1
|
Chen J, Fasihianifard P, Lian R, Gibson-Elias LJ, Moreno JL, Chang CEA, Zhong W, Hooley RJ. Supramolecular Host:Guest Arrays Site-Selectively Recognize Peptide Phosphorylation and Kinase Activity. J Am Chem Soc 2025; 147:841-850. [PMID: 39680592 DOI: 10.1021/jacs.4c13757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
A synergistic combination of cationic styrylpyridinium dyes and water-soluble deep cavitand hosts can recognize phosphorylated peptides with both site- and state-selectivity. Two mechanisms of interaction are dominant: either the cationic dye interacts with Trp residues in the peptide or the host:dye pair forms a heteroternary complex with the peptide, driven by both strong dye-peptide and cavitand-peptide binding (Kd values up to 4 μM). The presence of multiple recognition mechanisms results in varying fluorescence responses dependent on the phosphorylation state and position, eliminating the need for covalent modification of the peptide target. Differential sensing aided by machine learning algorithms permits full discrimination between differently positioned serine phosphorylations with a minimal 3-component array. The array is fully functional in the presence of protein kinase A (PKA) and its required cofactors and capable of site-selective monitoring of serine phosphorylation at the privileged PKA motif, in the presence of serine residues that do not undergo reaction, illustrating the potential of the system in kinase-based drug screening.
Collapse
Affiliation(s)
- Junyi Chen
- Department of Chemistry, University of California─Riverside, Riverside, California 92521, United States
| | - Parisa Fasihianifard
- Department of Chemistry, University of California─Riverside, Riverside, California 92521, United States
| | - Ria Lian
- Department of Chemistry, University of California─Riverside, Riverside, California 92521, United States
| | - Lucas J Gibson-Elias
- Department of Chemistry, University of California─Riverside, Riverside, California 92521, United States
| | - Jose L Moreno
- Department of Chemistry, University of California─Riverside, Riverside, California 92521, United States
| | - Chia-En A Chang
- Department of Chemistry, University of California─Riverside, Riverside, California 92521, United States
| | - Wenwan Zhong
- Key Laboratory of Precision and Intelligent Chemistry; Department of Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Richard J Hooley
- Department of Chemistry, University of California─Riverside, Riverside, California 92521, United States
| |
Collapse
|
2
|
Wang K, Yan K, Liu Q, Wang Z, Hu XY. The Versatile Applications of Calix[4]resorcinarene-Based Cavitands. Molecules 2024; 29:5854. [PMID: 39769942 PMCID: PMC11679249 DOI: 10.3390/molecules29245854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
The advancement of synthetic host-guest chemistry has played a pivotal role in exploring and quantifying weak non-covalent interactions, unraveling the intricacies of molecular recognition in both chemical and biological systems. Macrocycles, particularly calix[4]resorcinarene-based cavitands, have demonstrated significant utility in receptor design, facilitating the creation of intricately organized architectures. Within the realm of macrocycles, these cavitands stand out as privileged scaffolds owing to their synthetic adaptability, excellent topological structures, and unique recognition properties. So far, extensive investigations have been conducted on various applications of calix[4]resorcinarene-based cavitands. In this review, we will elaborate on their diverse functions, including catalysis, separation and purification, polymeric materials, sensing, battery materials, as well as drug delivery. This review aims to provide a holistic understanding of the multifaceted roles of calix[4]resorcinarene-based cavitands across various applications, shedding light on their contributions to advancing the field of supramolecular chemistry.
Collapse
Affiliation(s)
- Kaiya Wang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China; (K.Y.); (Q.L.); (Z.W.); (X.-Y.H.)
| | - Kejia Yan
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China; (K.Y.); (Q.L.); (Z.W.); (X.-Y.H.)
| | - Qian Liu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China; (K.Y.); (Q.L.); (Z.W.); (X.-Y.H.)
| | - Zhiyao Wang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China; (K.Y.); (Q.L.); (Z.W.); (X.-Y.H.)
| | - Xiao-Yu Hu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China; (K.Y.); (Q.L.); (Z.W.); (X.-Y.H.)
- College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, China
| |
Collapse
|
3
|
Orlandini M, Bonacini A, Favero A, Secchi A, Lazzarini L, Verucchi R, Dalcanale E, Pedrini A, Sidoli S, Pinalli R. Enrichment of histone tail methylated lysine residues via cavitand-decorated magnetic nanoparticles for ultra-sensitive proteomics. Chem Sci 2024; 15:13102-13110. [PMID: 39148787 PMCID: PMC11322979 DOI: 10.1039/d4sc02076f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/12/2024] [Indexed: 08/17/2024] Open
Abstract
Nearly every protein in the human body is modified with post-translational modifications (PTMs). PTMs affect proteins on many levels, including their function, interaction, half-life, and localization. Specifically, for histone proteins, PTMs such as lysine methylation and acetylation play essential roles in chromatin dynamic regulations. For this reason, methods to accurately detect and quantify PTMs are of paramount importance in cell biology, biochemistry, and disease biology. Most protein modifications are sub-stoichiometric, so, to be analyzed, they need methods of enrichment, which are mostly based on antibodies. Antibodies are produced using animals, resulting in high costs, ecological concerns, significant batch variations, and ethical implications. We propose using ferromagnetic nanoparticles functionalized with synthetic receptors, namely tetraphosphonate cavitands, as a tool for selective enrichment of methylated lysines present on histone tails. Before the enrichment step, histone proteins from calf thymus were digested to facilitate the recognition process and to obtain small peptides suitable for mass analyses. Cavitands were anchored on ferromagnetic nanoparticles to easily separate the PTM-peptides of interest from the rest of the proteolytic peptides. Our approach detects more modified peptides with higher signal intensity, rivaling commercial antibodies. This chemical strategy offers a cost-effective and efficient alternative for PTM detection, potentially advancing proteomic research.
Collapse
Affiliation(s)
- Martina Orlandini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, INSTM, UdR Parma Parco Area delle Scienze 17/A 43124 Parma Italy
| | - Alex Bonacini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, INSTM, UdR Parma Parco Area delle Scienze 17/A 43124 Parma Italy
| | - Alessia Favero
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, INSTM, UdR Parma Parco Area delle Scienze 17/A 43124 Parma Italy
| | - Andrea Secchi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, INSTM, UdR Parma Parco Area delle Scienze 17/A 43124 Parma Italy
| | - Laura Lazzarini
- IMEM-CNR, Institute of Materials for Electronics and Magnetism, National Research Council Parco Area delle Scienze 37/A 43124 Parma Italy
| | - Roberto Verucchi
- IMEM-CNR, Institute of Materials for Electronics and Magnetism, National Research Council, Trento Unit via alla Cascata 56/C 38123 Trento Italy
| | - Enrico Dalcanale
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, INSTM, UdR Parma Parco Area delle Scienze 17/A 43124 Parma Italy
| | - Alessandro Pedrini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, INSTM, UdR Parma Parco Area delle Scienze 17/A 43124 Parma Italy
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine Bronx NY 10461 USA
| | - Roberta Pinalli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, INSTM, UdR Parma Parco Area delle Scienze 17/A 43124 Parma Italy
| |
Collapse
|
4
|
Zhang F, Du XS, Song KZ, Han Y, Lu HY, Chen CF. A calix[3]carbazole-based cavitand: synthesis, structure and its complexation with fullerenes. Chem Commun (Camb) 2024; 60:4962-4965. [PMID: 38629394 DOI: 10.1039/d4cc00928b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
A calix[3]carbazole-based cavitand was conveniently synthesized. It was found that the cavitand with adjustable conformation could show excellent complexation with fullerenes C60 and C70 in both solution and the solid state. Moreover, the crystal structures of the host-guest complexes show that the cavitand can stack into channel-like architectures, in which fullerenes are orderly arranged inside.
Collapse
Affiliation(s)
- Fan Zhang
- University of Chinese Academy of Sciences, Beijing 100049, China.
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Xu-Sheng Du
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Kui-Zhu Song
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Ying Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Hai-Yan Lu
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Chuan-Feng Chen
- University of Chinese Academy of Sciences, Beijing 100049, China.
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
5
|
Chen J, Fasihianifard P, Raz AAP, Hickey BL, Moreno JL, Chang CEA, Hooley RJ, Zhong W. Selective recognition and discrimination of single isomeric changes in peptide strands with a host : guest sensing array. Chem Sci 2024; 15:1885-1893. [PMID: 38303931 PMCID: PMC10829040 DOI: 10.1039/d3sc06087j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/30/2023] [Indexed: 02/03/2024] Open
Abstract
An indirect competitive binding mechanism can be exploited to allow a combination of cationic fluorophores and water-soluble synthetic receptors to selectively recognize and discriminate peptide strands containing a single isomeric residue in the backbone. Peptide isomerization occurs in long-lived proteins and has been linked with diseases such as Alzheimer's, cataracts and cancer, so isomers are valuable yet underexplored targets for selective recognition. Planar cationic fluorophores can selectively bind hydrophobic, Trp-containing peptide strands in solution, and when paired with receptors that provide a competitive host for the fluorophore, can form a differential sensing array that enables selective discrimination of peptide isomers. Residue variations such as D- and L-Asp, D- and L-isoAsp, D-Ser and D-Glu can all be recognized, simply by their effects on the folded structure of the flexible peptide. Molecular dynamics simulations were applied to determine the most favorable conformation of the peptide : fluorophore conjugate, indicating that favorable π-stacking with internal tryptophan residues in a folded binding pocket enables micromolar binding affinity.
