1
|
Zhang J, Lan J, Xie F, Luo M, Peng M, Palaniyandy N, Tan Y. Nanoporous copper titanium tin (np-Cu 2TiSn) Heusler alloy prepared by dealloying-induced phase transformation for electrocatalytic nitrate reduction to ammonia. J Colloid Interface Sci 2024; 676:323-330. [PMID: 39033673 DOI: 10.1016/j.jcis.2024.07.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/06/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Heusler alloys are a series of well-established intermetallic compounds with abundant structure and elemental substitutions, which are considered as potentially valuable catalysts for integrating multiple reactions owing to the features of ordered atomic arrangement and optimized electronic structure. Herein, a nanoporous copper titanium tin (np-Cu2TiSn) Heusler alloy is successfully prepared by the (electro)chemical dealloying transformation method, which exhibits high nitrate (NO3-) reduction performance with an NH3 Faradaic efficiency of 77.14 %, an NH3 yield rate of 11.90 mg h-1 mg-1cat, and a stability for 100 h under neutral condition. Significantly, we also convert NO3- to high-purity ammonium phosphomolybdate with NH4+ collection efficiency of 83.8 %, which suggests a practical approach to convert wastewater nitrate into value-added ammonia products. Experiments and theoretical calculations reveal that the electronic structure of Cu sites is modulated by the ligand effect of surrounding Ti and Sn atoms, which can simultaneously enhance the activation of NO3-, facilitate the desorption of NH3, and reduce the energy barriers, thereby boosting the electrochemical nitrate reduction reaction.
Collapse
Affiliation(s)
- Junfeng Zhang
- College of Materials Science and Engineering, State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle, Hunan University, Changsha 410082, Hunan Province, China
| | - Jiao Lan
- College of Materials Science and Engineering, State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle, Hunan University, Changsha 410082, Hunan Province, China
| | - Feng Xie
- College of Materials Science and Engineering, State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle, Hunan University, Changsha 410082, Hunan Province, China
| | - Min Luo
- Shanghai Technical Institute of Electronics & Information, Shanghai 201411, China.
| | - Ming Peng
- College of Materials Science and Engineering, State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle, Hunan University, Changsha 410082, Hunan Province, China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, Guangdong Province, China.
| | - Nithyadharseni Palaniyandy
- Institute for Catalysis and Energy Solutions (ICES), College of Science, Engineering, and Technology (CSET), University of South Africa, Florida Science Campus, Roodepoort 1709, South Africa
| | - Yongwen Tan
- College of Materials Science and Engineering, State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle, Hunan University, Changsha 410082, Hunan Province, China.
| |
Collapse
|
2
|
Cao Y, Yuan S, Hai Y, Wang X, Li X, Luo M. Amorphous Ni 3B Promotes Electroreduction of Nitrate to Ammonia. ACS APPLIED MATERIALS & INTERFACES 2024; 16:64807-64815. [PMID: 39535268 DOI: 10.1021/acsami.4c14621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The electrocatalytic nitrate reduction to ammonia (NRA) can address nitrogen cycle imbalance and high carbon emissions; however, the intense competition of hydrogen evolution reaction (HER) restricts the rate of NH3 production. Herein, amorphous Ni3B (a-Ni3B) is designed to balance the NRA and HER. The NH3 yield of a-Ni3B surpasses those of pure Ni and NiO, which is attributed to the preferential adsorption of NO3- on the B and Ni sites of a-Ni3B for the NRA reaction, greatly inhibiting the HER. Furthermore, the a-Ni3B possesses advantages in NRA performance compared to crystalline Ni3B (c-Ni3B) due to more active hydrogen (*H) generated during the catalytic process. The *H in the NRA process on a-Ni3B is verified by the electron spin resonance technique. The NRA mechanism is comprehensively discussed based on the results of in situ characterization and density functional theory calculations. The a-Ni3B can enhance NH3 production by inhibiting HER, which provides ideas for sustainable NH3 synthesis.
Collapse
Affiliation(s)
- Yue Cao
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, P. R. China
| | - Shengbo Yuan
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, P. R. China
| | - Yan Hai
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, P. R. China
| | - Xinyan Wang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, P. R. China
| | - Xiaoman Li
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, P. R. China
| | - Min Luo
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, P. R. China
| |
Collapse
|
3
|
Zhu X, Yuan X, Ge M, Tang Y. Atomic-Dispersed Cu Catalysts for Electrochemical Nitrate Reduction: Coordination Engineering and Fundamental Insights. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405158. [PMID: 39183524 DOI: 10.1002/smll.202405158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/23/2024] [Indexed: 08/27/2024]
Abstract
The development of Cu-based atomic dispersed catalysts with tailored coordination environments represents a significant step forward in enhancing the electrocatalytic reduction of nitrate to ammonia. By precisely modulating the electronic structures of Cu active centers, the binding strength of the *NO3 intermediates is successfully tuned, thereby substantially improving the catalytic activity toward electrochemical nitrate reduction reaction (eNO3RR). This study reveals that the N4-coordinated Cu single-atom catalyst (Cu-SAC) exhibits superior performance due to its robust interaction with coordinating atoms. Notably, this optimized catalyst achieves a low limiting potential of -0.38 V, while the dual-atom system further reduces this value to -0.32 V, demonstrating exceptional activity. Detailed electronic structure analysis, including the examination of d-band centers, Bader charges, and projected density of states (PDOS), provides a comprehensive understanding of the origin of this high activity. Specifically, the high and concentrated density of states near the Fermi level plays a crucial role in facilitating the electrocatalytic nitrate reduction process. This work not only offers crucial insights into the underlying mechanisms of eNO3RR but also provides valuable guidelines for the rational design of highly efficient electrocatalysts for this important reaction.
Collapse
Affiliation(s)
- Xiaorong Zhu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, China
| | - Xiaolei Yuan
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, China
| | - Ming Ge
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, China
| | - Yanfeng Tang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, China
| |
Collapse
|
4
|
Yan Q, Zhao R, Yu L, Zhao Z, Liu L, Xi J. Enhancing Compatibility of Two-Step Tandem Catalytic Nitrate Reduction to Ammonia Over P-Cu/Co(OH) 2. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408680. [PMID: 39258370 DOI: 10.1002/adma.202408680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/02/2024] [Indexed: 09/12/2024]
Abstract
Electrochemical nitrate reduction reaction (NO3RR) is a promising approach to realize ammonia generation and wastewater treatment. However, the transformation from NO3 - to NH3 involves multiple proton-coupled electron transfer processes and by-products (NO2 -, H2, etc.), making high ammonia selectivity a challenge. Herein, a two-phase nanoflower P-Cu/Co(OH)2 electrocatalyst consisting of P-Cu clusters and P-Co(OH)2 nanosheets is designed to match the two-step tandem process (NO3 - to NO2 - and NO2 - to NH3) more compatible, avoiding excessive NO2 - accumulation and optimizing the whole tandem reaction. Focusing on the initial 2e- process, the inhibited *NO2 desorption on Cu sites in P-Cu gives rise to the more appropriate NO2 - released in electrolyte. Subsequently, P-Co(OH)2 exhibits a superior capacity for trapping and transforming the desorbed NO2 - during the latter 6e- process due to the thermodynamic advantage and contributions of active hydrogen. In 1 m KOH + 0.1 m NO3 -, P-Cu/Co(OH)2 leads to superior NH3 yield rate of 42.63 mg h- 1 cm- 2 and NH3 Faradaic efficiency of 97.04% at -0.4 V versus the reversible hydrogen electrode. Such a well-matched two-step process achieves remarkable NH3 synthesis performance from the perspective of optimizing the tandem catalytic reaction, offering a novel guideline for the design of NO3RR electrocatalysts.
Collapse
Affiliation(s)
- Qiuyu Yan
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Rundong Zhao
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Lihong Yu
- School of Materials and Environmental Engineering, Shenzhen Polytechnic, Shenzhen, 518055, China
| | - Zongyan Zhao
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Le Liu
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Jingyu Xi
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| |
Collapse
|
5
|
Mondal S, Peter SC. A Perspective on Electrochemical Point Source Utilization of CO 2 and Other Flue Gas Components to Value Added Chemicals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407124. [PMID: 39340298 DOI: 10.1002/adma.202407124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/10/2024] [Indexed: 09/30/2024]
Abstract
Electrochemical CO2 reduction reaction (eCO2RR) has been explored extensively for mitigation of noxious CO2 gas generating C1 and C2+ hydrocarbons and oxygenates as value-added fuels and chemicals with remarkable selectivity. The source of CO2 being a pure CO2 feed, it does not fully satisfy the real-time digestion of industrial exhausts. Besides the detrimental effect of noxious gas mixture leading to global warming, there is a huge capital investment in purifying the flue gas mixtures from industries. The presence of other impurity gases affects the eCO2RR mechanism and its activity and selectivity toward C2+ products dwindle drastically. Impurities like NOx, SOx, O2, N2, and halide ions present in flue gas mixture reduce the conversion and selectivity of eCO2RR significantly. Instead of wiping out these impurities via separation processes, new strategies from material chemistry and electrochemistry can open new avenues for turning foes to friends! In this perspective, the co-electroreduction will vividly discussed and supporting role of different heteroatom-containing impurity gases with CO2, generating highly stable C─N, C─S, C─X bonds, and highlight the existing limitations and providing probable solutions for attaining further success in this field and translating this to industrial exhaust streams.
Collapse
Affiliation(s)
- Soumi Mondal
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
| | - Sebastian C Peter
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
| |
Collapse
|
6
|
Suh J, Choi H, Kong Y, Oh J. Tandem Electroreduction of Nitrate to Ammonia Using a Cobalt-Copper Mixed Single-Atom/Cluster Catalyst with Synergistic Effects. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407250. [PMID: 39297330 PMCID: PMC11558078 DOI: 10.1002/advs.202407250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/24/2024] [Indexed: 11/14/2024]
Abstract
Electrochemical conversion of waste nitrate (NO3 -) to ammonia (NH3) for environmental applications, such as carbon-neutral energy sources and hydrogen carriers, is a promising alternative to the energy-intensive Haber-Bosch process. However, increasing the energy efficiency is limited by the high overpotential and selectivity. Herein, a Co─Cu mixed single-atom/cluster catalyst (Co─Cu SCC) is demonstrated-with well-dispersed Co and Cu active sites anchored on a carbon support-that delivers high NH3 Faradaic efficiency of 91.2% at low potential (-0.3 V vs. RHE) due to synergism between the heterogenous active sites. Electrochemical analyses reveal that Cu in Co─Cu SCC preferentially catalyzes the NO3 --to-NO2 - pathway, whereupon Co catalyzes the NO2 --to-NH3 pathway. This tandem electroreduction bypasses the rate-determining steps (RDSs) for Co and Cu to lower the reaction energy barrier and surpass scaling relationship limitations. The electrocatalytic performance is amplified by the subnanoscale catalyst to increase the partial current density of NH3 by 2.3 and 5.4 times compared to those of individual Co, Cu single-atom/cluster catalysts (Co SCC, Cu SCC), respectively. This Co─Cu SCC is operated stably for 32 h in a long-term bipolar membrane (BPM)-based membrane electrode assembly (MEA) system for high-concentration NH3 synthesis to produce over 1 m NH3 for conversion into high-purity NH4Cl at 2.1 g day-1.
