1
|
Di L, Jiang Y, Song Q, Sun W, Xing Y, Yang Z, Xia Z, Zhang T, Chen X. Rotor proliferation promotes high-brightness AIE of iridium emitter accomplishing high-contrast luminous imaging of latent fingerprints to level 3 details. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 325:125145. [PMID: 39299072 DOI: 10.1016/j.saa.2024.125145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
Luminous imaging of latent fingerprints (LFPs) necessitates the possession of high-brightness aggregation-state luminescence by developers to ensure sufficient imaging contrast and resolution. A novel strategy involving incremental rotor modification is presented for AIE activation of the iridium developer. The rotor proliferation prominently improves the rotational activity of groups and facilitates high-efficiency RIM, thereby prompting the AIE activation of iridium developer with high luminous efficiency. Subsequently, a prompt, high-contrast, and robust LFP imaging protocol is developed utilizing the high-brightness AIE-active iridium developer. This innovative protocol realizes the luminous imaging and quantification of microscopic features in fingerprint ridges and furrows, including ridge widths, edge morphology of ridges, included angles, pores, and pore pitches with exceptional imaging contrast and refined detail resolution. Moreover, it allows for accurate identification of individual traits across diverse substrates without any pre-/post-processing to LFPs. The high-brightness AIE-active iridium developer provides outstanding aging resistance to developed fingerprints, thereby strongly supporting the acquisition, transfer, and preservation of fingerprint evidence. The luminous imaging protocol of LFPs based on high-brightness AIE exhibits robust adaptability to actual scenes and offers a premium scheme for facilitating forensic investigation.
Collapse
Affiliation(s)
- Ling Di
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China
| | - Yingnan Jiang
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China
| | - Qi Song
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China
| | - Wen Sun
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China
| | - Yang Xing
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China.
| | - Zhanxu Yang
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China.
| | - Zhengqiang Xia
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China.
| | - Ting Zhang
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang 110001, China.
| | - Xuebing Chen
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China
| |
Collapse
|
2
|
Xu W, Du Y, Ma H, Tang X, Ou Q, Xu JF, Zhang X. Generation of Triplet States by Host-Stabilized Through-Space Conjugation for the Construction of Efficient Supramolecular Photocatalysts. Angew Chem Int Ed Engl 2025; 64:e202413129. [PMID: 39240087 DOI: 10.1002/anie.202413129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/04/2024] [Accepted: 09/04/2024] [Indexed: 09/07/2024]
Abstract
Promoting the generation of triplet states is essential for developing efficient photocatalytic systems. This research presents a novel approach of host-stabilized through-space conjugation via the combination of covalent and non-covalent methods. The designed building block, 4,4'-(1,4(1,4)-dibenzene cyclohexaphane-1,4-diyl)bis(1-phenylpyridinium) chloride, features inherently stable through-space conjugation. When this block forms a 1 : 1 host-guest complex with cucurbit[8]uril, the through-space conjugation is further stabilized within the confined cavity. Both the generation and lifetime of triplet state are significantly increased, resulting from the host-stabilized through-space conjugation. Additionally, the ultrahigh binding constant of 6.58×1014 M-1 ensures the persistence of host-stabilization effect. As a result, the host-guest complex acts as a highly efficient catalyst in the photocatalytic oxidation of thioether and aromatic alcohol. In the photodegradation of lignin, a complex natural product, the host-guest complex also exhibits high efficiency, demonstrating its robustness. This line of research is anticipated to enrich the toolbox of supramolecular photochemistry and provide a strategy for fabricating efficient supramolecular photocatalysts.
Collapse
Affiliation(s)
- Weiquan Xu
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Yinghao Du
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - He Ma
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Xingchen Tang
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Qi Ou
- SINOPEC Research Institute of Petroleum Processing Co., Ltd, 100083, Beijing, China
| | - Jiang-Fei Xu
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Xi Zhang
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, 100084, Beijing, China
| |
Collapse
|
3
|
Yu S, Li L, Kong Q, Zhang W, Chen H, Zhang X, Kong J. Reversible addition-fragmentation chain transfer enhanced aggregation signal-on fluorescence detection of alkaline phosphatase. Anal Bioanal Chem 2025; 417:119-130. [PMID: 39511014 DOI: 10.1007/s00216-024-05630-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/15/2024]
Abstract
The instability of the signal intensity of fluorescent biosensors and the false signals have been significant factors affecting the performance of biosensors. Herein, a novel signaling system is devised through the application of reversible addition-fragmentation chain transfer (RAFT) polymerization with monomers containing the tetraphenylethylene (TPE) groups. TPE exhibits an aggregation-induced emission (AIE) phenomenon in certain solvents, mainly due to the blockage of the rotation of its four benzene rings, which also exist in the aggregated state. With this property, a series of molecules are modified based on click chemistry for RAFT polymerization using Fe3O4 magnetic beads as the carriers, and stable aggregated luminescent TPE polymers are formed on the surface of magnetic beads to realize the transformation of fluorescence signal from "0" to "1". In addition, the fluorescence signal demonstrates a positive correlation with alkaline phosphatase (ALP) activity, which can be quantified by measuring the fluorescence intensity. The biosensor exhibits high sensitivity and good linearity in the range of 0.1-5 U/L, with a LOD of 0.079 U/L. Furthermore, the designed strategy demonstrated satisfactory performance in the quantitative determination of ALP activity in serum samples, indicating that the signaling system developed by combining RAFT polymerization and AIE molecules has an important application in the field of fluorescent biosensors.
Collapse
Affiliation(s)
- Shuaibing Yu
- College of the Environment & Ecology, Jiangsu Open University, Nanjing, 210017, PR China
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Lianzhi Li
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, PR China
| | - Qiyun Kong
- Hwa Chong Institution, 661 Bukit Timah Road, Singapore, 269734, Singapore
| | - Wenqi Zhang
- College of the Environment & Ecology, Jiangsu Open University, Nanjing, 210017, PR China
| | - Huan Chen
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Xueji Zhang
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, PR China
| | - Jinming Kong
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China.
| |
Collapse
|
4
|
Bai L, Ge X, Li H, Ma X, Gao J, Yan H, Liu X, Zhao S, Yang H, Yu C, Li J. Intrinsic Multicolor Emissive Aliphatic Linear Polyphosphate Esters From the Charge-Transfer-Induced Enhanced Spatial Electronic Communication. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2410081. [PMID: 39703054 DOI: 10.1002/smll.202410081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/10/2024] [Indexed: 12/21/2024]
Abstract
Unconventional fluorescent polymers are attracting increasing attention because of their excellent biocompatibility and wide applications. However, these polymers typically exhibit weak long-wavelength emission. Herein, three novel aliphatic linear polyphosphate esters are prepared via a one-pot polycondensation reaction. Such polymers can generate strong blue, green, yellow, and red fluorescence under different excitations. Experimental and theoretical results showed that the cluster of C═C and phosphate ester groups attracted the negative charge of isolated functional groups, and the alkane chains and hydrogen atoms also provided a negative charge for spatial electronic communication. Then, intrinsic fluorescence arises from the charge-transfer-induced enhanced spatial electronic communication. Additionally, these polymers show potential applications in fluorescence film, ion detection, bacteria imaging, and visualization of the NaCl crystallization process. This work provides a universal design strategy for developing strong long-wavelength emissive polymers and gains new insight into intrinsic emission mechanisms.
Collapse
Affiliation(s)
- Lihua Bai
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Xiaoqian Ge
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Hengyu Li
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Xiangtao Ma
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Jiyan Gao
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Hongxia Yan
- Key Laboratory of Polymer Science and Technology of Shaanxi Province, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Xiangrong Liu
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Shunsheng Zhao
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Hui Yang
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Chunxia Yu
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Juanmin Li
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, China
| |
Collapse
|
5
|
Hernández‐Rodríguez J, Daría AMS, Alquegui MS, González‐Sánchez L, Gómez S. Role of Dark States and Stokes Shift Simulations for Tetraphenylpyrazine Compared to Other Donor-Acceptor Photosensitizers. Chemphyschem 2024; 25:e202400563. [PMID: 39088312 PMCID: PMC11614373 DOI: 10.1002/cphc.202400563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/01/2024] [Accepted: 08/01/2024] [Indexed: 08/03/2024]
Abstract
An excellent agreement for simulated and measured absorption and emission spectra is found for four donor-acceptor aromatic molecules (tetraphenylpyrazine, tetraphenylethene, distirylanthracene and hexaphenylsilole) whose derivatives serve as solid state photosensitizers. After comparing several hybrid TDDFT functionals, EOM-CCSD, and experiments, the best agreement was found with TD-B3LYP and double zeta basis sets (6-31G** and def2-SVP) for one molecule in gas phase. A full characterisation of twelve to twenty electronic excited states was performed in every system. Symmetry-forbidden bands are found in the absorption spectra by sampling fifty to hundred geometries from a Wigner distribution. The density of states in the region 2-6 eV was also analysed, showing a very packed region of excited states and suggesting that dark electronic states may play a role in the dynamics of some of the photoexcited systems. Further calculations were done with QM/xTB at geometries extracted from previously published X-ray data to evaluate the influence of the environment on the excitations of the four aggregated molecular crystals.
Collapse
Affiliation(s)
| | | | | | | | - Sandra Gómez
- Departamento de Química FísicaUniversidad de Salamanca37008SalamancaSpain
| |
Collapse
|
6
|
Zhou Z, Zhang L, Peng L, Li Y, Zhu X, Wu Y, Qiu Z, He G, Qin M, Peng H, Fang Y. Dynamic response and discrimination of gaseous sarin using a boron‐difluoride complex film‐based fluorescence sensor. AGGREGATE 2024; 5. [DOI: 10.1002/agt2.629] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
AbstractThis study presents a novel boron‐difluoride complex‐based fluorescent nanofilm sensor capable of detecting sarin vapors in the environment by reporting an output fluorescence signal. The sensor's evaluation demonstrated an exceptionally low detection limit for sarin vapor, even in the presence of various interfering gases, with theoretical and practical limits of detection of 0.7 and 1 ppb, respectively. The sensor featured a rapid response time (less than 2 s), a broad linear detection range (1 ppb–1000 ppm), and superior selectivity for sarin vapor over a group of interfering analytes, outperforming existing sarin sensors. Mechanistic study indicates that the sensor's heightened sensitivity to sarin vapor is due to the robust affinity of nitrogen atoms within the core BODIQ unit for sarin. Additionally, the tetraphenylethylene structure with steric hindrance effectively inhibits the tight packing of BODIQ derivatives, and forms numerous microporous structures in the self‐assembled nanofilm, which are beneficial for the mass transfer, enhancing the sensor efficiency in detecting vapors. Furthermore, we have achieved the differentiation of sarin, diethyl chlorophosphate, and HCl vapor through the analysis of sensing kinetic. This fluorescent sensor opens new avenues for sustainable, low‐cost, and environment‐friendly portable devices, as well as for environmental monitoring and tracking applications.
