, USA.
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
10
|
Chen K, Liu Y, Wang Z, Hu S, Zhao Y, Wang W, Liu G, Wang Z, Jiang W. Longitudinal Extension of Double π-Helix Enables Near-Infrared Amplified Dissymmetry and Chiroptical Response. J Am Chem Soc 2024; 146:13499-13508. [PMID: 38696816 DOI: 10.1021/jacs.4c02914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
Near-infrared (NIR) circularly polarized light absorbing or emitting holds great promise for highly sensitive and precise bioimaging, biosensing, and photodetectors. Aiming at designing NIR chiral molecular systems with amplified dissymmetry and robust chiroptical response, herein, we present a series of double π-helical dimers with longitudinally extended π-entwined substructures via Ullmann or Yamamoto homocoupling reactions. Circular dichroism (CD) spectra revealed an approximate linear bathochromic shift with the rising number of naphthalene subunits, indicating a red to NIR chiroptical response. Particularly, the terrylene diimide-entwined dimers exhibited the strongest CD intensities, with the maximal |Δε| reaching up to 393 M-1 cm-1 at 666 nm for th-TDI[2]; and a record-high chiroptical response (|ΔΔε|) between the neutral and dianionic species of 520 M-1 cm-1 at 833 nm for th-TDI[2]Cl was achieved upon further reduction to its dianionic state. Time-dependent density functional theory (TDDFT) calculations suggested that the pronounced intensification of the CD spectra originated from a simultaneous enhancement of both electric (μ) and magnetic (m) transition dipole moments, ultimately leading to an overall increase in the rotatory strength (R). Notably, the circularly polarized luminescence (CPL) brightness (BCPL) reached 77 M-1 cm-1 for th-TDI[2]Cl, among the highest values reported for NIR-CPL emitters. Furthermore, all chiral dianions exhibited excellent air stability under ambient conditions with half-life times of up to 10 days in N-methylpyrrolidone (NMP), which is significant for future biological applications and chiroptic switches.
Collapse
Affiliation(s)
- Kai Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yujian Liu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zhaolong Wang
- State Key Laboratory of Molecular Reaction Dynamics and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Shunlong Hu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yilun Zhao
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Guogang Liu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhaohui Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Wei Jiang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
11
|
Bernhardt A, Čavlović D, Mayländer M, Blacque O, Cruz CM, Richert S, Juríček M. π-Radical Cascade to a Chiral Saddle-Shaped Peropyrene. Angew Chem Int Ed Engl 2024; 63:e202318254. [PMID: 38278766 DOI: 10.1002/anie.202318254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/12/2024] [Accepted: 01/25/2024] [Indexed: 01/28/2024]
Abstract
Reactions of open-shell molecular graphene fragments are typically thought of as undesired decomposition processes because they lead to the loss of desired features like π-magnetism. Oxidative dimerization of phenalenyl to peropyrene shows, however, that these transformations hold promise as a synthetic tool for making complex structures via formation of multiple bonds and rings in a single step. Here, we explore the feasibility of using this "undesired" reaction of phenalenyl to build up strain and provide access to non-planar polycyclic aromatic hydrocarbons. To this end, we designed and synthesized a biradical system with two phenalenyl units linked via a biphenylene backbone. The design facilitates an intramolecular cascade reaction to a helically twisted saddle-shaped product, where the key transformations-ring-closure and ring-fusion-occur within one reaction. The negative curvature of the final peropyrene product, induced by the formed eight-membered ring, was confirmed by single-crystal X-ray diffraction analysis and the helical twist was validated via resolution of the product's enantiomers that display circularly polarized luminescence and high configurational stability.
Collapse
Affiliation(s)
- Annika Bernhardt
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Daniel Čavlović
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Maximilian Mayländer
- Institute of Physical Chemistry, University of Freiburg, Albertstraße 21, 79104, Freiburg, Germany
| | - Olivier Blacque
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Carlos M Cruz
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Department of Organic Chemistry, University of Granada, Avenida de la Fuente Nueva S/N, 18071, Granada, Spain
| | - Sabine Richert
- Institute of Physical Chemistry, University of Freiburg, Albertstraße 21, 79104, Freiburg, Germany
| | - Michal Juríček
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| |
Collapse
|
12
|
Shao G, Liu H, Chen L, Wu M, Wang D, Wu D, Xia J. Precise synthesis of BN embedded perylene diimide oligomers for fast-charging and long-life potassium-organic batteries. Chem Sci 2024; 15:3323-3329. [PMID: 38425535 PMCID: PMC10901525 DOI: 10.1039/d3sc06331c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/22/2024] [Indexed: 03/02/2024] Open
Abstract
Replacing the C[double bond, length as m-dash]C bond with an isoelectronic BN unit is an effective strategy to tune the optoelectronic properties of polycyclic aromatic hydrocarbons (PAHs). However, precise control of the BN orientations in large PAH systems is still a synthetic challenge. Herein, we demonstrate a facile approach for the synthesis of BN embedded perylene diimide (PDI) nanoribbons, and the polarization orientations of the BN unit were precisely regulated in the two PDI trimers. These BN doped PDI oligomers show great potential as organic cathodes for potassium-ion batteries (PIBs). In particular, trans-PTCDI3BN exhibits great improvement in voltage potential, reversible capacities (ca. 130 mA h g-1), superior rate performance (19 s to 69% of the maximum capacity) and ultralong cyclic stability (nearly no capacity decay over 30 000 cycles), which are among those of state-of-the-art organic-based cathodes. Our synthetic approach stands as an effective way to access large PAHs with precisely controlled BN orientations, and the BN doping strategy provides useful insight into the development of organic electrode materials for secondary batteries.