Collapse
Affiliation(s)
- Jungwon Suh
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| | - Hyeonuk Choi
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| | - Yujin Kong
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| | - Jihun Oh
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| |
Collapse
|
7
|
Li X, Yu Z, Zhang C, Li B, Wu X, Liu Y, Zhu Z. Advancing Energy Sustainability Through Solar-to-Fuel Technologies: From Materials to Devices and Systems. SMALL METHODS 2024; 8:e2400683. [PMID: 39039980 DOI: 10.1002/smtd.202400683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/08/2024] [Indexed: 07/24/2024]
Abstract
To achieve carbon neutrality and sustainable development, innovative solar-to-fuel systems have been designed through the integration of solar energy harvesting and electrochemical devices. Over the last decade, there have been notable advancements in enhancing the efficiency and durability of these solar-to-fuel systems. Despite the advancements, there remains significant potential for further improvements in the performance of systems. Enhancements can be achieved by optimizing electrochemical catalysts, advancing the manufacturing technologies of photovoltaics and electrochemical cells, and refining the overall design of these systems. In the realm of catalyst optimization, the effectiveness of materials can be significantly improved through active site engineering and strategic use of functional groups. Similarly, the performance of electrochemical devices can be enhanced by incorporating specific additives into electrolytes and optimizing gas diffusion electrodes. Improvements in solar harvesting devices are achievable through efficient passivant and self-assembled monolayers, which enhance the overall quality and efficiency of these systems. Additionally, optimizing the energy conversion efficiency involves the strategic use of DC converters, photoelectrodes, and redox media. This review aims to provide a comprehensive overview of the advancements in solar-powered electrochemical energy conversion systems, laying a solid foundation for future research and development in the field of energy sustainability.
Collapse
Affiliation(s)
- Xintong Li
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Zexin Yu
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Chunlei Zhang
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Bo Li
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Xin Wu
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Yizhe Liu
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Zonglong Zhu
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, China
| |
Collapse
|
8
|
Fan Z, Cao C, Yang X, Yuan W, Qin F, Hu Y, Sun X, Liu G, Tian Y, Xu L. Interfacial Electronic Interactions Promoted Activation for Nitrate Electroreduction to Ammonia over Ag-Modified Co 3O 4. Angew Chem Int Ed Engl 2024; 63:e202410356. [PMID: 39107253 DOI: 10.1002/anie.202410356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/11/2024] [Accepted: 08/05/2024] [Indexed: 08/09/2024]
Abstract
Electrocatalytic nitrate (NO3 -) reduction to ammonia (NRA) offers a promising pathway for ammonia synthesis. The interfacial electronic interactions (IEIs) can regulate the physicochemical capabilities of catalysts in electrochemical applications, while the impact of IEIs on electrocatalytic NRA remains largely unexplored in current literature. In this study, the high-efficiency electrode Ag-modified Co3O4 (Ag1.5Co/CC) is prepared for NRA in neutral media, exhibiting an impressive nitrate conversion rate of 96.86 %, ammonia Faradaic efficiency of 96.11 %, and ammonia selectivity of ~100 %. Notably, the intrinsic activity of Ag1.5Co/CC is ~81 times that of Ag nanoparticles (Ag/CC). Multiple characterizations and theoretical computations confirm the presence of IEIs between Ag and Co3O4, which stabilize the CoO6 octahedrons within Co3O4 and significantly promote the adsorption of reactants (NO3 -) as well as intermediates (NO2 - and NO), while suppressing the Heyrovsky step, thereby improving nitrate electroreduction efficiency. Furthermore, our findings reveal a synergistic effect between different active sites that enables tandem catalysis for NRA: NO3 - reduction to NO2 - predominantly occurs at Ag sites while NO2 - tends to hydrogenate to ammonia at Co sites. This study offers valuable insights for the development of high-performance NRA electrocatalysts.
Collapse
Affiliation(s)
- Zhenhai Fan
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Chunmei Cao
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Xingchuan Yang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Wenchuang Yuan
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Feiyang Qin
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Yating Hu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Xiaobo Sun
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Guoji Liu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Yun Tian
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Li Xu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
9
|
Yin S, Guan Z, Zhu Y, Guo D, Chen X, Wang S. Highly Efficient Electrocatalytic Nitrate Reduction to Ammonia: Group VIII-Based Catalysts. ACS NANO 2024; 18:27833-27852. [PMID: 39365283 DOI: 10.1021/acsnano.4c09247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
The accumulation of nitrates in the environment causes serious health and environmental problems. The electrochemical nitrate reduction reaction (e-NO3RR) has received attention for its ability to convert nitrate to value-added ammonia with renewable energy. The key to effective catalytic efficiency is the choice of materials. Group VIII-based catalysts demonstrate great potential for application in e-NO3RR because of their high activity, low cost, and good electron transfer capability. This review summarizes the Group VIII catalysts, including monatomic, bimetallic, oxides, phosphides, and other composites. On this basis, strategies to enhance the intrinsic activity of the catalysts through coordination environment modulation, synergistic effects, defect engineering and hybridization are discussed. Meanwhile, the ammonia recovery process is summarized. Finally, the current research status in this field is prospected and summarized. This review aims to realize the large-scale application of nitrate electrocatalytic reduction in industrial wastewater.
Collapse
Affiliation(s)
- Shiyue Yin
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Zhixi Guan
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Yuchuan Zhu
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Daying Guo
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Xi'an Chen
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Shun Wang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
10
|
Jang W, Oh D, Lee J, Kim J, Matthews JE, Kim H, Lee SW, Lee S, Xu Y, Yu JM, Hwang SW, Jaramillo TF, Jang JW, Cho S. Homogeneously Mixed Cu-Co Bimetallic Catalyst Derived from Hydroxy Double Salt for Industrial-Level High-Rate Nitrate-to-Ammonia Electrosynthesis. J Am Chem Soc 2024; 146:27417-27428. [PMID: 39177778 DOI: 10.1021/jacs.4c07061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Electrocatalytic nitrate reduction reaction (NO3RR) presents an innovative approach for sustainable NH3 production. However, selective NH3 production is hindered by the multiple intermediates involved in the NO3RR process and the competitive hydrogen evolution reaction. Hence, the development of highly efficient NO3RR catalysts is paramount. Herein, we report highly efficient bimetallic catalysts derived from hydroxy double salt (HDS). Under NO3RR conditions, Cu1Co1-HDS undergoes in situ reconstruction, forming nanocomposites of homogeneously distributed metallic Cu0 and Co(OH)2. Reconstruction-induced Cu0 rapidly converts NO3- to NO2-, which is further hydrogenated to NH3 by Co(OH)2. Homogeneously mixed Cu and Co species maximize this synergistic effect, achieving outstanding NO3RR performance including the highest NH3 yield rate (4.625 mmol h-1 cm-2) reported for powder-type NO3RR catalysts. Integration of Cu1Co1-HDS with a commercial Si solar cell attained 4.53% solar-to-ammonia efficiency from industrial wastewater-level concentrations of NO3- (2000 ppm), demonstrating practical application potential for solar-driven NH3 production. This study provides a strategy for enhancing the NH3 yield rate by optimizing the compositions and distributions of Cu and Co.
Collapse
Affiliation(s)
- Wonsik Jang
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Dongrak Oh
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Jinyoung Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jongkyoung Kim
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jesse E Matthews
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Hyoseok Kim
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Sang-Won Lee
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Seunghyun Lee
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Yi Xu
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Je Min Yu
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Seon Woo Hwang
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Thomas F Jaramillo
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Ji-Wook Jang
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Seungho Cho
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
11
|
Xi Y, Xiang Y, Bao T, Li Z, Zhang C, Yuan L, Li J, Bi Y, Yu C, Liu C. Nanoarchitectonics of S-Scheme Heterojunction Photocatalysts: A Nanohouse Design Improves Photocatalytic Nitrate Reduction to Ammonia Performance. Angew Chem Int Ed Engl 2024; 63:e202409163. [PMID: 38924334 DOI: 10.1002/anie.202409163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
Photocatalytic nitrate reduction reaction (NitRR) is a promising route for environment remediation and sustainable ammonia synthesis. To design efficient photocatalysts, the recently emerged nanoarchitectonics approach holds great promise. Here, we report a nanohouse-like S-scheme heterjunction photocatalyst with high photocatalytic NitRR performance. The nano-house has a floor of plate-like metal organic framework-based photocatalyst (NH2-MIL-125), on which another photocatalyst Co(OH)2 nanosheet is grown while ZIF-8 hollow cages are also constructed as the surrounding wall/roof. Experimental and simulation results indicate that the positively charged, highly porous and hydrophobic ZIF-8 wall can modulate the environment in the nanohouse by (i) NO3 - enrichment/NH4 + discharge and (ii) suppression of the competitive hydrogen evolution reaction. In combination with the enhanced electron-hole separation and strong redox capability in the NH2-MIL-125@Co(OH)2 S-scheme heterjunction confined in the nano-house, the designed photocatalyst delivers an ammonia yield of 2454.9 μmol g-1 h-1 and an apparent quantum yield of 8.02 % at 400 nm in pure water. Our work provides new insights into the design principles of advanced photocatalytic NitRR photocatalyst.