Collapse
Affiliation(s)
- Zhijie Zhou
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education) School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an Shaanxi P. R. China
| | - Lei Zhang
- School of Optoelectronic Engineering Xidian University Xi'an Shaanxi P. R. China
| | - Lingya Peng
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education) School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an Shaanxi P. R. China
| | - Yingjie Li
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education) School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an Shaanxi P. R. China
| | - Xiaolin Zhu
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education) School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an Shaanxi P. R. China
| | - Yidi Wu
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education) School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an Shaanxi P. R. China
| | - Zebiao Qiu
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education) School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an Shaanxi P. R. China
| | - Gang He
- Frontier Institute of Science and Technology State Key Laboratory for Strength and Vibration of Mechanical Structures Xi'an Jiaotong University Xi'an Shaanxi P. R. China
| | - Molin Qin
- State Key Laboratory of NBC Protection for Civilian Beijing P. R. China
| | - Haonan Peng
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education) School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an Shaanxi P. R. China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education) School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an Shaanxi P. R. China
| |
Collapse
|
7
|
Luo S, Zhao L, Li Z, Chen Z, Wang H, Fang F, Li H, Li X, Yu X. Construction of Luminescent Terpyridine-Based Metallo-Bowties with Alkyl Chain-Bridged Dimerized Building Blocks. Chemistry 2024:e202403783. [PMID: 39532691 DOI: 10.1002/chem.202403783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 11/16/2024]
Abstract
Numerous metallo-supramolecules with well-defined sizes and shapes have been successfully constructed via the strong coordination interaction between terpyridine (TPY) moieties and ruthenium cations. However, the pseudo-octahedral geometry of unit hampers the luminescent properties of such metallo-architectures, thus limiting their applications as optical materials. To address this issue, we herein use a flexible alkyl chain to bridge TPY building blocks, replacing conventional linkage. The introduction of alkyl chain guides the self-assembly into desired architecture while simultaneously eliminating the quenching effects typically associated with the linkage. More importantly, this design strategy enables the precise construction of bowtie-shaped metallo-supramolecules with significantly enhanced emission. The incorporation of alkyl chain linkage not only maintains structural integrity but also enhances optical performance, making these metallo-supramolecular assemblies highly promising for applications in advanced photonic and luminescent materials. This study offers a versatile approach to construct complex metallo-supramolecular architectures with desired optical properties.
Collapse
Affiliation(s)
- Siqi Luo
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Lingang Zhao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Zhikai Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Zhi Chen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Heng Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Fang Fang
- Instrumental Analysis Center, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Hang Li
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen, Guangdong, 518055, China
| | - Xiujun Yu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| |
Collapse
|
8
|
Dou L, Wang X, Bai Y, Li Q, Luo L, Yu W, Wang Z, Wen K, Shen J. Mussel-like polydopamine-assisted aggregation-induced emission nanodot for enhanced broad-spectrum antimicrobial activity: In vitro and in vivo validation. Int J Biol Macromol 2024; 282:136762. [PMID: 39486741 DOI: 10.1016/j.ijbiomac.2024.136762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/22/2024] [Accepted: 10/19/2024] [Indexed: 11/04/2024]
Abstract
Emerging luminogens with aggregation-induced emission properties, namely AIEgens, demonstrated excellent anti-bacteria activity potential. However, their application still limited by the low antibacterial activity caused by the poor binding with bacteria. Polydopamine (PDA), an important biological macromolecule, possesses superior adhesion ability toward various material surface, including bacteria. In this study, the novel mussel-like PDA-assisted AIE Nanodot was proposed, achieving with robust bacterial binding ability and enhanced broad-spectrum antibacterial activity. Binding ability inherited from the PDA enables the constructed PDA-assisted AIE Nanodot to adhere efficiently to the bacterial membrane surface. Meanwhile, the AIE properties endowed them with monitoring capability, allowing for tracking their interaction with bacteria through facile fluorescence imaging in real time. More importantly, excellent killing of both Gram-positive and Gram-negative bacteria were successfully achieved in vitro antibacterial tests with excellent biocompatibility. Furthermore, in the treatment of Methicillin-resistant S. aureus (MRSA)-infected mouse-wound model, the mice exhibited accelerated wound healing with low bacterial load. This novel integrated strategy introduced a simple but effectively design to enhance the binding and antibacterial ability of AIEgens and would diversify the existing pool of antibacterial agents.
Collapse
Affiliation(s)
- Leina Dou
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, Beijing 100193, China; College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shanxi, China
| | - Xiaonan Wang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, Beijing 100193, China
| | - Yuchen Bai
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, Beijing 100193, China
| | - Qing Li
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, Beijing 100193, China
| | - Liang Luo
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, Beijing 100193, China
| | - Wenbo Yu
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, Beijing 100193, China
| | - Zhanhui Wang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, Beijing 100193, China
| | - Kai Wen
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, Beijing 100193, China.
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, Beijing 100193, China.
| |
Collapse
|
9
|
He Z, Huang Z, Li T, Song J, Wu J, Ma X. Achieving Tunable Monomeric TADF and Aggregated RTP via Molecular Stacking. ACS APPLIED MATERIALS & INTERFACES 2024; 16:54742-54750. [PMID: 39324810 DOI: 10.1021/acsami.4c14265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Organic emitters with both thermally activated delayed fluorescence (TADF) and room-temperature phosphorescence (RTP) have attracted widespread interest for their intriguing luminescent properties. Herein, a series of triphenylamine-substituted isoquinoline derivatives possessing monomeric TADF and aggregated RTP properties are reported. As the molecules exhibited various forms of π-π and charge transfer (CT) stacking with different intensities, inter/intramolecular CT can be meticulously modulated to achieve tunable TADF-RTP. Aggregated phosphorescence originates from intermolecular CT initiated by CT dimers, whereas monomeric TADF is facilitated by intramolecular CT enhanced by π-π dimers. Leveraging the properties of these molecules, luminescent materials with tunable TADF-RTP properties in multistates are obtained by molecular substitution position alignment, dealing with different solvents, grinding, adjusting concentration, changing polymer matrix, photoactivation, and heat treatment. This work is critical for a deeper understanding of construction and regulation of the TADF-RTP dual-channel emission, enabling the development of advanced optoelectronic devices with tailored emission properties.
Collapse
Affiliation(s)
- Zhenyi He
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai 200237, China
| | - Zizhao Huang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai 200237, China
| | - Tao Li
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai 200237, China
| | - Jinming Song
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai 200237, China
| | - Junfeng Wu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai 200237, China
| | - Xiang Ma
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai 200237, China
| |
Collapse
|
10
|
Mori H, Jinnai S, Hosoda Y, Muraoka A, Nakayama KI, Saeki A, Ie Y. A Dibenzo[g,p]chrysene-Based Organic Semiconductor with Small Exciton Binding Energy via Molecular Aggregation. Angew Chem Int Ed Engl 2024; 63:e202409964. [PMID: 38994550 DOI: 10.1002/anie.202409964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/13/2024]
Abstract
Exciton binding energy (Eb) is understood as the energy required to dissociate an exciton in free-charge carriers, and is known to be an important parameter in determining the performance of organic opto-electronic devices. However, the development of a molecular design to achieve a small level of Eb in the solid state continues to lag behind. Here, to investigate the relationship between aggregation and Eb, star-shaped π-conjugated compounds DBC-RD and TPE-RD were developed using dibenzo[g,p]chrysene (DBC) and tetraphenylethylene (TPE). Theoretical calculations and physical measurements in solution showed no apparent differences between DBC-RD and TPE-RD, indicating that these molecules possess similar properties on a single-molecule level. By contrast, pristine films incorporating these molecules showed significantly different levels of electron affinity, ionization potential, and optical gap. Also, DBC-RD had a smaller Eb value of 0.24 eV compared with that of TPE-RD (0.42 eV). However, these molecules showed similar Eb values under dispersed conditions, which suggested that the decreased Eb of DBC-RD in pristine film is induced by molecular aggregation. By comparison with TPE-RD, DBC-RD showed superior performances in single-component organic solar cells and organic photocatalysts. These results indicate that a molecular design suitable for aggregation is important to decrease the Eb in films.
Collapse
Affiliation(s)
- Hiroki Mori
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University 8-1, Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Seihou Jinnai
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University 8-1, Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yasushi Hosoda
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University 8-1, Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Azusa Muraoka
- Department of Mathematics, Physics and Computer Science, Japan Women's University, 2-8-1, Mejirodai, Bunkyo-ku, Tokyo, 112-8681, Japan
| | - Ken-Ichi Nakayama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Akinori Saeki
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yutaka Ie
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University 8-1, Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
11
|
Huang Z, Zhu Z, Liu L, Song W, Chen X. Preparation of viromimetic rod-like nanoparticle vaccines (RLNVax) and study of their humoral immune activation efficacy. Biomater Sci 2024; 12:5115-5122. [PMID: 39225616 DOI: 10.1039/d4bm00827h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Virus-like nanoparticle vaccines can efficiently activate the humoral immune response by cross-linking B cell receptors with their surface multivalent antigen arrays. This structurally dependent mechanism makes it crucial to regulate and optimize structural parameters to enhance the efficacy of nanoparticle vaccines. In this study, we prepared nanoparticle vaccines with different aspect ratios by chemically modifying antigen proteins onto the surfaces of poly(amino acid) nanoparticles of various shapes (spherical, ellipsoidal, and rod-like). This allowed us to investigate the impact of structural anisotropy on the humoral immune activation efficacy of nanoparticle vaccines. Furthermore, the end-group molecules of poly(amino acid) materials possess aggregation-induced emission (AIE) properties, which facilitate monitoring the dynamics of nano-assemblies within the body. Results showed that rod-like nanoparticle vaccines (RLNVax) with a higher aspect ratio (AR = 5) exhibited greater lymph node draining efficiency and could elicit more effective B cell activation compared to conventional isotropic spherical nanoparticle vaccines. In a murine subcutaneous immunization model using ovalbumin (OVA) as a model antigen, RLNVax elicited antigen-specific antibody titers that were about 64 times and 4.6 times higher than those induced by free antigen proteins and spherical nanoparticle vaccines, respectively. Additionally, when combined with an aluminum adjuvant, antibody titers elicited by RLNVax were further enhanced by 4-fold. These findings indicate that the anisotropic rod-like structure is advantageous for improving the humoral immune activation efficacy of nanoparticle vaccines, providing significant insights for the design and optimization of next-generation nanoparticle vaccines.
Collapse
Affiliation(s)
- Zichao Huang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Zhenyi Zhu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Liping Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Wantong Song
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun, 130022, China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun, 130022, China
| |
Collapse
|
12
|
Zhang Y, Wang W. Interplay Between the N→C Dative Bond, Intramolecular Chalcogen Bond and π Conjugation in the Complexes Formed by Cyclo[18]carbon and C 14 Polyyne with 1,2,5-Chalcogenadiazoles. Chempluschem 2024:e202400557. [PMID: 39301590 DOI: 10.1002/cplu.202400557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/15/2024] [Accepted: 09/20/2024] [Indexed: 09/22/2024]
Abstract
The N→C dative bond (DB), intramolecular chalcogen bond and π conjugation play important roles in determining the structures and properties of some molecular carbon materials and organic/polymeric photovoltaic materials. In this work, the interplay between the N→C DB, intramolecular chalcogen bond and π conjugation in the complexes formed by cyclo[18]carbon and C14 polyyne with 1,2,5-chalcogenadiazoles has been investigated in detail by using reliable quantum chemical calculations. This study has made four main findings. First, only the Te-containing complexes bound by N→C DBs are much more stable than their corresponding van der Waals (vdW) complexes. Second, in addition to through-bond π conjugations, through-space π conjugations also exist in some Se/Te-containing complexes bound by N→C DBs. Third, the cooperativity between intramolecular chalcogen bond, π conjugation between two monomers and N→C DB is not very strong and can be ignored. Fourth, compared to π conjugations, intramolecular Ch⋅⋅⋅C (Ch=O, S, Se, Te) chalcogen bonds play a secondary role in stabilizing the complexes bound by N→C DBs. These findings clearly indicate that the role of "conformational lock", popular in the field of organic optoelectronic materials, may have been greatly overestimated.