Collapse
Affiliation(s)
- Guangwei Shao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology Wuhan 430070 China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology Wuhan 430070 China
| | - Hang Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology Wuhan 430070 China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology Wuhan 430070 China
| | - Li Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology Wuhan 430070 China
| | - Mingliang Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology Wuhan 430070 China
| | - Dongxue Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology Wuhan 430070 China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology Wuhan 430070 China
| | - Di Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology Wuhan 430070 China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology Wuhan 430070 China
| | - Jianlong Xia
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology Wuhan 430070 China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology Wuhan 430070 China
- International School of Materials Science and Engineering, Wuhan University of Technology Wuhan 430070 China
| |
Collapse
|
13
|
Dong X, Zhang Z, Xiao H, Liu G, Lei SN, Wang Z, Yan X, Wang S, Tung CH, Wu LZ, Cong H. Assembly and Utility of a Drawstring-Mimetic Supramolecular Complex. Angew Chem Int Ed Engl 2024; 63:e202318368. [PMID: 38165266 DOI: 10.1002/anie.202318368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/20/2023] [Accepted: 01/02/2024] [Indexed: 01/03/2024]
Abstract
Inspired by the drawstring structure in daily life, here we report the development of a drawstring-mimetic supramolecular complex at the molecular scale. This complex consists of a rigid figure-of-eight macrocyclic host molecule and a flexible linear guest molecule which could interact through three-point non-covalent binding to form a highly selective and efficient host-guest assembly. The complex not only resembles the drawstring structure, but also mimics the properties of a drawstring with regard to deformations under external forces. The supramolecular drawstring can be utilized as an interlocked crosslinker for poly(methyl acrylate), and the corresponding polymer samples exhibit comprehensive enhancement of macroscopic mechanical performance including stiffness, strength, and toughness.
Collapse
Affiliation(s)
- Xiangyu Dong
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhaoming Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hongyan Xiao
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Guoquan Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Sheng-Nan Lei
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhao Wang
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xuzhou Yan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shutao Wang
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Huan Cong
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
14
|
Li T, Liu JC, Liu EP, Liu BT, Wang JY, Liao PY, Jia JH, Feng Y, Tong ML. NIR-II photothermal conversion and imaging based on a cocrystal containing twisted components. Chem Sci 2024; 15:1692-1699. [PMID: 38303953 PMCID: PMC10829014 DOI: 10.1039/d3sc03532h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/24/2023] [Indexed: 02/03/2024] Open
Abstract
On account of the scarcity of molecules with a satisfactory second near-infrared (NIR-II) response, the design of high-performance organic NIR photothermal materials has been limited. Herein, we investigate a cocrystal incorporating tetrathiafulvalene (TTF) and tetrachloroperylene dianhydride (TCPDA) components. A stable radical was generated through charge transfer from TTF to TCPDA, which exhibits strong and wide-ranging NIR-II absorption. The metal-free TTF-TCPDA cocrystal in this research shows high photothermal conversion capability under 1064 nm laser irradiation and clear photothermal imaging. The remarkable conversion ability-which is a result of twisted components in the cocrystal-has been demonstrated by analyses of single crystal X-ray diffraction, photoluminescence and femtosecond transient absorption spectroscopy as well as theoretical calculations. We have discovered that space charge separation and the ordered lattice in the TTF-TCPDA cocrystal suppress the radiative decay, while simultaneously strong intermolecular charge transfer enhances the non-radiative decay. The twisted TCPDA component induces rapid charge recombination, while the distorted configuration in TTF-TCPDA favors an internal non-radiative pathway. This research has provided a comprehensive understanding of the photothermal conversion mechanism and opened a new way for the design of advanced organic NIR-II photothermal materials.
Collapse
Affiliation(s)
- Tao Li
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Sun Yat-Sen University Guangzhou Guangdong 510006 China
- Department of Chemistry and Biochemistry, The University of Oklahoma 101 Stephenson Parkway Norman Oklahoma 73019 USA
| | - Jia-Chuan Liu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Sun Yat-Sen University Guangzhou Guangdong 510006 China
| | - En-Ping Liu
- School of Materials Science and Engineering, Tianjin University Tianjin 300072 China
| | - Bai-Tong Liu
- Department of Chemistry, Northwestern University 2145 Sheridan Road Evanston Illinois 60208 USA
| | - Jing-Yu Wang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Sun Yat-Sen University Guangzhou Guangdong 510006 China
| | - Pei-Yu Liao
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Sun Yat-Sen University Guangzhou Guangdong 510006 China
| | - Jian-Hua Jia
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Sun Yat-Sen University Guangzhou Guangdong 510006 China
| | - Yuanning Feng
- Department of Chemistry and Biochemistry, The University of Oklahoma 101 Stephenson Parkway Norman Oklahoma 73019 USA
| | - Ming-Liang Tong
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Sun Yat-Sen University Guangzhou Guangdong 510006 China
| |
Collapse
|
15
|
Xue N, Chen K, Liu G, Wang Z, Jiang W. Molecular Engineering of Rylene Diimides via Sila-Annulation Toward High-Mobility Organic Semiconductors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2307875. [PMID: 38072766 DOI: 10.1002/smll.202307875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/14/2023] [Indexed: 12/19/2023]
Abstract
The continuous innovation of captivating new organic semiconducting materials remains pivotal in the development of high-performance organic electronic devices. Herein, a molecular engineering by combining sila-annulation with the vertical extension of rylene diimides (RDIs) toward high-mobility organic semiconductors is presented. The unilateral and bilateral sila-annulated quaterrylene diimides (Si-QDI and 2Si-QDI) are designed and synthesized. In particular, the symmetrical bilateral 2Si-QDI exhibits a compact, 1D slipped π-π stacking arrangement through the synergistic combination of a sizable π-conjugated core and intercalating alkyl chains. Combining the appreciable elevated HOMO levels and reduced energy gaps, the single-crystalline organic field-effect transistors (SC-OFETs) based on 2Si-QDI demonstrate exceptional ambipolar transport characteristics with an impressive hole mobility of 3.0 cm2 V-1 s-1 and an electron mobility of 0.03 cm2 V-1 s-1 , representing the best ampibolar SC-OFETs based on RDIs. Detailed theoretical calculations rationalize that the larger transfer integral along the π-π stacking direction is responsible for the achievement of the superior charge transport. This study showcases the remarkable potential of sila-annulation in optimizing carrier transport performances of polycyclic aromatic hydrocarbons (PAHs).