Collapse
Affiliation(s)
- Yamin Xi
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Yitong Xiang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Tong Bao
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Zhijie Li
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Chaoqi Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Ling Yuan
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Jiaxin Li
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Yin Bi
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Chengzhong Yu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
- State Key Laboratory of Petroleum Molecular and Process Engineering, SKLPMPE, East China Normal University, Shanghai, 200062, P. R. China
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Chao Liu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
- State Key Laboratory of Petroleum Molecular and Process Engineering, SKLPMPE, East China Normal University, Shanghai, 200062, P. R. China
| |
Collapse
|
12
|
Shih YJ, Wu ZL, He YC. Tuning transition metals layered-electroplated on bimetallic M xCu 1-x crystallites (M = Fe, Co, Ni, and Zn) to boost ammonia yield in electrocatalytic reduction of nitrate wastewaters. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135276. [PMID: 39088953 DOI: 10.1016/j.jhazmat.2024.135276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/11/2024] [Accepted: 07/19/2024] [Indexed: 08/03/2024]
Abstract
Nitrate-containing wastewaters have been recognized as an important source for recovering valuable ammonia. This work targets integrating a series of transition metals (M = Fe, Co, Ni, and Zn) onto Cu crystallites through a layered-plating method. The strategy to promote the nitrate reduction reaction (NO3-RR) involves tuning M surfaces in specific ratios for the hydrogenation of nitrogenous species on MxCu1-x electrodes. Electrochemical analysis and operando Raman spectra identified that a solid-state Cu2O-to-Cu0 transition acted as the primary mediator, while its high corrosion resistance protected the M metals or metal oxides from inactivation in nitrate-to-ammonia pathways. Among bimetals, FeCu was the best combination, with the order of performance in constant potential electrolysis, Fe0.36Cu0.64 > Ni0.73Cu0.27 > Co0.34Cu0.66 > Zn0.64Cu0.36. The collaboration of Cu and M in deoxygenating nitrate and subsequently hydrogenating NOx at respective overpotentials is key to enhancing ammonia yield. Nitrate removal (96 %), NH3 selectivity (93 %), and Faradaic efficiency (92 %) were optimized on Fe0.36Cu0.64 electrode at -0.6 V (vs. RHE). A steady yield as high as 14,080 μg h-1 mg-1 was achieved at 30 mA cm-2 using a real water sample (NO3- ∼ 500 mg-N L-1, pH 4) as the input stream, continuously operated for 96 h.
Collapse
Affiliation(s)
- Yu-Jen Shih
- Institute of Environmental Engineering, National Sun Yat-sen University, Taiwan.
| | - Zhi-Lun Wu
- Institute of Environmental Engineering, National Sun Yat-sen University, Taiwan
| | - Yi-Chun He
- Institute of Environmental Engineering, National Sun Yat-sen University, Taiwan
| |
Collapse
|
13
|
Guo X, Yu J, Ren S, Gao RT, Wu L, Wang L. Controlled Defective Engineering on CuIr Catalyst Promotes Nitrate Selective Reduction to Ammonia. ACS NANO 2024; 18:24252-24261. [PMID: 39169609 DOI: 10.1021/acsnano.4c05772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Electrochemical nitrate reduction reaction (NO3-RR) is a promising low-carbon and environmentally friendly approach for the production of ammonia (NH3). Herein, we develop a high-temperature quenched copper (Cu) catalyst with the aim of inducing nonequilibrium phase transformation, revealing the multiple defects (distortion, dislocations, vacancies, etc.) presented in Cu, which lead to low overpotential for NO3-RR and high efficiency for NH3 production. Further loading a low content of iridium (Ir) species on the Cu surface improves the reactivity and ammonia selectivity. The resultant CuIr electrode exhibits a Faradaic efficiency of 93% and a record yield of 6.01 mmol h-1 cm-2 at -0.22 VRHE exceeding those of state-of-the-art NO3-RR catalysts. Detailed investigations have demonstrated that the synergistic effect between multiple defects and Ir decoration effectively regulate the d-band center of copper, change the adsorption state of the catalyst surface, and promote the adsorption and reduction of intermediates and reactants. The strong H* adsorption ability of the Ir element provides more active hydrogen for the generation of ammonia, promoting the reduction of nitrate to NH3.
Collapse
Affiliation(s)
- Xiaotian Guo
- College of Chemistry and Chemical Engineering, College of Energy Material and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Jidong Yu
- College of Chemistry and Chemical Engineering, College of Energy Material and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Shijie Ren
- College of Chemistry and Chemical Engineering, College of Energy Material and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Rui-Ting Gao
- College of Chemistry and Chemical Engineering, College of Energy Material and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Limin Wu
- College of Chemistry and Chemical Engineering, College of Energy Material and Chemistry, Inner Mongolia University, Hohhot 010021, China
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Lei Wang
- College of Chemistry and Chemical Engineering, College of Energy Material and Chemistry, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
14
|
Qi Y, Hou X, He Z, He F, Wei T, Meng G, Hu H, Liu Q, Hu G, Liu X. Phosphorus-doped Ti 3C 2T x MXene nanosheets enabling ambient NH 3 synthesis with high current densities. Chem Commun (Camb) 2024. [PMID: 39072368 DOI: 10.1039/d4cc03051f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Herein, we show that P-doped Ti3C2Tx MXene nanosheets can effectively catalyze the NO3RR-to-NH3 conversion with a high faradaic efficiency of 95% and a yield rate of 5.39 mg h-1 mgcat.-1. Moreover, the catalyst achieves an impressive high current density of -1200 mA cm-2 at a low potential of -1.51 V, accompanied by an NH3 productivity of 123.5 mg h-1 mgcat.-1. Theoretical calculations further reveal that phosphorous dopants facilitate the adsorption and activation of reactants/intermediates and thus lower the energy barrier.
Collapse
Affiliation(s)
- Yuchuan Qi
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China.
| | - Xianghua Hou
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China.
| | - Ziying He
- Guangxi Vocational & Technical Institute of Industry, Nanning 530001, Guangxi, China
| | - Fan He
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China.
| | - Tianran Wei
- Guangxi Vocational & Technical Institute of Industry, Nanning 530001, Guangxi, China
- MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004 Guangxi, China.
| | - Ge Meng
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China.
- Guangxi Vocational & Technical Institute of Industry, Nanning 530001, Guangxi, China
| | - Huihui Hu
- MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004 Guangxi, China.
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China
| | - Guangzhi Hu
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Xijun Liu
- MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004 Guangxi, China.
| |
Collapse
|
15
|
Bu Y, Yu W, Yang Q, Zhang W, Sun Q, Wu W, Cui P, Wang C, Gao G. Membraneless Electrochemical Synthesis Strategy toward Nitrate-to-Ammonia Conversion. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12708-12718. [PMID: 38953681 DOI: 10.1021/acs.est.4c02445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Electroreduction of nitrate (NO3RR) to ammonia in membraneless electrolyzers is of great significance for reducing the cost and saving energy consumption. However, severe chemical crossover with side reactions makes it challenging to achieve ideal electrolysis. Herein, we propose a general strategy for efficient membraneless ammonia synthesis by screening NO3RR catalysts with inferior oxygen reduction activity and matching the counter electrode (CE) with good oxygen evolution activity while blocking anodic ammonia oxidation. Consequently, screening the available Co-Co system, the membraneless NO3--to-NH3 conversion performance was significantly higher than H-type cells using costly proton-exchange membranes. At 200 mA cm-2, the full-cell voltage of the membraneless system (∼2.5 V) is 4 V lower than that of the membrane system (∼6.5 V), and the savings are 61.4 kW h (or 56.9%) per 1 kg NH3 produced. A well-designed pulse process, inducing reversible surface reconstruction that in situ generates and restores the active Co(III) species at the working electrode and forms favorable Co3O4/CoOOH at the CE, further significantly improves NO3--to-NH3 conversion and blocks side reactions. A maximum NH3 yield rate of 1500.9 μmol cm-2 h-1 was achieved at -0.9 V (Faraday efficiency 92.6%). This pulse-coupled membraneless strategy provides new insights into design complex electrochemical synthesis.
Collapse
Affiliation(s)
- Yongguang Bu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Wenjing Yu
- Research Center of Environmental Science and Engineering, School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
| | - Qiang Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Wenkai Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Qingyu Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Wensu Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Peixin Cui
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Chao Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Guandao Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
- Chongqing Innovation Research Institute of Nanjing University, Chongqing 401121, China
| |
Collapse
|
16
|
Nishiwaki E, Rice PS, Kuo DY, Dou FY, Pyka A, Reid B, Nguyen HA, Stuve EM, Raugei S, Cossairt BM. Ni 2P active site ensembles tune electrocatalytic nitrate reduction selectivity. Chem Commun (Camb) 2024; 60:6941-6944. [PMID: 38885011 DOI: 10.1039/d4cc01834f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
We demonstrate that active site ensembles on transition metal phosphides tune the selectivity of the nitrate reduction reaction. Using Ni2P nanocrystals as a case study, we report a mechanism involving competitive co-adsorption of H* and NOx* intermediates. A near 100% faradaic efficiency for nitrate reduction over hydrogen evolution is observed at -0.4 V, while NH3 selectivity is maximized at -0.2 V vs. RHE.
Collapse
Affiliation(s)
- Emily Nishiwaki
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA.
| | - Peter S Rice
- Pacific Northwest National Laboratory, Richland, Washington, WA 99352, USA
| | - Ding-Yuan Kuo
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA.
| | - Florence Y Dou
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA.
| | - Anthony Pyka
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Bryce Reid
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Hao A Nguyen
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA.
| | - Eric M Stuve
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Simone Raugei
- Pacific Northwest National Laboratory, Richland, Washington, WA 99352, USA
| | - Brandi M Cossairt
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
17
|
Chen Z, Ma T, Wei W, Wong WY, Zhao C, Ni BJ. Work Function-Guided Electrocatalyst Design. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401568. [PMID: 38682861 DOI: 10.1002/adma.202401568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/14/2024] [Indexed: 05/01/2024]
Abstract
The development of high-performance electrocatalysts for energy conversion reactions is crucial for advancing global energy sustainability. The design of catalysts based on their electronic properties (e.g., work function) has gained significant attention recently. Although numerous reviews on electrocatalysis have been provided, no such reports on work function-guided electrocatalyst design are available. Herein, a comprehensive summary of the latest advancements in work function-guided electrocatalyst design for diverse electrochemical energy applications is provided. This includes the development of work function-based catalytic activity descriptors, and the design of both monolithic and heterostructural catalysts. The measurement of work function is first discussed and the applications of work function-based catalytic activity descriptors for various reactions are fully analyzed. Subsequently, the work function-regulated material-electrolyte interfacial electron transfer (IET) is employed for monolithic catalyst design, and methods for regulating the work function and optimizing the catalytic performance of catalysts are discussed. In addition, key strategies for tuning the work function-governed material-material IET in heterostructural catalyst design are examined. Finally, perspectives on work function determination, work function-based activity descriptors, and catalyst design are put forward to guide future research. This work paves the way to the work function-guided rational design of efficient electrocatalysts for sustainable energy applications.