Collapse
Affiliation(s)
- Junyi Chen
- Environmental Toxicology Graduate Program, University of California-Riverside Riverside CA 92521 USA
| | - Parisa Fasihianifard
- Department of Chemistry, University of California-Riverside Riverside CA 92521 USA
| | - Alexie Andrea P Raz
- Department of Chemistry, University of California-Riverside Riverside CA 92521 USA
| | - Briana L Hickey
- Department of Chemistry, University of California-Riverside Riverside CA 92521 USA
| | - Jose L Moreno
- Department of Chemistry, University of California-Riverside Riverside CA 92521 USA
| | - Chia-En A Chang
- Department of Chemistry, University of California-Riverside Riverside CA 92521 USA
| | - Richard J Hooley
- Department of Chemistry, University of California-Riverside Riverside CA 92521 USA
- Environmental Toxicology Graduate Program, University of California-Riverside Riverside CA 92521 USA
| | - Wenwan Zhong
- Department of Chemistry, University of California-Riverside Riverside CA 92521 USA
- Environmental Toxicology Graduate Program, University of California-Riverside Riverside CA 92521 USA
| |
Collapse
|
6
|
Chen J, Tabaie EZ, Hickey BL, Gao Z, Raz AAP, Li Z, Wilson EH, Hooley RJ, Zhong W. Selective Molecular Recognition and Indicator Displacement Sensing of Neurotransmitters in Cellular Environments. ACS Sens 2023; 8:3195-3204. [PMID: 37477362 DOI: 10.1021/acssensors.3c00886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Flexible, water-soluble hosts are capable of selective molecular recognition in cellular environments and can detect neurotransmitters such as choline in cells. Both cationic and anionic water-soluble self-folded deep cavitands can recognize suitable styrylpyridinium dyes in cellular interiors. The dyes selectively accumulate in nucleotide-rich regions of the cell nucleus and cytoplasm. The hosts bind the dyes and promote their relocation to the outer cell membrane: the lipophilic cavitands predominantly reside in membrane environments but are still capable of binding suitable targets in other cellular organelles. Incubating the cells with structurally similar biomarkers such as choline, cholamine, betaine, or butyrylcholine illustrates the selective recognition. Choline and butyrylcholine can be bound by the hosts, but minimal binding is seen with betaine or cholamine. Varying the dye allows control of the optical detection method, and both "turn-on" sensing and "turn-off" sensing are possible.
Collapse
|
7
|
Diesendorf N, Wenisch P, Oppl J, Heinrich MR. Visible-Light-Mediated Radical Arylations Using a Fluorescein-Derived Diazonium Salt: Reactions Proceeding via an Intramolecular Forth and Back Electron Transfer. Org Lett 2023; 25:76-81. [PMID: 36595351 DOI: 10.1021/acs.orglett.2c03877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Functionalizations of arenes and alkenes via additive-free radical reactions using highly photosensitive, fluorescein-derived diazonium salts are described. The particular properties of the diazonium salts enable unique Meerwein-type carbohydroxylations of non-activated alkenes, which can be rationalized by a reaction mechanism involving forth and back electron transfer from and to the xanthene subunit of the fluorescein moiety.
Collapse
Affiliation(s)
- Nina Diesendorf
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
| | - Pia Wenisch
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
| | - Janina Oppl
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
| | - Markus R Heinrich
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
| |
Collapse
|
8
|
Wang X, Pavlović RZ, Finnegan TJ, Karmakar P, Moore CE, Badjić JD. Rapid Access to Chiral and Tripodal Cavitands from β-Pinene. Chemistry 2022; 28:e202202416. [PMID: 36168151 PMCID: PMC9797447 DOI: 10.1002/chem.202202416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Indexed: 12/31/2022]
Abstract
We report Pd-catalyzed cyclotrimerization of (+)-α-bromoenone, obtained from monoterpene β-pinene, into an enantiopure cyclotrimer. This C3 symmetric compound has three bicyclo[3.1.1]heptane rings fused to its central benzene with each ring carrying a carbonyl group. The cyclotrimer undergoes diastereoselective threefold alkynylation with the lithium salts of five terminal alkynes (41-63 %, de=4-83 %). The addition enabled a rapid synthesis of a small library of novel chiral cavitands that, in shape, resemble a tripod stand. These molecular tripods include a tris-bicycloannelated benzene head attached to three alkyne legs twisted in one direction to form a nonpolar cavity with polar groups as feet. Tripods with methylpyridinium and methylisoquinolinium legs, respectively, form inclusion complexes with anti-inflammatory and chiral drugs (R)/(S)-ibuprofen and (R)/(S)-naproxen. The mode of binding shows drug molecules docked in the cavity of the host through ion-ion, cation-π, and C-H-π contacts that, in addition of desolvation, give rise to complexes having millimolar to micromolar stability in water. Our findings open the door to creating a myriad of enantiopure tripods with tunable functions that, in the future, might give novel chemosensors, catalysts or sequestering agents.
Collapse
Affiliation(s)
- Xiuze Wang
- Department of Chemistry and BiochemistryThe Ohio State University100 West 18th Avenue43210, OhioColumbusUSA
| | - Radoslav Z. Pavlović
- Department of Chemistry and BiochemistryThe Ohio State University100 West 18th Avenue43210, OhioColumbusUSA
| | - Tyler J. Finnegan
- Department of Chemistry and BiochemistryThe Ohio State University100 West 18th Avenue43210, OhioColumbusUSA
| | - Pratik Karmakar
- Department of Chemistry and BiochemistryThe Ohio State University100 West 18th Avenue43210, OhioColumbusUSA
- Department of ChemistryKing Mongkut's University of Technology Thonburi (KMUTT)126 Pracha Uthit Rd., Bang ModThung Khru, Bangkok10140Thailand
| | - Curtis E. Moore
- Department of Chemistry and BiochemistryThe Ohio State University100 West 18th Avenue43210, OhioColumbusUSA
| | - Jovica D. Badjić
- Department of Chemistry and BiochemistryThe Ohio State University100 West 18th Avenue43210, OhioColumbusUSA
| |
Collapse
|
9
|
King D, Wilson CR, Herron L, Deng CL, Mehdi S, Tiwary P, Hof F, Isaacs L. Molecular recognition of methylated amino acids and peptides by Pillar[6]MaxQ. Org Biomol Chem 2022; 20:7429-7438. [PMID: 36097881 PMCID: PMC9632254 DOI: 10.1039/d2ob01487d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the molecular recognition properties of Pillar[n]MaxQ (P[n]MQ) toward a series of (methylated) amino acids, amino acid amides, and post-translationally modified peptides by a combination of 1H NMR, isothermal titration calorimetry, indicator displacement assays, and molecular dynamics simulations. We find that P6MQ is a potent receptor for N-methylated amino acid side chains. P6MQ recognized the H3K4Me3 peptide with Kd = 16 nM in phosphate buffered saline.
Collapse
Affiliation(s)
- David King
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA.
| | - Chelsea R Wilson
- Department of Chemistry, University of Victoria, Victoria, BC, V8W 3V6, Canada.
| | - Lukas Herron
- Biophysics Program, University of Maryland, College Park, MD 20742, USA
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA.
| | - Chun-Lin Deng
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA.
| | - Shams Mehdi
- Biophysics Program, University of Maryland, College Park, MD 20742, USA
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA.
| | - Pratyush Tiwary
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA.
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA.
| | - Fraser Hof
- Department of Chemistry, University of Victoria, Victoria, BC, V8W 3V6, Canada.
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA.
| |
Collapse
|
10
|
Hu C, Jochmann T, Chakraborty P, Neumaier M, Levkin PA, Kappes MM, Biedermann F. Further Dimensions for Sensing in Biofluids: Distinguishing Bioorganic Analytes by the Salt-Induced Adaptation of a Cucurbit[7]uril-Based Chemosensor. J Am Chem Soc 2022; 144:13084-13095. [PMID: 35850489 PMCID: PMC9335531 DOI: 10.1021/jacs.2c01520] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Insufficient binding selectivity of chemosensors often renders biorelevant metabolites indistinguishable by the widely used indicator displacement assay. Array-based chemosensing methods are a common workaround but require additional effort for synthesizing a chemosensor library and setting up a sensing array. Moreover, it can be very challenging to tune the inherent binding preference of macrocyclic systems such as cucurbit[n]urils (CBn) by synthetic means. Using a novel cucurbit[7]uril-dye conjugate that undergoes salt-induced adaptation, we now succeeded in distinguishing 14 bioorganic analytes from each other through the facile stepwise addition of salts. The salt-specific concentration-resolved emission provides additional information about the system at a low synthetic effort. We present a data-driven approach to translate the human-visible curve differences into intuitive pairwise difference measures. Ion mobility experiments combined with density functional theory calculations gave further insights into the binding mechanism and uncovered an unprecedented ternary complex geometry for CB7. TThis work introduces the non-selectively binding, salt-adaptive cucurbit[n]uril system for sensing applications in biofluids such as urine, saliva, and blood serum.