Collapse
Affiliation(s)
- Ning Xue
- Key Laboratory of Organic Optoelectronics and Molecular Engineering Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Kai Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Guogang Liu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Zhaohui Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Wei Jiang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
16
|
Konidaris KF, Zambra M, Giannici F, Guagliardi A, Masciocchi N. Forcing Twisted 1,7-Dibromoperylene Diimides to Flatten in the Solid State: What a Difference an Atom Makes. Angew Chem Int Ed Engl 2023; 62:e202310445. [PMID: 37743252 DOI: 10.1002/anie.202310445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/24/2023] [Accepted: 09/19/2023] [Indexed: 09/26/2023]
Abstract
Perylene diimides (PDI) are workhorses in the field of organic electronics, owing to their appealing n-semiconducting properties. Optimization of their performances is widely pursued by bay-atom substitution and diverse imide functionalization. Bulk solids and thin-films of these species crystallize in a variety of stacking configurations, depending on the geometry of the stable conformation of the polyaromatic core. We here demonstrate that 1,7-dibromo-substituted perylene diimides, PDI(H2 Br2 ), possessing a heavily twisted conformation in the gas phase, in solution and in the solids, can be easily flattened in the solid state into centrosymmetric molecules if the polyaromatic cores form π-π stabilized chains. This is achieved by using axial residues with low stereochemical hindrance, as guaranteed by a single CH2 /NH spacer directly linked to the imide function. Structural powder diffraction and DFT calculations on four newly designed species of the PDI(H2 Br2 ) class coherently show that, thanks to the flexibility of the N-X-Ar link (X=CH2 /NH), flat cores are indeed obtained by overcoming the interconversion barrier between twisted atropoisomers, of only 26.5 kJ mol-1 . This strategy may then be useful to induce "anomalously flat" polyaromatic cores of different kinds (substituted acenes/rylenes) in the solid state, towards suitable crystal packing and orbital interactions for improved electronic performances.
Collapse
Affiliation(s)
- Konstantis F Konidaris
- Dipartimento di Scienza e Alta Tecnologia and To.Sca.Lab, University of Insubria, via Valleggio 11, 22100, Como, Italy
| | - Marco Zambra
- Dipartimento di Scienza e Alta Tecnologia and To.Sca.Lab, University of Insubria, via Valleggio 11, 22100, Como, Italy
| | - Francesco Giannici
- Dipartimento di Fisica e Chimica "Emilio Segrè", Università di Palermo, viale delle Scienze, Ed.17, 90128, Palermo, Italy
| | - Antonietta Guagliardi
- Institute of Crystallography and To.Sca.Lab, C.N.R., National Research Council, via Valleggio 11, 22100, Como, Italy
| | - Norberto Masciocchi
- Dipartimento di Scienza e Alta Tecnologia and To.Sca.Lab, University of Insubria, via Valleggio 11, 22100, Como, Italy
| |
Collapse
|
17
|
Kimura R, Yoneda Y, Kuramochi H, Saito S. Environment-sensitive fluorescence of COT-fused perylene bisimide based on symmetry-breaking charge separation. Photochem Photobiol Sci 2023; 22:2541-2552. [PMID: 37656334 DOI: 10.1007/s43630-023-00468-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/09/2023] [Indexed: 09/02/2023]
Abstract
Flexible and aromatic photofunctional system (FLAP) is composed of flapping rigid aromatic wings fused with a flexible 8π ring at the center such as cyclooctatetraene (COT). A series of FLAP have been actively studied for the interesting dynamic behaviors. Here, we synthesized a new flapping molecule bearing naphtho-perylenebisimide wings (NPBI-FLAP), in which two perylene units are arranged side by side. As a reference compound, we also prepared COT-fused NPBI (NPBI-COT) that contains only single perylene unit. In both compounds, inherent strong fluorescence of the NPBI moiety is almost quenched and the FL lifetime becomes much shortened in highly polar solvents (acetone and DMF). Through the analyses of environment-sensitive fluorescence, electrochemical reduction/oxidation, and femtosecond transient absorption, the fluorescence quenching behavior was attributed to rapid symmetry-breaking charge separation (SB-CS) for NPBI-FLAP and to intramolecular charge transfer (ICT) for NPBI-COT. Most of the excited species of these compounds decay with the bent geometry, which is in contrast with the excited-state planarization behavior of a previously reported COT-fused peryleneimides with the double-headed arrangement of the perylene moieties. These results indicate that changing the fusion manners between COT and other π skeletons offers new functional molecules with distinct dynamics.
Collapse
Affiliation(s)
- Ryo Kimura
- Graduate School of Science, Kyoto University, Kitashirakawa Oiwake, Sakyo, Kyoto, 606-8502, Japan
| | - Yusuke Yoneda
- Research Center of Integrative Molecular Systems (CIMoS), Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki, 444-8585, Japan
| | - Hikaru Kuramochi
- Research Center of Integrative Molecular Systems (CIMoS), Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki, 444-8585, Japan.
| | - Shohei Saito
- Graduate School of Science, Kyoto University, Kitashirakawa Oiwake, Sakyo, Kyoto, 606-8502, Japan.
| |
Collapse
|
18
|
Bao ST, Jiang H, Jin Z, Nuckolls C. Fusing perylene diimide with helicenes. Chirality 2023; 35:656-672. [PMID: 36941527 DOI: 10.1002/chir.23561] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/13/2023] [Accepted: 02/23/2023] [Indexed: 03/23/2023]
Abstract
Incorporating perylene diimide (PDI) units into helicene structures has become a useful strategy for giving access to non-planar electron acceptors as well as a method of creating molecules with unique and intriguing chiroptical properties. This minireview describes this fusion of PDIs with helicenes.
Collapse
Affiliation(s)
- Si Tong Bao
- Department of Chemistry, Columbia University, New York, New York, USA
| | - Haoyu Jiang
- Department of Chemistry, Columbia University, New York, New York, USA
| | - Zexin Jin
- Department of Chemistry, Columbia University, New York, New York, USA
| | - Colin Nuckolls
- Department of Chemistry, Columbia University, New York, New York, USA
| |
Collapse
|
19
|
Sun L, Li N, Ma J, Wang J. Study on Asymmetric Vibrational Coherent Magnetic Transitions and Origin of Fluorescence in Symmetric Structures. Molecules 2023; 28:6645. [PMID: 37764420 PMCID: PMC10534477 DOI: 10.3390/molecules28186645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/06/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
In this work, the physical mechanisms of three highly efficient circularly polarized luminescent materials are introduced. The UV-vis spectra are plotted; the transition properties of their electrons at the excited states are investigated using a combination of the transition density matrix (TDM) and the charge difference density (CDD); combining the distribution of electron clouds, the essence of charge transfer excitation in three structures is explained. The resonance Raman spectrum of the three structures at the S1 and S2 excited states are calculated. The M, M-4 and M, M-5 structures are found to produce novel chirality by electronic circular dichroism (ECD) spectrum, and the reasons for the chirality of the M, M-4 and M, M-5 structures are discussed by analyzing the density of transition electric/magnetic dipole moments (TEDM/TMDMs) in different orientations. Finally, the Raman optical activity (ROA) of M, M-4, and M, M-5 are calculated, and the spectra are plotted. This study will provide guidance for the application of carbon-based nanomaterials in organic electronic devices, solar cells, and optoelectronics.
