1
|
Barłóg M, Podiyanachari SK, Bazzi HS, Al-Hashimi M. Advances in Π-Conjugated Benzothiazole and Benzoxazole-Boron Complexes: Exploring Optical and Biomaterial Applications. Macromol Rapid Commun 2025:e2400914. [PMID: 39973622 DOI: 10.1002/marc.202400914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/28/2025] [Indexed: 02/21/2025]
Abstract
This mini-review highlights the transformative potential of benzothiazole (BTz)- and benzoxazole (BOz)-based boron-complexed dyes. It represents an innovative evolution of the classic boron-dipyrromethene (BODIPY) structure, which is well established for its superior photophysical properties. Incorporating BTz- or BOz-ligands into the borane (-BR2) component, originates more electron-deficient architecture, enabling novel modes of complexation and addressing limitations such as spectral overlap and self-quenching in traditional BODIPY dyes. The review focuses on the remarkable versatility of boron-benzothiazole (BOBTz)- and boron-benzoxazole (BOBOz)-based complexes, particularly in three rapidly advancing fields: organic light emitting diode (LED) technology, bioimaging, and mechanochromic luminescence (MCL). Over the past 15 years, these complexes have demonstrated exceptional adaptability, showcasing enhanced properties like high fluorescence quantum yields, large molar extinction coefficients, and tunable emissions across visible and near-infrared spectra. The insights described in this review highlight the major role of BOBTz- and BOBOz-complexes in shaping innovative, and sustainable advanced materials while addressing emerging challenges in modern materials science. Besides, the refining of both BOBTz- and BOBOz-complexes offers exciting prospects for technological challenges such as energy-efficient lighting, non-invasive imaging, and creating stimuli-responsive materials for next-generation sensors. Moreover, the environmental sustainability of these materials, including green synthesis approaches and recyclable components represents an important frontier for future exploration.
Collapse
Affiliation(s)
- Maciej Barłóg
- Department of Chemical Engineering, Texas A&M University at Qatar, Education City, Doha, 23874, Qatar
| | | | - Hassan S Bazzi
- College of Science and Engineering, Hamad Bin Khalifa University, Education City, Doha, 23874, Qatar
| | - Mohammed Al-Hashimi
- College of Science and Engineering, Hamad Bin Khalifa University, Education City, Doha, 23874, Qatar
| |
Collapse
|
2
|
Thilagar P, Nandi RP, Ghosh S. Heteroatom-Promoted Polyhexagonal Saddle-Shaped Molecular Structures and their Supramolecular Coassembly with C 60. Chemistry 2024; 30:e202400398. [PMID: 38549365 DOI: 10.1002/chem.202400398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Indexed: 05/15/2024]
Abstract
Molecules with curved architecture can exhibit unique optoelectronic properties due to the concave-convex π-surface. However, synthesizing negatively curved saddle-shaped aromatic systems has been challenging due to the internal structural strain. Herein, we report the facile synthesis of two polyhexagonal molecular systems, 1 and 2, with saddle shape geometry by judiciously varying the aromatic moiety, avoiding the harsh synthetic methods as that of heptagonal aromatic saddle systems. The unique geometry preferences of B, N, and S furnish suitable curvature to the molecules, featuring saddle shape. The saddle geometry also enables them to interact with fullerene C60 , and the supramolecular interactions of fullerene C60 with 1 and 2 modify their optoelectronic properties. Crystal structure analysis reveals that 1, with a small π-surface, forms a double columnar array of fullerenes in the solid state. In contrast, 2 with a large π-surface produces a supramolecular capsule entrapping two discrete fullerenes. The intermolecular interactions between B, N, S, and the aryl-π surface of the host and C60 guest are the stabilizing factors for creating these supramolecular structures. Comprehensive computational, optical, and Raman spectroscopic studies establish the charge transfer interactions between B-N doped heterocycle host and fullerene C60 guest.
Collapse
Affiliation(s)
- Pakkirisamy Thilagar
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Rajendra Prasad Nandi
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Subhajit Ghosh
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
3
|
Fowler PW, Anstöter CS. Tuning (Anti)Aromaticity: Variations on the [8]-Circulene Framework. Chemphyschem 2024; 25:e202300791. [PMID: 38279875 DOI: 10.1002/cphc.202300791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/10/2024] [Accepted: 01/22/2024] [Indexed: 01/29/2024]
Abstract
Optoelectronic properties of organic molecules are underpinned by delocalisation and delocalisability of π-electrons. These properties are sensitive to small changes in electron count, whether achieved by heteroatom substitution or redox chemistry. One measure of the delocalisability of π-electrons is the current induced by an external magnetic field, which is diagnostic of (anti)aromaticity. The ab initio ipsocentric method is used here to model diverse ring-current patterns in the family of [8]-circulenes based on tetracyclopenta[def,jkl,pqr,vwx]tetraphenylene (TCPTP), in different charge states, with disjoint hetero-atom substitution, and with CC units systematically replaced by BN pairs. Maps calculated at the CHF/CTOCD-DZ2/6-31G** level reveal that these modifications of the TCPTP framework access the full range of possibilities for current from concentric global circulations (typically counter rotating) to full (non-aromatic) localisation. In the ipsocentric approach, induced current density is partitioned into robust orbital contributions that obey selection rules based on orbital symmetry, energy and nodal character. The selection rules are applied here to interpret current-density and exploit insights gained from simpler models to suggest design strategies for fine-tuning of π-delocalisability (aromaticity and antiaromaticity) in macrocyclic frameworks.
Collapse
Affiliation(s)
- Patrick W Fowler
- Department of Chemistry, University of Sheffield, Sheffield, United Kingdom
| | - Cate S Anstöter
- School of Chemistry, University of Edinburgh, Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
4
|
Zeng JC, Zhao K, Zhang PF, Zhuang FD, Ding L, Yao ZF, Wang JY, Pei J. Assessing the Role of BN-Embedding Position in B 2N 2-Perylenes. Chemistry 2024; 30:e202304372. [PMID: 38191767 DOI: 10.1002/chem.202304372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/10/2024]
Abstract
Incorporating heteroatoms can effectively modulate the molecular optoelectronic properties. However, the fundamental understanding of BN doping effects in BN-embedded polycyclic aromatic hydrocarbons (PAHs) is underexplored, lacking rational guidelines to modulate the electronic structures through BN units for advanced materials. Herein, a concise synthesis of novel B2N2-perylenes with BN doped at the bay area is achieved to systematically explore the doping effect of BN position on the photophysical properties of PAHs. The shift of BN position in B2N2-perylenes alters the π electron conjugation, aromaticity and molecular rigidness significantly, achieving substantially higher electron transition abilities than those with BN doped in the nodal plane. It is further clarified that BN position dominates the photophysical properties over BN orientation. The revealed guideline here may apply generally to novel BN-PAHs, and aid the advancement of BN-PAHs with highly-emissive performance.
Collapse
Affiliation(s)
- Jing-Cai Zeng
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Kexiang Zhao
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Peng-Fei Zhang
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Fang-Dong Zhuang
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Li Ding
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Ze-Fan Yao
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jie-Yu Wang
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jian Pei
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
5
|
Jeong S, Park E, Kim J, Park SB, Kim SH, Choe W, Kim J, Park YS. Increasing Chemical Diversity of B 2 N 2 Anthracene Derivatives by Introducing Continuous Multiple Boron-Nitrogen Units. Angew Chem Int Ed Engl 2023; 62:e202314148. [PMID: 37874975 DOI: 10.1002/anie.202314148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 10/26/2023]
Abstract
Increasing the chemical diversity of organic semiconductors is essential to develop efficient electronic devices. In particular, the replacement of carbon-carbon (C-C) bonds with isoelectronic boron-nitrogen (B-N) bonds allows precise modulation of the electronic properties of semiconductors without significant structural changes. Although some researchers have reported the preparation of B2 N2 anthracene derivatives with two B-N bonds, no compounds with continuous multiple BN units have been prepared yet. Herein, we report the synthesis and characterization of a B2 N2 anthracene derivative with a BNBN unit formed by converting the BOBN unit at the zigzag edge. Compared to the all-carbon analogue 2-phenylanthracene, BNBN anthracene exhibits significant variations in the C-C bond length and a larger highest occupied molecular orbital-lowest unoccupied molecular orbital energy gap. The experimentally determined bond lengths and electronic properties of BNBN anthracene are confirmed through theoretical calculations. The BOBN anthracene organic light-emitting diode, used as a blue host, exhibits a low driving voltage. The findings of this study may facilitate the development of larger acenes with multiple BN units and potential applications in organic electronics.
Collapse
Affiliation(s)
- Seonghwa Jeong
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50, UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Eunji Park
- Department of Chemistry, The Catholic University of Korea, 43, Jibong-ro, Bucheon-si, 14662, Republic of Korea
| | - Jiyeon Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50, UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Seok Bae Park
- R&D Center, SFC, 89, Gwahaksaneop 5-ro, Cheongju-si, Chungbuk, 28122, Republic of Korea
| | - Sung Hoon Kim
- R&D Center, SFC, 89, Gwahaksaneop 5-ro, Cheongju-si, Chungbuk, 28122, Republic of Korea
| | - Wonyoung Choe
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50, UNIST-gil, Ulsan, 44919, Republic of Korea
- Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST)
| | - Joonghan Kim
- Department of Chemistry, The Catholic University of Korea, 43, Jibong-ro, Bucheon-si, 14662, Republic of Korea
| | - Young S Park
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50, UNIST-gil, Ulsan, 44919, Republic of Korea
| |
Collapse
|
6
|
Bauer AK, Conrad J, Beifuss U. Efficient approach to 1,1'-bisindoles via copper(I)-catalyzed double domino reaction. Org Biomol Chem 2023; 21:8003-8019. [PMID: 37767762 DOI: 10.1039/d3ob01231j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
A highly efficient copper(I)-catalyzed approach for the synthesis of 1,1'-bisindoles that is based on the formation of four bonds in one step has been developed. The unprecedented three component reaction between one molecule of a 1,2-bis(2-bromoaryl)hydrazine and two molecules of a 1,3-diketone employing 10 mol% CuI as a catalyst and Cs2CO3 as a base in DMSO at 100 °C for 24 h delivers substituted 1,1'-bisindoles with yields up to 92%. The new method proceeds as a double domino condensation/Ullmann type C-C coupling. It allows an efficient and practical access to substituted 1,1'-bisindoles in one step from easily available starting materials.