Collapse
Affiliation(s)
- Changming Hu
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz-1, Eggenstein-Leopoldshafen 76344, Germany
| | - Thomas Jochmann
- Department of Computer Science and Automation, Technische Universität Ilmenau, Gustav-Kirchhoff-Str. 2, Ilmenau 98693, Germany
| | - Papri Chakraborty
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz-1, Eggenstein-Leopoldshafen 76344, Germany.,Institute of Physical Chemistry (IPC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, Karlsruhe 76131, Germany
| | - Marco Neumaier
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz-1, Eggenstein-Leopoldshafen 76344, Germany
| | - Pavel A Levkin
- Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz-1, Eggenstein-Leopoldshafen 76344, Germany
| | - Manfred M Kappes
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz-1, Eggenstein-Leopoldshafen 76344, Germany.,Institute of Physical Chemistry (IPC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, Karlsruhe 76131, Germany
| | - Frank Biedermann
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz-1, Eggenstein-Leopoldshafen 76344, Germany
| |
Collapse
|
11
|
Zhong W, Hooley RJ. Combining Excellent Selectivity with Broad Target Scope: Biosensing with Arrayed Deep Cavitand Hosts. Acc Chem Res 2022; 55:1035-1046. [PMID: 35302733 DOI: 10.1021/acs.accounts.2c00026] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Simple macrocyclic water-soluble hosts such as cucurbiturils, cyclophanes, and calixarenes have long been used for biosensing via indicator displacement assays. Using multiple hosts and dyes in an arrayed format allows pattern recognition-based "chemical nose" sensing, which confers exquisite selectivity, even rivaling the abilities of biological recognition tools such as antibodies. However, a challenge in indicator displacement-based biosensing with macrocyclic hosts is that selectivity and scope are often inversely correlated: strong selectivity for a specific target can limit wide application, and broad scope sensing can suffer from a lack of selectivity between similar targets. This problem can be addressed by using water-soluble, self-folding deep cavitands as hosts. These flexible bowl-shaped receptors can be easily functionalized with different motifs at the upper and lower rim, and the large cavities can bind many different fluorescent dyes, causing either fluorescence enhancement or quenching upon binding.Cavity-based affinity is strongest for NMe3+ groups such as trimethyl-lysine, and we have exploited this for the site-selective recognition of post-translational lysine methylations in oligopeptides. The host recognizes the NMe3+ group, and by applying differently functionalized hosts in an arrayed format, discrimination between identical modifications at different positions on the oligopeptide is possible. Multiple recognition elements can be exploited for selectivity, including a defined, yet "breathable" cavity, and variable upper rim functions oriented toward the target.While the performance of the host/guest sensing system is impressive for lysine methylations, the most important advance is the use of multiple different sensing mechanisms that can target a broad range of different biorelevant species. The amphiphilic deep cavitands can both bind fluorescent dyes and interact with charged biomolecules. These non-cavity-based interactions, when paired with additives such as heavy metal ions, modulate fluorescence response in an indirect manner, and these different mechanisms allow selective recognition of serine phosphorylation, lysine acetylation, and arginine citrullination. Other targets include heavy metals, drugs of abuse, and protein isoforms. Furthermore, the hosts can be applied in supramolecular tandem assays of enzyme function: the broad scope allows analysis of such different enzymes as chromatin writers/erasers, kinases, and phosphatases, all from a single host scaffold. Finally, the indirect sensing concept allows application in sensing different oligonucleotide secondary structures, including G-quadruplexes, hairpins, triplexes, and i-motifs. Discrimination between DNA strands with highly similar structures such as G-quadruplex strands with bulges and vacancies can be achieved. Instead of relying on a single highly specific fluorescent probe, the synthetic hosts tune the fluorophore-DNA interaction, introducing multiple recognition equilibria that modulate the fluorescence signal. By applying machine learning algorithms, a classification model can be established that can accurately predict the folding state of unknown sequences. Overall, the unique recognition profile of self-folded deep cavitands provides a powerful, yet simple sensing platform, one that can be easily tuned for a wide scope of biorelevant targets, in complex biological media, without sacrificing selectivity in the recognition.
Collapse
|
12
|
Nilam M, Hennig A. Enzyme assays with supramolecular chemosensors - the label-free approach. RSC Adv 2022; 12:10725-10748. [PMID: 35425010 PMCID: PMC8984408 DOI: 10.1039/d1ra08617k] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/30/2022] [Indexed: 12/20/2022] Open
Abstract
Enzyme activity measurements are essential for many research areas, e.g., for the identification of inhibitors in drug discovery, in bioengineering of enzyme mutants for biotechnological applications, or in bioanalytical chemistry as parts of biosensors. In particular in high-throughput screening (HTS), sensitive optical detection is most preferred and numerous absorption and fluorescence spectroscopy-based enzyme assays have been developed, which most frequently require time-consuming fluorescent labelling that may interfere with biological recognition. The use of supramolecular chemosensors, which can specifically signal analytes with fluorescence-based read-out methods, affords an attractive and label-free alternative to more established enzyme assays. We provide herein a comprehensive review that summarizes the current state-of-the-art of supramolecular enzyme assays ranging from early examples with covalent chemosensors to the most recent applications of supramolecular tandem enzyme assays, which utilize common and often commercially available combinations of macrocyclic host molecules (e.g. cyclodextrins, calixarenes, and cucurbiturils) and fluorescent dyes as self-assembled reporter pairs for assaying enzyme activity.
Collapse
Affiliation(s)
- Mohamed Nilam
- Department of Biology/Chemistry, Center for Cellular Nanoanalytics (CellNanOs), Universität Osnabrück Barbarastr. 7 D-49076 Osnabrück Germany
| | - Andreas Hennig
- Department of Biology/Chemistry, Center for Cellular Nanoanalytics (CellNanOs), Universität Osnabrück Barbarastr. 7 D-49076 Osnabrück Germany
| |
Collapse
|
13
|
Krämer J, Kang R, Grimm LM, De Cola L, Picchetti P, Biedermann F. Molecular Probes, Chemosensors, and Nanosensors for Optical Detection of Biorelevant Molecules and Ions in Aqueous Media and Biofluids. Chem Rev 2022; 122:3459-3636. [PMID: 34995461 PMCID: PMC8832467 DOI: 10.1021/acs.chemrev.1c00746] [Citation(s) in RCA: 149] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Indexed: 02/08/2023]
Abstract
Synthetic molecular probes, chemosensors, and nanosensors used in combination with innovative assay protocols hold great potential for the development of robust, low-cost, and fast-responding sensors that are applicable in biofluids (urine, blood, and saliva). Particularly, the development of sensors for metabolites, neurotransmitters, drugs, and inorganic ions is highly desirable due to a lack of suitable biosensors. In addition, the monitoring and analysis of metabolic and signaling networks in cells and organisms by optical probes and chemosensors is becoming increasingly important in molecular biology and medicine. Thus, new perspectives for personalized diagnostics, theranostics, and biochemical/medical research will be unlocked when standing limitations of artificial binders and receptors are overcome. In this review, we survey synthetic sensing systems that have promising (future) application potential for the detection of small molecules, cations, and anions in aqueous media and biofluids. Special attention was given to sensing systems that provide a readily measurable optical signal through dynamic covalent chemistry, supramolecular host-guest interactions, or nanoparticles featuring plasmonic effects. This review shall also enable the reader to evaluate the current performance of molecular probes, chemosensors, and nanosensors in terms of sensitivity and selectivity with respect to practical requirement, and thereby inspiring new ideas for the development of further advanced systems.
Collapse
Affiliation(s)
- Joana Krämer
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Rui Kang
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Laura M. Grimm
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Luisa De Cola
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Dipartimento
DISFARM, University of Milano, via Camillo Golgi 19, 20133 Milano, Italy
- Department
of Molecular Biochemistry and Pharmacology, Instituto di Ricerche Farmacologiche Mario Negri, IRCCS, 20156 Milano, Italy
| | - Pierre Picchetti
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Frank Biedermann
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
14
|
Gallo C, Thomas SS, Selinger AJ, Hof F, Bohne C. Mechanism of a Disassembly-Driven Sensing System Studied by Stopped-Flow Kinetics. J Org Chem 2021; 86:10782-10787. [PMID: 34260247 DOI: 10.1021/acs.joc.1c00959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We carried out steady-state and stopped-flow photophysical measurements to determine the kinetics of a discrete disassembly driven turn-on fluorescent system. On and off rates for both DimerDye1 assembly and nicotine binding were determined. Relative rates for these competing processes provide insight on how this system can be optimized for sensing applications. Kinetics studies in artificial saliva showed that moving to more complex media has minimal effects on the sensing ability of the system.