Collapse
Affiliation(s)
| | | | - Ji Ma
- Liaoning Provincial Key Laboratory of Novel Micro-Nano Functional Materials, College of Science, Liaoning Petrochemical University, Fushun 113001, China; (L.S.); (N.L.)
| | - Jingang Wang
- Liaoning Provincial Key Laboratory of Novel Micro-Nano Functional Materials, College of Science, Liaoning Petrochemical University, Fushun 113001, China; (L.S.); (N.L.)
| |
Collapse
|
20
|
Krupka O, Hudhomme P. Recent Advances in Applications of Fluorescent Perylenediimide and Perylenemonoimide Dyes in Bioimaging, Photothermal and Photodynamic Therapy. Int J Mol Sci 2023; 24:ijms24076308. [PMID: 37047280 PMCID: PMC10094654 DOI: 10.3390/ijms24076308] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
The emblematic perylenediimide (PDI) motif which was initially used as a simple dye has undergone incredible development in recent decades. The increasing power of synthetic organic chemistry has allowed it to decorate PDIs to achieve highly functional dyes. As these PDI derivatives combine thermal, chemical and photostability, with an additional high absorption coefficient and near-unity fluorescence quantum yield, they have been widely studied for applications in materials science, particularly in photovoltaics. Although PDIs have always been in the spotlight, their asymmetric counterparts, perylenemonoimide (PMI) analogues, are now experiencing a resurgence of interest with new efforts to create architectures with equally exciting properties. Namely, their exceptional fluorescence properties have recently been used to develop novel systems for applications in bioimaging, biosensing and photodynamic therapy. This review covers the state of the art in the synthesis, photophysical characterizations and recently reported applications demonstrating the versatility of these two sister PDI and PMI compounds. The objective is to show that after well-known applications in materials science, the emerging trends in the use of PDI- and PMI-based derivatives concern very specific biomedicinal applications including drug delivery, diagnostics and theranostics.
Collapse
Affiliation(s)
- Oksana Krupka
- Univ. Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France
- Correspondence: (O.K.); (P.H.); Tel.: +33-2-41-73-85-59 (O.K.); +33-2-41-73-50-94 (P.H.)
| | - Piétrick Hudhomme
- Univ. Angers, CNRS, MOLTECH-Anjou, SFR MATRIX, F-49000 Angers, France
- Correspondence: (O.K.); (P.H.); Tel.: +33-2-41-73-85-59 (O.K.); +33-2-41-73-50-94 (P.H.)
| |
Collapse
|
21
|
Zhu Z, Liu H, Ding P, Fu Y, Cao H, Xu W, He Q, Cheng J. Direct Active Site at the Van der Waals Heterostructure Interface with Synthetic Drug Analogue N-Methylphenethylimine Ultrasensitivity. ACS Sens 2023; 8:1318-1327. [PMID: 36795762 DOI: 10.1021/acssensors.2c02829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
CNT/organic probe-based chemiresistive sensors suffer from the problem of low sensitivity and poor stability due to the unstable and unfavorable CNT/organic probe interface. A new designing strategy of a one-dimensional van der Waals heterostructure was developed for ultrasensitive vapor sensing. By modifying the perylene diimide molecule at the bay region with phenoxyl and further Boc-NH- phenoxy side chains, a highly stable 1D VDW heterostructure SWCNT-probe molecule system was formed with ultrasensitivity and specificity. Interfacial recognition sites consisting of SWCNT and the probe molecule are responsible for the synergistical and excellent sensing response to MPEA molecules, which was proved by Raman, XPS, and FTIR characterizations together with dynamic simulation. Based on such a sensitive and stable VDW heterostructure system, the measured detection limit reached as low as 3.6 ppt for the synthetic drug analogue N-methylphenethylimine (MPEA) in the vapor phase, and the sensor showed almost no performance degradation even after 10 days. Furthermore, a miniaturized detector was developed for real-time monitoring of drug vapor detection.
Collapse
Affiliation(s)
- Zhen Zhu
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Changning Road 865, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of the Chinese Academy of Sciences, Yuquan Road 19, Beijing 100039, China
| | - Huan Liu
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Changning Road 865, Shanghai 200050, China
| | - Pengfei Ding
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Changning Road 865, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of the Chinese Academy of Sciences, Yuquan Road 19, Beijing 100039, China
| | - Yanyan Fu
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Changning Road 865, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of the Chinese Academy of Sciences, Yuquan Road 19, Beijing 100039, China
| | - Huimin Cao
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Changning Road 865, Shanghai 200050, China
| | - Wei Xu
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Changning Road 865, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of the Chinese Academy of Sciences, Yuquan Road 19, Beijing 100039, China
| | - Qingguo He
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Changning Road 865, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of the Chinese Academy of Sciences, Yuquan Road 19, Beijing 100039, China
| | - Jiangong Cheng
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Changning Road 865, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of the Chinese Academy of Sciences, Yuquan Road 19, Beijing 100039, China
| |
Collapse
|
22
|
Abbinante VM, Zambra M, García-Espejo G, Pipitone C, Giannici F, Milita S, Guagliardi A, Masciocchi N. Molecular Design and Crystal Chemistry of Polyfluorinated Naphthalene-bis-phenylhydrazimides with Superior Thermal and Polymorphic Stability and High Solution Processability. Chemistry 2023; 29:e202203441. [PMID: 36477929 DOI: 10.1002/chem.202203441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
Naphthalene tetracarboxylic diimides (NDIs) are highly promising air-stable n-type molecular semiconductor candidates for flexible and cost-effective organic solar cells and thermoelectrics. Nonetheless, thermal and polymorphic stabilities of environmentally stable NDIs in the low-to-medium temperature regime (<300 °C) remain challenging properties. Structural, thermal, spectroscopic, and computational features of polyfluorinated NDI-based molecular solids (with up to 14 F atoms per NDI molecule) are discussed upon increasing the fluorination level. Slip-stacked arrangement of the NDI cores with suitable π-π stacking and systematically short interplanar distances (<3.2 Å) are found. All these materials exhibit superior thermal stability (up to 260 °C or above) and thermal expansion coefficients indicating a response compatible with flexible polymeric substrates. Optical bandgaps increase from 2.78 to 2.93 eV with fluorination, while LUMO energy levels decrease down to -4.37 eV, as shown per DFT calculations. The compounds exhibit excellent solubility of 30 mg mL-1 in 1,4-dioxane and DMF.