Collapse
Affiliation(s)
- Zhijie Chen
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Tianyi Ma
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Wei Wei
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Wai-Yeung Wong
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom Kowloon, Hong Kong, P. R. China
| | - Chuan Zhao
- School of Chemistry, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Bing-Jie Ni
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
18
|
Zhang C, Zhang Y, Deng R, Yuan L, Zou Y, Bao T, Zhang X, Wei G, Yu C, Liu C. Enabling Logistics Automation in Nanofactory: Cobalt Phosphide Embedded Metal-Organic Frameworks for Efficient Electrocatalytic Nitrate Reduction to Ammonia. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313844. [PMID: 38615269 DOI: 10.1002/adma.202313844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/11/2024] [Indexed: 04/15/2024]
Abstract
Electrocatalytic nitrate reduction reaction (NitRR) in neutral condition offers a promising strategy for green ammonia synthesis and wastewater treatment, the rational design of electrocatalysts is the cornerstone. Inspired by modern factory design where both machines and logistics matter for manufacturing, it is reported that cobalt phosphide (CoP) nanoparticles embedded in zinc-based zeolite imidazole frameworks (Zn-ZIF) function as a nanofactory with high performance. By selective phosphorization of ZnCo bimetallic zeolite imidazole framework (ZnCo-ZIF), the generated CoP nanoparticles act as "machines" (active sites) for molecular manufacturing (NO3 - to NH4 + conversion). The purposely retained framework (Zn-ZIFs) with positive charge promotes logistics automation, i.e., the automatic delivery of NO3 - reactants and timely discharge of NH4 + products in-and-out the nanofactory due to electrostatic interaction. Moreover, the interaction between Zn-ZIF and CoP modulates the Co sites into electron insufficient state with upshifted d-band center, facilitating the reduction/hydrogenation of NO3 - to ammonia and restricting the competitive hydrogen evolution. Consequently, the assembled CoP/Zn-ZIF nanofactory exhibits superior NitRR performances with a high Faraday efficiency of ≈97% and a high ammonia yield of 0.89 mmol cm-1 h-1 in neutral condition, among the best of reported electrocatalysts. The work provides new insights into the design principles of efficient NitRR electrocatalysts.
Collapse
Affiliation(s)
- Chaoqi Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Yue Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Rong Deng
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Ling Yuan
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Yingying Zou
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Tong Bao
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Xinchan Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - GuangFeng Wei
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Chengzhong Yu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
- State Key Laboratory of Petroleum Molecular and Process Engineering, SKLPMPE, East China Normal University, Shanghai, 200062, P. R. China
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Chao Liu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
- State Key Laboratory of Petroleum Molecular and Process Engineering, SKLPMPE, East China Normal University, Shanghai, 200062, P. R. China
| |
Collapse
|
19
|
Absalyamova M, Nurmyrza M, Nurlan N, Bae S, Lee W. The effect of carbonized zeolitic imidazolate framework-67 (ZIF-67) support on the reactivity and selectivity of bimetal-catalytic aqueous NO 3- reduction. CHEMOSPHERE 2024; 358:142161. [PMID: 38685335 DOI: 10.1016/j.chemosphere.2024.142161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/17/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2024]
Abstract
A metallic catalyst, Cobalt N-doped Carbon (Co@NC), was obtained from Zeolitic-Imidazolate Framework-67 (ZIF-67) for efficient aqueous nitrate (NO3-) removal. This advanced catalyst indicated remarkable efficiency by generating valuable ammonium (NH3/NH4+) via an environmentally friendly production technique during the nitrate treatment. Among various metals (Cu, Pt, Pd, Sn, Ru, and Ni), 3.6%Pt-Co@NC exhibited an exceptional nitrate removal, demonstrating a complete removal of 60 mg/L NO3--N (265 mg/L NO3-) in 30 min with the fastest removal kinetics (11.4 × 10-2 min-1) and 99.5% NH4+ selectivity. The synergistic effect of bimetallic Pt-Co@NC led to 100% aqueous NO3- removal, outperforming the reactivity by bare ZIF-67 (3.67%). The XPS analysis illustrated Co's promotor role for NO3- reduction to less oxidized nitrogen species and Pt's hydrogenation role for further reduction to NH4+. The durability test revealed a slight decrease in NO3- removal, which started from the third cycle (95%) and slowly proceeded to the sixth cycle (80.2%), while NH4+ selectivity exceeded 82% with no notable Co or Pt leaching throughout seven consecutive cycles. This research shed light on the significance of the impregnated Pt metal and Co exposed on the Co@NC surface for the catalytic nitrate treatment, leading to a sustainable approach for the effective removal of nitrate and economical NH4+ production.
Collapse
Affiliation(s)
- Miriam Absalyamova
- Laboratory of Environmental Systems, National Laboratory Astana, Nazarbayev University, Astana, 010000, Kazakhstan
| | - Meiirzhan Nurmyrza
- Laboratory of Environmental Systems, National Laboratory Astana, Nazarbayev University, Astana, 010000, Kazakhstan; Civil and Environmental Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Astana, 010000, Kazakhstan
| | - Nurbek Nurlan
- Laboratory of Environmental Systems, National Laboratory Astana, Nazarbayev University, Astana, 010000, Kazakhstan
| | - Sungjun Bae
- Civil and Environmental Engineering, College of Engineering, Konkuk University, Seoul, 05029, South Korea
| | - Woojin Lee
- Laboratory of Environmental Systems, National Laboratory Astana, Nazarbayev University, Astana, 010000, Kazakhstan; Civil and Environmental Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Astana, 010000, Kazakhstan.
| |
Collapse
|
20
|
Ma G, Al-Mahayni H, Jiang N, Song D, Qiao B, Xu Z, Seifitokaldani A, Zhao S, Liang Z. Electrokinetic Analyses Uncover the Rate-Determining Step of Biomass-Derived Monosaccharide Electroreduction on Copper. Angew Chem Int Ed Engl 2024; 63:e202401602. [PMID: 38345598 DOI: 10.1002/anie.202401602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Indexed: 03/09/2024]
Abstract
Electrochemical biomass conversion holds promise to upcycle carbon sources and produce valuable products while reducing greenhouse gas emissions. To this end, deep insight into the interfacial mechanism is essential for the rational design of an efficient electrocatalytic route, which is still an area of active research and development. Herein, we report the reduction of dihydroxyacetone (DHA)-the simplest monosaccharide derived from glycerol feedstock-to acetol, the vital chemical intermediate in industries, with faradaic efficiency of 85±5 % on a polycrystalline Cu electrode. DHA reduction follows preceding dehydration by coordination with the carbonyl and hydroxyl groups and the subsequent hydrogenation. The electrokinetic profile indicates that the rate-determining step (RDS) includes a proton-coupled electron transfer (PCET) to the dehydrated intermediate, revealed by coverage-dependent Tafel slope and isotopic labeling experiments. An approximate zero-order dependence of H+ suggests that water acts as the proton donor for the interfacial PCET process. Leveraging these insights, we formulate microkinetic models to illustrate its origin that Eley-Rideal (E-R) dominates over Langmuir-Hinshelwood (L-H) in governing Cu-mediated DHA reduction, offering rational guidance that increasing the concentration of the adsorbed reactant alone would be sufficient to promote the activity in designing practical catalysts.
Collapse
Affiliation(s)
- Guoquan Ma
- School of Physics Science and Engineering, Beijing Jiaotong University, Shangyuancun 3, Haidian District, Beijing, 100044, China
| | - Hasan Al-Mahayni
- Department of Chemical Engineering, McGill University Wong Building, 3610 University Street, Montreal, Quebec, H3A 0C5, Canada
| | - Na Jiang
- School of Physics Science and Engineering, Beijing Jiaotong University, Shangyuancun 3, Haidian District, Beijing, 100044, China
| | - Dandan Song
- School of Physics Science and Engineering, Beijing Jiaotong University, Shangyuancun 3, Haidian District, Beijing, 100044, China
| | - Bo Qiao
- School of Physics Science and Engineering, Beijing Jiaotong University, Shangyuancun 3, Haidian District, Beijing, 100044, China
| | - Zheng Xu
- School of Physics Science and Engineering, Beijing Jiaotong University, Shangyuancun 3, Haidian District, Beijing, 100044, China
| | - Ali Seifitokaldani
- Department of Chemical Engineering, McGill University Wong Building, 3610 University Street, Montreal, Quebec, H3A 0C5, Canada
| | - Suling Zhao
- School of Physics Science and Engineering, Beijing Jiaotong University, Shangyuancun 3, Haidian District, Beijing, 100044, China
| | - Zhiqin Liang
- School of Physics Science and Engineering, Beijing Jiaotong University, Shangyuancun 3, Haidian District, Beijing, 100044, China
- Tangshan Research Institute of Beijing Jiaotong University, Xinhua Xi Street 46, Tangshan city, Hebei, 063000, China
| |
Collapse
|
21
|
Zhou S, Dai Y, Song Q, Lu L, Yu X. Efficient Electrochemical Nitrate Removal by Ordered Ultrasmall Intermetallic AuCu 3 via Enhancing Nitrate Adsorption. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38605516 DOI: 10.1021/acsami.4c01739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Developing a high-performance electrocatalyst for synthesizing ammonia from nitrate represents a promising solution for addressing wastewater pollution and achieving sustainable ammonia production. However, it remains a formidable challenge. Herein, an intermetallic AuCu3 electrocatalyst with high-density active sites is designed and prepared for an efficient nitrate electroreduction to generate ammonia. Remarkably, the Faraday efficiency and yield rate of ammonia at -0.9 V are 97.6% and 75.9 mg h-1 cm-2, respectively. More importantly, after 10 cycles of testing, the removal rate of nitrate can still reach 95.2%. Electrochemical in situ Fourier transform infrared analysis indicates that AuCu3 IM can promote the adsorption of nitrate and enhance ammonia production from nitrate. *NH3, *NO, and *NO2 have been proven to be active intermediates. Theoretical and experimental studies show that the Au site can provide a large amount of *H for nitrate reduction, and the Cu site is conducive to the reduction of nitrate to produce nitrogen-containing products. Meanwhile, AuCu3 intermetallic compounds (AuCu3 IM) can inhibit the dimerization of *H. The power density and ammonia yield of the assembled Zn-nitrate battery reached 2.17 mW cm-2 and 71.2 mg h-1 cm-2, respectively.