Collapse
Affiliation(s)
- Cara Gallo
- Department of Chemistry and Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, P.O. Box 1700 STN CSC, Victoria, BC V8W 2Y2, Canada
| | - Suma S Thomas
- Department of Chemistry and Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, P.O. Box 1700 STN CSC, Victoria, BC V8W 2Y2, Canada
| | - Allison J Selinger
- Department of Chemistry and Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, P.O. Box 1700 STN CSC, Victoria, BC V8W 2Y2, Canada
| | - Fraser Hof
- Department of Chemistry and Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, P.O. Box 1700 STN CSC, Victoria, BC V8W 2Y2, Canada
| | - Cornelia Bohne
- Department of Chemistry and Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, P.O. Box 1700 STN CSC, Victoria, BC V8W 2Y2, Canada
| |
Collapse
|
15
|
Liu TY, Qu XL, Zhang Y, Yan B. A Stable Cd(II)-Based Metal-Organic Framework: Synthesis, Structure, and Its Eu 3+ Functionalization for Ratiometric Sensing on the Biomarker 2-(2-Methoxyethoxy) Acetic Acid. Inorg Chem 2021; 60:8613-8620. [PMID: 34106687 DOI: 10.1021/acs.inorgchem.1c00589] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel two-dimensional Cd-based metal-organic framework (MOF), [Cd(pddb)H2O]n (Cd-MOF), has been hydrothermally synthesized using the V-shaped ligand 4,4'-(pyridine-2,6-diyl)-dibenzoic acid (H2pddb) and structurally characterized. The framework exhibits fascinating one-dimensional in-plane channels functionalized with active pyridine-N sites. The as-synthesized Cd-MOF exhibits excellent water and chemical stability. Furthermore, a simple and nondestructive coordinated postsynthetic modification method has been applied to Cd-MOF to obtain a class of MOF hybrids functionalized by lanthanide ions. More interestingly, Eu3+@Cd-MOF can act as a dual-emissive ratiometric fluorescent probe for 2-(2-methoxyethoxy) acetic acid (MEAA), a metabolite of 2-(2-methoxyethoxy) ethanol, which could result in DNA damage and teratogenic and developmental toxicity. During the sensing process, the fluorescence sensor exhibits notable water tolerance, reusability, and a low detection limit (8.5 μg mL-1). In addition, the chemical substances in human urine and serum do not interfere with the fluorescence quenching process, which makes it possible for the fluorescent probe to be applied in the detection of MEAA in human urine and serum systems. The possible sensing mechanism is also studied and discussed in detail.
Collapse
Affiliation(s)
- Tian-Yu Liu
- School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China
| | - Xiang-Long Qu
- School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China
| | - Yu Zhang
- School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China
| | - Bing Yan
- School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China.,School of Materials Science and Engineering, Liaocheng University, Liaocheng 252000, China
| |
Collapse
|
16
|
Beatty MA, Hof F. Host-guest binding in water, salty water, and biofluids: general lessons for synthetic, bio-targeted molecular recognition. Chem Soc Rev 2021; 50:4812-4832. [PMID: 33651047 DOI: 10.1039/d0cs00495b] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Synthetic molecular recognition systems are increasingly being used to solve applied problems in the life sciences, and bio-targeted host-guest chemistry has rapidly arisen as a major field of fundamental research. This tutorial review presents a set of fundamental lessons on how host-guest molecular recognition can be programmed in water. The review uses informative examples of aqueous host-guest chemistry organized around generalizable themes and lessons, building towards lessons focused on molecular recognition in salty solutions and biological fluids. It includes selected examples of macrocyclic host systems that work well, as well as common pitfalls and how to avoid them. The review closes with a survey of the most important and inspirational recent advances, which involve host-guest chemistry in living cells and organisms.
Collapse
Affiliation(s)
- Meagan A Beatty
- Department of Chemistry, University of Victoria, 3800 Finnerty Rd, Victoria, BC, V8W 3V6 Canada.
| | - Fraser Hof
- Department of Chemistry, University of Victoria, 3800 Finnerty Rd, Victoria, BC, V8W 3V6 Canada.
| |
Collapse
|
17
|
Guo C, Sedgwick AC, Hirao T, Sessler JL. Supramolecular Fluorescent Sensors: An Historical Overview and Update. Coord Chem Rev 2021; 427:213560. [PMID: 34108734 PMCID: PMC8184024 DOI: 10.1016/j.ccr.2020.213560] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Since as early as 1867, molecular sensors have been recognized as being intelligent "devices" capable of addressing a variety of issues related to our environment and health (e.g., the detection of toxic pollutants or disease-related biomarkers). In this review, we focus on fluorescence-based sensors that incorporate supramolecular chemistry to achieve a desired sensing outcome. The goal is to provide an illustrative overview, rather than a comprehensive listing of all that has been done in the field. We will thus summarize early work devoted to the development of supramolecular fluorescent sensors and provide an update on recent advances in the area (mostly from 2018 onward). A particular emphasis will be placed on design strategies that may be exploited for analyte sensing and corresponding molecular platforms. Supramolecular approaches considered include, inter alia, binding-based sensing (BBS) and indicator displacement assays (IDAs). Because it has traditionally received less treatment, many of the illustrative examples chosen will involve anion sensing. Finally, this review will also include our perspectives on the future directions of the field.
Collapse
Affiliation(s)
- Chenxing Guo
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th Street, Stop A5300, Austin, Texas 78712, United States
| | - Adam C. Sedgwick
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th Street, Stop A5300, Austin, Texas 78712, United States
| | - Takehiro Hirao
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Jonathan L. Sessler
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th Street, Stop A5300, Austin, Texas 78712, United States
| |
Collapse
|
18
|
Sedgwick AC, Brewster JT, Wu T, Feng X, Bull SD, Qian X, Sessler JL, James TD, Anslyn EV, Sun X. Indicator displacement assays (IDAs): the past, present and future. Chem Soc Rev 2021; 50:9-38. [DOI: 10.1039/c9cs00538b] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Indicator displacement assays (IDAs) offer a unique and innovative approach to molecular sensing. This Tutorial review discusses the basic concepts of each IDA strategy and illustrates their use in sensing applications.
Collapse
Affiliation(s)
- Adam C. Sedgwick
- Department of Chemistry
- The University of Texas at Austin
- Austin
- USA
| | | | - Tianhong Wu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education
- School of Life Science and Technology
- Xi’an Jiaotong University
- Xi’an
- P. R. China
| | - Xing Feng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education
- School of Life Science and Technology
- Xi’an Jiaotong University
- Xi’an
- P. R. China
| | | | - Xuhong Qian
- State Key Laboratory of Bioreactor Engineering
- Shanghai Key Laboratory of Chemical Biology
- School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237
| | | | | | - Eric V. Anslyn
- Department of Chemistry
- The University of Texas at Austin
- Austin
- USA
| | - Xiaolong Sun
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education
- School of Life Science and Technology
- Xi’an Jiaotong University
- Xi’an
- P. R. China
| |
Collapse
|
19
|
Selective Recognition of Amino Acids and Peptides by Small Supramolecular Receptors. Molecules 2020; 26:molecules26010106. [PMID: 33379401 PMCID: PMC7796322 DOI: 10.3390/molecules26010106] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/14/2020] [Accepted: 12/22/2020] [Indexed: 12/30/2022] Open
Abstract
To this day, the recognition and high affinity binding of biomolecules in water by synthetic receptors remains challenging, while the necessity for systems for their sensing, transport and modulation persists. This problematic is prevalent for the recognition of peptides, which not only have key roles in many biochemical pathways, as well as having pharmacological and biotechnological applications, but also frequently serve as models for the study of proteins. Taking inspiration in nature and on the interactions that occur between several receptors and peptide sequences, many researchers have developed and applied a variety of different synthetic receptors, as is the case of macrocyclic compounds, molecular imprinted polymers, organometallic cages, among others, to bind amino acids, small peptides and proteins. In this critical review, we present and discuss selected examples of synthetic receptors for amino acids and peptides, with a greater focus on supramolecular receptors, which show great promise for the selective recognition of these biomolecules in physiological conditions. We decided to focus preferentially on small synthetic receptors (leaving out of this review high molecular weight polymeric systems) for which more detailed and accurate molecular level information regarding the main structural and thermodynamic features of the receptor biomolecule assemblies is available.