Collapse
Affiliation(s)
- Ann-Kathrin Bauer
- Bioorganische Chemie, Institut für Chemie, Universität Hohenheim, Garbenstraße 30, D-70599 Stuttgart, Germany.
| | - Jürgen Conrad
- Bioorganische Chemie, Institut für Chemie, Universität Hohenheim, Garbenstraße 30, D-70599 Stuttgart, Germany.
| | - Uwe Beifuss
- Bioorganische Chemie, Institut für Chemie, Universität Hohenheim, Garbenstraße 30, D-70599 Stuttgart, Germany.
| |
Collapse
|
7
|
H. El-Demerdash S, F. Gad S, M. El-Mehasseb I, E. El-Kelany K. Isosterism in pyrrole via azaboroles substitution, a theoretical investigation for electronic structural, stability and aromaticity. Heliyon 2023; 9:e20542. [PMID: 37810871 PMCID: PMC10551570 DOI: 10.1016/j.heliyon.2023.e20542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/26/2023] [Accepted: 09/28/2023] [Indexed: 10/10/2023] Open
Abstract
This work uses ab-initio CBS-QB3 and density functional theory (B3LYP) to analyze the structure, stability, and aromaticity of all isosteric nitrogen-boron pyrroles. The mono-NB unit substituted group of the isosteric NB pyrrole has four isosteres, whereas the multi-NB unit substituted group has two isosteres. These two groups make up all isosteric NB pyrrole. For structural, energetic, magnetic, and electron delocalization criteria, the results highlight the predominance of the PN3B2 isostere and its greater stability over other conformers. In addition, the global reactivity indices, ESP, HOMO-LUMO, and NBO charges have all been estimated to forecast the active side's electron donation and acceptance. These isosteres are categorized as weak electrophiles and marginal nucleophiles. NB-isosteres have poorer stability, HOMO-LUMO gap, and aromaticity than the parent (pyrrole). In general, NB compounds with more ring sharing are less aromatic than NB molecules with less ring sharing. The current study is anticipated to help in understanding of the chemistry of NB substituted molecules and their experimental identification and characterization.
Collapse
Affiliation(s)
| | - Shaimaa F. Gad
- Chemistry Department, Faculty of Science, Kafrelsheikh University, 33516, Kafr el-Sheikh, Egypt
| | - Ibrahim M. El-Mehasseb
- Chemistry Department, Faculty of Science, Kafrelsheikh University, 33516, Kafr el-Sheikh, Egypt
| | - Khaled E. El-Kelany
- Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, 33516, Kafr el-skiekh, Egypt
| |
Collapse
|
8
|
Kashida J, Shoji Y, Taka H, Fukushima T. Synthesis and Properties of B 4 N 4 -Heteropentalenes Fused with Polycyclic Hydrocarbons. Chemistry 2023; 29:e202203561. [PMID: 36734177 DOI: 10.1002/chem.202203561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023]
Abstract
Hybrid molecules of π-conjugated carbon rings and BN-heterocyclic rings (h-CBNs) fused with each other have been a rare class of compounds due to the limited availability of their synthetic methods. Here we report the synthesis of new h-CBNs featuring a B4 N4 -heteropentalene core and polycyclic aromatic hydrocarbon wings. Using 1,2-azaborinine derivatives as a building block, we developed a rational synthetic protocol that allows the formation of a B4 N4 ring in a stepwise manner, resulting in the fully fused ABA-type triblock molecules. Thus, three derivatives of 1 bearing naphthalene (1Naph ), anthracene (1Anth ), or phenanthrene (1Phen ) wings fused with the B4 N4 core were synthesized and characterized. Among them, 1Phen , which displays the highest triplet-state energy, was found to serve a host material for phosphorescent OLED devices, for which a maximum external quantum efficiency of 13.7 % was recorded. These findings may promote the synthesis of various types of h-CBNs aiming at new properties arising from the synergy of two different π-electronic systems.
Collapse
Affiliation(s)
- Junki Kashida
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan.,Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| | - Yoshiaki Shoji
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan.,Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| | - Hideo Taka
- Konica Minolta Ishikawa-cho, Hachioji, Tokyo, 192-8505, Japan
| | - Takanori Fukushima
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan.,Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan.,Living Systems Materialogy (LiSM) Research Group, International Research Frontiers Initiative (IRFI), Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| |
Collapse
|
9
|
Bachmann J, Helbig A, Crumbach M, Krummenacher I, Braunschweig H, Helten H. Fusion of Aza- and Oxadiborepins with Furans in a Reversible Ring-Opening Process Furnishes Versatile Building Blocks for Extended π-Conjugated Materials. Chemistry 2022; 28:e202202455. [PMID: 35943830 PMCID: PMC9825880 DOI: 10.1002/chem.202202455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Indexed: 01/11/2023]
Abstract
A modular synthesis of both difurooxa- and difuroazadiborepins from a common precursor is demonstrated. Starting from 2,2'-bifuran, after protection of the positions 5 and 5' with bulky silyl groups, formation of the novel polycycles proceeds through opening of the furan rings to a dialkyne and subsequent re-cyclization in the borylation step. The resulting bifuran-fused diborepins show pronounced stability, highly planar tricyclic structures, and intense blue light emission. Deprotection and transformation into dibrominated building blocks that can be incorporated into π-extended materials can be performed in one step. Detailed DFT calculations provide information about the aromaticity of the constituent rings of this polycycle.
Collapse
Affiliation(s)
- Jonas Bachmann
- Institute of Inorganic Chemistry andInstitute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Andreas Helbig
- Institute of Inorganic Chemistry andInstitute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Merian Crumbach
- Institute of Inorganic Chemistry andInstitute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Ivo Krummenacher
- Institute of Inorganic Chemistry andInstitute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Holger Braunschweig
- Institute of Inorganic Chemistry andInstitute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Holger Helten
- Institute of Inorganic Chemistry andInstitute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
10
|
Zhang Y, Li W, Jiang R, Zhang L, Li Y, Xu X, Liu X. Synthetic Doping of Acenaphthylene through BN/CC Isosterism and a Direct Comparison with BN-Acenaphthene. J Org Chem 2022; 87:12986-12996. [PMID: 36149831 DOI: 10.1021/acs.joc.2c01534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Boron/nitrogen-doped acenaphthylenes, a new class of BN-doped cyclopenta-fused polycyclic aromatic hydrocarbons, were synthesized via indole-directed C-H borylation. The reference molecule BN-acenaphthene was also synthesized in a similar manner. Both BN-acenaphthylene and BN-acenaphthene were unequivocally characterized by single-crystal X-ray analysis. The aromaticities of each ring in BN-acenaphthylenes were quantified by experimental and theoretical methods. Moreover, doping the BN unit into acenaphthylene can increase the LUMO level and decrease the HOMO level, resulting in wider HOMO-LUMO energy gaps. Furthermore, regioselective bromination of BN-acenaphthylene (B-Mes) afforded monobrominated BN-acenaphthylene in good yield. Subsequently, cross-coupling of brominated BN-acenaphthylene gave a series of BN-acenaphthylene derivatives. In addition, the photophysical properties of these BN-acenaphthylene derivatives can be fine-tuned by the substituents on the BN-acenaphthylene scaffold.
Collapse
Affiliation(s)
- Yanli Zhang
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China
| | - Wenlong Li
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China
| | - Ruijun Jiang
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China
| | - Lei Zhang
- School of Science, Tianjin Chengjian University, Tianjin 300384, People's Republic of China
| | - Yuanhao Li
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China
| | - Xiaoyang Xu
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China
| | - Xuguang Liu
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China.,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
11
|
Shao X, Liu M, Liu J, Wang L. A Resonating B, N Covalent Bond and Coordination Bond in Aromatic Compounds and Conjugated Polymers. Angew Chem Int Ed Engl 2022; 61:e202205893. [DOI: 10.1002/anie.202205893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Indexed: 12/17/2022]
Affiliation(s)
- Xingxin Shao
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei 230026 P. R. China
| | - Mengyu Liu
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei 230026 P. R. China
| | - Jun Liu
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei 230026 P. R. China
| | - Lixiang Wang
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei 230026 P. R. China
| |
Collapse
|
12
|
Liu Z, Fu S, Liu X, Narita A, Samorì P, Bonn M, Wang HI. Small Size, Big Impact: Recent Progress in Bottom-Up Synthesized Nanographenes for Optoelectronic and Energy Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2106055. [PMID: 35218329 PMCID: PMC9259728 DOI: 10.1002/advs.202106055] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/31/2022] [Indexed: 05/20/2023]
Abstract
Bottom-up synthesized graphene nanostructures, including 0D graphene quantum dots and 1D graphene nanoribbons, have recently emerged as promising candidates for efficient, green optoelectronic, and energy storage applications. The versatility in their molecular structures offers a large and novel library of nanographenes with excellent and adjustable optical, electronic, and catalytic properties. In this minireview, recent progress on the fundamental understanding of the properties of different graphene nanostructures, and their state-of-the-art applications in optoelectronics and energy storage are summarized. The properties of pristine nanographenes, including high emissivity and intriguing blinking effect in graphene quantum dots, superior charge transport properties in graphene nanoribbons, and edge-specific electrochemistry in various graphene nanostructures, are highlighted. Furthermore, it is shown that emerging nanographene-2D material-based van der Waals heterostructures provide an exciting opportunity for efficient green optoelectronics with tunable characteristics. Finally, challenges and opportunities of the field are highlighted by offering guidelines for future combined efforts in the synthesis, assembly, spectroscopic, and electrical studies as well as (nano)fabrication to boost the progress toward advanced device applications.
Collapse
Affiliation(s)
- Zhaoyang Liu
- University of StrasbourgCNRSISIS UMR 70068 allée Gaspard MongeStrasbourg67000France
| | - Shuai Fu
- Max Planck Institute for Polymer ResearchAckermannweg 10Mainz55128Germany
| | - Xiaomin Liu
- Max Planck Institute for Polymer ResearchAckermannweg 10Mainz55128Germany
| | - Akimitsu Narita
- Max Planck Institute for Polymer ResearchAckermannweg 10Mainz55128Germany
- Organic and Carbon Nanomaterials UnitOkinawa Institute of Science and Technology Graduate University1919‐1 Tancha, Onna‐sonKunigamiOkinawa904‐0495Japan
| | - Paolo Samorì
- University of StrasbourgCNRSISIS UMR 70068 allée Gaspard MongeStrasbourg67000France
| | - Mischa Bonn
- Max Planck Institute for Polymer ResearchAckermannweg 10Mainz55128Germany
| | - Hai I. Wang
- Max Planck Institute for Polymer ResearchAckermannweg 10Mainz55128Germany
| |
Collapse
|
13
|
Li E, Jin M, Jiang R, Zhang L, Zhang Y, Liu M, Wu X, Liu X. Synthesis, Characterization, and Properties of BN-Fluoranthenes. Org Lett 2022; 24:5503-5508. [PMID: 35730794 DOI: 10.1021/acs.orglett.2c01342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Boron/nitrogen-doped fluoranthenes, a new class of BN-doped cyclopenta-fused polycyclic aromatic hydrocarbons, were synthesized via pyrrolic-type nitrogen directed C-H borylation. Regioselective bromination of BN-fluoranthene (3a) gave mono- and dibrominated BN-fluoranthenes. The halogenated BN-fluoranthene (3b) can undergo various of further cross-coupling reactions to deliver a series of BN-fluoranthenes. Moreover, incorporating BN unit in to fluoranthene resulted in a wider HOMO-LUMO energy gaps. The aromaticities of the BN-fluoranthene (3a) were quantified by experimental and computational studies.