Collapse
Affiliation(s)
- Vincenzo Mirco Abbinante
- Dipartimento di Scienza e Alta Tecnologia & To.Sca.Lab., INSTM Unit, Università dell'Insubria, via Valleggio 11, 22100, Como, Italy
| | - Marco Zambra
- Dipartimento di Scienza e Alta Tecnologia & To.Sca.Lab., INSTM Unit, Università dell'Insubria, via Valleggio 11, 22100, Como, Italy
| | - Gonzalo García-Espejo
- Dipartimento di Scienza e Alta Tecnologia & To.Sca.Lab., INSTM Unit, Università dell'Insubria, via Valleggio 11, 22100, Como, Italy
| | - Candida Pipitone
- Dipartimento di Fisica e Chimica "Emilio Segrè", Università di Palermo, viale delle Scienze, Ed. 17, 90128, Palermo, Italy
| | - Francesco Giannici
- Dipartimento di Fisica e Chimica "Emilio Segrè", Università di Palermo, viale delle Scienze, Ed. 17, 90128, Palermo, Italy
| | - Silvia Milita
- Istituto per la Microelettronica e Microsistemi, Consiglio Nazionale delle Ricerche, via Gobetti 101, 40129, Bologna, Italy
| | - Antonietta Guagliardi
- Istituto di Cristallografia & To.Sca.Lab., INSTM Unit, Consiglio Nazionale delle Ricerche, via Valleggio 11, 22100, Como, Italy
| | - Norberto Masciocchi
- Dipartimento di Scienza e Alta Tecnologia & To.Sca.Lab., INSTM Unit, Università dell'Insubria, via Valleggio 11, 22100, Como, Italy
| |
Collapse
|
23
|
Chen J, Zhang W, Wang L, Yu G. Recent Research Progress of Organic Small-Molecule Semiconductors with High Electron Mobilities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210772. [PMID: 36519670 DOI: 10.1002/adma.202210772] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Organic electronics has made great progress in the past decades, which is inseparable from the innovative development of organic electronic devices and the diversity of organic semiconductor materials. It is worth mentioning that both of these great advances are inextricably linked to the development of organic high-performance semiconductor materials, especially the representative n-type organic small-molecule semiconductor materials with high electron mobilities. The n-type organic small molecules have the advantages of simple synthesis process, strong intermolecular stacking, tunable molecular structure, and easy to functionalize structures. Furthermore, the n-type semiconductor is a remarkable and important component for constructing complementary logic circuits and p-n heterojunction structures. Therefore, n-type organic semiconductors play an extremely important role in the field of organic electronic materials and are the basis for the industrialization of organic electronic functional devices. This review focuses on the modification strategies of organic small molecules with high electron mobility at molecular level, and discusses in detail the applications of n-type small-molecule semiconductor materials with high mobility in organic field-effect transistors, organic light-emitting transistors, organic photodetectors, and gas sensors.
Collapse
Affiliation(s)
- Jiadi Chen
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Weifeng Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liping Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Gui Yu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
24
|
Wang Z, Liu T, Peng H, Fang Y. Advances in Molecular Design and Photophysical Engineering of Perylene Bisimide-Containing Polyads and Multichromophores for Film-Based Fluorescent Sensors. J Phys Chem B 2023; 127:828-837. [PMID: 36692385 DOI: 10.1021/acs.jpcb.2c07815] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Film-based fluorescent sensors (FFSs) represent an important chemistry technology for meeting the urgent needs of on-site and real-time analysis, thereby enabling significant applications in environmental and health monitoring. As the core of FFSs, innovative design of sensing fluorophores and their intrinsic excited-state-related response nature endow FFSs with superior sensing performances in an endless expansion. In this Perspective, we specifically focus on perylene bisimide (PBI)-containing polyads and multichromophores with rigid configuration and notable photochemical stability for developing high-performance FFSs. These nonplanar structures mitigate aggregation and create abundant gaps for the sake of mass transfer and availability of the sensing units in the adlayer of the sensing films. We also comprehensively discuss how to adjust electronic coupling governing the excited-state events by appropriate functionalization strategies, thus providing a plethora of valuable insights for the exploration of the structure-property relationships in these orchestrated molecular systems. Throughout this Perspective, we also identify opportunities for FFSs in the future developments.
Collapse
Affiliation(s)
- Zhaolong Wang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.,State Key Laboratory of Molecular Reaction Dynamics and Dynamics Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Taihong Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Haonan Peng
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| |
Collapse
|
25
|
Li JK, Chen XY, Zhao WL, Guo YL, Zhang Y, Wang XC, Sue ACH, Cao XY, Li M, Chen CF, Wang XY. Synthesis of Highly Luminescent Chiral Nanographene. Angew Chem Int Ed Engl 2023; 62:e202215367. [PMID: 36428269 DOI: 10.1002/anie.202215367] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 11/27/2022]
Abstract
Chiral nanographenes with both high fluorescence quantum yields (ΦF ) and large dissymmetry factors (glum ) are essential to the development of circularly polarized luminescence (CPL) materials. However, most studies have been focused on the improvement of glum , whereas how to design highly emissive chiral nanographenes is still unclear. In this work, we propose a new design strategy to achieve chiral nanographenes with high ΦF by helical π-extension of strongly luminescent chromophores while maintaining the frontier molecular orbital (FMO) distribution pattern. Chiral nanographene with perylene as the core and two dibenzo[6]helicene fragments as the wings has been synthesized, which exhibits a record high ΦF of 93 % among the reported chiral nanographenes and excellent CPL brightness (BCPL ) of 32 M-1 cm-1 .
Collapse
Affiliation(s)
- Ji-Kun Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Xing-Yu Chen
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Wen-Long Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Yun-Long Guo
- Department of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Yi Zhang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Xin-Chang Wang
- Department of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Andrew C-H Sue
- Department of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Xiao-Yu Cao
- Department of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Meng Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Chuan-Feng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Xiao-Ye Wang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 300071, Tianjin, China.,State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, 510640, Guangzhou, China
| |
Collapse
|
26
|
Pedersen VBR, Pedersen SK, Jin Z, Kofod N, Laursen BW, Baryshnikov GV, Nuckolls C, Pittelkow M. Electronic Materials: An Antiaromatic Propeller Made from the Four-Fold Fusion of Tetraoxa[8]circulene and Perylene Diimides. Angew Chem Int Ed Engl 2022; 61:e202212293. [PMID: 36173989 PMCID: PMC9828547 DOI: 10.1002/anie.202212293] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Indexed: 01/12/2023]
Abstract
The synthesis of an antiaromatic tetraoxa[8]circulene annulated with four perylene diimides (PDI), giving a dynamic non-planar π-conjugated system, is described. The molecule contains 32 aromatic rings surrounding one formally antiaromatic planarized cyclooctatetraene (COT). The intense absorption (ϵ=3.35×105 M-1 cm-1 in CH2 Cl2 ) and emission bands are assigned to internal charge-transfer transitions in the combined PDI-circulene π-system. The spectroscopic data is supported by density functional theory calculations, and nuclear independent chemical shift calculation indicate that the antiaromatic COT has increased aromaticity in the reduced state. Electrochemical studies show that the compound can reversibly reach the tetra- and octa-anionic states by reduction of the four PDI units, and the deca-anionic state by reduction of the central COT ring. The material functions effectively in bulk hetero junction solar cells as a non-fullerene acceptor, reaching a power conversion efficiency of 6.4 %.