Collapse
|
20
|
Hu C, Grimm L, Prabodh A, Baksi A, Siennicka A, Levkin PA, Kappes MM, Biedermann F. Covalent cucurbit[7]uril-dye conjugates for sensing in aqueous saline media and biofluids. Chem Sci 2020; 11:11142-11153. [PMID: 34094355 PMCID: PMC8162441 DOI: 10.1039/d0sc03079a] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/16/2020] [Indexed: 12/17/2022] Open
Abstract
Non-covalent chemosensing ensembles of cucurbit[n]urils (CBn) have been widely used in proof-of-concept sensing applications, but they are prone to disintegrate in saline media, e.g. biological fluids. We show here that covalent cucurbit[7]uril-indicator dye conjugates are buffer- (10× PBS buffer) and saline-stable (up to 1.4 M NaCl) and allow for selective sensing of Parkinson's drug amantadine in human urine and saliva, where the analogous non-covalent CB7⊃dye complex is dysfunctional. The in-depth analysis of the covalent host-dye conjugates in the gas-phase, and deionized versus saline aqueous media revealed interesting structural, thermodynamic and kinetic effects that are of general interest for the design of CBn-based supramolecular chemosensors and systems. This work also introduces a novel high-affinity indicator dye for CB7 through which fundamental limitations of indicator displacement assays (IDA) were exposed, namely an impractical slow equilibration time. Unlike non-covalent CBn⊃dye reporter pairs, the conjugate chemosensors can also operate through a SN2-type guest-dye exchange mechanism, which shortens assay times and opens new avenues for tailoring analyte-selectivity.
Collapse
Affiliation(s)
- Changming Hu
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Laura Grimm
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Amrutha Prabodh
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Ananya Baksi
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz Platz 1 76344 Eggenstein-Leopoldshafen Germany
- Institute of Physical Chemistry (IPC), Karlsruhe Institute of Technology (KIT) Fritz-Haber-Weg 6 76131 Karlsruhe Germany
| | - Alicja Siennicka
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Pavel A Levkin
- Institute of Chemical and Biological Systems - Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Manfred M Kappes
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz Platz 1 76344 Eggenstein-Leopoldshafen Germany
- Institute of Physical Chemistry (IPC), Karlsruhe Institute of Technology (KIT) Fritz-Haber-Weg 6 76131 Karlsruhe Germany
| | - Frank Biedermann
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz Platz 1 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
21
|
Li X, Chen J, Wang H, Wang X, Xiao Y. Hexafluoroisopropanol-alkanol based high-density supramolecular solvents: Fabrication, characterization and application potential as restricted access extractants. Anal Chim Acta 2020; 1124:20-31. [DOI: 10.1016/j.aca.2020.05.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/30/2020] [Accepted: 05/08/2020] [Indexed: 12/20/2022]
|
22
|
Cationic Pillar[6]arene Induces Cell Apoptosis by Inhibiting Protein Tyrosine Phosphorylation Via Host-Guest Recognition. Int J Mol Sci 2020; 21:ijms21144979. [PMID: 32679647 PMCID: PMC7404071 DOI: 10.3390/ijms21144979] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/04/2020] [Accepted: 07/06/2020] [Indexed: 12/21/2022] Open
Abstract
We reported for the first time that cationic pillar[6]arene (cPA6) could tightly bind to peptide polymer (MW~20–50 kDa), an artificial substrate for tyrosine (Tyr) phosphorylation, and efficiently inhibit Tyr protein phosphorylation through host–guest recognition. We synthesized a nanocomposite of black phosphorus nanosheets loaded with cPA6 (BPNS@cPA6) to explore the effect of cPA6 on cells. BPNS@cPA6 was able to enter HepG2 cells, induced apoptosis, and inhibited cell proliferation by reducing the level of Tyr phosphorylation. Furthermore, BPNS@cPA6 showed a stronger ability of inhibiting cell proliferation in tumor cells than in normal cells. Our results revealed the supramolecular modulation of enzymatic Tyr phosphorylation by the host–guest recognition of cPA6.
Collapse
|
23
|
Smith JN, Brind TK, Petrie SB, Grant MS, Lucas NT. One-Step Synthesis of C2v-Symmetric Resorcin[4]arene Tetraethers. J Org Chem 2020; 85:4574-4580. [PMID: 32125153 DOI: 10.1021/acs.joc.0c00128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The three-component reaction between a resorcinol, 1,3-dimethoxybenzene, and an alkyl aldehyde (R = C1-C11) along with BF3·OEt2 affords a C2v-symmetric resorcin[4]arene tetraether in one step; in most cases, the single isomer can be precipitated from the reaction mixture in moderate to excellent yields (up to 89%). The reaction is tolerant of 2-substituted resorcinols (R' = OH, Cl, Br, Me), allowing a third type of functionality to be regioselectively incorporated during the macrocyclization.
Collapse
Affiliation(s)
- Jordan N Smith
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Department of Chemistry, University of Otago, Union Place, Dunedin 9016, New Zealand
| | - Thomasin K Brind
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Department of Chemistry, University of Otago, Union Place, Dunedin 9016, New Zealand
| | - Simon B Petrie
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Department of Chemistry, University of Otago, Union Place, Dunedin 9016, New Zealand
| | - Mikaela S Grant
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Department of Chemistry, University of Otago, Union Place, Dunedin 9016, New Zealand
| | - Nigel T Lucas
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Department of Chemistry, University of Otago, Union Place, Dunedin 9016, New Zealand
| |
Collapse
|
24
|
Lee J, Chen J, Sarkar P, Xue M, Hooley RJ, Zhong W. Monitoring the crosstalk between methylation and phosphorylation on histone peptides with host-assisted capillary electrophoresis. Anal Bioanal Chem 2020; 412:6189-6198. [PMID: 32064571 DOI: 10.1007/s00216-020-02486-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/27/2020] [Accepted: 02/03/2020] [Indexed: 11/29/2022]
Abstract
Post-translational modifications (PTMs) greatly increase protein diversity and regulate their functions by changing the structures, properties, and molecular interactions of proteins. In peptide regions with high density of PTMs, PTMs can influence modification on residues in proximity or even at distal positions, adding another layer of regulation. Methods that can monitor the activities of PTM enzymes on peptides carrying multiple modifications are valuable tools for better understanding of PTM crosstalk. Herein, we developed a host-assisted capillary electrophoresis (CE) method to separate histone peptides with methylation and phosphorylation and applied it to monitor the crosstalk between serine phosphorylation and lysine methylation when they were added by Aurora B kinase and G9a lysine methyltransferase, respectively. A synthetic receptor molecule, 4-hexasulfonatocalix[6]arene (CX6), was included in the CE buffer to improve the resolution of the corresponding substrates and products. A linear polyacrylamide-coated capillary was employed to effectively reduce wall adsorption of the cationic histone peptides. The peptide substrates were labeled with fluorescein to enhance their detectability during CE separation. Our method successfully revealed that the activity of G9a methyltransferase was completely inhibited by the adjacent phosphorylation, while 25% reduction in the activity of Aurora B kinase was observed with the presence of dimethylation on the nearby residue. The PTM crosstalk was examined not only using a pure peptide substrate, but also in a competitive reaction environment, in which the modified and unmodified peptides were mixed and the enzyme actions on both peptides were monitored simultaneously. Our work demonstrates that host-assisted CE is an effective method for study of PTM crosstalk, which could offer the advantages of fast separation, high resolution, and low sample consumption. Graphical abstract.
Collapse
Affiliation(s)
- Jiwon Lee
- Department of Chemistry, University of California-Riverside, 900 University Ave., Riverside, CA, 92521, USA
| | - Junyi Chen
- Department of Environmental Toxicology Program, University of California-Riverside, 00 University Ave., Riverside, CA, 92521, USA
| | - Priyanka Sarkar
- Department of Chemistry, University of California-Riverside, 900 University Ave., Riverside, CA, 92521, USA
| | - Min Xue
- Department of Chemistry, University of California-Riverside, 900 University Ave., Riverside, CA, 92521, USA.,Department of Environmental Toxicology Program, University of California-Riverside, 00 University Ave., Riverside, CA, 92521, USA
| | - Richard J Hooley
- Department of Chemistry, University of California-Riverside, 900 University Ave., Riverside, CA, 92521, USA.,Department of Biochemistry and Molecular Biology, University of California-Riverside, 900 University Ave., Riverside, CA, 92521, USA
| | - Wenwan Zhong
- Department of Chemistry, University of California-Riverside, 900 University Ave., Riverside, CA, 92521, USA. .,Department of Environmental Toxicology Program, University of California-Riverside, 00 University Ave., Riverside, CA, 92521, USA.
| |
Collapse
|
25
|
Gill AD, Hickey BL, Zhong W, Hooley RJ. Selective sensing of THC and related metabolites in biofluids by host:guest arrays. Chem Commun (Camb) 2020; 56:4352-4355. [DOI: 10.1039/d0cc01489c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A host–guest fluorescence sensor array can selectively detect THC and its metabolites in biofluids such as urine and saliva.