Collapse
Affiliation(s)
- Erlong Li
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China
| | - Mengjia Jin
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China
| | - Ruijun Jiang
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China
| | - Lei Zhang
- School of Science, Tianjin Chengjian University, Tianjin 300384, People's Republic of China
| | - Yanli Zhang
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China
| | - Meiyan Liu
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China
| | - Xiaoming Wu
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China
| | - Xuguang Liu
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China.,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
14
|
Shao X, Liu M, Liu J, Wang L. Resonating B, N Covalent Bond and Coordination Bond in Aromatic Compounds and Conjugated Polymers. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xingxin Shao
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences State Key Laboratory of Polymer Physics and Chemistry CHINA
| | - Mengyu Liu
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences State Key Laboratory of Polymer Physics and Chemistry CHINA
| | - Jun Liu
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences State Key Labortory of Polymer Physics and Chemistry 5625 Renmin Street 130022 Changchun CHINA
| | - Lixiang Wang
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences State Key Laboratory of Polymer Physics and Chemistry CHINA
| |
Collapse
|
15
|
Jiang L, Wang Y, Tan D, Chen X, Ma T, Zhang B, Yang DT. Access to tetracoordinate boron-doped polycyclic aromatic hydrocarbons with delayed fluorescence and aggregation-induced emission under mild conditions. Chem Sci 2022; 13:5597-5605. [PMID: 35694347 PMCID: PMC9116330 DOI: 10.1039/d2sc01722a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/12/2022] [Indexed: 12/16/2022] Open
Abstract
Boron-doped polycyclic aromatic hydrocarbons (PAHs) have attracted ongoing attention in the field of optoelectronic materials due to their unique optical and redox properties. To investigate the effect of tetracoordinate boron in PAHs bearing N-heterocycles (indole and carbazole), a facile approach to four-coordinate boron-doped PAHs was developed, which does not require elevated temperature and pre-synthesized functionalized boron reactants. Five tetracoordinate boron-doped PAHs (NBNN-1–NBNN-5) were synthesized with different functional groups. Two of them (NBNN-1 and NBNN-2) could further undergo oxidative coupling reactions to form fused off-plane tetracoordinate boron-doped PAHs NBNN-1f and NBNN-2f. The investigation of photophysical properties showed that the UV/vis absorption and fluorescence emission are significantly red-shifted compared to those of the three-coordinate boron-doped counterparts. In addition, the emission of NBNN-1–NBNN-3 consisted of prompt fluorescence and delayed fluorescence. The compounds NBNN-1f and NBNN-2f showed aggregation-induced emission. A series of tetracoordinate boron-doped polycyclic aromatic hydrocarbons have been synthesized under mild conditions, featuring delayed fluorescence and aggregation-induced emission.![]()
Collapse
Affiliation(s)
- Long Jiang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University Xi'an Shanxi 710072 China
| | - Yu Wang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology Beijing 100081 China
| | - Dehui Tan
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University Xi'an Shanxi 710072 China
| | - Xiaobin Chen
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University Xi'an Shanxi 710072 China
| | - Tinghao Ma
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University Xi'an Shanxi 710072 China
| | - Baoliang Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University Xi'an Shanxi 710072 China
| | - Deng-Tao Yang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University Xi'an Shanxi 710072 China
| |
Collapse
|
16
|
Huang H, Liu L, Wang J, Zhou Y, Hu H, Ye X, Liu G, Xu Z, Xu H, Yang W, Wang Y, Peng Y, Yang P, Sun J, Yan P, Cao X, Tang BZ. Aggregation caused quenching to aggregation induced emission transformation: a precise tuning based on BN-doped polycyclic aromatic hydrocarbons toward subcellular organelle specific imaging. Chem Sci 2022; 13:3129-3139. [PMID: 35414886 PMCID: PMC8926285 DOI: 10.1039/d2sc00380e] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/05/2022] [Indexed: 11/21/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) with boron–nitrogen (BN) moieties have attracted tremendous interest due to their intriguing electronic and optoelectronic properties. However, most of the BN-fused π-systems reported to date are difficult to modify and exhibit traditional aggregation-caused quenching (ACQ) characteristics. This phenomenon greatly limits their scope of application. Thus, continuing efforts to seek novel, structurally distinct and functionally diverse structures are highly desirable. Herein, we proposed a one-stone-two-birds strategy including simultaneous exploration of reactivity and tuning of the optical and electronic properties for BN-containing π-skeletons through flexible regioselective functionalization engineering. In this way, three novel functionalized BN luminogens (DPA-BN-BFT, MeO-DPA-BN-BFT and DMA-DPA-BN-BFT) with similar structures were obtained. Intriguingly, DPA-BN-BFT, MeO-DPA-BN-BFT and DMA-DPA-BN-BFT exhibit completely different emission behaviors. Fluorogens DPA-BN-BFT and MeO-DPA-BN-BFT exhibit a typical ACQ effect; in sharp contrast, DMA-DPA-BN-BFT possesses a prominent aggregation induced emission (AIE) effect. To the best of our knowledge, this is the first report to integrate ACQ and AIE properties into one BN aromatic backbone with subtle modified structures. Comprehensive analysis of the crystal structure and theoretical calculations reveal that relatively large twisting angles, multiple intermolecular interactions and tight crystal packing modes endow DMA-DPA-BN-BFT with strong AIE behavior. More importantly, cell imaging demonstrated that luminescent materials DPA-BN-BFT and DMA-DPA-BN-BFT can highly selectively and sensitively detect lipid droplets (LDs) in living MCF-7 cells. Overall, this work provides a new viewpoint of the rational design and synthesis of advanced BN–polycyclic aromatics with AIE features and triggers the discovery of new functions and properties of azaborine chemistry. A one-stone-two-birds strategy including simultaneous exploration of reactivity and tuning of the optical and electronic properties for BN-fused polycyclic aromatics through flexible regioselective functionalization engineering is presented.![]()
Collapse
Affiliation(s)
- Huanan Huang
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application, Xinghuo Organosilicon Industry Research Center, Jiujiang University Jiujiang 332005 China
| | - Lingxiu Liu
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University Hohhot 010021 China
| | - Jianguo Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University Hohhot 010021 China
| | - Ying Zhou
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application, Xinghuo Organosilicon Industry Research Center, Jiujiang University Jiujiang 332005 China
| | - Huanan Hu
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application, Xinghuo Organosilicon Industry Research Center, Jiujiang University Jiujiang 332005 China
| | - Xinglin Ye
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application, Xinghuo Organosilicon Industry Research Center, Jiujiang University Jiujiang 332005 China
| | - Guochang Liu
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application, Xinghuo Organosilicon Industry Research Center, Jiujiang University Jiujiang 332005 China
| | - Zhixiong Xu
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application, Xinghuo Organosilicon Industry Research Center, Jiujiang University Jiujiang 332005 China
| | - Han Xu
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application, Xinghuo Organosilicon Industry Research Center, Jiujiang University Jiujiang 332005 China
| | - Wen Yang
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application, Xinghuo Organosilicon Industry Research Center, Jiujiang University Jiujiang 332005 China
| | - Yawei Wang
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application, Xinghuo Organosilicon Industry Research Center, Jiujiang University Jiujiang 332005 China
| | - You Peng
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application, Xinghuo Organosilicon Industry Research Center, Jiujiang University Jiujiang 332005 China
| | - Pinghua Yang
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application, Xinghuo Organosilicon Industry Research Center, Jiujiang University Jiujiang 332005 China
| | - Jianqi Sun
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application, Xinghuo Organosilicon Industry Research Center, Jiujiang University Jiujiang 332005 China
| | - Ping Yan
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application, Xinghuo Organosilicon Industry Research Center, Jiujiang University Jiujiang 332005 China
| | - Xiaohua Cao
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application, Xinghuo Organosilicon Industry Research Center, Jiujiang University Jiujiang 332005 China
| | - Ben Zhong Tang
- Shenzhen Institute of Molecular Aggregate Science and Engineering, School of Science and Engineering, The Chinese University of Hong Kong Shenzhen 518172 China
| |
Collapse
|
17
|
Appiarius Y, Gliese PJ, Segler SAW, Rusch P, Zhang J, Gates PJ, Pal R, Malaspina LA, Sugimoto K, Neudecker T, Bigall NC, Grabowsky S, Bakulin AA, Staubitz A. BN-Substitution in Dithienylpyrenes Prevents Excimer Formation in Solution and in the Solid State. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:4563-4576. [PMID: 35299818 PMCID: PMC8919264 DOI: 10.1021/acs.jpcc.1c08812] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Boron-nitrogen substitutions in polycyclic aromatic hydrocarbons (PAHs) have a strong impact on the optical properties of the molecules due to a significantly more heterogeneous electron distribution. However, besides these single-molecule properties, the observed optical properties of PAHs critically depend on the degree of intermolecular interactions such as π-π-stacking, dipolar interactions, or the formation of dimers in the excited state. Pyrene is the most prominent example showing the latter as it exhibits a broadened and strongly bathochromically shifted emission band at high concentrations in solution compared to the respective monomers. In the solid state, the impact of intermolecular interactions is even higher as it determines the crystal packing crucially. In this work, a thiophene-flanked BN-pyrene (BNP) was synthesized and compared with its all-carbon analogue (CCP) in solution and in the solid state by means of crystallography, NMR spectroscopy, UV-vis spectroscopy, and photoluminescence (PL) spectroscopy. In solution, PL spectroscopy revealed the solvent-dependent presence of excimers of CCP at high concentrations. In contrast, no excimers were found in BNP. Clear differences were also observed in the single-crystal packing motifs. While CCP revealed overlapped pyrene planes with centroid distances in the range of classical π-stacking interactions, the BNP scaffolds were displaced and significantly more spatially separated.