Collapse
Affiliation(s)
- Yu Zhang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, 471934, China
| | - Weizhou Wang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, 471934, China
| |
Collapse
|
13
|
Zhang S, Ma F, Jiang J, Wang Z, Kwok RTK, Qiu Z, Zhao Z, Lam JWY, Tang BZ. Aggregative Luminescence from CsPbBr 3 Perovskite Precursors. Angew Chem Int Ed Engl 2024; 63:e202408586. [PMID: 38853460 DOI: 10.1002/anie.202408586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
Understanding the properties of the precursor can provide deeper insight into the crystallization and nucleation mechanisms of perovskites, which is vital for the solution-process device performance. Herein, we conducted a detailed investigation into the photophysics properties of CsPbBr3 precursors in a broad concentration and various solvents. The precursor transformed from the solution state into the colloidal state and exhibited aggregation-induced emission character as the concentration increased. The aggregative luminescence from the precursors originates from the polybromide plumbous that is formed through the coordination of solvent molecules to the lead metal center. Two adducts with monodentate (PbBr2 ⋅ solvent) and bidentate (PbBr2 ⋅ 2solvent) ligands can be obtained, accompanied by emission with photoluminescence at 610 and 565 nm, respectively. Furthermore, the aggregative luminescence intensity and color could be regulated by changing the solvent and precursor ratio. Besides, we discussed the difference between the molecular aggregate in the organic system and the ionic aggregate in the inorganic system: the ionic aggregate is composed of solvated ions rather than individual molecules as in organic systems, which could possess properties that ions do not have. The fluorescence that is sensitive to Pb2+ coordination reported here could be applied to screen perovskite additives and judge the precursor aging.
Collapse
Affiliation(s)
- Siwei Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, 999077, Hong Kong, P. R. China
| | - Fulong Ma
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, 999077, Hong Kong, P. R. China
| | - Jinhui Jiang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, 999077, Hong Kong, P. R. China
| | - Zaiyu Wang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, 999077, Hong Kong, P. R. China
| | - Ryan T K Kwok
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, 999077, Hong Kong, P. R. China
| | - Zijie Qiu
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, 518172, P. R. China
| | - Zheng Zhao
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, 518172, P. R. China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, 999077, Hong Kong, P. R. China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, 999077, Hong Kong, P. R. China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, 518172, P. R. China
| |
Collapse
|
14
|
Shen P, Jiao S, Zhuang Z, Dong X, Song S, Li J, Tang BZ, Zhao Z. Switchable Dual Circularly Polarized Luminescence in Through-Space Conjugated Chiral Foldamers. Angew Chem Int Ed Engl 2024; 63:e202407605. [PMID: 38698703 DOI: 10.1002/anie.202407605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/02/2024] [Accepted: 05/02/2024] [Indexed: 05/05/2024]
Abstract
Organic materials with switchable dual circularly polarized luminescence (CPL) are highly desired because they can not only directly radiate tunable circularly polarized light themselves but also induce CPL for guests by providing a chiral environment in self-assembled structures or serving as the hosts for energy transfer systems. However, most organic molecules only exhibit single CPL and it remains challenging to develop organic molecules with dual CPL. Herein, novel through-space conjugated chiral foldamers are constructed by attaching two biphenyl arms to the 9,10-positions of phenanthrene, and switchable dual CPL with opposite signs at different emission wavelengths are successfully realized in the foldamers containing high-polarizability substitutes (cyano, methylthiol and methylsulfonyl). The combined experimental and computational results demonstrate that the intramolecular through-space conjugation has significant contributions to stabilizing the folded conformations. Upon photoexcitation in high-polar solvents, strong interactions between the biphenyl arms substituted with cyano, methylthio or methylsulfonyl and the polar environment induce conformation transformation for the foldamers, resulting in two transformable secondary structures of opposite chirality, accounting for the dual CPL with opposite signs. These findings highlight the important influence of the secondary structures on the chiroptical property of the foldamers and pave a new avenue towards efficient and tunable dual CPL materials.
Collapse
Affiliation(s)
- Pingchuan Shen
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Nanyang, 637371, Singapore
| | - Shaoshao Jiao
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Zeyan Zhuang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Nanyang, 637371, Singapore
| | - Xiaobin Dong
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Shaoxin Song
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Jinshi Li
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
15
|
Wang Y, Zhang J, Xu Q, Tu W, Wang L, Xie Y, Sun JZ, Huang F, Zhang H, Tang BZ. Narrowband clusteroluminescence with 100% quantum yield enabled by through-space conjugation of asymmetric conformation. Nat Commun 2024; 15:6426. [PMID: 39080355 PMCID: PMC11289101 DOI: 10.1038/s41467-024-50815-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024] Open
Abstract
Different from traditional organic luminescent materials based on covalent delocalization, clusteroluminescence from nonconjugated luminogens relies on noncovalent through-space conjugation of electrons. However, such spatial electron delocalization is usually weak, resulting in low luminescent efficiency and board emission peak due to multiple vibrational energy levels. Herein, several nonconjugated luminogens are constructed by employing biphenyl as the building unit to reveal the structure-property relationship and solve current challenges. The intramolecular through-space conjugation can be gradually strengthened by introducing building units and stabilized by rigid molecular skeleton and multiple intermolecular interactions. Surprisingly, narrowband clusteroluminescence with full width at half-maximum of 40 nm and 100% efficiency is successfully achieved via an asymmetric conformation, exhibiting comparable performance to the traditional conjugated luminogens. This work realizes highly efficient and narrowband clusteroluminescence from nonconjugated luminogens and highlights the essential role of structural conformation in manipulating the photophysical properties of unconventional luminescent materials.
Collapse
Affiliation(s)
- Yipu Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Jianyu Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Hong Kong, 999077, China
| | - Qingyang Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
- Centre of Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing, 312000, China
| | - Weihao Tu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
- Centre of Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing, 312000, China
| | - Lei Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Yuan Xie
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Jing Zhi Sun
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- Centre of Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing, 312000, China
| | - Feihe Huang
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Haoke Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China.
- Centre of Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing, 312000, China.
| | - Ben Zhong Tang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Hong Kong, 999077, China.
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-SZ), Guangzhou, 518172, China.
| |
Collapse
|
16
|
Jiang Z, Kuninobu Y. Synthesis of a novel twisted π-conjugated macrocycle via double Friedel-Crafts reaction and its physical properties. Chem Commun (Camb) 2024; 60:7642-7645. [PMID: 38963239 DOI: 10.1039/d4cc00890a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
We synthesized a cyclic molecule from diarylalkynes and Meldrum's acid derivatives as the methylenation reagent via double Friedel-Crafts reaction. Single-crystal X-ray structure analysis confirmed the twisted structure of the molecule. We also investigated their physical properties and homoconjugation by UV-Vis, photoluminescence, DFT and TD-DFT calculations.
Collapse
Affiliation(s)
- Zhiyan Jiang
- Department of Interdisciplinary Engineering Sciences, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga-Shi, Fukuoka 816-8580, Japan
| | - Yoichiro Kuninobu
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasugakoen, Kasuga-Shi, Fukuoka 816-8580, Japan.
- Department of Interdisciplinary Engineering Sciences, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga-Shi, Fukuoka 816-8580, Japan
| |
Collapse
|
17
|
Min F, He J, Zhou W, Wang D, Xie S, Chu Z, Zeng Z. Unique Fluorescence of Aggregation-Induced Emission Luminogens on Solid Surfaces Modified by Silicone Nanofilaments. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:14548-14554. [PMID: 38963797 DOI: 10.1021/acs.langmuir.4c01411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Aggregation-induced emission (AIE) has revolutionized solid-state fluorescence by overcoming the limitations of aggregation-caused quenching. While extensively studied in solutions, AIE's potential on solid surfaces remains largely unexplored, which can be fundamentally interesting and practically useful. In this work, we demonstrate the successful dispersion of tetraphenylethylene (TPE), one of the most classical AIE luminogens, on solid surfaces coated with silicone nanofilaments (SNF). The high surface area of SNF enables the uniform immobilization of TPE luminogens, replicating their dispersal behavior in solutions. Compared to unmodified surfaces, TPE dispersed on SNF-coated surfaces exhibits significantly enhanced fluorescence intensity. Moreover, a fascinating dynamic blue shift in TPE emission on SNF-coated surfaces is observed, with the velocity controllable by the surface group of SNF by up to 4 orders of magnitude, showing that TPE can be applied to the judgment of the nanoscale morphology and surface free energy of the solid surface. Owing to the superhydrophobicity and self-cleaning properties of SNF, the on-surface fluorescence can be sustained underwater and is resistant to dust contamination and rain erosion, with potential applications of information encryption presented. Our approach of uniformly dispersing AIE luminogens on nanomaterials with high surface areas provides a general methodology for creating on-surface fluorescence and saving the usage of expensive AIE luminogens in applications.
Collapse
Affiliation(s)
- Fan Min
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, China
| | - Jinzhi He
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Wenting Zhou
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Deqi Wang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Sheng Xie
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Zonglin Chu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, China
| | - Zebing Zeng
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- Shenzhen Research Institute of Hunan University, Guangzhou 518000, China
| |
Collapse
|
18
|
Zhou M, Hadjichristidis N. Boron-Catalyzed C1 Copolymerization of Arsonium and Sulfoxonium Ylides toward Unrepresented Structures and Fluorescence Properties. Angew Chem Int Ed Engl 2024; 63:e202403527. [PMID: 38648110 DOI: 10.1002/anie.202403527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/21/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
The first synthesis of well-defined poly(methylene-co-1,1-diphenylpropenenylene) (C1-co-C1'), equivalent to poly(ethylene-co-diphenylbutadiene) copolymers was accomplished by C1 copolymerization of novel diphenylpropenyl triphenyl arsonium ylides (Ph2AY) and dimethylsulfoxonium methylide (Me2SY) using B-thexylborepane as initiator. All polymerization conditions, including feed ratio, temperature, and reaction time, were optimized. A series of photoluminescent poly(ethylene-co-diphenylbutadiene)s were synthesized at different feed ratios, opening a new synthetic horizon for poly(ethylene-co-disubstitutedbutadiene) copolymers. Notably, a new C1 segment, arising from a double bond rearrangement, was confirmed by NMR, resulting in an unprecedented two-monomer three-structure random terpolymer. An unexpected red-shift phenomenon in the fluorescence spectra was observed with increasing the ratio of Ph2AY in the copolymer. This shift is attributed to the aggregation of diphenylbutadiene segment, similar to through-space conjugation (TSC), likely induced by a decrease in the crystallinity of copolymers. Furthermore, another disubstituted allylic triphenyl arsonium ylides, (E)-2-phenylbutenyl triphenyl arsonium ylide (MePhAY) was also synthesized and investigated. These additional compounds expand the knowledge and the potential applications of such copolymerization techniques in advanced materials.
Collapse
Affiliation(s)
- Mingtao Zhou
- Polymer Synthesis Laboratory, KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and y (KAUST), Thuwal, 23955, Kingdom of, Saudi Arabia
| | - Nikos Hadjichristidis
- Polymer Synthesis Laboratory, KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and y (KAUST), Thuwal, 23955, Kingdom of, Saudi Arabia
| |
Collapse
|
19
|
Jia Y, Zhu M, Zhang X, Jia D, Tian T, Shi B, Ru Z, Ma H, Wan Y, Wei Q. Nanobody-Based Microfluidic Immunosensor Chip Using Tetraphenylethylene-Derived Covalent Organic Frameworks as Aggregation-Induced Electrochemiluminescence Emitters for the Detection of Thymic Stromal Lymphopoietin. Anal Chem 2024; 96:10116-10120. [PMID: 38858219 DOI: 10.1021/acs.analchem.4c02347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
In this letter, a sensitive microfluidic immunosensor chip was developed using tetrakis(4-aminophenyl)ethene (TPE)-derived covalent organic frameworks (T-COF) as aggregation-induced electrochemiluminescence (AIECL) emitters and nanobodies as efficient immune recognition units for the detection of thymic stromal lymphopoietin (TSLP), a novel target of asthma. The internal rotation and vibration of TPE molecules were constrained within the framework structure, forcing nonradiative relaxation to convert into pronounced radiative transitions. A camel-derived nanobody exhibited superior specificity, higher residual activity and epitope recognition postcuring compared to monoclonal antibodies. Benefiting from the affinity between silver ions (Ag+) and cytosine (C), a double-stranded DNA (dsDNA) embedded with Ag+ was modified onto the surface of TSLP. A positive correlation was obtained between the TSLP concentration (1.00 pg/mL to 4.00 ng/mL) and ECL intensity, as Ag+ was confirmed to be an excellent accelerator of the generation of free radical species. We propose that utilizing COF to constrain luminescent molecules and trigger the AIECL phenomenon is another promising method for preparing signal tags to detect low-abundance disease-related markers.