Collapse
Affiliation(s)
- Adam D. Gill
- Department of Biochemistry and Molecular Biology
- University of California-Riverside
- Riverside
- USA
| | - Briana L. Hickey
- Department of Chemistry
- University of California-Riverside
- Riverside
- USA
| | - Wenwan Zhong
- Department of Chemistry
- University of California-Riverside
- Riverside
- USA
- Environmental Toxicology Program
| | - Richard J. Hooley
- Department of Biochemistry and Molecular Biology
- University of California-Riverside
- Riverside
- USA
- Department of Chemistry
| |
Collapse
|
26
|
Liu TY, Qu XL, Yan B. A highly sensitive and selective "turn-on" fluorescent probe for detection of fleroxacin in human serum and urine based on a lanthanide functionalized metal-organic framework. Dalton Trans 2019; 48:17945-17952. [PMID: 31793573 DOI: 10.1039/c9dt03830b] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cation exchange, a facile and non-destructive post-synthetic modification method, is applied to [(Me)4N]2[Pb6K6(m-BDC)9(OH)2]·H2O (1) (1,3-H2BDC = 1,3-benzenedicarboxylic acid) to prepare a series of lanthanide functionalized metal-organic frameworks. The fluorescence properties of Ln3+@1 (Ln = Eu, Tb, Sm and Dy) are investigated. The results demonstrate that the framework of 1 is capable of sensitizing both Eu3+ and Tb3+ ions effectively. Remarkably, the rapid and stable fluorescence sensitization of Eu3+@1 can be observed in the presence of fleroxacin in aqueous solution, indicating that the hybrid system can be designed as a highly sensitive and selective probe for fleroxacin. As a novel "turn-on" fluorescent probe, Eu3+@1 is regarded as a promising candidate for applications in clinical diagnosis, due to its merits of high antidisturbance, chemical stability and a low detection limit (43.91 ng mL-1). In this paper, the practical application of luminescent Eu3+@1 is highlighted, and its possible sensing mechanism is also described.
Collapse
Affiliation(s)
- Tian-Yu Liu
- School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China.
| | - Xiang-Long Qu
- School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China.
| | - Bing Yan
- School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China. and School of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, China
| |
Collapse
|
27
|
Huang LX, Guo Q, Chen Y, Verwilst P, Son S, Wu JB, Cao QY, Kim JS. Nanomolar detection of adenosine triphosphate (ATP) using a nanostructured fluorescent chemosensing ensemble. Chem Commun (Camb) 2019; 55:14135-14138. [PMID: 31687696 DOI: 10.1039/c9cc08054f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We report a novel nanostructured chemosensing ensemble PyNp-C13/UD, obtained by self-assembling uranine dye (UD) and an amphiphilic pyridinium salt PyNp-C13. The ensemble was developed for the fluorescence turn-on sensing of ATP in aqueous solutions and inside living cells. The assembly operates via an indicator displacement assay (IDA) method with an ultra-low detection limit of 6.8 nM.
Collapse
Affiliation(s)
- Ling-Xi Huang
- Department of Chemistry, Nanchang University, Nanchang 330031, P. R. China.
| | - Qing Guo
- Department of Chemistry, Nanchang University, Nanchang 330031, P. R. China.
| | - Yong Chen
- Institute for Advanced Study, Nanchang University, Nanchang 330031, China
| | - Peter Verwilst
- Department of Chemistry, Korea University, Seoul 02841, Korea.
| | - Subin Son
- Department of Chemistry, Korea University, Seoul 02841, Korea.
| | - Jia-Bin Wu
- Department of Chemistry, Nanchang University, Nanchang 330031, P. R. China.
| | - Qian-Yong Cao
- Department of Chemistry, Nanchang University, Nanchang 330031, P. R. China.
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea.
| |
Collapse
|
28
|
Gill AD, Hickey BL, Wang S, Xue M, Zhong W, Hooley RJ. Sensing of citrulline modifications in histone peptides by deep cavitand hosts. Chem Commun (Camb) 2019; 55:13259-13262. [PMID: 31621759 PMCID: PMC6872487 DOI: 10.1039/c9cc07002h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Arrayed cavitand:fluorophore sensor complexes can selectively sense small citrulline modifications at arginine residues on post-translationally modified peptides. The sensor can differentiate between different numbers of citrulline modifications, and a simple two-fluorophore, 6-component array can effect cross-reactive discrimination between single modifications in aqueous solution.
Collapse
Affiliation(s)
- Adam D Gill
- Department of Biochemistry and Molecular Biology, University of California-Riverside, Riverside, CA 92521, USA.
| | - Briana L Hickey
- Department of Chemistry, University of California-Riverside, Riverside, CA 92521, USA
| | - Siwen Wang
- Environmental Toxicology Program, University of California-Riverside, Riverside, CA 92521, USA
| | - Min Xue
- Department of Chemistry, University of California-Riverside, Riverside, CA 92521, USA and Environmental Toxicology Program, University of California-Riverside, Riverside, CA 92521, USA
| | - Wenwan Zhong
- Department of Chemistry, University of California-Riverside, Riverside, CA 92521, USA and Environmental Toxicology Program, University of California-Riverside, Riverside, CA 92521, USA
| | - Richard J Hooley
- Department of Chemistry, University of California-Riverside, Riverside, CA 92521, USA and Department of Biochemistry and Molecular Biology, University of California-Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
29
|
Beatty MA, Selinger AJ, Li Y, Hof F. Parallel Synthesis and Screening of Supramolecular Chemosensors That Achieve Fluorescent Turn-on Detection of Drugs in Saliva. J Am Chem Soc 2019; 141:16763-16771. [DOI: 10.1021/jacs.9b07073] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Meagan A. Beatty
- Department of Chemistry, University of Victoria, PO Box 3065, STN CSC, Victoria, British Columbia V8W 3 V6, Canada
| | - Allison J. Selinger
- Department of Chemistry, University of Victoria, PO Box 3065, STN CSC, Victoria, British Columbia V8W 3 V6, Canada
| | - YuQi Li
- Department of Chemistry, University of Victoria, PO Box 3065, STN CSC, Victoria, British Columbia V8W 3 V6, Canada
| | - Fraser Hof
- Department of Chemistry, University of Victoria, PO Box 3065, STN CSC, Victoria, British Columbia V8W 3 V6, Canada
| |
Collapse
|
30
|
Gill AD, Perez L, Salinas INQ, Byers SR, Liu Y, Hickey BL, Zhong W, Hooley RJ. Selective Array‐Based Sensing of Anabolic Steroids in Aqueous Solution by Host–Guest Reporter Complexes. Chemistry 2019; 25:1740-1745. [DOI: 10.1002/chem.201804854] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Adam D. Gill
- Department of Biochemistry and Molecular Biology University of California-Riverside Riverside CA 92521 USA
| | - Lizeth Perez
- Department of Chemistry University of California-Riverside Riverside CA 92521 USA
| | - Isaac N. Q. Salinas
- Department of Statistics University of California-Riverside Riverside CA 92521 USA
| | - Samantha R. Byers
- Department of Biochemistry and Molecular Biology University of California-Riverside Riverside CA 92521 USA
| | - Yang Liu
- Environmental Toxicology Program University of California-Riverside Riverside CA 92521 USA
| | - Briana L. Hickey
- Department of Chemistry University of California-Riverside Riverside CA 92521 USA
| | - Wenwan Zhong
- Department of Chemistry University of California-Riverside Riverside CA 92521 USA
- Environmental Toxicology Program University of California-Riverside Riverside CA 92521 USA
| | - Richard J. Hooley
- Department of Chemistry University of California-Riverside Riverside CA 92521 USA
- Department of Biochemistry and Molecular Biology University of California-Riverside Riverside CA 92521 USA
| |
Collapse
|
31
|
Fang X, Zheng Y, Duan Y, Liu Y, Zhong W. Recent Advances in Design of Fluorescence-Based Assays for High-Throughput Screening. Anal Chem 2019; 91:482-504. [PMID: 30481456 PMCID: PMC7262998 DOI: 10.1021/acs.analchem.8b05303] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xiaoni Fang
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Yongzan Zheng
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Yaokai Duan
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Yang Liu
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521, United States
| | - Wenwan Zhong
- Department of Chemistry, University of California, Riverside, California 92521, United States
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521, United States
| |
Collapse
|
32
|
Angamuthu V, Rahman FU, Petroselli M, Li Y, Yu Y, Rebek J. Mono epoxidation of α,ω-dienes using NBS in a water-soluble cavitand. Org Chem Front 2019. [DOI: 10.1039/c9qo00849g] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The cavitand induced “yo-yo” motion was applied to mono-epoxidation reaction of α,ω-dienes using N-bromosuccinamide and K2CO3 in D2O.