Collapse
Affiliation(s)
- Yannik Appiarius
- Institute
for Analytical and Organic Chemistry, University
of Bremen, Leobener Straße 7, D-28359 Bremen, Germany
- MAPEX
Center for Materials and Processes, University
of Bremen, Bibliothekstraße
1, D-28359 Bremen, Germany
| | - Philipp J. Gliese
- Institute
for Analytical and Organic Chemistry, University
of Bremen, Leobener Straße 7, D-28359 Bremen, Germany
- MAPEX
Center for Materials and Processes, University
of Bremen, Bibliothekstraße
1, D-28359 Bremen, Germany
| | - Stephan A. W. Segler
- Institute
for Analytical and Organic Chemistry, University
of Bremen, Leobener Straße 7, D-28359 Bremen, Germany
- MAPEX
Center for Materials and Processes, University
of Bremen, Bibliothekstraße
1, D-28359 Bremen, Germany
| | - Pascal Rusch
- Institute
of Physical Chemistry and Electrochemistry, Leibniz University Hannover, Callinstraße 3a, D-30167 Hannover, Germany
- Cluster
of Excellence PhoenixD (Photonics, Optics, and Engineering—Innovation
Across Disciplines), Leibniz University
Hannover, D-30167 Hannover, Germany
| | - Jiangbin Zhang
- Cavendish
Laboratory, University of Cambridge, 19 J J Thomson Avenue, CB3 0HE Cambridge, U.K.
- College of
Advanced Interdisciplinary Studies, National
University of Defense Technology, 410073 Changsha, Hunan, China
| | - Paul J. Gates
- School
of Chemistry, University of Bristol, Cantock’s Close, BS8 1TS Bristol, U.K.
| | - Rumpa Pal
- Institute
of Inorganic Chemistry and Crystallography, University of Bremen, Leobener Straße 7, D-28359 Bremen, Germany
| | - Lorraine A. Malaspina
- Institute
of Inorganic Chemistry and Crystallography, University of Bremen, Leobener Straße 7, D-28359 Bremen, Germany
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Kunihisa Sugimoto
- Japan Synchrotron
Radiation Research Institute (JASRI), 1-1-1, Kouto, Sayo-cho, Hyogo 679-5198, Japan
| | - Tim Neudecker
- MAPEX
Center for Materials and Processes, University
of Bremen, Bibliothekstraße
1, D-28359 Bremen, Germany
- Institute for Physical and Theoretical
Chemistry, University of Bremen, Leobener Straße 7, D-28359 Bremen, Germany
- Bremen Center for Computational Materials
Science, University of Bremen, Am Fallturm 1, D-28359 Bremen, Germany
| | - Nadja C. Bigall
- Institute
of Physical Chemistry and Electrochemistry, Leibniz University Hannover, Callinstraße 3a, D-30167 Hannover, Germany
- Cluster
of Excellence PhoenixD (Photonics, Optics, and Engineering—Innovation
Across Disciplines), Leibniz University
Hannover, D-30167 Hannover, Germany
| | - Simon Grabowsky
- Institute
of Inorganic Chemistry and Crystallography, University of Bremen, Leobener Straße 7, D-28359 Bremen, Germany
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Artem A. Bakulin
- Cavendish
Laboratory, University of Cambridge, 19 J J Thomson Avenue, CB3 0HE Cambridge, U.K.
- Department of Chemistry, Imperial College
London, Imperial College Rd, SW7 2AZ London, U.K.
| | - Anne Staubitz
- Institute
for Analytical and Organic Chemistry, University
of Bremen, Leobener Straße 7, D-28359 Bremen, Germany
- MAPEX
Center for Materials and Processes, University
of Bremen, Bibliothekstraße
1, D-28359 Bremen, Germany
| |
Collapse
|
18
|
Zhang J, Yang L, Liu F, Fu Y, Liu J, Popov AA, Ma J, Feng X. A Modular Cascade Synthetic Strategy Toward Structurally Constrained Boron‐Doped Polycyclic Aromatic Hydrocarbons. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109840] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Jin‐Jiang Zhang
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry Technische Universität Dresden Mommsenstrasse 4 01062 Dresden Germany
| | - Lin Yang
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry Technische Universität Dresden Mommsenstrasse 4 01062 Dresden Germany
| | - Fupin Liu
- Center of Spectroelectrochemistry Leibniz Institute for Solid State and Materials Research (IFW) Dresden Helmholtzstrasse 20 01069 Dresden Germany
| | - Yubin Fu
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry Technische Universität Dresden Mommsenstrasse 4 01062 Dresden Germany
| | - Junzhi Liu
- Department of Chemistry State Key Laboratory of Synthetic Chemistry The University of Hong Kong Pokfulam Road Hong Kong China
| | - Alexey A. Popov
- Center of Spectroelectrochemistry Leibniz Institute for Solid State and Materials Research (IFW) Dresden Helmholtzstrasse 20 01069 Dresden Germany
| | - Ji Ma
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry Technische Universität Dresden Mommsenstrasse 4 01062 Dresden Germany
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry Technische Universität Dresden Mommsenstrasse 4 01062 Dresden Germany
- Max Planck Institute of Microstructure Physics Weinberg 2 06120 Halle Germany
| |
Collapse
|
19
|
Zhang J, Yang L, Liu F, Fu Y, Liu J, Popov AA, Ma J, Feng X. A Modular Cascade Synthetic Strategy Toward Structurally Constrained Boron-Doped Polycyclic Aromatic Hydrocarbons. Angew Chem Int Ed Engl 2021; 60:25695-25700. [PMID: 34623744 PMCID: PMC9298420 DOI: 10.1002/anie.202109840] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/07/2021] [Indexed: 11/28/2022]
Abstract
A novel synthetic strategy was developed for the construction of difficult-to-access structurally constrained boron-doped polycyclic aromatic hydrocarbons (sc-B-PAHs) via a cascade reaction from the readily available ortho-aryl-substituted diarylalkynes. This domino process involves borylative cyclization, 1,4-boron migration and successive two-fold electrophilic borylation. Two types of sc-B-PAHs bearing B-doped [4]helicene (1 a-1 i) or BN-doped [4]helicene (1 n-1 t) and double [4]helicene (1 u-1 v) are constructed by this cascade reaction. Remarkably, this synthetic strategy is characterized by modest yields (20-50 %) and broad substrate scope (18 examples) with versatile functional group tolerance. The resultant sc-B-PAHs show good stability under ambient conditions and are thoroughly investigated by X-ray crystallography, UV/Vis absorption and fluorescence spectroscopy, and cyclic voltammetry. Interestingly enough, BN-doped [4]helicene 1 o forms a unique alternating π-stacked dimer of enantiomers within a helical columnar superstructure, while BN-doped double [4]helicene 1 u establishes an unprecedented π-stacked trimeric sandwich structure with a rare 2D lamellar π-stacking. The synthetic approach reported herein represents a powerful tool for the rapid generation of novel sc-B-PAHs, which are highly attractive for the elucidation of the structure-property relationship and for potential optoelectronic applications.
Collapse
Affiliation(s)
- Jin‐Jiang Zhang
- Center for Advancing Electronics Dresden (cfaed) &Faculty of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstrasse 401062DresdenGermany
| | - Lin Yang
- Center for Advancing Electronics Dresden (cfaed) &Faculty of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstrasse 401062DresdenGermany
| | - Fupin Liu
- Center of SpectroelectrochemistryLeibniz Institute for Solid State and Materials Research (IFW) DresdenHelmholtzstrasse 2001069DresdenGermany
| | - Yubin Fu
- Center for Advancing Electronics Dresden (cfaed) &Faculty of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstrasse 401062DresdenGermany
| | - Junzhi Liu
- Department of ChemistryState Key Laboratory of Synthetic ChemistryThe University of Hong KongPokfulam RoadHong KongChina
| | - Alexey A. Popov
- Center of SpectroelectrochemistryLeibniz Institute for Solid State and Materials Research (IFW) DresdenHelmholtzstrasse 2001069DresdenGermany
| | - Ji Ma
- Center for Advancing Electronics Dresden (cfaed) &Faculty of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstrasse 401062DresdenGermany
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) &Faculty of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstrasse 401062DresdenGermany
- Max Planck Institute of Microstructure PhysicsWeinberg 206120HalleGermany
| |
Collapse
|
20
|
Park J, Kim SJ, Kwon H, Jin E, Yoon K, Kim H, Shadman S, Choe W, Kim J, Park YS. PN-Doped tetraphenylnaphthalene: a straightforward synthetic strategy analogous to BN-annulation. Chem Commun (Camb) 2021; 57:12147-12150. [PMID: 34726206 DOI: 10.1039/d1cc04785j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Compared to BN heterocycles, few studies on PN heterocycles have been reported to date. Herein, we developed an efficient synthetic strategy analogous to BN-annulation to simultaneously incorporate a PN bond and a halogen group into the naphthalene core. Subsequently, we prepared PN-containing tetraphenylnaphthalene using this method, followed by palladium-catalyzed cross-coupling and reduction reactions. The prepared molecule was characterized via X-ray crystallography, NMR spectroscopy, UV-vis spectroscopy, and cyclic voltammetry.
Collapse
Affiliation(s)
- Jupil Park
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea.
| | - So Jung Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea.
| | - Hansol Kwon
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea.
| | - Eunji Jin
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea.
| | - Kihwan Yoon
- Department of Chemistry, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea.
| | - HyunHo Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea.
| | - Sahar Shadman
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea.
| | - Wonyoung Choe
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea.
| | - Joonghan Kim
- Department of Chemistry, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea.
| | - Young S Park
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea.
| |
Collapse
|
21
|
Zeng Y, Yang J, Zheng X. Aggregation effects on photophysical properties of NBN-doped polycyclic aromatic hydrocarbons: a theoretical study. Phys Chem Chem Phys 2021; 23:23986-23997. [PMID: 34664048 DOI: 10.1039/d1cp03726a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
To realize the precise manipulation of the optoelectrical properties of boron-nitrogen (B-N) unit-doped polycyclic aromatic hydrocarbons (PAHs), unraveling the structure-property relationship behind them is of vital importance. In this work, we take two representative NBN-doped PAHs with similar structures (NBN-5 and NBN-6) as examples and explore the influence of molecular packing on their photophysical properties in different environments (including dilute solution, amorphous aggregate and crystal) using a theoretical protocol that combines molecular dynamics (MD) simulations and thermal vibration correlation function coupled quantum mechanics/molecular mechanics (QM/MM) calculations. We found that the different symmetries of the transition orbitals in NBN-5 and NBN-6 lead to their distinct distributions of transition orbitals, with NBN-5 delocalizing on the whole backbone and NBN-6 bearing clear intramolecular charge transfer. Therefore, the S1 state of NBN-6 demonstrates redshifted emission spectra in contrast to those of NBN-5. We confirmed that NBN-6 in dilute solution is more flexible than NBN-6 in aggregated states. After aggregation, the fluorescent quantum efficiency (FQE) of NBN-6 increases significantly with the nonradiative decay constants decreasing by 2-4 orders of magnitude, because the dense molecular packing in the aggregated state could effectively suppress the out-of-plane rotation and distortion of the phenyl-ring at the boron position, indicating its AIE feature. While the photophysical properties of conjugated NBN-5 with high rigidity are independent of the environment, showing bright emission in both solution and solid states, consistent with the experimental results. Our theoretical protocol is general and applicable to other doped PAHs, thus laying a solid foundation for the rational design of advanced materials.