Collapse
Affiliation(s)
- Viktor B. R. Pedersen
- Department of ChemistryUniversity of CopenhagenUniversitetsparken 52100Copenhagen ØDenmark
| | - Stephan K. Pedersen
- Department of ChemistryUniversity of CopenhagenUniversitetsparken 52100Copenhagen ØDenmark
| | - Zexin Jin
- Department of ChemistryColumbia University3000 BroadwayNew YorkNYUSA
| | - Nicolaj Kofod
- Department of ChemistryUniversity of CopenhagenUniversitetsparken 52100Copenhagen ØDenmark
| | - Bo W. Laursen
- Department of ChemistryUniversity of CopenhagenUniversitetsparken 52100Copenhagen ØDenmark
| | - Glib V. Baryshnikov
- Department of Science and TechnologyLaboratory of Organic ElectronicsLinköping UniversityNorrköpingSE-60174Sweden
| | - Colin Nuckolls
- Department of ChemistryColumbia University3000 BroadwayNew YorkNYUSA
| | - Michael Pittelkow
- Department of ChemistryUniversity of CopenhagenUniversitetsparken 52100Copenhagen ØDenmark
| |
Collapse
|
27
|
Jozeliūnaitė A, Rahmanudin A, Gražulis S, Baudat E, Sivula K, Fazzi D, Orentas E, Sforazzini G. Light-Responsive Oligothiophenes Incorporating Photochromic Torsional Switches. Chemistry 2022; 28:e202202698. [PMID: 36136376 PMCID: PMC9828566 DOI: 10.1002/chem.202202698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Indexed: 01/12/2023]
Abstract
We present a quaterthiophene and sexithiophene that can reversibly change their effective π-conjugation length through photoexcitation. The reported compounds make use of light-responsive molecular actuators consisting of an azobenzene attached to a bithiophene unit by both direct and linker-assisted bonding. Upon exposure to 350 nm light, the azobenzene undergoes trans-to-cis isomerization, thus mechanically inducing the oligothiophene to assume a planar conformation (extended π-conjugation). Exposure to 254 nm wavelength promotes azobenzene cis-to-trans isomerization, forcing the thiophenic backbones to twist out of planarity (confined π-conjugation). Twisted conformations are also reached by cis-to-trans thermal relaxation at a rate that increases proportionally with the conjugation length of the oligothiophene moiety. The molecular conformations of quaterthiophene and sexithiophene were characterized by using steady-state UV-vis spectroscopy, X-ray crystallography and quantum-chemical modeling. Finally, we tested the proposed light-responsive oligothiophenes in field-effect transistors to probe the photo-induced tuning of their electronic properties.
Collapse
Affiliation(s)
- Augustina Jozeliūnaitė
- Laboratory of Macromolecular and Organic Materials, Institute of Material Science and Engineering, Ecole Polytechnique Federale de Lausanne (EPFL), 1015, Lausanne, Switzerland
- Department of Organic Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko 24, LT-0325, Vilnius, Lithuania
| | - Aiman Rahmanudin
- Laboratory for Molecular Engineering of Optoelectronic Nanomaterials, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Federale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Saulius Gražulis
- Vilnius University, Institute of Biotechnology, Saulėtekio al. 7, LT-10257, Vilnius, Lithuania
| | - Emilie Baudat
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Federale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Kevin Sivula
- Laboratory for Molecular Engineering of Optoelectronic Nanomaterials, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Federale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Daniele Fazzi
- Dipartimento di Chimica "Giacomo Ciamician", Università di Bologna, Via F. Selmi, 2, 40126, Bologna, Italy
| | - Edvinas Orentas
- Department of Organic Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko 24, LT-0325, Vilnius, Lithuania
| | - Giuseppe Sforazzini
- Laboratory of Macromolecular and Organic Materials, Institute of Material Science and Engineering, Ecole Polytechnique Federale de Lausanne (EPFL), 1015, Lausanne, Switzerland
- Present address: Department of Chemical and Geological Sciences, University degli Studi di Cagliari, SS 554, bivio per Sestu, 09042, Monserrato, Cagliari, Italy
| |
Collapse
|
28
|
Pavlović RZ, Zhiquan L, Finnegan TJ, Waudby CA, Wang X, Gunawardana VWL, Zhu X, Wong CM, Hamby T, Moore CE, Hoefer N, McComb DW, Sevov CS, Badjić JD. Closed Aromatic Tubes-Capsularenes. Angew Chem Int Ed Engl 2022; 61:e202211304. [PMID: 35981224 PMCID: PMC9825917 DOI: 10.1002/anie.202211304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Indexed: 01/11/2023]
Abstract
In this study, we describe a synthetic method for incorporating arenes into closed tubes that we name capsularenes. First, we prepared vase-shaped molecular baskets 4-7. The baskets comprise a benzene base fused to three bicycle[2.2.1]heptane rings that extend into phthalimide (4), naphthalimide (6), and anthraceneimide sides (7), each carrying a dimethoxyethane acetal group. In the presence of catalytic trifluoroacetic acid (TFA), the acetals at top of 4, 6 and 7 change into aliphatic aldehydes followed by their intramolecular cyclization into 1,3,5-trioxane (1 H NMR spectroscopy). Such ring closure is nearly a quantitative process that furnishes differently sized capsularenes 1 (0.7×0.9 nm), 8 (0.7×1.1 nm;) and 9 (0.7×1.4 nm;) characterized by X-Ray crystallography, microcrystal electron diffraction, UV/Vis, fluorescence, cyclic voltammetry, and thermogravimetry. With exceptional rigidity, unique topology, great thermal stability, and perhaps tuneable optoelectronic characteristics, capsularenes hold promise for the construction of novel organic electronic devices.