Collapse
Affiliation(s)
- Yue Jia
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, University of Jinan, Jinan 250022, P. R. China
| | - Min Zhu
- Shanghai Novamab Biopharmaceuticals Co., Ltd., Shanghai 201318, China
| | - Xiaoyue Zhang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, University of Jinan, Jinan 250022, P. R. China
| | - Dehao Jia
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, University of Jinan, Jinan 250022, P. R. China
| | - Tian Tian
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, University of Jinan, Jinan 250022, P. R. China
| | - Binnan Shi
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, University of Jinan, Jinan 250022, P. R. China
| | - Zhuangzhuang Ru
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, University of Jinan, Jinan 250022, P. R. China
| | - Hongmin Ma
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, University of Jinan, Jinan 250022, P. R. China
| | - Yakun Wan
- Shanghai Novamab Biopharmaceuticals Co., Ltd., Shanghai 201318, China
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, University of Jinan, Jinan 250022, P. R. China
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
20
|
Lin YP, Gao Y, Wu Y, Yang XD. Uncovering the Aggregation-Induced Emission Mechanisms of Phenoxazine and Phenothiazine Groups. ACS OMEGA 2024; 9:26112-26120. [PMID: 38911748 PMCID: PMC11191091 DOI: 10.1021/acsomega.4c01565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/12/2024] [Accepted: 05/27/2024] [Indexed: 06/25/2024]
Abstract
Molecules with both aggregation-induced emission (AIE) and thermally activated delayed fluorescence (TADF) properties are potential organic light-emitting diode materials; however, the AIE and TADF mechanisms are still debatable. In this work, four molecules incorporating carbazole (Cz), phenoxazine (PXZ), and phenothiazine (PTZ) as donor groups to the diphenylsulfone acceptor were investigated. The experiment results indicate that a molecule containing Cz exhibits solely TADF properties, whereas molecules containing PXZ and PTZ demonstrate both TADF and AIE characteristics. As for DPS-PTZ, the result indicates that the thin-film environment restricts molecular twisting, consequently reducing nonradiative decay, thereby attributing to the AIE property by density functional theory and molecular dynamics simulation. As for DPS-PXZ, the result suggests that the restricted access to a conical intersection in a singlet excited via an expansion in the C-S-C angle is the pivotal factor for the AIE characteristic. The C-S-C angle twist of DPS-PXZ is impeded in the aggregate state and resulted in luminescence. Understanding the mechanisms serves as a valuable guide for the development of new AIE systems, enabling their application in various practical domains.
Collapse
Affiliation(s)
- Yan-Ping Lin
- Key
Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022, P. R. China
- Jilin
Provincial Key Laboratory of Straw−Based Functional Materials,
Institute for Interdisciplinary Biomass Functional Materials Studies, Jilin Engineering Normal University, Changchun 130052, China
| | - Ying Gao
- Jilin
Provincial Key Laboratory of Straw−Based Functional Materials,
Institute for Interdisciplinary Biomass Functional Materials Studies, Jilin Engineering Normal University, Changchun 130052, China
| | - Yong Wu
- Faculty
of Chemistry, Northeast Normal University, Changchun ,Jilin130024, China
| | - Xiao-Dong Yang
- Jilin
Provincial Key Laboratory of Straw−Based Functional Materials,
Institute for Interdisciplinary Biomass Functional Materials Studies, Jilin Engineering Normal University, Changchun 130052, China
| |
Collapse
|
21
|
Takemasa Y, Nozaki K. Tetrakispyrazolylethene: Protonation-Induced Emission. J Org Chem 2024; 89:7156-7162. [PMID: 38695511 DOI: 10.1021/acs.joc.4c00538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Tetrakispyrazolylethene (1) was synthesized from pyrazole and hexachloroethane through a one-step substitution reaction. The increase of emission was detected both in solid and aqueous THF solution, compared with that in anhydrous THF. While the former originates from the crystal packing, the latter is attributed to the protonation-induced emission, independent of aggregation, based on the optical measurement under varying concentrations and particle-size distribution analysis.
Collapse
Affiliation(s)
- Yuta Takemasa
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kyoko Nozaki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
22
|
Wu J, Wang Y, Jiang P, Wang X, Jia X, Zhou F. Multiple hydrogen-bonding induced nonconventional red fluorescence emission in hydrogels. Nat Commun 2024; 15:3482. [PMID: 38664408 PMCID: PMC11045767 DOI: 10.1038/s41467-024-47880-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
The development of unconventional long-wavelength fluorescent polymer hydrogels without using polycyclic aromatic hydrocarbons or extended π-conjugation is a fundamental challenge in luminescent materials owing to a lack of understanding regarding the spatial interactions induced inherent clustering-triggered emission under water-rich conditions. Inspired by the color change of protein astaxanthin as a result of heat-induced denaturation, we propose a thermodynamically driven strategy to develop red fluorescence (~610 nm) by boiling multiple hydrogen-bonded poly(N-acryloylsemicarbazide) hydrogels in a water bath. We reveal that thermodynamically driven conformational changes of polymer chains from isolated hydrogen bonding donor-acceptor structures to through-space interaction structures induce intrinsic fluorescence shifts from blue to red during clustering-triggered emission. The proposed multiple hydrogen-bonding supramolecular hydrogel shows good fluorescence stability, mechanical robustness, and 3D printability for customizable shaping. We provide a viable method to prepare nonconventional long-wavelength fluorescent hydrogels towards soft fluorescent devices without initially introducing any fluorescent components.
Collapse
Affiliation(s)
- Jiayu Wu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, 832003, China
| | - Yuhuan Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pan Jiang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
| | - Xiaolong Wang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
| | - Xin Jia
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, 832003, China
| | - Feng Zhou
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| |
Collapse
|
23
|
Dou L, Xu L, Gao H, Song J, Shang S, Song Z. Red Fluorescent Molecule with Aggregation-Induced Emission Based on Dehydroabietic Acid Diarylamine for Bioimaging. J Fluoresc 2024:10.1007/s10895-024-03712-x. [PMID: 38652360 DOI: 10.1007/s10895-024-03712-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/08/2024] [Indexed: 04/25/2024]
Abstract
In this paper, molecules with AIE red light properties were designed by coupling dehydroabietic acid diarylamine and 2,3-diphenylfumaronitrile, which were designated 2DTPA-CN and 2TPA-CN. The emission wavelengths were 683 nm and 701 nm, respectively. The 2DTPA-CN and 2TPA-CN showed typical AIE characteristics with large Stokes shifts of 7.4 × 104 cm-1 and 6.7 × 104 cm-1, respectively. The obvious solvatochromism and electron cloud distributions of HOMO/LUMO in the ground and excited states both reveal the intramolecular charge transfer (ICT) effect. The 2DTPA-CN, boasting exceptional biocompatibility, was successfully prepared into nanoparticles (NPs), which were applied to tumor cell imaging, showing good bioimaging effects both in vitro imaging in live cells and in vivo imaging in live mice. The results demonstrated that it possesses significant potential as an effective bioimaging reagent for the detection of tumor cells. Furthermore, the incorporation of 2,3-diphenylfumaronitrile moieties to dehydroabietic acid diarylamine emerged as a proficient approach to broaden the emission wavelengths of rosin-based fluorescent materials.
Collapse
Affiliation(s)
- Liwei Dou
- Institute of Chemical Industry of Forest Products, CAF; Key Lab. of Biomass Energy and Material, Jiangsu Province; Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing, 210042, China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Lijun Xu
- Institute of Chemical Industry of Forest Products, CAF; Key Lab. of Biomass Energy and Material, Jiangsu Province; Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing, 210042, China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Hong Gao
- Institute of Chemical Industry of Forest Products, CAF; Key Lab. of Biomass Energy and Material, Jiangsu Province; Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing, 210042, China.
| | - Jie Song
- Department of Chemistry and Biochemistry, University of Michigan-Flint, Flint, Michigan, 48502, USA
| | - Shibin Shang
- Institute of Chemical Industry of Forest Products, CAF; Key Lab. of Biomass Energy and Material, Jiangsu Province; Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing, 210042, China
| | - Zhanqian Song
- Institute of Chemical Industry of Forest Products, CAF; Key Lab. of Biomass Energy and Material, Jiangsu Province; Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing, 210042, China
| |
Collapse
|
24
|
Zhang K, Cai L, Fan J, Song Y, Lin L, Wang CK, Li J. Conformational Isomerization Effect on Singlet/Triplet Energy Consumption Process of Thermally Activated Delayed Fluorescence Molecules with Aggregation Induced Emission: A QM/MM Study. J Phys Chem Lett 2024; 15:2436-2446. [PMID: 38394771 DOI: 10.1021/acs.jpclett.4c00151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Thermally activated delayed fluorescence (TADF) molecules with aggregation-induced emission (AIE) properties hold tremendous potential in biomedical sensing/imaging and telecommunications. In this study, a multiscale method combined with thermal vibration correlation function (TVCF) theory is used to investigate the photophysical properties of the novel TADF molecule CNPy-SPAC in toluene and crystal and amorphous states. In the crystal state, an increase in radiative rates and a decrease in nonradiative rates lead to AIE. Additionally, conformational isomerization effects result in significantly different luminescent efficiencies between the two crystal structures. Furthermore, the isomerization effect allows for the coexistence of three configurations in the amorphous state. Among them, the non-TADF quasi-axial (Qa) configuration may facilitate energy transfer to the TADF-characteristic quasi-equal/quasi-equal-H (Qe/Qe-H) configurations, enhancing AIE. Moreover, the Qa configuration enables rapid electron transport, offering the potential for self-doped devices. Our work elucidates a new mechanism for the isomerization effect in AIE-TADF molecules.
Collapse
Affiliation(s)
- Kai Zhang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China
| | - Lei Cai
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, 250014 Jinan, China
| | - Jianzhong Fan
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, 250014 Jinan, China
| | - Yuzhi Song
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, 250014 Jinan, China
| | - Lili Lin
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, 250014 Jinan, China
| | - Chuan-Kui Wang
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, 250014 Jinan, China
| | - Jing Li
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China
| |
Collapse
|
25
|
Lavarda G, Berghuis AM, Joseph K, van der Tol JJB, Murai S, Gómez Rivas J, Meijer EW. Tunable emission from H-type supramolecular polymers in optical nanocavities. Chem Commun (Camb) 2024; 60:2812-2815. [PMID: 38362956 PMCID: PMC10913141 DOI: 10.1039/d3cc05877h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/08/2024] [Indexed: 02/17/2024]
Abstract
H-type supramolecular polymers with preferred helicity and highly efficient emission have been prepared from the self-assembly of chiral tetraphenylene-based monomers. Implementation of the one-dimensional fibers into dielectric nanoparticle arrays allows for a significant reshaping of fluorescence due to weak light-matter coupling.