Collapse
Affiliation(s)
- Yi Zeng
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| | - Junfang Yang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| | - Xiaoyan Zheng
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China. .,Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates (South China University of Technology), Guangzhou 510640, China
| |
Collapse
|
22
|
Kashida J, Shoji Y, Ikabata Y, Taka H, Sakai H, Hasobe T, Nakai H, Fukushima T. An Air- and Water-Stable B 4 N 4 -Heteropentalene Serving as a Host Material for a Phosphorescent OLED. Angew Chem Int Ed Engl 2021; 60:23812-23818. [PMID: 34467608 DOI: 10.1002/anie.202110050] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Indexed: 11/12/2022]
Abstract
Replacement of the carbon-carbon bonds of antiaromatic compounds with polar boron-nitrogen bonds often provides isoelectronic BN compounds with excellent thermodynamic stability and interesting photophysical properties. By this element-substitution strategy, we synthesized a new B4 N4 -heteropentalene derivative, 1, which is fully substituted with mesityl groups. Owing to kinetic protection by the sterically bulky substituents, 1 is remarkably stable toward air and even water. Single-crystal X-ray analysis of 1 revealed the bonding characteristics of the B4 N4 -heteropentalene structure. In a glassy matrix, 1 emitted short-wavelength phosphorescence with an onset at 350 nm, indicating that the triplet energy is substantially high. DFT calculations reasonably explained the ground- and excited-state electronic structures of 1 as well as its emission properties. Motivated by the high-energy triplet state of 1, we used it as a host material to fabricate a phosphorescent organic light-emitting diode with an external quantum efficiency of 15 %.
Collapse
Affiliation(s)
- Junki Kashida
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan.,Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| | - Yoshiaki Shoji
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan.,Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| | - Yasuhiro Ikabata
- Waseda Research Institute for Science and Engineering, Waseda University, Tokyo, 169-8555, Japan.,Present address: Information and Media Center, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, 441-8580, Japan
| | - Hideo Taka
- Konica Minolta, Ishikawa-cho, Hachioji, Tokyo, 192-8505, Japan
| | - Hayato Sakai
- Department of Chemistry, Faculty of Science and Technology, Keio University, Yokohama, 223-8522, Japan
| | - Taku Hasobe
- Department of Chemistry, Faculty of Science and Technology, Keio University, Yokohama, 223-8522, Japan
| | - Hiromi Nakai
- Waseda Research Institute for Science and Engineering, Waseda University, Tokyo, 169-8555, Japan.,Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, Tokyo, 169-8555, Japan
| | - Takanori Fukushima
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan.,Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| |
Collapse
|
23
|
Kashida J, Shoji Y, Ikabata Y, Taka H, Sakai H, Hasobe T, Nakai H, Fukushima T. An Air‐ and Water‐Stable B
4
N
4
‐Heteropentalene Serving as a Host Material for a Phosphorescent OLED. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Junki Kashida
- Laboratory for Chemistry and Life Science Institute of Innovative Research Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
- Department of Chemical Science and Engineering School of Materials and Chemical Technology Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
| | - Yoshiaki Shoji
- Laboratory for Chemistry and Life Science Institute of Innovative Research Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
- Department of Chemical Science and Engineering School of Materials and Chemical Technology Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
| | - Yasuhiro Ikabata
- Waseda Research Institute for Science and Engineering Waseda University Tokyo 169-8555 Japan
- Present address: Information and Media Center Toyohashi University of Technology 1-1 Hibarigaoka, Tempaku-cho Toyohashi Aichi 441-8580 Japan
| | - Hideo Taka
- Konica Minolta, Ishikawa-cho, Hachioji Tokyo 192-8505 Japan
| | - Hayato Sakai
- Department of Chemistry Faculty of Science and Technology Keio University Yokohama 223-8522 Japan
| | - Taku Hasobe
- Department of Chemistry Faculty of Science and Technology Keio University Yokohama 223-8522 Japan
| | - Hiromi Nakai
- Waseda Research Institute for Science and Engineering Waseda University Tokyo 169-8555 Japan
- Department of Chemistry and Biochemistry School of Advanced Science and Engineering Waseda University Tokyo 169-8555 Japan
| | - Takanori Fukushima
- Laboratory for Chemistry and Life Science Institute of Innovative Research Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
- Department of Chemical Science and Engineering School of Materials and Chemical Technology Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
| |
Collapse
|
24
|
Zhang PF, Zeng JC, Zhuang FD, Zhao KX, Sun ZH, Yao ZF, Lu Y, Wang XY, Wang JY, Pei J. Parent B 2 N 2 -Perylenes with Different BN Orientations. Angew Chem Int Ed Engl 2021; 60:23313-23319. [PMID: 34431600 DOI: 10.1002/anie.202108519] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Indexed: 11/07/2022]
Abstract
Introducing BN units into polycyclic aromatic hydrocarbons expands the chemical space of conjugated materials with novel properties. However, it is challenging to achieve accurate synthesis of BN-PAHs with specific BN positions and orientations. Here, three new parent B2 N2 -perylenes with different BN orientations are synthesized with BN-naphthalene as the building block, providing systematic insight into the effects of BN incorporation with different orientations on the structure, (anti)aromaticity, crystal packing and photophysical properties. The intermolecular dipole-dipole interaction shortens the π-π stacking distance. The crystal structure, (anti)aromaticity, and photophysical properties vary with the change of BN orientation. The revealed BN doping effects may provide a guideline for the synthesis of BN-PAHs with specific stacking structures, and the synthetic strategy employed here can be extended toward the synthesis of larger BN-embedded PAHs with adjustable BN patterns.
Collapse
Affiliation(s)
- Peng-Fei Zhang
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jing-Cai Zeng
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Fang-Dong Zhuang
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Ke-Xiang Zhao
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Ze-Hao Sun
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Ze-Fan Yao
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yang Lu
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Xiao-Ye Wang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Jie-Yu Wang
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jian Pei
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
25
|
Shigeno M, Imamatsu M, Kai Y, Kiriyama M, Ishida S, Nozawa-Kumada K, Kondo Y. Construction of 1,2,3-Benzodiazaborole by Electrophilic Borylation of Azobenzene and Nucleophilic Dialkylative Cyclization. Org Lett 2021; 23:8023-8027. [PMID: 34613748 DOI: 10.1021/acs.orglett.1c03033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
1,2,3-Benzodiazaboroles can be conveniently prepared from azobenzenes by a two-step protocol involving electrophilic ortho-borylation with BBr3 and dialkylative cyclization with the Grignard reagent. The methodology provides a diverse range of products equipped with functionalities from azobenzenes containing substituents (Me, t-Bu, F, Cl, Br, I, and OCF3) and a series of Grignard reagents (alkyl- and arylmagnesium reagents). Moreover, this study displays the moderate aromaticity of the B-N-N-containing five-membered ring and mechanistic investigations of the cyclization reaction.
Collapse
Affiliation(s)
- Masanori Shigeno
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Science, Tohoku University, Aoba, Sendai 980-8578, Japan
| | - Masaya Imamatsu
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Science, Tohoku University, Aoba, Sendai 980-8578, Japan
| | - Yusuke Kai
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Science, Tohoku University, Aoba, Sendai 980-8578, Japan
| | - Moe Kiriyama
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Science, Tohoku University, Aoba, Sendai 980-8578, Japan
| | - Shintaro Ishida
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Kanako Nozawa-Kumada
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Science, Tohoku University, Aoba, Sendai 980-8578, Japan
| | - Yoshinori Kondo
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Science, Tohoku University, Aoba, Sendai 980-8578, Japan
| |
Collapse
|
26
|
Zhang P, Zeng J, Zhuang F, Zhao K, Sun Z, Yao Z, Lu Y, Wang X, Wang J, Pei J. Parent B
2
N
2
‐Perylenes with Different BN Orientations. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108519] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Peng‐Fei Zhang
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Center of Soft Matter Science and Engineering College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Jing‐Cai Zeng
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Center of Soft Matter Science and Engineering College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Fang‐Dong Zhuang
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Center of Soft Matter Science and Engineering College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Ke‐Xiang Zhao
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Center of Soft Matter Science and Engineering College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Ze‐Hao Sun
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Center of Soft Matter Science and Engineering College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Ze‐Fan Yao
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Center of Soft Matter Science and Engineering College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Yang Lu
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Center of Soft Matter Science and Engineering College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Xiao‐Ye Wang
- State Key Laboratory of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Jie‐Yu Wang
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Center of Soft Matter Science and Engineering College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Jian Pei
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Center of Soft Matter Science and Engineering College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| |
Collapse
|
27
|
Hu C, Guo L, Zhang J, Cui C. C–C Activation to BNB-Embedded Indenophenanthrenes. Electronic Structure and Reactivity. Organometallics 2021. [DOI: 10.1021/acs.organomet.0c00807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Chaopeng Hu
- State Key Laboratory of Elemento-Organic Chemistry and College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Lulu Guo
- State Key Laboratory of Elemento-Organic Chemistry and College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Jianying Zhang
- State Key Laboratory of Elemento-Organic Chemistry and College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Chunming Cui
- State Key Laboratory of Elemento-Organic Chemistry and College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| |
Collapse
|
28
|
Ouadoudi O, Kaehler T, Bolte M, Lerner HW, Wagner M. One tool to bring them all: Au-catalyzed synthesis of B,O- and B,N-doped PAHs from boronic and borinic acids. Chem Sci 2021; 12:5898-5909. [PMID: 34168815 PMCID: PMC8179653 DOI: 10.1039/d1sc00543j] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/16/2021] [Indexed: 12/14/2022] Open
Abstract
The isoelectronic replacement of C[double bond, length as m-dash]C bonds with -B[double bond, length as m-dash]N+ bonds in polycyclic aromatic hydrocarbons (PAHs) is a widely used tool to prepare novel optoelectronic materials. Far less well explored are corresponding B,O-doped PAHs, although they have a similarly high application potential. We herein report on the modular synthesis of B,N- and B,O-doped PAHs through the [Au(PPh3)NTf2]-catalyzed 6-endo-dig cyclization of BN-H and BO-H bonds across suitably positioned C[triple bond, length as m-dash]C bonds in the key step. Readily available, easy-to-handle o-alkynylaryl boronic and borinic acids serve as starting materials, which are either cyclized directly or first converted into the corresponding aminoboranes and then cyclized. The reaction even tolerates bulky mesityl substituents on boron, which later kinetically protect the formed B,N/O-PAHs from hydrolysis or oxidation. Our approach is also applicable for the synthesis of rare doubly B,N/O-doped PAHs. Specifically, we prepared 1,2-B,E-naphthalenes and -anthracenes, 1,5-B2-2,6-E2-anthracenes (E = N, O) as well as B,O2-containing and unprecedented B,N,O-containing phenalenyls. Selected examples of these compounds have been structurally characterized by X-ray crystallography; their optoelectronic properties have been studied by cyclic voltammetry, electron spectroscopy, and quantum-chemical calculations. Using a new unsubstituted (B,O)2-perylene as the substrate for late-stage functionalization, we finally show that the introduction of two pinacolatoboryl (Bpin) substituents is possible in high yield and with perfect regioselectivity via an Ir-catalyzed C-H borylation approach.