Collapse
Affiliation(s)
- Radoslav Z. Pavlović
- Department of Chemistry & BiochemistryThe Ohio State University100W. 18 AvenueColumbusOH 43210USA
| | - Lei Zhiquan
- Department of Chemistry & BiochemistryThe Ohio State University100W. 18 AvenueColumbusOH 43210USA
| | - Tyler J. Finnegan
- Department of Chemistry & BiochemistryThe Ohio State University100W. 18 AvenueColumbusOH 43210USA
| | | | - Xiuze Wang
- Department of Chemistry & BiochemistryThe Ohio State University100W. 18 AvenueColumbusOH 43210USA
| | | | - Xingrong Zhu
- Department of Chemistry & BiochemistryThe Ohio State University100W. 18 AvenueColumbusOH 43210USA
| | - Curt M. Wong
- Department of Chemistry & BiochemistryThe Ohio State University100W. 18 AvenueColumbusOH 43210USA
| | - Taylor Hamby
- Department of Chemistry & BiochemistryThe Ohio State University100W. 18 AvenueColumbusOH 43210USA
| | - Curtis E. Moore
- Department of Chemistry & BiochemistryThe Ohio State University100W. 18 AvenueColumbusOH 43210USA
| | - Nicole Hoefer
- Center for Electron Microscopy and AnalysisThe Ohio State UniversityColumbusOH 43210USA
| | - David W. McComb
- Center for Electron Microscopy and AnalysisThe Ohio State UniversityColumbusOH 43210USA,Department of Materials Science and EngineeringThe Ohio State UniversityColumbusOH 43210USA
| | - Christo S. Sevov
- Department of Chemistry & BiochemistryThe Ohio State University100W. 18 AvenueColumbusOH 43210USA
| | - Jovica D. Badjić
- Department of Chemistry & BiochemistryThe Ohio State University100W. 18 AvenueColumbusOH 43210USA
| |
Collapse
|
29
|
Sun W, Guo J, Fan Z, Yuan L, Ye K, Dou C, Wang Y. Ribbon‐Type Boron‐Doped Polycyclic Aromatic Hydrocarbons: Conformations, Dynamic Complexation and Electronic Properties. Angew Chem Int Ed Engl 2022; 61:e202209271. [DOI: 10.1002/anie.202209271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Wenting Sun
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Jiaxiang Guo
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Zengming Fan
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Liuzhong Yuan
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Kaiqi Ye
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Chuandong Dou
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Yue Wang
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 P. R. China
| |
Collapse
|
30
|
Chen K, Xue N, Liu G, Liu Y, Feng J, Jiang W, Wang Z. Sila-annulated terrylene diimides for balanced ambipolar transporting. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
31
|
Hiroto S, Wakita M, Chujo M. A Strategy for Polar Crystals with Dipolar Heterohelicenes. Chem Asian J 2022; 17:e202200808. [PMID: 36065075 DOI: 10.1002/asia.202200808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/03/2022] [Indexed: 11/03/2022]
Abstract
Polar crystals have attracted interest for the applications to polar materials with piezo- and pyroelectricity, and second harmonic generation. Despite their potential utility for flexible polar materials, a strategy for ordering polar helicenes have remained elusive. Here, we demonstrate creation of polar crystal with unsymmetrically substituted aza[5]helicenes tuned by substituents. The usymmetric aza[5]helicenes have been prepared through regioselective monoprotiodesilylations. We disclosed triisopropylsilyl-substituted derivatives show 1D chain columnar packings. In particular, enantiopure crystals showed spontaneous polarization. Optical and single-crystal X-ray diffraction experiments with other derivatives, as well as theoretical calculations, revealed that the presence of triisopropylsilyl or electron-withdrawing aryl substituents is essential for forming the 1D chain columnar structure. Hirshfeld surface analyses further showed that CH-π interactions between 1D chain columns regulate the polar assembly. Finally, we determined the polarizability of the nitro derivative by ab initio calculation to be 4.53 µC/cm 2 . This value corroborates the first example of a spontaneously polar crystal of helicenes. We believe that this study will contribute to the development of polar materials from organic molecules.
Collapse
Affiliation(s)
- Satoru Hiroto
- Kyoto University, Graduate School of Human and Environmental Studies, Yoshidanihonmatsu-cho, Sakyo-ku, 6068501, Kyoto, JAPAN
| | - Mana Wakita
- Kyoto University, Graduate School of Human and Environmental Studies, JAPAN
| | - Moeko Chujo
- Kyoto University, Graduate School of Human and Environmental Studies, JAPAN
| |
Collapse
|
32
|
Pavlović RZ, Zhiquan L, Finnegan TJ, Waudby CA, Wang X, Gunawardana VWL, Zhu X, Wong CM, Hamby T, Moore CE, Hoefer N, McComb DW, Sevov CS, Badjic JD. Closed Aromatic Tubes ‐ Capsularenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202211304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | - Lei Zhiquan
- The Ohio State University Chemistry and Biochemistry UNITED STATES
| | | | | | - Xiuze Wang
- The Ohio State University Chemistry and Biochemistry UNITED STATES
| | | | - Xingrong Zhu
- The Ohio State University Chemistry and Biochemistry UNITED STATES
| | - Curt M. Wong
- The Ohio State University Chemistry and Biochemistry UNITED STATES
| | - Taylor Hamby
- The Ohio State University Chemistry and Biochemistry UNITED STATES
| | - Curtis E. Moore
- The Ohio State University Chemistry and Biochemistry UNITED STATES
| | - Nicole Hoefer
- The Ohio State University Center for Electron Microscopy and Analysis UNITED STATES
| | - David W McComb
- The Ohio State University Material Science and Engineering UNITED STATES
| | - Christo S. Sevov
- The Ohio State University Chemistry and Biochemistry UNITED STATES
| | - Jovica D Badjic
- Ohio State University Department of Chemistry 100 W. 18th Avenue 43210 Columbus UNITED STATES
| |
Collapse
|
33
|
Sun W, Guo J, Fan Z, Yuan L, Ye K, Dou C, Wang Y. Ribbon‐Type Boron‐Doped Polycyclic Aromatic Hydrocarbons: Conformations, Dynamic Complexation and Electronic Properties. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | | | | | - Kaiqi Ye
- Jilin University College of Chemistry CHINA
| | - Chuandong Dou
- Jilin University State Key Laboratory of Supramolecular Structure and Materials No.2699 Qianjin Street 130012 Changchun CHINA
| | - Yue Wang
- Jilin University College of Chemistry CHINA
| |
Collapse
|
34
|
Abstract
The creation and development of new forms of nanocarbons have fundamentally transformed the scientific landscape in the past three decades. As new members of the nanocarbon family with accurate size, shape, and edge structure, molecular carbon imides (MCIs) have shown unexpected and unique properties. Particularly, the imide functionalization strategy has endowed these rylene-based molecular carbons with fascinating characteristics involving flexible syntheses, tailor-made structures, diverse properties, excellent processability, and good stability. This Perspective elaborates molecular design evolution to functional landscapes, and illustrative examples are given, including a promising library of multi-size and multi-dimensional MCIs with rigidly conjugated π-architectures, ranging from 1D nanoribbon imides and 2D nanographene imides to cross-dimensional MCIs. Although researchers have achieved substantial progress in using MCIs as functional components for exploration of charge transport, photoelectric conversion, and chiral luminescence performances, they are far from unleashing their full potential. Developing highly efficient and regioselective coupling/ring-closure reactions involving the formation of multiple C-C bonds and the annulation of electron-deficient aromatic units is crucial. Prediction by theory with the help of machine learning and artificial intelligence research along with reliable nanotechnology characterization will give an impetus to the blossom of related fields. Future investigations will also have to advance toward─or even focus on─the emerging potential functions, especially in the fields of chiral electronics and spin electronics, which are expected to open new avenues.