Collapse
Affiliation(s)
- Giulia Lavarda
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands.
| | - Anton M Berghuis
- Eindhoven Hendrik Casimir Institute and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Kripa Joseph
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands.
| | - Joost J B van der Tol
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands.
| | - Shunsuke Murai
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo, Kyoto 6158510, Japan
| | - Jaime Gómez Rivas
- Eindhoven Hendrik Casimir Institute and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| | - E W Meijer
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands.
| |
Collapse
|
26
|
Li Q, Ye H, Zhao F, Li Y, Zhang Z, Yan Q, Sun Y. Recent advances in combatting bacterial infections via well-designed metallacycles/metallacages. Dalton Trans 2024; 53:3434-3444. [PMID: 38224466 DOI: 10.1039/d3dt03966h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Bacterial infections can lead to the development of large-scale outbreaks of diseases that pose a serious threat to human life and health. Also, conventional antibiotics are prone to producing resistance and allergic reactions, and their therapeutic effect is dramatically diminished when bacterial communities form biofilms. Fortunately, well-designed supramolecular coordination complexes (SCCs) have been used as antibacterials or anti-biofilms in recent years. SCCs can kill bacteria by directly engaging with the bacterial surface through electrostatic interactions or by penetrating the bacterial membrane through the auxiliary effect of cell-penetrating peptides. Furthermore, scientists have engineered fluorescent SCCs that can produce reactive oxygen species (ROS) to eliminate bacteria when exposed to laser irradiation, and they also demonstrate outstanding performance in in vivo imaging, enabling integrated diagnosis and treatment. In this review, we summarize the design strategy and applications of SCCs in antibacterials or anti-biofilms and provide an outlook on future research.
Collapse
Affiliation(s)
- Qian Li
- Department of General Surgery, Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou 313000, China.
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Huan Ye
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, P. R. China
| | - Fang Zhao
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Yuntao Li
- Department of General Surgery, Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou 313000, China.
| | - Zhipeng Zhang
- Xianning Medical College, College of Pharmacy, Hubei University of Science & Technology, Xianning 437100, China.
| | - Qiang Yan
- Department of General Surgery, Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou 313000, China.
| | - Yao Sun
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| |
Collapse
|
27
|
Liao C, Li T, Chen F, Yan S, Zhu L, Tang H, Wang D. Horseradish peroxidase-catalyzed polyacrylamide gels: monitoring their polymerization with BSA-stabilized gold nanoclusters and their functional validation in electrophoresis. RSC Adv 2024; 14:2182-2191. [PMID: 38213962 PMCID: PMC10777359 DOI: 10.1039/d3ra07208h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/24/2023] [Indexed: 01/13/2024] Open
Abstract
Polyacrylamide gel (PAG) is extensively used as a matrix for biomolecular analysis and fractionation. However, the traditional polymerization catalyst system N,N,N',N'-tetramethylethylenediamine (TEMED)/ammonium persulphate (APS) of PAG presents non-negligible toxicity. Herein, we utilized the green and efficient bio-enzyme horseradish peroxidase (HRP) to catalyze the gel polymerization of polyacrylamide. At the same time, the efficacy of this gel system in separating nucleic acids and proteins was confirmed by applying the gel system in electrophoresis. This study aims to explore a higher biosafety polyacrylamide gel polymerization catalytic system which can be applied to electrophoresis technology. Furthermore, in order to differentiate between the bio-enzymatic catalytic system and the traditional toxic catalytic system during polymerization, aggregation-induced luminescence (AIE) of bovine serum albumin-stabilized gold nanoclusters (BSA-Au NCs) was used to monitor the polymerization reaction of the system. The results indicated that the fluorescence intensity of the polymeric system containing BSA-Au NCs increased with the polymerization of the monomers. Subsequently, we assessed whether certain components of nucleic acid electrophoresis and protein electrophoresis such as sodiumdodecylsulfate (SDS) and TBE buffer (Tris-boric acid, EDTA, pH 8.3) would affect the polymerization of the polyacrylamide gels catalyzed by the biological enzymes. The experimental conditions were also optimized to explore the optimal concentration of the ternary system of HRP, H2O2 and ACAC. Our results suggested that the bioenzyme-catalyzed system could be a feasible alternative to the TEMED/APS-catalyzed system, which also could provide new insights into the methods of monitoring the polymerization system.
Collapse
Affiliation(s)
- Chang Liao
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University Chongqing 400016 China
| | - Tao Li
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University Chongqing 400016 China
| | - Fengjiao Chen
- Guangshan County People's Hospital Xinyang 465450 China
| | - Shaoying Yan
- Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University Nanchang Jiangxi 330000 China
| | - Liying Zhu
- Center for Clinical Laboratories, Affiliated Hospital of Guizhou Medical University Guiyang 550004 China
| | - Hua Tang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University Chongqing 400016 China
| | - Dan Wang
- Post-Doctoral Research Center, The People's Hospital of Rongchang District Chongqing 402460 China
| |
Collapse
|
28
|
Zhang W, Yin H, Guo J, Zhao X, Shi Y. High-efficient luminescence induced by the restriction of benzothiazole group torsion for the HBT-H-H molecule in the aggregate state. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123319. [PMID: 37688882 DOI: 10.1016/j.saa.2023.123319] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/29/2023] [Accepted: 08/31/2023] [Indexed: 09/11/2023]
Abstract
The aggregation-induced emission (AIE) effect has been demonstrated to have great potential application in different areas, from organic electronics to biomedical research and physical process monitoring. In general, molecules with AIE characteristic exhibit fluorescence enhancement in the aggregated state by restricting intramolecular motion consumption. The combination of AIE and excited-state intramolecular proton transfer (ESIPT) is meaningful for promoting luminescence. Recently, HBT-H-H molecule, as a derivative of 2-(2-Hydroxyphenyl)benzothiazole (HBT), has drawn extensive attention from researchers. The molecule possesses the intramolecular hydrogen bonding structure which has the potential for ESIPT. Moreover, the fluorescence quantum yield of HBT-H-H in the aggregation state is 35 times higher than that in Toluene. However, the interplay between excited state dynamics and the AIE effect for this molecule is not clear. Especially, how does AIE effect beat non-radiative transition channel by affecting motions of molecular structure. Herein, we investigated the excited state dynamics of HBT-H-H molecule by the spin-flip time-dependent density functional theory and QM/MM method. We found that the molecule relaxes to the conical intersection region through the twisting motion of the benzothiazole group in Toluene solvent. While the AIE effect effectively inhibits this process by preventing the torsion of benzothiazole group, which induces the emission enhancement. The interplay between the excited-state dynamics and AIE effect for the HBT-H-H molecule delineated in this work not only benefits the deep understanding of molecular behavior to the aggregate level, but also provides a guide for the synthesis of AIE materials with favorable performance.
Collapse
Affiliation(s)
- Wentian Zhang
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Hang Yin
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China.
| | - Jie Guo
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Xin Zhao
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Ying Shi
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China.
| |
Collapse
|
29
|
Bao J, Tong C, He M, Zhang H. Luminescent polypeptides. LUMINESCENCE 2024; 39:e4594. [PMID: 37712500 DOI: 10.1002/bio.4594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/29/2023] [Accepted: 09/13/2023] [Indexed: 09/16/2023]
Abstract
Polypeptides, as biomacromolecules, hold immense potential in various biological applications such as tissue engineering, immunomodulating agents, and target binding. Among these applications, the attention towards luminescent polypeptides has grown significantly, due to their ability to visualize biological processes effectively. In this perspective, we have compiled information on three distinct types of luminescent polypeptides: natural fluorescent proteins, luminophores-bioconjugated polypeptides, and synthesized polypeptides with clusteroluminescence. Last, we shed light on the significance and prospects of clusteroluminescent polypeptides, which are expected to emerge as crucial new-generation bioluminophores, offering high emission efficiency and tunable emission wavelengths.
Collapse
Affiliation(s)
- Jieyu Bao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Chuanye Tong
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Mengxuan He
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Haoke Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
- Centre of Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing, China
| |
Collapse
|
30
|
Shao L, Hua B, Zhao X, Lu S, Li G. Pillar[5]arene-Based Fluorescent Supramolecular Polymers Without Conventional Chromophores. Chemistry 2023; 29:e202303071. [PMID: 37843981 DOI: 10.1002/chem.202303071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 10/18/2023]
Abstract
Fluorescent supramolecular polymers have garnered significant attention due to their successful integration of supramolecular polymers and fluorescence, offering vast potential for applications in sensing, imaging, optoelectronics, and photonics. In this study, we present a novel supramolecular polymer based on P5-OH, derived from mono-substituted pillararene macrocycles. Notably, these formed supramolecular polymeric aggregates exhibit a prominent blue emission, representing a rare instance of fluorescent polymers devoid of conventional chromophores. Furthermore, through the modification of alkyl chain ending groups attached to pillar[5]arenes, slight shifts in the emission peak could be observed. This research expands the scope of functional supramolecular polymeric systems utilizing pillararenes, providing valuable insights for the design of innovative luminescent materials and optical devices.
Collapse
Affiliation(s)
- Li Shao
- Department of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, 312000, P. R. China
| | - Bin Hua
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Xueru Zhao
- Department of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, 312000, P. R. China
| | - Shuai Lu
- Department of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, 312000, P. R. China
| | - Guangfeng Li
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| |
Collapse
|
31
|
Hu M, Ye FY, Yu W, Sheng K, Wang W, Zheng YS. Polymorphism and Light-Driven Forward Movement of TPE Derivative Micro-Crystal due to ArH-pi Interactions Difference. Chemistry 2023; 29:e202302567. [PMID: 37709727 DOI: 10.1002/chem.202302567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/16/2023]
Abstract
Aggregation-induced emission (AIE) and aggregation-caused quenching (ACQ) are two classes of opposite luminescence phenomena. It is almost impossible to show both AIE and ACQ effect simultaneously by the same molecule. However, here we report that a simple TPE derivative TAP-TPE grows into both AIE crystals and ACQ ones. It is found that equatorial, contact distance-longer and weak ArH-π interactions exist in AIE crystals while vertical, contact distance-shorter and strong ArH-π interactions appear in ACQ crystals. Theoretical calculation of electron density on the interaction atoms unveils that ACQ crystals have much larger change in electron density than AIE ones, suggesting that the intermolecular electron transfer aroused by the strong ArH-π hydrogen bonds leads to ACQ phenomenon. This result provides a new insight into the emission mechanism in aggregation state. Interestingly, due to the ArH-pi interactions difference, only one of five kinds of crystals shows rapid photochromism, and can act as multimode anti-counterfeiting materials. Very exceptionally, for the first time we find that the photochromic micrometric rod-like crystal even makes forward rolling movement as it repeatedly bends and straightens by responding to on and off of the ultraviolet light irradiation, displaying potential for photo-actuator and light-driven micro-vehicle.
Collapse
Affiliation(s)
- Ming Hu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Feng-Ying Ye
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wei Yu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Kang Sheng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Weizhou Wang
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, China
| | - Yan-Song Zheng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
32
|
Wang Y, Cui L, Wang Y, Li F, Li Y, Meng Q. Chiral TPE Foldamers in Macrocycles: Aggregation Enhanced Emission and Circularly Polarized Luminescence. Chemistry 2023; 29:e202302373. [PMID: 37648675 DOI: 10.1002/chem.202302373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/01/2023]
Abstract
Chiral macrocycles with circularly polarized luminescence (CPL) have attracted increasing attention due to the rigid structure, symmetrical chiral geometry and large luminescence dissymmetry factors (glum ). However, most chiral macrocycles are more emissive in solutions but have weakened fluorescence quantum yields (ΦF ) in aggregates, limiting their further application. In this paper, chiral macrocycle R/S-PhTPE was synthesized by combining chiral macrocycle architectonics with Z-o-phenyltetraphenylethylene (PhTPE) foldamer. Enhanced solution state emission and characteristic aggregation enhanced emission (AEE) effect can be observed for R/S-PhTPE due to the folded PhTPE conformation. Macrocycle immobilization and folded conformation endow PhTPE moiety with stable helical conformation. Most importantly, R/S-PhTPE exhibits opposite CPL signals compared with common chiral TPEs, demonstrating the evident impact of folded conformation. This work reports the first and deep insights into the chiroptical properties of chiral PhTPE foldamers, and will provide a new strategy to tune ΦF and CPL signals of AIE active chiral macrocycles.