Collapse
Affiliation(s)
- Venkatachalam Angamuthu
- Center for Supramolecular Chemistry & Catalysis and Department of Chemistry
- Shanghai University
- Shanghai 200444
- P. R. China
| | - Faiz-Ur Rahman
- Center for Supramolecular Chemistry & Catalysis and Department of Chemistry
- Shanghai University
- Shanghai 200444
- P. R. China
| | - Manuel Petroselli
- Center for Supramolecular Chemistry & Catalysis and Department of Chemistry
- Shanghai University
- Shanghai 200444
- P. R. China
| | - Yongsheng Li
- Center for Supramolecular Chemistry & Catalysis and Department of Chemistry
- Shanghai University
- Shanghai 200444
- P. R. China
| | - Yang Yu
- Center for Supramolecular Chemistry & Catalysis and Department of Chemistry
- Shanghai University
- Shanghai 200444
- P. R. China
| | - Julius Rebek
- Center for Supramolecular Chemistry & Catalysis and Department of Chemistry
- Shanghai University
- Shanghai 200444
- P. R. China
- The Skaggs Institute for Chemical Biology and Department of Chemistry
| |
Collapse
|
33
|
Liu Y, Gill AD, Duan Y, Perez L, Hooley RJ, Zhong W. A supramolecular sensor array for selective immunoglobulin deficiency analysis. Chem Commun (Camb) 2019; 55:11563-11566. [DOI: 10.1039/c9cc06064b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A host–guest based fluorescence sensor array can fully discriminate five structurally similar Ig protein isotypes, and recognize Ig deficiencies in serum.
Collapse
Affiliation(s)
- Yang Liu
- University of California – Riverside
- Environmental Toxicology Program
- Riverside
- USA
| | - Adam D. Gill
- University of California – Riverside
- Department of Biochemistry and Molecular Biology
- Riverside
- USA
| | - Yaokai Duan
- University of California – Riverside
- Department of Chemistry
- Riverside
- USA
| | - Lizeth Perez
- University of California – Riverside
- Department of Chemistry
- Riverside
- USA
| | - Richard J. Hooley
- University of California – Riverside
- Department of Biochemistry and Molecular Biology
- Riverside
- USA
- University of California – Riverside
| | - Wenwan Zhong
- University of California – Riverside
- Environmental Toxicology Program
- Riverside
- USA
- University of California – Riverside
| |
Collapse
|
34
|
Brancatelli G, Dalcanale E, Pinalli R, Geremia S. Probing the Structural Determinants of Amino Acid Recognition: X-Ray Studies of Crystalline Ditopic Host-Guest Complexes of the Positively Charged Amino Acids, Arg, Lys, and His with a Cavitand Molecule. Molecules 2018; 23:molecules23123368. [PMID: 30572602 PMCID: PMC6321202 DOI: 10.3390/molecules23123368] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/13/2018] [Accepted: 12/18/2018] [Indexed: 11/16/2022] Open
Abstract
Crystallization of tetraphosphonate cavitand Tiiii[H, CH3, CH3] in the presence of positively charged amino acids, namely arginine, lysine, or histidine, afforded host-guest complex structures. The X-ray structure determination revealed that in all three structures, the fully protonated form of the amino acid is ditopically complexed by two tetraphosphonate cavitand molecules. Guanidinium, ammonium, and imidazolium cationic groups of the amino acid side chain are hosted in the cavity of a phosphonate receptor, and are held in place by specific hydrogen bonding interactions with the P=O groups of the cavitand molecule. In all three structures, the positively charged α-ammonium groups form H-bonds with the P=O groups, and with a water molecule hosted in the cavity of a second tetraphosphonate molecule. Furthermore, water-assisted dimerization was observed for the cavitand/histidine ditopic complex. In this 4:2 supramolecular complex, a bridged water molecule is held by two carboxylic acid groups of the dimerized amino acid. The structural information obtained on the geometrical constrains necessary for the possible encapsulation of the amino acids are important for the rational design of devices for analytical and medical applications.
Collapse
Affiliation(s)
- Giovanna Brancatelli
- Centre of Excellence in Biocrystallography, Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy.
| | - Enrico Dalcanale
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, and INSTM, UdR Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy.
| | - Roberta Pinalli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, and INSTM, UdR Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy.
| | - Silvano Geremia
- Centre of Excellence in Biocrystallography, Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy.
| |
Collapse
|
35
|
Liu Y, Lee J, Perez L, Gill AD, Hooley RJ, Zhong W. Selective Sensing of Phosphorylated Peptides and Monitoring Kinase and Phosphatase Activity with a Supramolecular Tandem Assay. J Am Chem Soc 2018; 140:13869-13877. [PMID: 30269482 DOI: 10.1021/jacs.8b08693] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Simple tuning of a host:guest pair allows selective sensing of different peptide modifications, exploiting orthogonal recognition mechanisms. Excellent selectivity for either lysine trimethylations or alcohol phosphorylations is possible by simply varying the fluorophore guest. The phosphorylation sensor can be modulated by the presence of small (μM) concentrations of metal ions, allowing array-based sensing. Phosphorylation at serine, threonine, and tyrosine can be selectively sensed via discriminant analysis. The phosphopeptide sensing is effective in the presence of small-molecule phosphates such as ATP, which in turn enables the sensor to be employed in continuous optical assays of both serine kinase and tyrosine phosphatase activity. The activity of multiple different kinases can be monitored, and the sensor is capable of detecting the phosphorylation of peptides containing multiple different modifications, including lysine methylations and acetylation. A single deep cavitand can be used as a "one size fits all" sensor that can selectively detect multiple different modifications to oligopeptides, as well as monitoring the function of their post-translational modification writer and eraser enzymes in complex systems.
Collapse
|
36
|
Pinalli R, Pedrini A, Dalcanale E. Biochemical sensing with macrocyclic receptors. Chem Soc Rev 2018; 47:7006-7026. [PMID: 30175351 DOI: 10.1039/c8cs00271a] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Preventive healthcare asks for the development of cheap, precise and non-invasive sensor devices for the early detection of diseases and continuous population screening. The actual techniques used for diagnosis, e.g. MRI and PET, or for biochemical marker sensing, e.g. immunoassays, are not suitable for continuous monitoring since they are expensive and prone to false positive responses. Synthetic supramolecular receptors offer new opportunities for the creation of specific, selective and cheap sensor devices for biological sensing of specific target molecules in complex mixtures of organic substances. The fundamental challenges faced in developing such devices are the precise transfer of the molecular recognition events at the solid-liquid interface and its transduction into a readable signal. In this review we present the progress made so far in turning synthetic macrocyclic hosts, namely cyclodextrins, calixarenes, cucurbiturils and cavitands, into effective biochemical sensors and the strategies utilized to solve the above mentioned issues. The performances of the developed sensing devices based on these receptors in detecting specific biological molecules, drugs and proteins are critically discussed.
Collapse
Affiliation(s)
- Roberta Pinalli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy.
| | | | | |
Collapse
|
37
|
Li Z, Askim JR, Suslick KS. The Optoelectronic Nose: Colorimetric and Fluorometric Sensor Arrays. Chem Rev 2018; 119:231-292. [DOI: 10.1021/acs.chemrev.8b00226] [Citation(s) in RCA: 476] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Zheng Li
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Jon R. Askim
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Kenneth S. Suslick
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
38
|
Tian D, Li F, Zhu Z, Zhang L, Zhu J. An AIE-based metallo-supramolecular assembly enabling an indicator displacement assay inside living cells. Chem Commun (Camb) 2018; 54:8921-8924. [PMID: 30043778 DOI: 10.1039/c8cc03274b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a novel metallo-supramolecular assembly (Z/E-TPE2CyZn-PV), which consists of a tetraphenylethene (TPE)-based dinuclear Zn2+-cyclen complex and pyrocatechol violet (PV). The assembly is developed for indicator-displacement assays (IDAs) inside living cells.
Collapse
Affiliation(s)
- Di Tian
- State Key Laboratory of Materials Processing and Mold Technology and Key Laboratory of Materials Chemistry for Energy Conversion and Storage (HUST), Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| | | | | | | | | |
Collapse
|
39
|
Adeyemo AA, Mukherjee PS. Coordination-driven self-assembly of discrete Ru 6-Pt 6 prismatic cages. Beilstein J Org Chem 2018; 14:2242-2249. [PMID: 30202478 PMCID: PMC6122361 DOI: 10.3762/bjoc.14.199] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 08/14/2018] [Indexed: 12/12/2022] Open
Abstract
The coordination-driven self-assembly of two new Ru6-Pt6 hexanuclear trigonal prismatic cages comprising arene-ruthenium(II) clips (1a(NO3)2 and 1b(NO3)2 ) and a tritopic platinum(II) metalloligand 2 has been performed in methanol at room temperature. The [3 + 2] hexanuclear cages 3a and 3b were isolated in good yields and characterized by well-known spectroscopic techniques including multinuclear NMR, mass spectrometry, UV-vis and infrared studies. Geometry optimization revealed the shapes and sizes of these hexanuclear prismatic cages. The combination of ruthenium and platinum metal center in a one-pot self-assembly reaction showcases the construction of aesthetically elegant heterometallic structures in supramolecular chemistry leading to the formation of a single major product.