Collapse
Affiliation(s)
- Omar Ouadoudi
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt Max-von-Laue-Straße 7 D-60438 Frankfurt (Main) Germany
| | - Tanja Kaehler
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt Max-von-Laue-Straße 7 D-60438 Frankfurt (Main) Germany
| | - Michael Bolte
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt Max-von-Laue-Straße 7 D-60438 Frankfurt (Main) Germany
| | - Hans-Wolfram Lerner
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt Max-von-Laue-Straße 7 D-60438 Frankfurt (Main) Germany
| | - Matthias Wagner
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt Max-von-Laue-Straße 7 D-60438 Frankfurt (Main) Germany
| |
Collapse
|
29
|
Min Y, Dou C, Tian H, Liu J, Wang L. Isomers of B←N‐Fused Dibenzo‐azaacenes: How B←N Affects Opto‐electronic Properties and Device Behaviors? Chemistry 2021; 27:4364-4372. [DOI: 10.1002/chem.202004615] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/20/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Yang Min
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry, Chinese Academy of Science 5625 Renmin Rd. Changchun 130022 China
- University of Chinese Academy of Science 19(A) Yuquan Road Beijing 100049 China
| | - Chuandong Dou
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry, Chinese Academy of Science 5625 Renmin Rd. Changchun 130022 China
| | - Hongkun Tian
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry, Chinese Academy of Science 5625 Renmin Rd. Changchun 130022 China
| | - Jun Liu
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry, Chinese Academy of Science 5625 Renmin Rd. Changchun 130022 China
| | - Lixiang Wang
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry, Chinese Academy of Science 5625 Renmin Rd. Changchun 130022 China
| |
Collapse
|
30
|
Biglari Z, Fallah V. Influence of BN-orientation pattern at spoke location of corannulene on electro-optical properties and aromaticity. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128730] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
31
|
Lu H, Nakamuro T, Yamashita K, Yanagisawa H, Nureki O, Kikkawa M, Gao H, Tian J, Shang R, Nakamura E. B/N-Doped p-Arylenevinylene Chromophores: Synthesis, Properties, and Microcrystal Electron Crystallographic Study. J Am Chem Soc 2020; 142:18990-18996. [DOI: 10.1021/jacs.0c10337] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hua Lu
- Department of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| | - Takayuki Nakamuro
- Department of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Keitaro Yamashita
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Haruaki Yanagisawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Masahide Kikkawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Han Gao
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Jiangwei Tian
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Rui Shang
- Department of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Eiichi Nakamura
- Department of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
32
|
Su B, Kostenko A, Yao S, Driess M. Isolable Dibenzo[ a,e]disilapentalene with a Dichotomic Reactivity toward CO 2. J Am Chem Soc 2020; 142:16935-16941. [PMID: 32986952 DOI: 10.1021/jacs.0c09040] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The first dibenzo[a,e]disilapentalene with two Si═C moieties in the heteropentalene core has been prepared. Its solid-state structure and density functional theory (DFT) calculations revealed that the Si═C bonds are involved in an expanded π-conjugated system. The Si═C bonds show a distinguished reactivity toward CO2, depending on the reaction conditions. While one product results from fixation of two CO2 molecules across one Si═C bond, two different products could be isolated from the reaction of three CO2 molecules with both Si═C bonds. The mechanism has been uncovered by DFT calculations.
Collapse
Affiliation(s)
- Bochao Su
- Department of Chemistry, Metalorganic and Inorganic Materials, Technische Universität Berlin, Sekr. C2, Strasse des 17. Juni 135, 10623 Berlin, Germany
| | - Arseni Kostenko
- Department of Chemistry, Metalorganic and Inorganic Materials, Technische Universität Berlin, Sekr. C2, Strasse des 17. Juni 135, 10623 Berlin, Germany
| | - Shenglai Yao
- Department of Chemistry, Metalorganic and Inorganic Materials, Technische Universität Berlin, Sekr. C2, Strasse des 17. Juni 135, 10623 Berlin, Germany
| | - Matthias Driess
- Department of Chemistry, Metalorganic and Inorganic Materials, Technische Universität Berlin, Sekr. C2, Strasse des 17. Juni 135, 10623 Berlin, Germany
| |
Collapse
|
33
|
Pati PB, Jin E, Kim Y, Kim Y, Mun J, Kim SJ, Kang SJ, Choe W, Lee G, Shin H, Park YS. Unveiling 79‐Year‐Old Ixene and Its BN‐Doped Derivative. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Palas Baran Pati
- Department of Chemistry Ulsan National Institute of Science and Technology (UNIST) 50 UNIST-gil Ulsan 44919 Republic of Korea
| | - Eunji Jin
- Department of Chemistry Ulsan National Institute of Science and Technology (UNIST) 50 UNIST-gil Ulsan 44919 Republic of Korea
| | - Yohan Kim
- Department of Materials Science and Engineering Low Dimensional Carbon Materials Center Center for Multidimensional Carbon Materials Institute for Basic Science (IBS) Ulsan National Institute of Science and Technology (UNIST) 50 UNIST-gil Ulsan 44919 Republic of Korea
| | - Yongchul Kim
- Department of Chemistry Ulsan National Institute of Science and Technology (UNIST) 50 UNIST-gil Ulsan 44919 Republic of Korea
| | - Jinhong Mun
- Department of Chemistry Ulsan National Institute of Science and Technology (UNIST) 50 UNIST-gil Ulsan 44919 Republic of Korea
| | - So Jung Kim
- Department of Chemistry Ulsan National Institute of Science and Technology (UNIST) 50 UNIST-gil Ulsan 44919 Republic of Korea
| | - Seok Ju Kang
- Department of Energy Engineering Ulsan National Institute of Science and Technology (UNIST) 50 UNIST-gil Ulsan 44919 Republic of Korea
- Center for Wave Energy Materials Ulsan National Institute of Science and Technology (UNIST) 50 UNIST-gil Ulsan 44919 Republic of Korea
| | - Wonyoung Choe
- Department of Chemistry Ulsan National Institute of Science and Technology (UNIST) 50 UNIST-gil Ulsan 44919 Republic of Korea
| | - Geunsik Lee
- Department of Chemistry Ulsan National Institute of Science and Technology (UNIST) 50 UNIST-gil Ulsan 44919 Republic of Korea
- Center for Wave Energy Materials Ulsan National Institute of Science and Technology (UNIST) 50 UNIST-gil Ulsan 44919 Republic of Korea
| | - Hyung‐Joon Shin
- Department of Materials Science and Engineering Low Dimensional Carbon Materials Center Center for Multidimensional Carbon Materials Institute for Basic Science (IBS) Ulsan National Institute of Science and Technology (UNIST) 50 UNIST-gil Ulsan 44919 Republic of Korea
| | - Young S. Park
- Department of Chemistry Ulsan National Institute of Science and Technology (UNIST) 50 UNIST-gil Ulsan 44919 Republic of Korea
- Center for Wave Energy Materials Ulsan National Institute of Science and Technology (UNIST) 50 UNIST-gil Ulsan 44919 Republic of Korea
| |
Collapse
|
34
|
Pati PB, Jin E, Kim Y, Kim Y, Mun J, Kim SJ, Kang SJ, Choe W, Lee G, Shin H, Park YS. Unveiling 79‐Year‐Old Ixene and Its BN‐Doped Derivative. Angew Chem Int Ed Engl 2020; 59:14891-14895. [DOI: 10.1002/anie.202004049] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/07/2020] [Indexed: 12/27/2022]
Affiliation(s)
- Palas Baran Pati
- Department of Chemistry Ulsan National Institute of Science and Technology (UNIST) 50 UNIST-gil Ulsan 44919 Republic of Korea
| | - Eunji Jin
- Department of Chemistry Ulsan National Institute of Science and Technology (UNIST) 50 UNIST-gil Ulsan 44919 Republic of Korea
| | - Yohan Kim
- Department of Materials Science and Engineering Low Dimensional Carbon Materials Center Center for Multidimensional Carbon Materials Institute for Basic Science (IBS) Ulsan National Institute of Science and Technology (UNIST) 50 UNIST-gil Ulsan 44919 Republic of Korea
| | - Yongchul Kim
- Department of Chemistry Ulsan National Institute of Science and Technology (UNIST) 50 UNIST-gil Ulsan 44919 Republic of Korea
| | - Jinhong Mun
- Department of Chemistry Ulsan National Institute of Science and Technology (UNIST) 50 UNIST-gil Ulsan 44919 Republic of Korea
| | - So Jung Kim
- Department of Chemistry Ulsan National Institute of Science and Technology (UNIST) 50 UNIST-gil Ulsan 44919 Republic of Korea
| | - Seok Ju Kang
- Department of Energy Engineering Ulsan National Institute of Science and Technology (UNIST) 50 UNIST-gil Ulsan 44919 Republic of Korea
- Center for Wave Energy Materials Ulsan National Institute of Science and Technology (UNIST) 50 UNIST-gil Ulsan 44919 Republic of Korea
| | - Wonyoung Choe
- Department of Chemistry Ulsan National Institute of Science and Technology (UNIST) 50 UNIST-gil Ulsan 44919 Republic of Korea
| | - Geunsik Lee
- Department of Chemistry Ulsan National Institute of Science and Technology (UNIST) 50 UNIST-gil Ulsan 44919 Republic of Korea
- Center for Wave Energy Materials Ulsan National Institute of Science and Technology (UNIST) 50 UNIST-gil Ulsan 44919 Republic of Korea
| | - Hyung‐Joon Shin
- Department of Materials Science and Engineering Low Dimensional Carbon Materials Center Center for Multidimensional Carbon Materials Institute for Basic Science (IBS) Ulsan National Institute of Science and Technology (UNIST) 50 UNIST-gil Ulsan 44919 Republic of Korea
| | - Young S. Park
- Department of Chemistry Ulsan National Institute of Science and Technology (UNIST) 50 UNIST-gil Ulsan 44919 Republic of Korea
- Center for Wave Energy Materials Ulsan National Institute of Science and Technology (UNIST) 50 UNIST-gil Ulsan 44919 Republic of Korea
| |
Collapse
|
35
|
Zhang Q, Sun Z, Zhang L, Li M, Zi L, Liu Z, Zhen B, Sun W, Liu X. Synthesis, Structures, and Properties of BN-Dinaphthothiophenes: Influence of B and N Placement on Photophysical Properties and Aromaticity. J Org Chem 2020; 85:7877-7883. [PMID: 32408747 DOI: 10.1021/acs.joc.0c00541] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Substitution of the C═C functionality with the isosteric and isoelectronic B-N moiety has emerged as a powerful way to expand the family of polycyclic aromatic hydrocarbons. In this paper, two types of BN-dinaphthothiophene (BN-DNT) derivatives with different B and N substitution patterns were synthesized in short steps from commercially available materials. X-ray crystallographic analysis revealed that BN-DNT 1 and 2 had rigid and planar frameworks. Their photophysical properties and the aromaticity of the BN rings of the BN-DNTs were slightly dependent on the B and N substitution patterns. However, their response toward fluoride anions was greatly dependent on the B and N substitution patterns.