Collapse
Affiliation(s)
- Yuxiang Wang
- Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, No. 21, Gehu Rd., Wujin Dist., Changzhou, 213164, China
| | - Liwen Cui
- Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, No. 21, Gehu Rd., Wujin Dist., Changzhou, 213164, China
| | - Yiran Wang
- School of Chemistry and Chemical Engineering, Linyi University, North Industrial Ave., Lanshan Dist., Linyi, 276000, China
| | - Fei Li
- College of Engineering, China Pharmaceutical University, No. 639, Longmian Ave., Jiangning Dist., Nanjing, 211109, China
| | - Yunzhi Li
- School of Chemistry and Chemical Engineering, Linyi University, North Industrial Ave., Lanshan Dist., Linyi, 276000, China
| | - Qi Meng
- Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, No. 21, Gehu Rd., Wujin Dist., Changzhou, 213164, China
| |
Collapse
|
33
|
Duan L, Xue X, Hong B, Gu Z. Conjugation-Induced Spin Delocalization in Helical Chiral Carbon Radicals via Through-Bond and Through-Space Effects. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304563. [PMID: 37867251 DOI: 10.1002/advs.202304563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/25/2023] [Indexed: 10/24/2023]
Abstract
A class of highly stable hydrocarbon radicals with helical chirality are synthesized, which can be isolated and purified by routine column chromatography on silica gel. These carbon-centered radicals are stabilized by through-bond delocalization and intramolecular through-space conjugation, which is evidenced by Density Functional Theory (DFT) calculation. The high stability enables to directly modify the carbon radical via palladium-catalyzed cross-coupling with the radical being untapped. The structures and optoelectronic properties are investigated with a variety of experimental methods, including Electron Paramagnetic Resonance (EPR), Ultraviolet Visisble Near Infrared (UV-vis-NIR) measurements, Cyclic Voltammetry (CV), Thermogravimetry Analysis (TGA), Circular Dichroism (CD) spectra, High-Performance Liquid Chromatography (HPLC), and X-ray crystallographic analysis. DFT calculations indicated that the 9-anthryl helical radical is more stable than its tail-to-tail σ-dimer over 13.2 kJ mol-1 , which is consistent with experimental observations.
Collapse
Affiliation(s)
- Longhui Duan
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, P. R. China
| | - Xiaoping Xue
- College of Science, Henan Agricultural University, Zhengzhou, Henan, 450002, P. R. China
| | - Biqiong Hong
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian, 350108, P. R. China
| | - Zhenhua Gu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, P. R. China
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian, 350108, P. R. China
| |
Collapse
|
34
|
Wang MF, Deng YH, Hong YX, Gu JH, Cao YY, Liu Q, Braunstein P, Lang JP. In situ observation of a stepwise [2 + 2] photocycloaddition process using fluorescence spectroscopy. Nat Commun 2023; 14:7766. [PMID: 38012167 PMCID: PMC10682429 DOI: 10.1038/s41467-023-42604-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/16/2023] [Indexed: 11/29/2023] Open
Abstract
Using highly sensitive and selective in situ techniques to investigate the dynamics of intermediates formation is key to better understand reaction mechanisms. However, investigating the early stages of solid-state reactions/transformations is still challenging. Here we introduce in situ fluorescence spectroscopy to observe the evolution of intermediates during a two-step [2 + 2] photocycloaddition process in a coordination polymer platform. The structural changes and kinetics of each step under ultraviolet light irradiation versus time are accompanied by the gradual increase-decrease of intensity and blue-shift of the fluorescence spectra from the crystals. Monitoring the fluorescence behavior using a laser scanning confocal microscope can directly visualize the inhomogeneity of the photocycloaddition reaction in a single crystal. Theoretical calculations allow us to rationalize the fluorescence behavior of these compounds. We provide a convenient strategy for visualizing the solid-state photocycloaddition dynamics using fluorescence spectroscopy and open an avenue for kinetic studies of a variety of fast reactions.
Collapse
Affiliation(s)
- Meng-Fan Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, People's Republic of China
| | - Yun-Hu Deng
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Yu-Xuan Hong
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Jia-Hui Gu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Yong-Yong Cao
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, Zhejiang, People's Republic of China
| | - Qi Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China.
| | - Pierre Braunstein
- Institut de Chimie (UMR 7177 CNRS), Université de Strasbourg, 4 rue Blaise Pascal - CS 90032, 67081, Strasbourg, France
| | - Jian-Ping Lang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China.
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
35
|
Huang H, Li N, Fu S, Mo X, Cao X, Yin X, Yang C. Pure Polycyclic Aromatic Hydrocarbon Isomerides with Delayed Fluorescence and Anti-Kasha Emission: High-Efficiency Non-Doped Fluorescence OLEDs. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304204. [PMID: 37718390 PMCID: PMC10625133 DOI: 10.1002/advs.202304204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/06/2023] [Indexed: 09/19/2023]
Abstract
Pure polycyclic aromatic hydrocarbons (PAHs) consisting solely of carbon-hydrogen or carbon-carbon bonds offer great potential for constructing durable and cost-effective emitters in organic electroluminescence devices. However, achieving versatile fluorescence characteristics in pure PAHs remains a considerable challenge, particularly without the inclusion of heteroatoms. Herein, an efficient approach is presented that involves incorporating non-six-membered rings into classical pyrene isomerides, enabling simultaneous achievement of full-color emission, delayed fluorescence, and anti-Kasha emission. Theoretical calculations reveal that the intensity and distribution of aromaticity/anti-aromaticity in both ground and excited states play a crucial role in determining the excited levels and fluorescence yields. Transient fluorescence measurements confirm the existence of thermally activated delayed fluorescence in pure PAHs. By utilizing these PAHs as emitting layers, electroluminescent spectra covering the entire visible region along with a maximum external quantum efficiency of 9.1% can be achieved, leading to the most exceptional results among non-doped pure hydrocarbon-based devices.
Collapse
Affiliation(s)
- Haoxin Huang
- Shenzhen Key Laboratory of New Information Display and Storage MaterialsCollege of Materials Science and EngineeringShenzhen UniversityShenzhen518060P. R. China
| | - Nengquan Li
- Shenzhen Key Laboratory of New Information Display and Storage MaterialsCollege of Materials Science and EngineeringShenzhen UniversityShenzhen518060P. R. China
| | - Shuguang Fu
- Shenzhen Key Laboratory of New Information Display and Storage MaterialsCollege of Materials Science and EngineeringShenzhen UniversityShenzhen518060P. R. China
| | - Xuechao Mo
- Shenzhen Key Laboratory of New Information Display and Storage MaterialsCollege of Materials Science and EngineeringShenzhen UniversityShenzhen518060P. R. China
| | - Xiaosong Cao
- Shenzhen Key Laboratory of New Information Display and Storage MaterialsCollege of Materials Science and EngineeringShenzhen UniversityShenzhen518060P. R. China
| | - Xiaojun Yin
- Shenzhen Key Laboratory of New Information Display and Storage MaterialsCollege of Materials Science and EngineeringShenzhen UniversityShenzhen518060P. R. China
| | - Chuluo Yang
- Shenzhen Key Laboratory of New Information Display and Storage MaterialsCollege of Materials Science and EngineeringShenzhen UniversityShenzhen518060P. R. China
| |
Collapse
|
36
|
Biesen L, Hartmann Y, Müller TJJ. Diaroyl-S,N-ketene Acetals: Red-Shifted Solid-State and Aggregation-Induced Emitters from a One-Pot Synthesis. Chemistry 2023; 29:e202301908. [PMID: 37475616 DOI: 10.1002/chem.202301908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 07/22/2023]
Abstract
Symmetric and unsymmetric diaroyl-S,N-ketene acetals can be readily accessed in consecutive syntheses in good to excellent yields by exploiting the inherent nucleophilic character of the methine position. Different aroyl-S,N-ketene acetals as well as acid chlorides yield a library of 19 diaroyl compounds with substitution and linker pattern-tunable emission properties, leading to a significant red-shift of emission in the solid and aggregated state, which was thoroughly investigated. Additionally, the stability of the luminescent aggregates is highly increased. In a follow-up one-pot procedure, pyrazolo-S,N-ketene acetals can easily be accessed employing a nucleophilic cyclocondensation.
Collapse
Affiliation(s)
- Lukas Biesen
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Yannic Hartmann
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Thomas J J Müller
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| |
Collapse
|
37
|
Li J, Lao J, Zou H. Aza-dicyclopenta[ a, g]naphthalenes: controllable seesaw-like emissive behavior and narrowband AIEgens. Chem Sci 2023; 14:11203-11212. [PMID: 37860664 PMCID: PMC10583707 DOI: 10.1039/d3sc03921h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/25/2023] [Indexed: 10/21/2023] Open
Abstract
Molecular motions significantly influence the emissive behavior and properties of organic fluorescent molecules. However, achieving controllable emission remains a major challenge for fluorophores. In the case of aggregation-induced emission luminogens (AIEgens), the desired properties of aggregated emission and narrowband spectrum demand molecular motion patterns that inherently oppose each other. A nitrogen-containing dicyclopenta[a,g]naphthalene scaffold was discovered as a controllable luminogenic structure through a highly efficient one-step intermolecular cascade reaction. By carefully balancing molecular motions and introducing additional nitrogen atoms into the skeleton, pyrrole-conjugated dicyclopenta[a,g]naphthalenes with aggregation-caused quenching (ACQ) could be transformed into dual-state emission luminogens (DSEgens). This transformation was achieved by incorporating an additional weak H-bond "lock." Furthermore, the DSEgens could be converted into AIEgens with an exciting narrow full-width-at-half-maximum (FWHM, <50 nm) by methylation. This unprecedented discovery is attributed to the contribution of the weak H-bond "lock," which overcomes the limitations of broad band emission in AIEgens caused by restrictions of intramolecular motion. Specific organelle probes were developed by replacing the methyl group of the onium product with different positioning groups. This study emphasizes the delicate balance of molecular motions in controlling luminescence and demonstrates a successful approach to designing organic luminogens with controllable emission and narrowband AIEgens.
Collapse
Affiliation(s)
- Jinbiao Li
- College of Pharmaceutical Sciences, Zhejiang University Hangzhou 310058 P. R. China
| | - Jiaxin Lao
- College of Pharmaceutical Sciences, Zhejiang University Hangzhou 310058 P. R. China
| | - Hongbin Zou
- College of Pharmaceutical Sciences, Zhejiang University Hangzhou 310058 P. R. China
| |
Collapse
|
38
|
Liu L, Pan Y, Ye L, Zhang T, Chen Y, Liang C, Chen D, Mou X, Dong X, Cai Y. Space and Bond Synergistic Conjugation Controlling Multiple-Aniline NIR-II Absorption for Photoacoustic Imaging Guided Photothermal Therapy. Adv Healthc Mater 2023; 12:e2301116. [PMID: 37541296 DOI: 10.1002/adhm.202301116] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 07/21/2023] [Indexed: 08/06/2023]
Abstract
Currently, clinical photothermal therapy (PTT) is greatly limited by the poor tissue penetration of the excitation light sources in visible (390-780 nm) and first near-infrared (NIR-I, 780-900 nm) window. Herein, based on space and bond synergistic conjugation, a multiple-aniline organic small molecule (TPD), is synthesized for high-efficiency second near-infrared (NIR-II, 900-1700 nm) photoacoustic imaging guided PTT. With the heterogeneity of six nitrogen atoms in TPD, the lone electrons on the nitrogen atom and the π bond orbital on the benzene ring form multielectron conjugations with highly delocalized state, which endowed TPD with strong NIR-II absorption (maximum peak at 925 nm). Besides, according to the single molecular reorganization, the alkyl side chains on TPD make more free space for intramolecular motion to enhance the photothermal conversion ability. Forming TPD nanoparticles (NPs) in J-aggregation, they show a further bathochromic-shifted absorbance (maximum peak at 976 nm) as well as a high photothermal conversion efficiency (66.7%) under NIR-II laser irradiation. In vitro and in vivo experiments demonstrate that TPD NPs can effectively inhibit the growth of tumors without palpable side effects. The study provides a novel NIR-II multiple-aniline structure based on multielectron hyperconjugation, and opens a new design thought for photothermal agents.