Collapse
Affiliation(s)
- Shuanglong Zhou
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- School of Computer Science and Technology, Shandong University of Technology, Zibo 255000, China
| | - Yu Dai
- School of Foreign Languages, Qingdao City University, Qingdao 266042, China
| | - Qiang Song
- School of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Lina Lu
- School of Business, Shandong University of Technology, Zibo 255000, China
| | - Xiao Yu
- School of Computer Science and Technology, Shandong University of Technology, Zibo 255000, China
| |
Collapse
|
22
|
Fang L, Lu S, Wang S, Yang X, Song C, Yin F, Liu H. Defect engineering on electrocatalysts for sustainable nitrate reduction to ammonia: Fundamentals and regulations. Chemistry 2024; 30:e202303249. [PMID: 37997008 DOI: 10.1002/chem.202303249] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 11/25/2023]
Abstract
Electrocatalytic nitrate (NO3 -) reduction to ammonia (NH3) is a "two birds-one stone" method that targets remediation of NO3 --containing sewage and production of valuable NH3. The exploitation of advanced catalysts with high activity, selectivity, and durability is a key issue for the efficient catalytic performance. Among various strategies for catalyst design, defect engineering has gained increasing attention due to its ability to modulate the electronic properties of electrocatalysts and optimize the adsorption energy of reactive species, thereby enhancing the catalytic performance. Despite previous progress, there remains a lack of mechanistic insights into the regulation of catalyst defects for NO3 - reduction. Herein, this review presents insightful understanding of defect engineering for NO3 - reduction, covering its background, definition, classification, construction, and underlying mechanisms. Moreover, the relationships between regulation of catalyst defects and their catalytic activities are illustrated by investigating the properties of electrocatalysts through the analysis of electronic band structure, charge density distribution, and controllable adsorption energy. Furthermore, challenges and perspectives for future development of defects in NO3RR are also discussed, which can help researchers to better understand the defect engineering in catalysts, and also inspire scientists entering into this promising field.
Collapse
Affiliation(s)
- Ling Fang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 1400714, Chongqing, China
| | - Shun Lu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 1400714, Chongqing, China
| | - Sha Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 1400714, Chongqing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xiaohui Yang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 1400714, Chongqing, China
| | - Cheng Song
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 1400714, Chongqing, China
| | - Fengjun Yin
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 1400714, Chongqing, China
| | - Hong Liu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 1400714, Chongqing, China
| |
Collapse
|
23
|
Xiong Y, Wang Y, Zhou J, Liu F, Hao F, Fan Z. Electrochemical Nitrate Reduction: Ammonia Synthesis and the Beyond. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304021. [PMID: 37294062 DOI: 10.1002/adma.202304021] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/29/2023] [Indexed: 06/10/2023]
Abstract
Natural nitrogen cycle has been severely disrupted by anthropogenic activities. The overuse of N-containing fertilizers induces the increase of nitrate level in surface and ground waters, and substantial emission of nitrogen oxides causes heavy air pollution. Nitrogen gas, as the main component of air, has been used for mass ammonia production for over a century, providing enough nutrition for agriculture to support world population increase. In the last decade, researchers have made great efforts to develop ammonia processes under ambient conditions to combat the intensive energy consumption and high carbon emission associated with the Haber-Bosch process. Among different techniques, electrochemical nitrate reduction reaction (NO3RR) can achieve nitrate removal and ammonia generation simultaneously using renewable electricity as the power, and there is an exponential growth of studies in this research direction. Here, a timely and comprehensive review on the important progresses of electrochemical NO3RR, covering the rational design of electrocatalysts, emerging CN coupling reactions, and advanced energy conversion and storage systems is provided. Moreover, future perspectives are proposed to accelerate the industrialized NH3 production and green synthesis of chemicals, leading to a sustainable nitrogen cycle via prosperous N-based electrochemistry.
Collapse
Affiliation(s)
- Yuecheng Xiong
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Yunhao Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Jingwen Zhou
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Fu Liu
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Fengkun Hao
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Zhanxi Fan
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| |
Collapse
|
24
|
Kim Y, Ko J, Shim M, Park J, Shin HH, Kim ZH, Jung Y, Byon HR. Identifying the active sites and intermediates on copper surfaces for electrochemical nitrate reduction to ammonia. Chem Sci 2024; 15:2578-2585. [PMID: 38362436 PMCID: PMC10866343 DOI: 10.1039/d3sc05793c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/04/2024] [Indexed: 02/17/2024] Open
Abstract
Copper (Cu) is a widely used catalyst for the nitrate reduction reaction (NO3RR), but its susceptibility to surface oxidation and complex electrochemical conditions hinders the identification of active sites. Here, we employed electropolished metallic Cu with a predominant (100) surface and compared it to native oxide-covered Cu. The electropolished Cu surface rapidly oxidized after exposure to either air or electrolyte solutions. However, this oxide was reduced below 0.1 V vs. RHE, thus returning to the metallic Cu before NO3RR. It was distinguished from the native oxide on Cu, which remained during NO3RR. Fast NO3- and NO reduction on the metallic Cu delivered 91.5 ± 3.7% faradaic efficiency for NH3 at -0.4 V vs. RHE. In contrast, the native oxide on Cu formed undesired products and low NH3 yield. Operando shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) analysis revealed the adsorbed NO3-, NO2, and NO species on the electropolished Cu as the intermediates of NH3. Low overpotential NO3- and NO adsorptions and favorable NO reduction are key to increased NH3 productivity over Cu samples, which was consistent with the DFT calculation on Cu(100).
Collapse
Affiliation(s)
- Yohan Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) 291, Daehak-ro, Yuseong-gu Daejeon 34141 Republic of Korea
| | - Jinyoung Ko
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST) 291 Daehak-ro, Yuseong-gu Daejeon 34141 Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University Seoul 08826 Republic of Korea
| | - Minyoung Shim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) 291, Daehak-ro, Yuseong-gu Daejeon 34141 Republic of Korea
| | - Jiwon Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) 291, Daehak-ro, Yuseong-gu Daejeon 34141 Republic of Korea
| | - Hyun-Hang Shin
- Department of Chemistry, Seoul National University Seoul 08826 Republic of Korea
| | - Zee Hwan Kim
- Department of Chemistry, Seoul National University Seoul 08826 Republic of Korea
| | - Yousung Jung
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST) 291 Daehak-ro, Yuseong-gu Daejeon 34141 Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University Seoul 08826 Republic of Korea
| | - Hye Ryung Byon
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) 291, Daehak-ro, Yuseong-gu Daejeon 34141 Republic of Korea
| |
Collapse
|
25
|
Luo F, Guo L. Bimetallic synergistic catalysts based on two-dimensional carbon-rich conjugated frameworks for nitrate electrocatalytic reduction to ammonia: catalyst screening and mechanism insights. NANOTECHNOLOGY 2024; 35:125201. [PMID: 38100833 DOI: 10.1088/1361-6528/ad1649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/15/2023] [Indexed: 12/17/2023]
Abstract
The discovery of the 'two birds, one stone' electrochemical nitrate reduction reaction (NO3RR) allows for the removal of harmful NO3-pollutants as well as the production of economically beneficial ammonia (NH3). However, current understanding of the catalytic mechanism of NO3RR is not enough, and this research is still challenging. To determine the mechanism needed to create efficient electrocatalysts, we thoroughly examined the catalytic activity of molybdenum-based diatomic catalysts (DACs) anchored on two-dimensional carbon-rich conjugated frameworks (2D CCFs) for NO3RR. Among the 23 candidate materials, after a four-step screening method and detailed mechanism studies, we discovered that NO3RR can efficiently generate NH3by following the N-end pathway on the MoTi-Pc, MoMn-Pc, and MoNb-Pc, with limiting potential of -0.33 V, -0.13 V, and -0.38 V, respectively. The activity of NO3RR can be attributed to the synergistic effect of the TM1-TM2dimer d orbital coupling to the anti-bonding orbital of NO3-. Additionally, high hybridization between the Mo-4d, TM-3d(4d), and NO3--2p orbitals on the MoTMs-Pc DACs can speed up the flow of electrons from the Mo-TM dual-site to NO3-. The research presented here paves the way for the reasonable design of effective NO3RR catalysts and offers a theoretical basis for experimental research.
Collapse
Affiliation(s)
- FengLing Luo
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials, Ministry of Education, The School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030000, People's Republic of China
| | - Ling Guo
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials, Ministry of Education, The School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030000, People's Republic of China
| |
Collapse
|
26
|
Sun S, Dai C, Zhao P, Xi S, Ren Y, Tan HR, Lim PC, Lin M, Diao C, Zhang D, Wu C, Yu A, Koh JCJ, Lieu WY, Seng DHL, Sun L, Li Y, Tan TL, Zhang J, Xu ZJ, Seh ZW. Spin-related Cu-Co pair to increase electrochemical ammonia generation on high-entropy oxides. Nat Commun 2024; 15:260. [PMID: 38177119 PMCID: PMC10766993 DOI: 10.1038/s41467-023-44587-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 12/20/2023] [Indexed: 01/06/2024] Open
Abstract
The electrochemical conversion of nitrate to ammonia is a way to eliminate nitrate pollutant in water. Cu-Co synergistic effect was found to produce excellent performance in ammonia generation. However, few studies have focused on this effect in high-entropy oxides. Here, we report the spin-related Cu-Co synergistic effect on electrochemical nitrate-to-ammonia conversion using high-entropy oxide Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O. In contrast, the Li-incorporated MgCoNiCuZnO exhibits inferior performance. By correlating the electronic structure, we found that the Co spin states are crucial for the Cu-Co synergistic effect for ammonia generation. The Cu-Co pair with a high spin Co in Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O can facilitate ammonia generation, while a low spin Co in Li-incorporated MgCoNiCuZnO decreases the Cu-Co synergistic effect on ammonia generation. These findings offer important insights in employing the synergistic effect and spin states inside for selective catalysis. It also indicates the generality of the magnetic effect in ammonia synthesis between electrocatalysis and thermal catalysis.