Collapse
Affiliation(s)
- Wei Jiang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zhaohui Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
35
|
Li J, Li P, Fan M, Zheng X, Guan J, Yin M. Chirality of Perylene Diimides: Design Strategies and Applications. Angew Chem Int Ed Engl 2022; 61:e202202532. [DOI: 10.1002/anie.202202532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Indexed: 12/13/2022]
Affiliation(s)
- Jie Li
- State Key Laboratory of Chemical Resource Engineering Beijing Laboratory of Biomedical Materials Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Pengyu Li
- State Key Laboratory of Chemical Resource Engineering Beijing Laboratory of Biomedical Materials Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Mingyu Fan
- State Key Laboratory of Chemical Resource Engineering Beijing Laboratory of Biomedical Materials Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Xian Zheng
- State Key Laboratory of Chemical Resource Engineering Beijing Laboratory of Biomedical Materials Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Jun Guan
- Key Lab of Organic Optoelectronics & Molecular Engineering Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Meizhen Yin
- State Key Laboratory of Chemical Resource Engineering Beijing Laboratory of Biomedical Materials Beijing University of Chemical Technology Beijing 100029 P. R. China
| |
Collapse
|
36
|
Liu Y, Ma Z, Wang Z, Jiang W. Boosting Circularly Polarized Luminescence Performance by a Double π-Helix and Heteroannulation. J Am Chem Soc 2022; 144:11397-11404. [PMID: 35715213 DOI: 10.1021/jacs.2c04012] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Design challenges in the development of circularly polarized luminescence (CPL) materials are focused on balancing the luminescence dissymmetry factor (glum) and photoluminescence quantum yield (ΦPL) by regulating the electric (μ) and magnetic (m) transition dipole moment vectors. Aiming at designing efficient CPL emitters and clarifying the chiroptical variation mechanism, herein, we present a double π-helix based on a cyclooctatetraene-embedded perylene diimide dimer that combines chirality with molecular entanglement and very high barriers for racemization. Through finely regulating the magnitudes of μ and m, the maximal dissymmetry factors |gabs| and |glum| can be boosted to 0.035 and 0.030, respectively, as revealed by circular dichroism (CD) and CPL spectra. The results indicate a 3-fold improvement of g values and a modulated ΦPL from 1a, 4, to 5 by nitrogen heteroannulation at the bay region. The CPL brightness (BCPL) of 5 reaches a recorded value of up to 573.4 M-1 cm-1, among the highest values of chiral small molecules reported so far. This work has provided a comprehensive insight into a new class of chiral materials with high CPL activities, further laying molecular fundamentals for chiral optoelectronics.
Collapse
Affiliation(s)
- Yujian Liu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zetong Ma
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Zhaohui Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Wei Jiang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
37
|
Li J, Li P, Fan M, Zheng X, Guan J, Yin M. Chirality of Perylene Diimides: Design Strategies and Applications. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jie Li
- Beijing University of Chemical Technology College of Materials Science and Engineering 100029 Beijing CHINA
| | - Pengyu Li
- Beijing University of Chemical Technology College of Materials Science and Engineering CHINA
| | - Mingyu Fan
- Beijing University of Chemical Technology College of Materials Science and Engineering CHINA
| | - Xian Zheng
- Beijing University of Chemical Technology College of Materials Science and Engineering CHINA
| | - Jun Guan
- Tsinghua University Department of Chemistry CHINA
| | - Meizhen Yin
- Beijing University of Chemical Technology College of Materials Science and Engineering No. 15 Bei San Huan Dong Lu 100029 Beijing CHINA
| |
Collapse
|
38
|
Bracciale MP, Kwon G, Ho D, Kim C, Santarelli ML, Marrocchi A. Synthesis, Characterization, and Thin-Film Transistor Response of Benzo[i]pentahelicene-3,6-dione. Molecules 2022; 27:863. [PMID: 35164123 PMCID: PMC8840029 DOI: 10.3390/molecules27030863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 12/16/2022] Open
Abstract
Organic semiconductors hold the promise of simple, large area solution deposition, low thermal budgets as well as compatibility with flexible substrates, thus emerging as viable alternatives for cost-effective (opto)-electronic devices. In this study, we report the optimized synthesis and characterization of a helically shaped polycyclic aromatic compound, namely benzo[i]pentahelicene-3,6-dione, and explored its use in the fabrication of organic field effect transistors. In addition, we investigated its thermal, optical absorption, and electrochemical properties. Finally, the single crystal X-ray characterization is reported.
Collapse
Affiliation(s)
- Maria Paola Bracciale
- Department of Chemical Engineering Materials and Environment, University of Rome “Sapienza”, Via Eudossiana 18, 00184 Rome, Italy;
| | - Guhyun Kwon
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea; (G.K.); (D.H.); (C.K.)
| | - Dongil Ho
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea; (G.K.); (D.H.); (C.K.)
| | - Choongik Kim
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea; (G.K.); (D.H.); (C.K.)
| | - Maria Laura Santarelli
- Department of Chemical Engineering Materials and Environment, University of Rome “Sapienza”, Via Eudossiana 18, 00184 Rome, Italy;
| | - Assunta Marrocchi
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| |
Collapse
|