Collapse
Affiliation(s)
- Longcai Liu
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Yi Pan
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Luyi Ye
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Tian Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Yang Chen
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Chen Liang
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Dapeng Chen
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Xiaozhou Mou
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Yu Cai
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| |
Collapse
|
39
|
Xiong Z, Zhang J, Sun JZ, Zhang H, Tang BZ. Excited-State Odd-Even Effect in Through-Space Interactions. J Am Chem Soc 2023; 145:21104-21113. [PMID: 37715315 DOI: 10.1021/jacs.3c08164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
The odd-even effect is a fantastic phenomenon in nature, which has been applied in diverse fields such as organic self-assembled monolayers and liquid crystals. Currently, the origin of each odd-even effect remains elusive, and all of the reported odd-even effects are related to the ground-state properties. Here, we discover an excited-state odd-even effect in the through-space interaction (TSI) of nonconjugated tetraphenylalkanes (TPAs). The TPAs with an even number of alkyl carbon atoms (C2-TPA, C4-TPA, and C6-TPA) show strong TSI, long-wavelength emission, and high QY. However, the odd ones (C1-TPA, C3-TPA, C5-TPA, and C7-TPA) are almost nonexistent with negligible QY. Systematically experimental and theoretical results reveal that the excited-state odd-even effect is synthetically determined by three factors: alkyl geometry, molecular movability, and intermolecular packing. Moreover, these flexible luminescent TPAs possess tremendous advantages in fluorescent information encryptions. This work extends the odd-even effect to photophysics, demonstrating its substantial importance and universality in nature.
Collapse
Affiliation(s)
- Zuping Xiong
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
- Centre of Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing 312000, China
| | - Jianyu Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Jing Zhi Sun
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
- Centre of Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing 312000, China
| | - Haoke Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
- Centre of Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing 312000, China
| | - Ben Zhong Tang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Hong Kong 999077, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangzhou 518172, China
| |
Collapse
|
40
|
Zhu R, Pan Y, Yu H, Huang C, Tian H, Wang T, Xu J, Xiao S. Three Isomeric Tetraphenylethylene-pyridine Compounds: Synthesis, Crystal Structures, and Photophysical Properties. Chem Asian J 2023; 18:e202300600. [PMID: 37561069 DOI: 10.1002/asia.202300600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/11/2023]
Abstract
Many aggregation-induced emission (AIE) molecules based on tetraphenylethylene (TPE) structure have been synthesized, but a clear understanding of the photophysical difference between different isomeric pyridyl-based tetraphenylethylene molecules remains elusive. Herein, we designed a series of isomeric tetraphenylethylene-pyridines (o-Py-TPE, m-Py-TPE, p-Py-TPE) to investigate the influence of the position of N atoms in the pyridine subunit on the photophysical property of the whole molecule by detailed DFT calculations and single-crystal structures analysis. All compounds show typical AIE properties, and notably, the meta pyridyl isomer (m-Py-TPE) shows the highest solid photoluminescence quantum yield (PLQY) up to 64.56 %. Further investigation and DFT calculations indicate that the center C=C bond dihedral angles of the TPE subunit in the solid state of these compounds, which are affected by C-H⋅⋅⋅π interaction, play a vital role in their emission and PLQY properties. This work provides underlying principles for the design of pyridyl-based TPE molecules with high photoluminescent performance in the future.
Collapse
Affiliation(s)
- Rui Zhu
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Yangyang Pan
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Hongbo Yu
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Chengxin Huang
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Hanxiao Tian
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Tian Wang
- Department of Chemistry, University of Washington, Seattle, Washington, 98195, USA
| | - Jingjing Xu
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Shengxiong Xiao
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| |
Collapse
|
41
|
Jiang Y, Li Y, Liu F, Wang W, Su W, Liu W, Liu S, Zhang W, Hou J, Xu S, Yi Y, Zhu X. Suppressing electron-phonon coupling in organic photovoltaics for high-efficiency power conversion. Nat Commun 2023; 14:5079. [PMID: 37604923 PMCID: PMC10442373 DOI: 10.1038/s41467-023-40806-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 08/10/2023] [Indexed: 08/23/2023] Open
Abstract
The nonradiative energy loss (∆Enr) is a critical factor to limit the efficiency of organic solar cells. Generally, strong electron-phonon coupling induced by molecular motion generates fast nonradiative decay and causes high ∆Enr. How to restrict molecular motion and achieve a low ∆Enr is a sticking point. Herein, the free volume ratio (FVR) is proposed as an indicator to evaluate molecular motion, providing new molecular design rationale to suppress nonradiative decay. Theoretical and experimental results indicate proper proliferation of alkyl side-chain can decrease FVR and restrict molecular motion, leading to reduced electron-phonon coupling while maintaining ideal nanomorphology. The reduced FVR and favorable morphology are simultaneously obtained in AQx-6 with pinpoint alkyl chain proliferation, achieving a high PCE of 18.6% with optimized VOC, JSC and FF. Our study discovered aggregation-state regulation is of great importance to the reduction of electron-phonon coupling, which paves the way to high-efficiency OSCs.
Collapse
Affiliation(s)
- Yuanyuan Jiang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yixin Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Feng Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wenxuan Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenli Su
- Department of Physics and Applied Optics, Beijing Area Major Laboratory Center for Advanced Quantum Studies, Beijing Normal University, Beijing, 100875, China
| | - Wuyue Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Songjun Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenkai Zhang
- Department of Physics and Applied Optics, Beijing Area Major Laboratory Center for Advanced Quantum Studies, Beijing Normal University, Beijing, 100875, China
| | - Jianhui Hou
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shengjie Xu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Yuanping Yi
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Xiaozhang Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
42
|
Xie W, Deng J, Bai Y, Xiao J, Wang H. Hydrogen-Bonding-Driven Nontraditional Photoluminescence of a β-Enamino Ester. Molecules 2023; 28:5950. [PMID: 37630202 PMCID: PMC10458074 DOI: 10.3390/molecules28165950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/24/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023] Open
Abstract
Nontraditional luminogens (NTLs) do not contain any conventional chromophores (large π-conjugated structures), but they do show intrinsic photoluminescence. To achieve photoluminescence from NTLs, it is necessary to increase the extent of through-space conjugation (TSC) and suppress nonradiative decay. Incorporating strong physical interactions such as hydrogen bonding is an effective strategy to achieve this. In this work, we carried out comparative studies on the photoluminescence behaviors of two β-enamino esters with similar chemical structures, namely methyl 3-aminocrotonate (MAC) and methyl (E)-3-(1-pyrrolidinyl)-2-butenoate (MPB). MAC crystal emits blue fluorescence under UV irradiation. The critical cluster concentration of MAC in ethanol solutions was determined by studying the relationship between the photoluminescence intensity (UV-visible absorbance) and concentration. Furthermore, MAC exhibits solvatochromism, and its emission wavelength redshifts as the solvent polarity increases. On the contrary, MPB is non-emissive in both solid state and solutions. Crystal structures and theoretical calculation prove that strong inter- and intramolecular hydrogen bonds lead to the formation of large amounts of TSC of MAC molecules in aggregated states. No hydrogen bonds and thus no effective TSC can be formed between or within MPB molecules, and this is the reason for its non-emissive nature. This work provides a deeper understanding of how hydrogen bonding contributes to the luminescence of NTLs.
Collapse
Affiliation(s)
| | | | | | | | - Huiliang Wang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China; (W.X.)
| |
Collapse
|
43
|
Yamaguchi I, Ikawa K, Takimiya N, Wang A. Tetraphenylethene Derivatives Bearing Alkylammonium Substituents: Synthesis, Chemical Properties, and Application as BSA, Telomere DNA, and Hydroxyl Radical Sensors. Molecules 2023; 28:5663. [PMID: 37570635 PMCID: PMC10419492 DOI: 10.3390/molecules28155663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Tetraphenylethene derivatives (TPEs) are used as luminescence probes for the detection of metal ions and biomolecules. These sensors function by monitoring the increase in the photoluminescence (PL) intensity of the TPEs resulting from aggregation-induced emission (AIE) upon interaction with the analytes. The AIE behavior of the sensors was investigated by measuring their PL. In this study, PL, PL lifetime, and confocal laser scanning microscopy measurements were carried out as part of our in-depth investigation of AIE behavior of TPEs for the detection of biomolecules and radical species. We used 1,1,2,2-tetrakis(4-((trimethylammonium)alkoxy)phenyl)tetraphenylethene tetrabromide (TPE-C(m)N+Me3Br-, m = 2, 4, and 6, where m denotes the number of methylene groups in the alkyl chain) and TPE-C(m)N+Me3TCNQ-• (TCNQ-• is the 7,7',8,8'-tetracyanoquinodimethane anion radical) as luminescent probes for the detection of bovine serum albumin (BSA), DNA, and the hydroxyl radical (•OH) generated from Fenton's reagent. The sensing performance of TPE-C(m)N+Me3Br- for BSA and DNA was found to depend on the length of the alkyl chains (m). UV-vis and PL measurements revealed that the responses of TPE-C(m)N+Me3Br- and TPE-C(4)N+TCNQ-• to Fenton's reagent depended on the solvent. The electrochemical properties of the TPE derivatives prepared in this study were additionally investigated via cyclic voltammetry.
Collapse
Affiliation(s)
- Isao Yamaguchi
- Department of Materials Chemistry, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Japan (N.T.)
| | | | | | | |
Collapse
|
44
|
Chen SS, Wang H, Wu B, Li Q, Gong J, Zhao YL, Zhao Y, Xiao X, Lam JWY, Zhao Z, Luo XD, Tang BZ. Natural Coumarin Isomers with Dramatically Different AIE Properties: Mechanism and Application. ACS CENTRAL SCIENCE 2023; 9:883-891. [PMID: 37252345 PMCID: PMC10214507 DOI: 10.1021/acscentsci.3c00012] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Indexed: 05/31/2023]
Abstract
Aggregation-induced emission luminogens (AIEgens) are of great importance in optoelectronics and biomedical fields. However, the popular design philosophy by combining rotors with traditional fluorophores limits the imagination and structural diversity of AIEgens. Inspired by the fluorescent roots of the medicinal plant Toddalia asiatica, we discovered two unconventional rotor-free AIEgens, 5-methoxyseselin (5-MOS) and 6-methoxyseselin (6-MOS). Interestingly, a slight structural difference of the coumarin isomers leads to completely contrary fluorescent properties upon aggregation in aqueous media. Further mechanism investigation indicates that 5-MOS forms different extents of aggregates with the assistance of protonic solvents, leading to electron/energy transfer, which is responsible for its unique AIE feature, i.e., reduced emission in aqueous media but enhanced emission in crystal. Meanwhile, for 6-MOS, the conventional restriction of the intramolecular motion (RIM) mechanism is responsible for its AIE feature. More interestingly, the unique water-sensitive fluorescence property of 5-MOS enables its successful application for wash-free mitochondria imaging. This work not only demonstrates an ingenious tactic to seek new AIEgens from natural fluorescent species but also benefits the structure design and application exploration of next-generation AIEgens.