Collapse
Affiliation(s)
- Shengnan Sun
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Chencheng Dai
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Republic of Singapore
- The Cambridge Centre for Advanced Research and Education in Singapore, 1 CREATE Way, Singapore, 138602, Republic of Singapore
| | - Peng Zhao
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore, 138632, Republic of Singapore
| | - Shibo Xi
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE²), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore, 627833, Republic of Singapore
| | - Yi Ren
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Hui Ru Tan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Poh Chong Lim
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Ming Lin
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Caozheng Diao
- Singapore Synchrotron Light Sources (SSLS), National University of Singapore, 5 Research Link, Singapore, 117603, Republic of Singapore
| | - Danwei Zhang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Chao Wu
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE²), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore, 627833, Republic of Singapore
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Anke Yu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Republic of Singapore
| | - Jie Cheng Jackson Koh
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Republic of Singapore
| | - Wei Ying Lieu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Republic of Singapore
| | - Debbie Hwee Leng Seng
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Libo Sun
- The Cambridge Centre for Advanced Research and Education in Singapore, 1 CREATE Way, Singapore, 138602, Republic of Singapore
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, P. R. China
| | - Yuke Li
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore, 138632, Republic of Singapore
| | - Teck Leong Tan
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore, 138632, Republic of Singapore
| | - Jia Zhang
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore, 138632, Republic of Singapore.
| | - Zhichuan J Xu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Republic of Singapore.
| | - Zhi Wei Seh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore.
| |
Collapse
|
27
|
Wang W, Chen J, Tse ECM. Synergy between Cu and Co in a Layered Double Hydroxide Enables Close to 100% Nitrate-to-Ammonia Selectivity. J Am Chem Soc 2023; 145:26678-26687. [PMID: 38051561 PMCID: PMC10723069 DOI: 10.1021/jacs.3c08084] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 12/07/2023]
Abstract
Nitrate electroreduction (NO3RR) holds promise as an energy-efficient strategy for the removal of toxic nitrate to restore the natural nitrogen cycle and mitigate the adverse impacts caused by overfertilization from suboptimal agricultural practices. However, existing catalysts suffer from limited electrocatalytic activity, poor selectivity, inadequate durability, and low scalability. To address this quadrilemma, in this study, we developed a cost-effective layered double hydroxide (LDH) electrocatalyst with a lamellar structure that presents trimetallic CuCoAl active sites on the nanomaterial surface. This codoping design enabled electrochemical upcycling of nitrate into ammonia exclusively and efficiently with an onset potential at 0 V vs RHE, where the electrocatalytic process is less energy intensive and has a lower carbon footprint than conventional practices. The synergistic interaction among Cu, Co, and Al further afforded a 99.5% Faradic efficiency (FE) and a yield rate of 0.22 mol h-1 g-1 for nitrate-to-ammonia electroreduction, surpassing the performance of state-of-the-art nonprecious metal NO3RR electrocatalysts over an extended operation period. To gain insights into the origin of the catalytic performance observed on LDH, control materials were employed to elucidate the roles of Cu and Co. Cu was found to improve the NO3RR onset potential despite displaying limited FE for ammonia synthesis, while Co was discovered to suppress the formation of nitrite byproduct though requiring large overpotential. Simulated wastewater containing phosphate and sulfate, which are typically present in industrial effluents, was used to further investigate the effect of electrolytes on NO3RR. Intriguingly, the use of phosphate buffer resulted in a superior yield rate and FE for ammonia production while simultaneously inhibiting nitrite byproduct formation compared with the sulfate case. These experimental findings were supported by density functional theory (DFT) calculations, which explored the adsorption strength of nitrate adducts adjacent to coadsorbed electrolytes on the LDH surface. Additionally, the relative free energies of NO3RR species were also computed to examine the proton-coupled electron transfer (PCET) mechanism on CuCoAl LDH, shedding light on the potential-dependent step (PDS) and the exclusive selectivity for nitrate-to-ammonia conversion. The CuCoAl LDH developed here offers scalability by eliminating the need for precious metals, rendering this earth-abundant catalyst particularly appealing for sustainable nitrate electrovalorization technology.
Collapse
Affiliation(s)
- Wanying Wang
- Department
of Chemistry, HKU-CAS Joint Laboratory on
New Materials University of Hong Kong, Hong Kong SAR, 00000 China
| | - Jiu Chen
- Department
of Chemistry, HKU-CAS Joint Laboratory on
New Materials University of Hong Kong, Hong Kong SAR, 00000 China
| | - Edmund C. M. Tse
- Department
of Chemistry, HKU-CAS Joint Laboratory on
New Materials University of Hong Kong, Hong Kong SAR, 00000 China
| |
Collapse
|
28
|
Zhou J, Xiong Y, Sun M, Xu Z, Wang Y, Lu P, Liu F, Hao F, Feng T, Ma Y, Yin J, Ye C, Chen B, Xi S, Zhu Y, Huang B, Fan Z. Constructing molecule-metal relay catalysis over heterophase metallene for high-performance rechargeable zinc-nitrate/ethanol batteries. Proc Natl Acad Sci U S A 2023; 120:e2311149120. [PMID: 38064508 PMCID: PMC10723141 DOI: 10.1073/pnas.2311149120] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/26/2023] [Indexed: 12/17/2023] Open
Abstract
Zinc-nitrate batteries can integrate energy supply, ammonia electrosynthesis, and sewage disposal into one electrochemical device. However, current zinc-nitrate batteries still severely suffer from the limited energy density and poor rechargeability. Here, we report the synthesis of tetraphenylporphyrin (tpp)-modified heterophase (amorphous/crystalline) rhodium-copper alloy metallenes (RhCu M-tpp). Using RhCu M-tpp as a bifunctional catalyst for nitrate reduction reaction (NO3RR) and ethanol oxidation reaction in neutral solution, a highly rechargeable and low-overpotential zinc-nitrate/ethanol battery is successfully constructed, which exhibits outstanding energy density of 117364.6 Wh kg-1cat, superior rate capability, excellent cycling stability of ~400 cycles, and potential ammonium acetate production. Ex/in situ experimental studies and theoretical calculations reveal that there is a molecule-metal relay catalysis in NO3RR over RhCu M-tpp that significantly facilitates the ammonia selectivity and reaction kinetics via a low energy barrier pathway. This work provides an effective design strategy of multifunctional metal-based catalysts toward the high-performance zinc-based hybrid energy systems.
Collapse
Affiliation(s)
- Jingwen Zhou
- Department of Chemistry, City University of Hong Kong, Kowloon999077, Hong Kong, Special Administrative Region of China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center, City University of Hong Kong, Kowloon999077, Hong Kong, Special Administrative Region of China
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang621900, China
| | - Yuecheng Xiong
- Department of Chemistry, City University of Hong Kong, Kowloon999077, Hong Kong, Special Administrative Region of China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center, City University of Hong Kong, Kowloon999077, Hong Kong, Special Administrative Region of China
| | - Mingzi Sun
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon999077, Hong Kong, Special Administrative Region of China
| | - Zhihang Xu
- Department of Applied Physics Research Institute for Smart Energy, The Hong Kong Polytechnic University, Kowloon999077, Hong Kong, Special Administrative Region of China
| | - Yunhao Wang
- Department of Chemistry, City University of Hong Kong, Kowloon999077, Hong Kong, Special Administrative Region of China
| | - Pengyi Lu
- Department of Chemistry, City University of Hong Kong, Kowloon999077, Hong Kong, Special Administrative Region of China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center, City University of Hong Kong, Kowloon999077, Hong Kong, Special Administrative Region of China
| | - Fu Liu
- Department of Chemistry, City University of Hong Kong, Kowloon999077, Hong Kong, Special Administrative Region of China
| | - Fengkun Hao
- Department of Chemistry, City University of Hong Kong, Kowloon999077, Hong Kong, Special Administrative Region of China
| | - Tianyi Feng
- Department of Chemistry, City University of Hong Kong, Kowloon999077, Hong Kong, Special Administrative Region of China
| | - Yangbo Ma
- Department of Chemistry, City University of Hong Kong, Kowloon999077, Hong Kong, Special Administrative Region of China
| | - Jinwen Yin
- Department of Chemistry, City University of Hong Kong, Kowloon999077, Hong Kong, Special Administrative Region of China
| | - Chenliang Ye
- College of Materials Science and Engineering, Shenzhen University, Shenzhen518060, China
| | - Biao Chen
- School of Material Science and Engineering, Tianjin University, Tianjin300350, China
| | - Shibo Xi
- Institute of Sustainability for Chemicals, Energy and Environment, A*STAR, Singapore627833, Singapore
| | - Ye Zhu
- Department of Applied Physics Research Institute for Smart Energy, The Hong Kong Polytechnic University, Kowloon999077, Hong Kong, Special Administrative Region of China
| | - Bolong Huang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon999077, Hong Kong, Special Administrative Region of China
| | - Zhanxi Fan
- Department of Chemistry, City University of Hong Kong, Kowloon999077, Hong Kong, Special Administrative Region of China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center, City University of Hong Kong, Kowloon999077, Hong Kong, Special Administrative Region of China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen518057, China
| |
Collapse
|
29
|
Fan X, Liu C, Li Z, Cai Z, Ouyang L, Li Z, He X, Luo Y, Zheng D, Sun S, Wang Y, Ying B, Liu Q, Farouk A, Hamdy MS, Gong F, Sun X, Zheng Y. Pd-Doped Co 3 O 4 Nanoarray for Efficient Eight-Electron Nitrate Electrocatalytic Reduction to Ammonia Synthesis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303424. [PMID: 37330654 DOI: 10.1002/smll.202303424] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/25/2023] [Indexed: 06/19/2023]
Abstract
Ammonia (NH3 ) is an indispensable feedstock for fertilizer production and one of the most ideal green hydrogen rich fuel. Electrochemical nitrate (NO3 - ) reduction reaction (NO3 - RR) is being explored as a promising strategy for green to synthesize industrial-scale NH3 , which has nonetheless involved complex multi-reaction process. This work presents a Pd-doped Co3 O4 nanoarray on titanium mesh (Pd-Co3 O4 /TM) electrode for highly efficient and selective electrocatalytic NO3 - RR to NH3 at low onset potential. The well-designed Pd-Co3 O4 /TM delivers a large NH3 yield of 745.6 µmol h-1 cm-2 and an extremely high Faradaic efficiency (FE) of 98.7% at -0.3 V with strong stability. These calculations further indicate that the doping Co3 O4 with Pd improves the adsorption characteristic of Pd-Co3 O4 and optimizes the free energies for intermediates, thereby facilitating the kinetics of the reaction. Furthermore, assembling this catalyst in a Zn-NO3 - battery realizes a power density of 3.9 mW cm-2 and an excellent FE of 98.8% for NH3 .