Collapse
Affiliation(s)
- Qian Zhang
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China
| | - Zhe Sun
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China
| | - Lei Zhang
- School of Science, Tianjin Chengjian University, Tianjin 300384, People's Republic of China
| | - Mengyuan Li
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China
| | - Lingjian Zi
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China
| | - Zongyu Liu
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China
| | - Bin Zhen
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China
| | - Wenfang Sun
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108-6050, United States
| | - Xuguang Liu
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China.,Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China
| |
Collapse
|
36
|
Chen Y, Chen W, Qiao Y, Lu X, Zhou G. BN‐Embedded Polycyclic Aromatic Hydrocarbon Oligomers: Synthesis, Aromaticity, and Reactivity. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000556] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yijing Chen
- Lab of Advanced Materials State Key Laboratory of Molecular Engineering of Polymers Fudan University Shanghai 200438 P. R. China
| | - Weinan Chen
- Lab of Advanced Materials State Key Laboratory of Molecular Engineering of Polymers Fudan University Shanghai 200438 P. R. China
| | - Yanjun Qiao
- Department of Materials Science Fudan University Shanghai 200438 P. R. China
| | - Xuefeng Lu
- Department of Materials Science Fudan University Shanghai 200438 P. R. China
| | - Gang Zhou
- Lab of Advanced Materials State Key Laboratory of Molecular Engineering of Polymers Fudan University Shanghai 200438 P. R. China
| |
Collapse
|
37
|
Chen Y, Chen W, Qiao Y, Lu X, Zhou G. BN-Embedded Polycyclic Aromatic Hydrocarbon Oligomers: Synthesis, Aromaticity, and Reactivity. Angew Chem Int Ed Engl 2020; 59:7122-7130. [PMID: 32067320 DOI: 10.1002/anie.202000556] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Indexed: 12/26/2022]
Abstract
BN-embedded oligomers with different pairs of BN units were synthesized by electrophilic borylation. Up to four pairs of BN units were incorporated in the large polycyclic aromatic hydrocarbons (PAHs). Their geometric, photophysical, electrochemical, and Lewis acidic properties were investigated by X-ray crystallography, optical spectroscopy, and cyclic voltammetry. The B-N bonds show delocalized double-bond characteristics and the conjugation can be extended through the trans-orientated aromatic azaborine units. Calculations reveal the relatively lower aromaticity for the inner azaborine rings in the BN-embedded PAH oligomers. The frontier orbitals of the longer oligomers are delocalized over the inner aromatic rings. Consequently, the inner moieties of the BN-embedded PAH oligomers are more active than the outer parts. This is confirmed by a simple oxidation reaction, which has significant effects on the aromaticity and the intramolecular charge-transfer interactions.
Collapse
Affiliation(s)
- Yijing Chen
- Lab of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200438, P. R. China
| | - Weinan Chen
- Lab of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200438, P. R. China
| | - Yanjun Qiao
- Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| | - Xuefeng Lu
- Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| | - Gang Zhou
- Lab of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200438, P. R. China
| |
Collapse
|
38
|
Tian D, Li Q, Zhao Y, Wang Z, Li W, Xia S, Xing S, Zhu B, Zhang J, Cui C. Synthesis of bis-BN-Naphthalene-Fused Oxepins and Their Photoluminescence Including White-Light Emission. J Org Chem 2020; 85:526-536. [PMID: 31859499 DOI: 10.1021/acs.joc.9b02594] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A series of novel bis-BN-naphthalene-fused oxepin derivatives were synthesized via a Pd-catalyzed tandem reaction from brominated 2,1-borazaronaphthalenes and cis-bis(boryl)alkenes. X-ray crystallographic analysis revealed that bis-BN-naphthalene-fused oxepins feature a planar framework. The electronic and photophysical properties of the novel BN-naphthalene-fused oxepins were investigated by UV-vis and fluorescence spectroscopies and density functional theory (DFT) calculations, which disclosed the distinct electronic and photophysical properties of the analogous hydrocarbon system. Interestingly, dual-fluorescent emissions were observed upon dissolving N-substituted derivatives 10-14 in dimethyl sulfoxide. Tunable emission colors especially for white-light emissions can be achieved by controlling the ratio of solvents, concentration, or temperature using only a single-molecule compound.
Collapse
Affiliation(s)
- Dawei Tian
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education (Tianjin Normal University), College of Chemistry , Tianjin Normal University , Tianjin 300387 , People's Republic of China
| | - Qian Li
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education (Tianjin Normal University), College of Chemistry , Tianjin Normal University , Tianjin 300387 , People's Republic of China
| | - Yifan Zhao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education (Tianjin Normal University), College of Chemistry , Tianjin Normal University , Tianjin 300387 , People's Republic of China
| | - Zijia Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education (Tianjin Normal University), College of Chemistry , Tianjin Normal University , Tianjin 300387 , People's Republic of China
| | - Wenbin Li
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education (Tianjin Normal University), College of Chemistry , Tianjin Normal University , Tianjin 300387 , People's Republic of China
| | - Shuling Xia
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education (Tianjin Normal University), College of Chemistry , Tianjin Normal University , Tianjin 300387 , People's Republic of China
| | - Siyang Xing
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education (Tianjin Normal University), College of Chemistry , Tianjin Normal University , Tianjin 300387 , People's Republic of China
| | - Bolin Zhu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education (Tianjin Normal University), College of Chemistry , Tianjin Normal University , Tianjin 300387 , People's Republic of China
| | - Jianying Zhang
- State Key Laboratory of Elemento-Organic Chemistry , Cooperative Innovation Center of Chemical Science and Engineering (Tianjin) Nankai University , Tianjin 300071 , China
| | - Chunming Cui
- State Key Laboratory of Elemento-Organic Chemistry , Cooperative Innovation Center of Chemical Science and Engineering (Tianjin) Nankai University , Tianjin 300071 , China
| |
Collapse
|
39
|
Panova YS, Sheyanova AV, Baranov EV, Kornev AN. Migratory insertion of bis(diethylamino)phosphine group into the N–N bond in the reaction of substituted hydrazobenzene with (Et2N)2PCl. Russ Chem Bull 2020. [DOI: 10.1007/s11172-020-2734-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
40
|
Saito H, Yorimitsu H. Ring-expanding and Ring-opening Transformations of Benzofurans and Indoles with Introducing Heteroatoms. CHEM LETT 2019. [DOI: 10.1246/cl.190393] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Hayate Saito
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hideki Yorimitsu
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
41
|
Morgan MM, Nazari M, Pickl T, Rautiainen JM, Tuononen HM, Piers WE, Welch GC, Gelfand BS. Boron-nitrogen substituted dihydroindeno[1,2-b]fluorene derivatives as acceptors in organic solar cells. Chem Commun (Camb) 2019; 55:11095-11098. [PMID: 31460525 DOI: 10.1039/c9cc05103a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The electrophilic borylation of 2,5-diarylpyrazines results in the formation of boron-nitrogen doped dihydroindeno[1,2-b]fluorene which can be synthesized using standard Schlenk techniques and worked up and handled readily under atmospheric conditions. Through transmetallation via diarylzinc reagents a series of derivatives were synthesized which show broad visible to near-IR light absorption profiles that highlight the versatility of this BN substituted core for use in optoelectronic devices. The synthesis is efficient, scalable and allows for tuning through changes in substituents on the planar heterocyclic core and at boron. Exploratory evaluation in organic solar cell devices as non-fullerene acceptors gave power conversion efficiencies of 2%.
Collapse
Affiliation(s)
- Matthew M Morgan
- Department of Chemistry, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, USA.
| | - Maryam Nazari
- Department of Chemistry, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, USA.
| | - Thomas Pickl
- Department of Chemistry, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, USA.
| | - J Mikko Rautiainen
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
| | - Heikki M Tuononen
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
| | - Warren E Piers
- Department of Chemistry, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, USA.
| | - Gregory C Welch
- Department of Chemistry, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, USA.
| | - Benjamin S Gelfand
- Department of Chemistry, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, USA.
| |
Collapse
|
42
|
Chen Y, Chen W, Qiao Y, Zhou G. B
2
N
2
‐Embedded Polycyclic Aromatic Hydrocarbons with Furan and Thiophene Derivatives Functionalized in Crossed Directions. Chemistry 2019; 25:9326-9338. [DOI: 10.1002/chem.201901782] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Indexed: 01/06/2023]
Affiliation(s)
- Yijing Chen
- Lab of Advanced MaterialsState Key Laboratory of Molecular Engineering of PolymersFudan University Shanghai 200438 P. R. China
| | - Weinan Chen
- Lab of Advanced MaterialsState Key Laboratory of Molecular Engineering of PolymersFudan University Shanghai 200438 P. R. China
| | - Yanjun Qiao
- Lab of Advanced MaterialsState Key Laboratory of Molecular Engineering of PolymersFudan University Shanghai 200438 P. R. China
| | - Gang Zhou
- Lab of Advanced MaterialsState Key Laboratory of Molecular Engineering of PolymersFudan University Shanghai 200438 P. R. China
| |
Collapse
|
43
|
Tsuchiya S, Saito H, Nogi K, Yorimitsu H. Aromatic Metamorphosis of Indoles into 1,2-Benzazaborins. Org Lett 2019; 21:3855-3860. [PMID: 31063386 DOI: 10.1021/acs.orglett.9b01353] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Among the plethora of aromatic compounds, indoles represent a privileged class of substructures that is ubiquitous in natural products and pharmaceuticals. While numerous exocyclic functionalizations of indoles have provided access to a variety of useful derivatives, endocyclic transformations involving the cleavage of the C2-N bond remain challenging due to the high aromaticity and strength of this bond in indoles. Herein, we report the "aromatic metamorphosis" of indoles into 1,2-benzazaborins via the insertion of boron into the C2-N bond. This endocyclic insertion consists of a reductive ring-opening using lithium metal and a subsequent trapping of the resulting dianionic species with organoboronic esters. Considering that 1,2-azaborins have attracted increasing academic and industrial attention as BN isosteres of benzene, the counterintuitive aromatic metamorphosis presented herein can feasibly be expected to substantially advance the promising chemistry of 1,2-azaborins.