Collapse
Affiliation(s)
- Shan-Shan Chen
- State
Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China
- Key
Laboratory of Medicinal Chemistry for Natural Resource, Ministry of
Education and Yunnan Province, Yunnan Characteristic Plant Extraction
Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming 650500, PR China
- University
of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Haoran Wang
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen, Guangdong 518172, China
- Hong
Kong Branch of Chinese National Engineering Research Center for Tissue
Restoration and Reconstruction and Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Bo Wu
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen, Guangdong 518172, China
| | - Qiyao Li
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen, Guangdong 518172, China
| | - Junyi Gong
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen, Guangdong 518172, China
| | - Yun-Li Zhao
- Key
Laboratory of Medicinal Chemistry for Natural Resource, Ministry of
Education and Yunnan Province, Yunnan Characteristic Plant Extraction
Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming 650500, PR China
| | - Yun Zhao
- State
Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China
- University
of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xia Xiao
- Key
Laboratory of Medicinal Chemistry for Natural Resource, Ministry of
Education and Yunnan Province, Yunnan Characteristic Plant Extraction
Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming 650500, PR China
| | - Jacky W. Y. Lam
- Hong
Kong Branch of Chinese National Engineering Research Center for Tissue
Restoration and Reconstruction and Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Zheng Zhao
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen, Guangdong 518172, China
| | - Xiao-Dong Luo
- State
Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China
- Key
Laboratory of Medicinal Chemistry for Natural Resource, Ministry of
Education and Yunnan Province, Yunnan Characteristic Plant Extraction
Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming 650500, PR China
| | - Ben Zhong Tang
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen, Guangdong 518172, China
- Hong
Kong Branch of Chinese National Engineering Research Center for Tissue
Restoration and Reconstruction and Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
45
|
Geng W, Feng Y, Chen Y, Zhang X, Zhang H, Yang F, Wang X. Interactions of Amino Group Functionalized Tetraphenylvinyl and DNA: A Label-Free "On-Off-On" Fluorescent Aptamer Sensor toward Ampicillin. BIOSENSORS 2023; 13:bios13050504. [PMID: 37232865 DOI: 10.3390/bios13050504] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/22/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023]
Abstract
As a type of aggregation-induced emission (AIE) fluorescent probe, tetraphenylvinyl (TPE) or its derivatives are widely used in chemical imaging, biosensing and medical diagnosis. However, most studies have focused on molecular modification and functionalization of AIE to enhance the fluorescence emission intensity. There are few studies on the interaction between aggregation-induced emission luminogens (AIEgens) and nucleic acids, which was investigated in this paper. Experimental results showed the formation of a complex of AIE/DNA, leading to the quenching of the fluorescence of AIE molecules. Fluorescent test experiments with different temperatures proved that the quenching type was static quenching. The quenching constants, binding constants and thermodynamic parameters demonstrated that electrostatic and hydrophobic interactions promoted the binding process. Then, a label-free "on-off-on" fluorescent aptamer sensor for the detection of ampicillin (AMP) was constructed based on the interaction between the AIE probe and the aptamer of AMP. Linear range of the sensor is 0.2-10 nM with a limit of detection 0.06 nM. This fluorescent sensor was applied to detect AMP in real samples.
Collapse
Affiliation(s)
- Weifu Geng
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Yan Feng
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Yu Chen
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Xin Zhang
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Haoyi Zhang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Fanfan Yang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiuzhong Wang
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
46
|
Liu K, Zhang J, Shi Q, Ding L, Liu T, Fang Y. Precise Manipulation of Excited-State Intramolecular Proton Transfer via Incorporating Charge Transfer toward High-Performance Film-Based Fluorescence Sensing. J Am Chem Soc 2023; 145:7408-7415. [PMID: 36930832 DOI: 10.1021/jacs.2c13843] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
Excited-state intramolecular proton transfer (ESIPT) has been widely employed for the design of a variety of functionality-led molecular systems. However, precise manipulation of the excited-state reaction is challenging. Herein, we report a new tactic for tuning ESIPT via incorporating an excited-state intramolecular charge transfer (ESICT) process. Specifically, three o-carborane derivatives, NaCBO, PaCBO, and PyCBO, were designed, where the 2-(2'-hydroxyphenyl)-benzothiazole is a typical ESIPT unit functioning as an electron acceptor, and the electron-donating units are naphthyl-(Na), phenanthrenyl-(Pa), and pyrenyl-(Py), respectively. The architectures of the molecules are featured with a face-to-face alignment of the two units. Spectroscopy and theoretical calculation studies revealed that the electron-donating capacity of the donors and solvent polarity continuously modulate the ESIPT/ESICT energetics and dynamics, resulting in distinct emissions. Moreover, the molecules depicted not only highly porous structures but also very different fluorescent colors in the solid state, enabling highly selective film-based fluorescence sensing of mustard gas simulant, 2-chloroethyl ethyl sulfide, with a detection limit of 50 ppb and a response time of 5 s. This work thus provides a reliable strategy for the creation of high-performance sensing fluorophores via ESIPT manipulation.
Collapse
Affiliation(s)
- Ke Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Shaanxi, Xi'an 710062, China
| | - Jing Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Shaanxi, Xi'an 710062, China
| | - Qiyuan Shi
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Shaanxi, Xi'an 710062, China
| | - Liping Ding
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Shaanxi, Xi'an 710062, China
| | - Taihong Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Shaanxi, Xi'an 710062, China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Shaanxi, Xi'an 710062, China
| |
Collapse
|
47
|
Qi H, Cui X, Zhang H, Tong Y, Qian M, Zhou W, Ding S, Qi H. Rationally Designed Matrix-Free Carbon Dots with Wavelength-Tunable Room-Temperature Phosphorescence. Chem Asian J 2023; 18:e202201284. [PMID: 36719254 DOI: 10.1002/asia.202201284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/24/2023] [Accepted: 01/31/2023] [Indexed: 02/01/2023]
Abstract
We report the rational design of the matrix-free carbon dots (C-dots) with long wavelength and wavelength-tunable room-temperature phosphorescence (RTP). Taking advantage of microwave-assisted heating treatment, three RTP C-dots in boric acid (BA) composites are synthesized by using diethylenetriaminepentakis (methylphosphonic acid) as a multiple-sites crosslink agent, a moderately acid catalyst and P source; phenylenediamines (either o-PD, m-PD, or p-PD, respectively) as building block while BA as a carbonization-retardant matrix. After the water-soluble BA matrix is removed by dialysis, three matrix-free C-dots are obtained with RTP emission at 540, 550 and 570 nm under an excitation wavelength of 365 nm. Alterations of RTP emission of three matrix-free C-dots are ascribed to the difference in their particle size and band gap from n-π* transition. Furthermore, the application of three matrix-free C-dots are successfully performed in information encryption and decryption.
Collapse
Affiliation(s)
- Hetong Qi
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xiaofeng Cui
- School of Future Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Hengqi Zhang
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yuxi Tong
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Manping Qian
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Wenshuai Zhou
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Shujiang Ding
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.,School of Future Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Honglan Qi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| |
Collapse
|
48
|
Yan Z, Mao J, Hao X, Guan B, Zhao Z, Zhou X, Tang BZ, Fan Q, Wang J. Preparation of Ultrasmall AIE Nanoparticles with Tunable Molecular Packing via Freeze Assembly. NANO LETTERS 2023; 23:1030-1035. [PMID: 36715359 DOI: 10.1021/acs.nanolett.2c04557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Advances in the development of aggregation-induced emission luminogens (AIEgens) depend on understanding how the molecular packing affects their luminescent properties and on making nanoparticles (NPs) with desired sizes. Although reported strategies have advanced the field, rational control of molecular packing and efficient fabrication of AIEgen NPs sub-5.5 nm in diameter remain pressing issues. Here we report a "freeze assembly" strategy, in which the diameter of AIEgen NPs can be precisely tuned from ∼3 nm to hundreds of nanometers, and a molecular packing in kinetically trapped states that are not easily captured by conventional assembly methods can be obtained, leading to tunable fluorescence emissions. Therefore, this study provides a significant tool to fabricate organic luminescent nanomaterials with diameters smaller than 5 nm, which is of critical importance for biomedical applications; meanwhile, tuning molecular packing in nanoparticles displaying different fluorescence may help to shed new light on the mechanism of AIEgens.
Collapse
Affiliation(s)
- Zequan Yan
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Junqiang Mao
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xiang Hao
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Bo Guan
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Zheng Zhao
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, People's Republic of China
| | - Xin Zhou
- School of Physical Sciences & CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, People's Republic of China
| | - Qingrui Fan
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Jianjun Wang
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, People's Republic of China
| |
Collapse
|
49
|
Liu Y, Yang J, Mao Z, Wang Y, Zhao J, Su SJ, Chi Z. Isomeric thermally activated delayed fluorescence emitters for highly efficient organic light-emitting diodes. Chem Sci 2023; 14:1551-1556. [PMID: 36794188 PMCID: PMC9906651 DOI: 10.1039/d2sc06335b] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/12/2023] [Indexed: 01/13/2023] Open
Abstract
The isomeric strategy is an important design concept in molecular design that has a non-negligible influence on molecular properties. Herein, two isomeric thermally activated delayed fluorescence (TADF) emitters (NTPZ and TNPZ) are constructed with the same skeleton consisting of an electron donor and electron acceptor but different connection sites. Systematic investigations show that NTPZ exhibits a small energy gap, large up-conversion efficiency, low non-radiative decay, and high photoluminescence quantum yield. Further theoretical simulations reveal that the excited molecular vibrations play a key role in regulating the non-radiative decays of the isomers. Therefore, an NTPZ based OLED achieves better electroluminescence performances, such as a higher external quantum efficiency of 27.5% compared to a TNPZ based OLED (18.3%). This isomeric strategy not only provides an opportunity to deeply understand the relationship between substituent locations and molecular properties, but also affords a simple and effective strategy to enrich TADF materials.
Collapse
Affiliation(s)
- Yanyan Liu
- PCFM Lab, GDHPPC Lab, Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of OEMT, School of Chemistry, Sun Yat-sen University Guangzhou 510275 China
| | - Jiaji Yang
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology Guangzhou 510640 China
| | - Zhu Mao
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 China
| | - Yuyuan Wang
- PCFM Lab, GDHPPC Lab, Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of OEMT, School of Chemistry, Sun Yat-sen University Guangzhou 510275 China
| | - Juan Zhao
- School of Materials Science and Engineering, Sun Yat-sen University Guangzhou 510275 China
| | - Shi-Jian Su
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology Guangzhou 510640 China
| | - Zhenguo Chi
- PCFM Lab, GDHPPC Lab, Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of OEMT, School of Chemistry, Sun Yat-sen University Guangzhou 510275 China
| |
Collapse
|
50
|
Li MY, Li J, Gu A, Nong XM, Zhai S, Yue ZY, Feng CG, Liu Y, Lin GQ. Solvent-free and catalyst-free direct alkylation of alkenes. GREEN CHEMISTRY 2023; 25:7073-7078. [DOI: 10.1039/d3gc02685j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
A convenient method for synthesizing trisubstituted alkenes through direct alkylation of alkenes was achieved under solvent-free and catalyst-free conditions. This reaction highlighted by a low E-factor and a high atom- and step-economy.
Collapse
Affiliation(s)
- Meng-Yao Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiatong Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ao Gu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Mei Nong
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuyang Zhai
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhu-Ying Yue
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen-Guo Feng
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai Frontiers Science Center for Traditional Chinese Medicine Chemical Biology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yingbin Liu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guo-Qiang Lin
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai Frontiers Science Center for Traditional Chinese Medicine Chemical Biology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|