Collapse
Affiliation(s)
- Xiaoya Fan
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Chaozhen Liu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 211189, China
| | - Zixiao Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Zhengwei Cai
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Ling Ouyang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Zerong Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Xun He
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Yongsong Luo
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Dongdong Zheng
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Shengjun Sun
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Yan Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Binwu Ying
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu, Sichuan, 610106, China
| | - Asmaa Farouk
- Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Mohamed S Hamdy
- Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Feng Gong
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 211189, China
| | - Xuping Sun
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Yinyuan Zheng
- Huzhou Key Laboratory of Translational Medicine, First People's Hospital affiliated to Huzhou University, Huzhou, Zhejiang, 313000, China
| |
Collapse
|
30
|
Miller DM, Abels K, Guo J, Williams KS, Liu MJ, Tarpeh WA. Electrochemical Wastewater Refining: A Vision for Circular Chemical Manufacturing. J Am Chem Soc 2023; 145:19422-19439. [PMID: 37642501 DOI: 10.1021/jacs.3c01142] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Wastewater is an underleveraged resource; it contains pollutants that can be transformed into valuable high-purity products. Innovations in chemistry and chemical engineering will play critical roles in valorizing wastewater to remediate environmental pollution, provide equitable access to chemical resources and services, and secure critical materials from diminishing feedstock availability. This perspective envisions electrochemical wastewater refining─the use of electrochemical processes to tune and recover specific products from wastewaters─as the necessary framework to accelerate wastewater-based electrochemistry to widespread practice. We define and prescribe a use-informed approach that simultaneously serves specific wastewater-pollutant-product triads and uncovers a mechanistic understanding generalizable to broad use cases. We use this approach to evaluate research needs in specific case studies of electrocatalysis, stoichiometric electrochemical conversions, and electrochemical separations. Finally, we provide rationale and guidance for intentionally expanding the electrochemical wastewater refining product portfolio. Wastewater refining will require a coordinated effort from multiple expertise areas to meet the urgent need of extracting maximal value from complex, variable, diverse, and abundant wastewater resources.
Collapse
Affiliation(s)
- Dean M Miller
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Kristen Abels
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Jinyu Guo
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Kindle S Williams
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Matthew J Liu
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - William A Tarpeh
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
- Department of Civil and Environmental Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
31
|
Zhou B, Zhan G, Yao Y, Zhang W, Zhao S, Quan F, Fang C, Shi Y, Huang Y, Jia F, Zhang L. Renewable energy driven electroreduction nitrate to ammonia and in-situ ammonia recovery via a flow-through coupled device. WATER RESEARCH 2023; 242:120256. [PMID: 37354842 DOI: 10.1016/j.watres.2023.120256] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/30/2023] [Accepted: 06/19/2023] [Indexed: 06/26/2023]
Abstract
Green ammonia production from wastewater via electrochemical nitrate reduction contributes substantially to the realization of carbon neutrality. Nonetheless, the current electrochemical technology is largely limited by the lack of suitable device for efficient and continuous electroreduction nitrate into ammonia and in-situ ammonia recovery. Here, we report a flow-through coupled device composed of a compact electrocatalytic cell for efficient nitrate reduction and a unit to separate the produced ammonia without any pH adjustment and additional energy-input from the circulating nitrate-containing wastewater. Using an efficient and selective Cl-modified Cu foam electrode, nearly 100% NO3- electroreduction efficiency and over 82.5% NH3 Faradaic efficiency was realized for a wide range of nitrate-containing wastewater from 50 to 200 mg NO3--N L-1. Moreover, this flow-through coupled device can continuingly operate at a large current of 800 mA over 100 h with a sustained NH3 yield rate of 420 μg h-1 cm-2 for nitrate-containing wastewater treatment (50 mg NO3--N L-1). When driven by solar energy, the flow-through coupled device can also exhibit exceptional real wastewater treatment performance, delivering great potential for practical application. This work paves a new avenue for clean energy production and environmental sustainability as well as carbon neutrality.
Collapse
Affiliation(s)
- Bing Zhou
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Guangming Zhan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yancai Yao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Weixing Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Shengxi Zhao
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Fengjiao Quan
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Chuyang Fang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yanbiao Shi
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yi Huang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Falong Jia
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Lizhi Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan 430079, P. R. China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| |
Collapse
|
32
|
Murphy E, Liu Y, Matanovic I, Rüscher M, Huang Y, Ly A, Guo S, Zang W, Yan X, Martini A, Timoshenko J, Cuenya BR, Zenyuk IV, Pan X, Spoerke ED, Atanassov P. Elucidating electrochemical nitrate and nitrite reduction over atomically-dispersed transition metal sites. Nat Commun 2023; 14:4554. [PMID: 37507382 PMCID: PMC10382506 DOI: 10.1038/s41467-023-40174-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Electrocatalytic reduction of waste nitrates (NO3-) enables the synthesis of ammonia (NH3) in a carbon neutral and decentralized manner. Atomically dispersed metal-nitrogen-carbon (M-N-C) catalysts demonstrate a high catalytic activity and uniquely favor mono-nitrogen products. However, the reaction fundamentals remain largely underexplored. Herein, we report a set of 14; 3d-, 4d-, 5d- and f-block M-N-C catalysts. The selectivity and activity of NO3- reduction to NH3 in neutral media, with a specific focus on deciphering the role of the NO2- intermediate in the reaction cascade, reveals strong correlations (R=0.9) between the NO2- reduction activity and NO3- reduction selectivity for NH3. Moreover, theoretical computations reveal the associative/dissociative adsorption pathways for NO2- evolution, over the normal M-N4 sites and their oxo-form (O-M-N4) for oxyphilic metals. This work provides a platform for designing multi-element NO3RR cascades with single-atom sites or their hybridization with extended catalytic surfaces.
Collapse
Affiliation(s)
- Eamonn Murphy
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA, 92697, USA
| | - Yuanchao Liu
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA, 92697, USA
| | - Ivana Matanovic
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM, 87131, USA
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Martina Rüscher
- Department of Interface Science, Fritz Haber Institute of the Max Planck Society, 4-6 Faradayweg, Berlin, 14195, Germany
| | - Ying Huang
- Department of Materials Science and Engineering, University of California, Irvine, CA, 92697, USA
| | - Alvin Ly
- Department of Materials Science and Engineering, University of California, Irvine, CA, 92697, USA
| | - Shengyuan Guo
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA, 92697, USA
| | - Wenjie Zang
- Department of Materials Science and Engineering, University of California, Irvine, CA, 92697, USA
| | - Xingxu Yan
- Department of Materials Science and Engineering, University of California, Irvine, CA, 92697, USA
| | - Andrea Martini
- Department of Interface Science, Fritz Haber Institute of the Max Planck Society, 4-6 Faradayweg, Berlin, 14195, Germany
| | - Janis Timoshenko
- Department of Interface Science, Fritz Haber Institute of the Max Planck Society, 4-6 Faradayweg, Berlin, 14195, Germany
| | - Beatriz Roldán Cuenya
- Department of Interface Science, Fritz Haber Institute of the Max Planck Society, 4-6 Faradayweg, Berlin, 14195, Germany
| | - Iryna V Zenyuk
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA, 92697, USA
- Department of Materials Science and Engineering, University of California, Irvine, CA, 92697, USA
| | - Xiaoqing Pan
- Department of Materials Science and Engineering, University of California, Irvine, CA, 92697, USA
| | - Erik D Spoerke
- Sandia National Laboratories, Albuquerque, NM, 87185, USA
| | - Plamen Atanassov
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA, 92697, USA.
- Department of Materials Science and Engineering, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
33
|
He X, Liu H, Qin J, Niu Z, Mu J, Liu B. Heterostructured Co/Co 3O 4 anchored on N-doped carbon nanotubes as a highly efficient electrocatalyst for nitrate reduction to ammonia. Dalton Trans 2023. [PMID: 37486287 DOI: 10.1039/d3dt01705b] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
The electrochemical reduction of nitrate (NO3-) to ammonia (NH3) has emerged as an attractive approach for selectively reducing NO3- to highly value-added NH3 and removing NO3- pollutants simultaneously. In this work, a heterostructured Co/Co3O4 electrocatalyst anchored on N-doped carbon nanotubes was prepared and applied for the NO3- reduction towards NH3 under alkaline conditions. The catalyst achieves outstanding performance with up to 67% NH3 faradaic efficiency at -1.2 V vs. Hg/HgO and 8.319 mg h-1 mgcat-1 yield at -1.7 V vs. Hg/HgO. In addition, it also exhibits good long-term stability. 15N isotopic labelling experiments prove that the yielded NH3 is derived from NO3- species. In situ electrochemical Raman spectra revealed that the structure of the as-prepared catalyst showed outstanding stability and identified possible intermediates during the electrocatalytic NO3- reduction reaction (NO3RR).
Collapse
Affiliation(s)
- Xianxian He
- College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Hongfei Liu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Jiangzhou Qin
- Department of Environmental Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Zhaodong Niu
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science & Technology, Dalian University of Technology, Dalian 116024, China
| | - Jincheng Mu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Baojun Liu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| |
Collapse
|
34
|
Wang Y, Yin H, Dong F, Zhao X, Qu Y, Wang L, Peng Y, Wang D, Fang W, Li J. N-Coordinated Cu-Ni Dual-Single-Atom Catalyst for Highly Selective Electrocatalytic Reduction of Nitrate to Ammonia. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207695. [PMID: 36793161 DOI: 10.1002/smll.202207695] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/28/2022] [Indexed: 05/18/2023]
Abstract
As a traditional method of ammonia (NH3 ) synthesis, Haber-Bosch method expends a vast amount of energy. An alternative route for NH3 synthesis is proposed from nitrate (NO3 - ) via electrocatalysis. However, the structure-activity relationship remains challenging and requires in-depth research both experimentally and theoretically. Here an N-coordinated Cu-Ni dual-single-atom catalyst anchored in N-doped carbon (Cu/Ni-NC) is reported, which has competitive activity with a maximal NH3 Faradaic efficiency of 97.28%. Detailed characterizations demonstrate that the high activity of Cu/Ni-NC mainly comes from the contribution of Cu-Ni dual active sites. That is, (1) the electron transfer (Ni → Cu) reveals the strong electron interaction of Cu-Ni dual-single-atom; (2) the strong hybridizations of Cu 3d-and Ni 3d-O 2p orbitals of NO3 - can accelerate electron transfer from Cu-Ni dual-site to NO3 - ; (3) Cu/Ni-NC can effectively decrease the rate-limiting step barriers, suppress N-N coupling for N2 O and N2 formation and hydrogen production.