Collapse
Affiliation(s)
- Shun Tsuchiya
- Department of Chemistry, Graduate School of Science , Kyoto University , Sakyo-ku, Kyoto 606-8502 , Japan
| | - Hayate Saito
- Department of Chemistry, Graduate School of Science , Kyoto University , Sakyo-ku, Kyoto 606-8502 , Japan
| | - Keisuke Nogi
- Department of Chemistry, Graduate School of Science , Kyoto University , Sakyo-ku, Kyoto 606-8502 , Japan
| | - Hideki Yorimitsu
- Department of Chemistry, Graduate School of Science , Kyoto University , Sakyo-ku, Kyoto 606-8502 , Japan
| |
Collapse
|
44
|
Chakraborty S, Kayastha P, Ramakrishnan R. The chemical space of B, N-substituted polycyclic aromatic hydrocarbons: Combinatorial enumeration and high-throughput first-principles modeling. J Chem Phys 2019; 150:114106. [PMID: 30902009 DOI: 10.1063/1.5088083] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Combinatorial introduction of heteroatoms in the two-dimensional framework of aromatic hydrocarbons opens up possibilities to design compound libraries exhibiting desirable photovoltaic and photochemical properties. Exhaustive enumeration and first-principles characterization of this chemical space provide indispensable insights for rational compound design strategies. Here, for the smallest seventy-seven Kekulean-benzenoid polycyclic systems, we reveal combinatorial substitution of C atom pairs with the isosteric and isoelectronic B, N pairs to result in 7 453 041 547 842 (7.4 tera) unique molecules. We present comprehensive frequency distributions of this chemical space, analyze trends, and discuss a symmetry-controlled selectivity manifestable in synthesis product yield. Furthermore, by performing high-throughput ab initio density functional theory calculations of over thirty-three thousand (33k) representative molecules, we discuss quantitative trends in the structural stability and inter-property relationships across heteroarenes. Our results indicate a significant fraction of the 33k molecules to be electronically active in the 1.5-2.5 eV region, encompassing the most intense region of the solar spectrum, indicating their suitability as potential light-harvesting molecular components in photo-catalyzed solar cells.
Collapse
Affiliation(s)
- Sabyasachi Chakraborty
- Tata Institute of Fundamental Research, Centre for Interdisciplinary Sciences, Hyderabad 500107, India
| | - Prakriti Kayastha
- Tata Institute of Fundamental Research, Centre for Interdisciplinary Sciences, Hyderabad 500107, India
| | - Raghunathan Ramakrishnan
- Tata Institute of Fundamental Research, Centre for Interdisciplinary Sciences, Hyderabad 500107, India
| |
Collapse
|
45
|
Ishibashi JSA, Darrigan C, Chrostowska A, Li B, Liu SY. A BN anthracene mimics the electronic structure of more highly conjugated systems. Dalton Trans 2019; 48:2807-2812. [PMID: 30734032 DOI: 10.1039/c9dt00481e] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
9a,9-BN anthracene was synthesized using a simple three-step sequence involving intramolecular electrophilic borylation of 2-benzylpyridines. The same procedure can be applied to yield a number of substituted 9a,9-BN anthracenes. Spectroscopic characterization of the parental compound (UV-photoelectron spectroscopy, UV-vis absorption/emission) shows an electronic structure more similar to that of a larger conjugated system rather than anthracene, the direct all-carbon analogue.
Collapse
Affiliation(s)
- Jacob S A Ishibashi
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, USA.
| | | | | | | | | |
Collapse
|
46
|
Noda H, Asada Y, Shibasaki M, Kumagai N. Neighboring Protonation Unveils Lewis Acidity in the B3NO2 Heterocycle. J Am Chem Soc 2019; 141:1546-1554. [DOI: 10.1021/jacs.8b10336] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Hidetoshi Noda
- Institute of Microbial Chemistry (BIKAKEN), Tokyo, 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Yasuko Asada
- Institute of Microbial Chemistry (BIKAKEN), Tokyo, 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Masakatsu Shibasaki
- Institute of Microbial Chemistry (BIKAKEN), Tokyo, 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Naoya Kumagai
- Institute of Microbial Chemistry (BIKAKEN), Tokyo, 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| |
Collapse
|
47
|
Min Y, Dou C, Tian H, Liu J, Wang L. A disk-type polyarene containing four B←N units. Chem Commun (Camb) 2019; 55:3638-3641. [DOI: 10.1039/c9cc00769e] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A disk-type polyarene containing four B←N units is reported, which exhibits both intensive red fluorescence and n-type semiconductor characteristics.
Collapse
Affiliation(s)
- Yang Min
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences
- Changchun 130022
- People's Republic of China
- University of Chinese Academy of Sciences
- Beijing 100049
| | - Chuandong Dou
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences
- Changchun 130022
- People's Republic of China
| | - Hongkun Tian
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences
- Changchun 130022
- People's Republic of China
| | - Jun Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences
- Changchun 130022
- People's Republic of China
| | - Lixiang Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences
- Changchun 130022
- People's Republic of China
| |
Collapse
|
48
|
Zhang W, Yu D, Wang Z, Zhang B, Xu L, Li G, Yan N, Rivard E, He G. Dibora[10]annulenes: Construction, Properties, and Their Ring-Opening Reactions. Org Lett 2018; 21:109-113. [DOI: 10.1021/acs.orglett.8b03538] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Weidong Zhang
- School of Science jointly with Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi’an Key Laboratory of Sustainable Energy Materials Chemistry, Xi’an Jiaotong University, Xi’an, Shaanxi Province 710049, China
| | - Demei Yu
- School of Science jointly with Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi’an Key Laboratory of Sustainable Energy Materials Chemistry, Xi’an Jiaotong University, Xi’an, Shaanxi Province 710049, China
| | - Zhijun Wang
- School of Science jointly with Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi’an Key Laboratory of Sustainable Energy Materials Chemistry, Xi’an Jiaotong University, Xi’an, Shaanxi Province 710049, China
| | - Bingjie Zhang
- School of Science jointly with Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi’an Key Laboratory of Sustainable Energy Materials Chemistry, Xi’an Jiaotong University, Xi’an, Shaanxi Province 710049, China
| | - Letian Xu
- School of Science jointly with Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi’an Key Laboratory of Sustainable Energy Materials Chemistry, Xi’an Jiaotong University, Xi’an, Shaanxi Province 710049, China
| | - Guoping Li
- School of Science jointly with Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi’an Key Laboratory of Sustainable Energy Materials Chemistry, Xi’an Jiaotong University, Xi’an, Shaanxi Province 710049, China
| | - Ni Yan
- Polymer Materials & Engineering Department, School of Materials Science & Engineering, Engineering Research Center of Transportation Materials, Ministry of Education, Chang’an University, Xi’an, Shaanxi 710064, China
| | - Eric Rivard
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G2G2, Canada
| | - Gang He
- School of Science jointly with Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi’an Key Laboratory of Sustainable Energy Materials Chemistry, Xi’an Jiaotong University, Xi’an, Shaanxi Province 710049, China
| |
Collapse
|
49
|
Zhu C, Ji X, You D, Chen TL, Mu AU, Barker KP, Klivansky LM, Liu Y, Fang L. Extraordinary Redox Activities in Ladder-Type Conjugated Molecules Enabled by B ← N Coordination-Promoted Delocalization and Hyperconjugation. J Am Chem Soc 2018; 140:18173-18182. [PMID: 30507169 DOI: 10.1021/jacs.8b11337] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The introduction of B ← N coordinate bond-isoelectronic to C-C single bond-into π-systems represents a promising strategy to impart exotic redox and electrochromic properties into conjugated organic molecules and macromolecules. To achieve both reductive and oxidative activities using this strategy, a cruciform ladder-type molecular constitution was designed to accommodate oxidation-active, reduction-active, and B ← N coordination units into a compact structure. Two such compounds (BN-F and BN-Ph) were synthesized via highly efficient N-directed borylation. These molecules demonstrated well-separated, two reductive and two oxidative electron-transfer processes, corresponding to five distinct yet stable oxidation states, including a rarely observed boron-containing radical cation. Spectroelectrochemical measurements revealed unique optical characteristics for each of these reduced/oxidized species, demonstrating multicolor electrochromism with excellent recyclability. Distinct color changes were observed between each redox state with clear isosbestic points on the absorption spectra. The underlying redox mechanism was elucidated by a combination of computational and experimental investigations. Single-crystal X-ray diffraction analysis on the neutral state, the oxidized radical cation, and the reduced dianion of BN-Ph revealed structural transformations into two distinct quinonoid constitutions during the oxidation and reduction processes, respectively. B ← N coordination played an important role in rendering the robust and reversible multistage redox properties, by extending the charge and spin delocalization, by modulating the π-electron density, and by a newly established hyperconjugation mechanism.
Collapse
Affiliation(s)
| | | | | | - Teresa L Chen
- The Molecular Foundry , Lawrence Berkeley National Laboratory , One Cyclotron Road, Berkeley , California 94720 , United States
| | | | | | - Liana M Klivansky
- The Molecular Foundry , Lawrence Berkeley National Laboratory , One Cyclotron Road, Berkeley , California 94720 , United States
| | - Yi Liu
- The Molecular Foundry , Lawrence Berkeley National Laboratory , One Cyclotron Road, Berkeley , California 94720 , United States
| | | |
Collapse
|
50
|
Stojanović M, Baranac-Stojanović M. Analysis of Stability and (Anti)aromaticity of BN-Dibenzo[ a
, e
]pentalenes. European J Org Chem 2018. [DOI: 10.1002/ejoc.201801047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Milovan Stojanović
- Institute of Chemistry, Technology and Metallurgy, Center for Chemistry; University of Belgrade; Njegoševa 12 11000 Belgrade Serbia
| | | |
Collapse
|