Collapse
Affiliation(s)
- Yunlong Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, P. R. China
- Sinopec Research Institute of Petroleum Processing Co., Ltd, Beijing, 100083, P. R. China
| | - Haibo Yin
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, P. R. China
| | - Feng Dong
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Xiaoguang Zhao
- Sinopec Research Institute of Petroleum Processing Co., Ltd, Beijing, 100083, P. R. China
| | - Yakun Qu
- Sinopec Research Institute of Petroleum Processing Co., Ltd, Beijing, 100083, P. R. China
| | - Lixin Wang
- Sinopec Research Institute of Petroleum Processing Co., Ltd, Beijing, 100083, P. R. China
| | - Yue Peng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, P. R. China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Wei Fang
- Sinopec Research Institute of Petroleum Processing Co., Ltd, Beijing, 100083, P. R. China
| | - Junhua Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
35
|
Chen KL, Ahmad MS, Chen CL. Enhanced nitrate reduction over functionalized Pd/Cu electrode with tunable conversion to nitrogen and sodium hydroxide recovery. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161849. [PMID: 36716879 DOI: 10.1016/j.scitotenv.2023.161849] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/10/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
Development of heteroatomic electrocatalysts with a particular geometric structure for wastewater denitrification remains a formidable challenge. Herein, we reported the fabrication of a series of PdCu electrodes with Pd electrodeposition times varying from 60 s to 360 s. Physiochemical and electrochemical techniques were used to analyze the structure, morphology and activity of as prepared catalytic electrodes. XRD data revealed the formation of a PdCu alloy, while a reduced particle sizes (ca. 5.3 nm) and a uniform distribution of Pd over Cu was demonstrated by TEM. The XPS measurement indicated the presence of redox (Pd0 and Cu+2) states hence demonstrating the formation of a PdCu alloy. A nitrate removal efficiency of ~98 %, N2 selectivity ~86 % with an alkali recovery of 335 mM was obtained over Pd/Cu 180 s at 0.68 mA cm-2. Enhanced nitrate reducibility and extended durability reveal the viability of a novel electrocatalytic and electrodialysis system for degrading NO3- in water, as well as a system for efficiently recovering liquid alkali.
Collapse
Affiliation(s)
- Kuan-Ling Chen
- Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan
| | - Muhammad Sheraz Ahmad
- Center for Environmental Sustainability and Human Health, Ming Chi University of Technology, New Taipei City 24301, Taiwan
| | - Ching-Lung Chen
- Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan; Center for Environmental Sustainability and Human Health, Ming Chi University of Technology, New Taipei City 24301, Taiwan.
| |
Collapse
|
36
|
Fan X, Zhao D, Deng Z, Zhang L, Li J, Li Z, Sun S, Luo Y, Zheng D, Wang Y, Ying B, Zhang J, Alshehri AA, Lin Y, Tang C, Sun X, Zheng Y. Constructing Co@TiO 2 Nanoarray Heterostructure with Schottky Contact for Selective Electrocatalytic Nitrate Reduction to Ammonia. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2208036. [PMID: 36717274 DOI: 10.1002/smll.202208036] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/13/2023] [Indexed: 06/18/2023]
Abstract
Electrochemical nitrate (NO3 - ) reduction reaction (NO3 - RR) is a potential sustainable route for large-scale ambient ammonia (NH3 ) synthesis and regulating the nitrogen cycle. However, as this reaction involves multi-electron transfer steps, it urgently needs efficient electrocatalysts on promoting NH3 selectivity. Herein, a rational design of Co nanoparticles anchored on TiO2 nanobelt array on titanium plate (Co@TiO2 /TP) is presented as a high-efficiency electrocatalyst for NO3 - RR. Density theory calculations demonstrate that the constructed Schottky heterostructures coupling metallic Co with semiconductor TiO2 develop a built-in electric field, which can accelerate the rate determining step and facilitate NO3 - adsorption, ensuring the selective conversion to NH3 . Expectantly, the Co@TiO2 /TP electrocatalyst attains an excellent Faradaic efficiency of 96.7% and a high NH3 yield of 800.0 µmol h-1 cm-2 under neutral solution. More importantly, Co@TiO2 /TP heterostructure catalyst also presents a remarkable stability in 50-h electrolysis test.
Collapse
Affiliation(s)
- Xiaoya Fan
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Donglin Zhao
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Zhiqin Deng
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Longcheng Zhang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Jun Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Zerong Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Shengjun Sun
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Yongsong Luo
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Dongdong Zheng
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Yan Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Binwu Ying
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Jing Zhang
- Interdisciplinary Materials Research Center, Institute for Advanced Study, Chengdu University, Chengdu, 610106, China
| | - Abdulmohsen Ali Alshehri
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Yuxiao Lin
- School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Chengwu Tang
- Huzhou Key Laboratory of Translational Medicine, First People's Hospital affiliated to Huzhou University, Huzhou, Zhejiang, 313000, China
| | - Xuping Sun
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Yinyuan Zheng
- Huzhou Key Laboratory of Translational Medicine, First People's Hospital affiliated to Huzhou University, Huzhou, Zhejiang, 313000, China
| |
Collapse
|
37
|
Yuan S, Xue Y, Ma R, Ma Q, Chen Y, Fan J. Advances in iron-based electrocatalysts for nitrate reduction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161444. [PMID: 36621470 DOI: 10.1016/j.scitotenv.2023.161444] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/26/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Excessive nitrate has been a critical issue in the water environment, originating from the burning of fossil fuels, inefficient use of nitrogen fertilizers, and discharge of domestic and industrial wastewater. Among the effective treatments for nitrate reduction, electrocatalysis has become an advanced technique because it uses electrons as green reducing agents and can achieve high selectivity through cathode potential control. The effectiveness of electrocatalytic nitrate reduction (NO3RR) mainly lies in the electrocatalyst. Iron-based catalysts have the advantages of high activity and low cost, which are well-used in the field of electrocatalytic nitrates. A comprehensive overview of the electrocatalytic mechanism and the iron-based materials for NO3RR are given in terms of monometallic iron-based materials as well as bimetallic and oxide iron-based materials. A detailed introduction to NO3RR on zero valent iron, single-atom iron catalysts, and Cu/Fe-based bimetallic electrocatalysts are provided, as they are essential for the improvement of NO3RR performance. Finally, the advantages of iron-based materials for NO3RR and the problems in current applications are summarized, and the development prospects of efficient iron-based catalysts are proposed.
Collapse
Affiliation(s)
- Shiyin Yuan
- State key laboratory of pollution control and Resource reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yinghao Xue
- State key laboratory of pollution control and Resource reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Raner Ma
- State key laboratory of pollution control and Resource reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Qian Ma
- State key laboratory of pollution control and Resource reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yanyan Chen
- State key laboratory of pollution control and Resource reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Jianwei Fan
- State key laboratory of pollution control and Resource reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|
38
|
Duan W, Chen Y, Ma H, Lee JF, Lin YJ, Feng C. In Situ Reconstruction of Metal Oxide Cathodes for Ammonium Generation from High-Strength Nitrate Wastewater: Elucidating the Role of the Substrate in the Performance of Co 3O 4-x. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3893-3904. [PMID: 36813703 DOI: 10.1021/acs.est.2c09147] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In situ electrochemical reconstruction is important for transition metal oxides explored as electrocatalysts for electrochemical nitrate reduction reactions (ENRRs). Herein, we report substantial performance enhancement of ammonium generation on Co, Fe, Ni, Cu, Ti, and W oxide-based cathodes upon reconstruction. Among them, the performance of a freestanding ER-Co3O4-x/CF (Co3O4 grown on Co foil subjected to electrochemical reduction) cathode was superior to its unreconstructed counterpart and other cathodes; e.g., an ammonium yield of 0.46 mmol h-1 cm-2, an ammonium selectivity of 100%, and a Faradaic efficiency of 99.9% were attained at -1.3 V in a 1400 mg L-1 NO3--N solution. The reconstruction behaviors were found to vary with the underlying substrate. The inert carbon cloth only acted as a supporting matrix for immobilizing Co3O4, without appreciable electronic interactions between them. A combination of physicochemical characterizations and theoretical modeling provided compelling evidence that the CF-promoted self-reconstruction of Co3O4 induced the evolution of metallic Co and the creation of oxygen vacancies, which promoted and optimized interfacial nitrate adsorption and water dissociation, thus boosting the ENRR performance. The ER-Co3O4-x/CF cathode performed well over wide ranges of pH and applied current and at high nitrate loadings, ensuring its high efficacy in treating high-strength real wastewater.
Collapse
Affiliation(s)
- Weijian Duan
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
| | - Yanyan Chen
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
| | - Huanxin Ma
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
| | - Jyh-Fu Lee
- National Synchrotron Radiation Research Center, Hsinchu, Taiwan 30076, R. O. C
| | - Yu-Jung Lin
- National Synchrotron Radiation Research Center, Hsinchu, Taiwan 30076, R. O. C
| | - Chunhua Feng
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
39
|
Yang X, Mukherjee S, O'Carroll T, Hou Y, Singh MR, Gauthier JA, Wu G. Achievements, Challenges, and Perspectives on Nitrogen Electrochemistry for Carbon-Neutral Energy Technologies. Angew Chem Int Ed Engl 2023; 62:e202215938. [PMID: 36507657 DOI: 10.1002/anie.202215938] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/14/2022]
Abstract
Unrestrained anthropogenic activities have severely disrupted the global natural nitrogen cycle, causing numerous energy and environmental issues. Electrocatalytic nitrogen transformation is a feasible and promising strategy for achieving a sustainable nitrogen economy. Synergistically combining multiple nitrogen reactions can realize efficient renewable energy storage and conversion, restore the global nitrogen balance, and remediate environmental crises. Here, we provide a unique aspect to discuss the intriguing nitrogen electrochemistry by linking three essential nitrogen-containing compounds (i.e., N2 , NH3 , and NO3 - ) and integrating four essential electrochemical reactions, i.e., the nitrogen reduction reaction (N2 RR), nitrogen oxidation reaction (N2 OR), nitrate reduction reaction (NO3 RR), and ammonia oxidation reaction (NH3 OR). This minireview also summarizes the acquired knowledge of rational catalyst design and underlying reaction mechanisms for these interlinked nitrogen reactions. We further underscore the associated clean energy technologies and a sustainable nitrogen-based economy.
Collapse
Affiliation(s)
- Xiaoxuan Yang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China.,Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Shreya Mukherjee
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Thomas O'Carroll
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Yang Hou
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China.,Institute of Zhejiang University - Quzhou, Quzhou, Zhejiang, 324000, China.,Donghai Laboratory, Zhoushan, 316021, China
| | - Meenesh R Singh
- Department of Chemical Engineering, University of Illinois Chicago, Chicago, IL 60608, USA
| | - Joseph A Gauthier
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - Gang Wu
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| |
Collapse
|