Collapse
Affiliation(s)
- Aderonke Ajibola Adeyemo
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560 012, India
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560 012, India
| |
Collapse
|
40
|
Deng T, Wang J, Li Y, Han Z, Peng Y, Zhang J, Gao Z, Gu Y, Deng D. Quantum Dots-Based Multifunctional Nano-Prodrug Fabricated by Ingenious Self-Assembly Strategies for Tumor Theranostic. ACS APPLIED MATERIALS & INTERFACES 2018; 10:27657-27668. [PMID: 30016068 DOI: 10.1021/acsami.8b08512] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The rapid developments of quantum dots (QDs)-based nanoagents for imaging tumor and tracking drug delivery have been proven to be reliable nanodiagnostic techniques. Although abundant types of QD nanoagents have been developed for fighting against cancer, it still is a challenge to control their quality and achieve prefect repetition due to the complicated synthetic steps. The precise intermolecular self-assembly (SA) may afford a facile and low-cost strategy for this challenge. Herein, a pH and H2O2 dual-sensitive Sb-cyclodextrin (CD)-doxorubicin (DOX) molecule was designed to construct a QD-based theranostic prodrug (named as Sb-CD-DOX-ZAISe/ZnS) via host-guest strategy (1st SA strategy), in which QDs water-transfer and drug-uploading were integrated well. That is, the nano-prodrug (NPD) inherited highly luminescent properties from "host" QDs for bioimaging, as well as environment sensitivities from "guest" Sb-CD-DOX for drug release. Experimental results indicate that the Sb-CD-DOX-ZAISe/ZnS exhibited effectively passive tumor-targeting and could provide clear imaging for malignant tumors in metaphase or advanced stages; meanwhile, after coating with folic acid (FA) through electric attraction (2nd SA strategy), the final Sb-CD-DOX-ZAISe/ZnS@FA NPD showed expected pH-controlled negative-to-positive charge reversal ability and a better curative effect compared with free DOX. Hence, fabricating nanocomposites by highly efficient self-assembly strategies is favorable toward inorganic nanoparticles-based prodrug delivery system for tumor-targeting theranostic.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhen Gao
- College of Biotechnology and Pharmaceutical Engineering , Nanjing Tech University , Nanjing 211816 , China
| | | | | |
Collapse
|
41
|
Heid C, Sowislok A, Schaller T, Niemeyer F, Klärner FG, Schrader T. Molecular Tweezers with Additional Recognition Sites. Chemistry 2018; 24:11332-11343. [DOI: 10.1002/chem.201801508] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Indexed: 01/13/2023]
Affiliation(s)
- Christian Heid
- Faculty of Chemistry; University of Duisburg-Essen; Universitätsstr. 7 45117 Essen Germany
| | - Andrea Sowislok
- Faculty of Chemistry; University of Duisburg-Essen; Universitätsstr. 7 45117 Essen Germany
| | - Torsten Schaller
- Faculty of Chemistry; University of Duisburg-Essen; Universitätsstr. 7 45117 Essen Germany
| | - Felix Niemeyer
- Faculty of Chemistry; University of Duisburg-Essen; Universitätsstr. 7 45117 Essen Germany
| | - Frank-Gerrit Klärner
- Faculty of Chemistry; University of Duisburg-Essen; Universitätsstr. 7 45117 Essen Germany
| | - Thomas Schrader
- Faculty of Chemistry; University of Duisburg-Essen; Universitätsstr. 7 45117 Essen Germany
| |
Collapse
|
42
|
Howlader P, Mondal B, Purba PC, Zangrando E, Mukherjee PS. Self-Assembled Pd(II) Barrels as Containers for Transient Merocyanine Form and Reverse Thermochromism of Spiropyran. J Am Chem Soc 2018; 140:7952-7960. [DOI: 10.1021/jacs.8b03946] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Prodip Howlader
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Bijnaneswar Mondal
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Prioti Choudhury Purba
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Ennio Zangrando
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste 34127, Italy
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
43
|
Saha R, Ghosh AK, Samajdar RN, Mukherjee PS. Self-Assembled Pd II6 Molecular Spheroids and Their Proton Conduction Property. Inorg Chem 2018; 57:6540-6548. [PMID: 29792418 DOI: 10.1021/acs.inorgchem.8b00668] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A series of molecular spheroids (SP1-SP4) was synthesized using pseudolinear bisimidazole and bisbenzimidazole donors in combination with Pd(NO3)2 acceptor via coordination-driven self-assembly. They were characterized by NMR and mass spectrometry, and the solid-state structures of SP1 and SP3 were confirmed by X-ray diffraction. Crystal packing revealed the presence of molecular channels with water molecules in the channels as proton source. All the systems showed proton conductivity across a wide range of temperature and relative humidity. Furthermore, the mode of proton conduction in these molecular spheroids was explored by performing a control experiment using 2,4-dinitrophenol molecule, which indicates that the proton conductivity in the present case increases with increasing surface area of these molecular spheroids.
Collapse
|
44
|
Nguyen QT, Sahoo SK, Choi HJ. Inclusion complexation of a deep cavitand with imidazoquinoxaline flaps forming stable vase-like conformation. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.01.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
45
|
Perez L, Caulkins BG, Mettry M, Mueller LJ, Hooley RJ. Lipid bilayer environments control exchange kinetics of deep cavitand hosts and enhance disfavored guest conformations. Chem Sci 2018; 9:1836-1845. [PMID: 29675229 PMCID: PMC5890788 DOI: 10.1039/c7sc05155g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 01/11/2018] [Indexed: 12/31/2022] Open
Abstract
The effects on the molecular recognition properties of water-soluble deep cavitand hosts upon embedding them in phosphocholine lipid bilayer environments have been studied by 2D NMR experiments. By employing suitable guests containing 19F or 13C nuclei that can be encapsulated inside the host, 2D EXSY NMR experiments can be used to analyze and compare the in/out guest exchange rates in aqueous solution, isotropically tumbling micelles, or magnetically ordered bicelles. These analyses show that embedding the deep cavitands in lipid bilayers slows the guest exchange rate, due to the lipids acting as a "compression sleeve" around the host, restricting guest egress. This effect also enhances guest conformations in the host that are not observed in free solution, such as axial cyclohexane conformers and ketone hydrates.
Collapse
Affiliation(s)
- Lizeth Perez
- Department of Chemistry , University of California - Riverside , Riverside , CA 92521 , USA .
| | - Bethany G Caulkins
- Department of Chemistry , University of California - Riverside , Riverside , CA 92521 , USA .
| | - Magi Mettry
- Department of Chemistry , University of California - Riverside , Riverside , CA 92521 , USA .
| | - Leonard J Mueller
- Department of Chemistry , University of California - Riverside , Riverside , CA 92521 , USA .
| | - Richard J Hooley
- Department of Chemistry , University of California - Riverside , Riverside , CA 92521 , USA .
| |
Collapse
|
46
|
Beatty MA, Borges-González J, Sinclair NJ, Pye AT, Hof F. Analyte-Driven Disassembly and Turn-On Fluorescent Sensing in Competitive Biological Media. J Am Chem Soc 2018; 140:3500-3504. [DOI: 10.1021/jacs.7b13298] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Meagan A. Beatty
- Department of Chemistry, University of Victoria, PO Box 3065, STN CSC, Victoria, British Columbia V8W 3V6, Canada
| | - Jorge Borges-González
- Department of Chemistry, University of Victoria, PO Box 3065, STN CSC, Victoria, British Columbia V8W 3V6, Canada
| | - Nicholas J. Sinclair
- Department of Chemistry, University of Victoria, PO Box 3065, STN CSC, Victoria, British Columbia V8W 3V6, Canada
| | - Aidan T. Pye
- Department of Chemistry, University of Victoria, PO Box 3065, STN CSC, Victoria, British Columbia V8W 3V6, Canada
| | - Fraser Hof
- Department of Chemistry, University of Victoria, PO Box 3065, STN CSC, Victoria, British Columbia V8W 3V6, Canada
| |
Collapse
|
47
|
Lee J, Perez L, Liu Y, Wang H, Hooley RJ, Zhong W. Separation of Methylated Histone Peptides via Host-Assisted Capillary Electrophoresis. Anal Chem 2018; 90:1881-1888. [PMID: 29286640 DOI: 10.1021/acs.analchem.7b03969] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Lysine methylation in protein is one important epigenetic mechanism that regulates diverse biological processes but is challenging to study due to the large variability in methylation levels and sites. Here, we show that supramolecular hosts such as calixarenes and cucurbiturils can be applied in the background electrolyte (BGE) of capillary electrophoresis (CE) for highly effective separation of post-translationally methylated histone peptides. The molecular recognition event causes a shift in the electrophoretic mobility of the peptide, allowing affinity measurement for binding between the synthetic receptor and various methylated lysine species. Successful separation of the H3 peptides carrying different methylation levels at the K9 position can be achieved using CX4 and CX6 as the BGE additives in CE, enabling monitoring of the activity of the histone lysine demethylase JMJD2E. This reveals the power of combining high resolution CE with synthetic hosts for study of protein methylation, and the method should be capable of analyzing complex biological samples for better understanding of the functions of histone methylation.
Collapse
Affiliation(s)
| | | | | | - Hua Wang
- Instrument Analysis Center, Yancheng Teachers University , Yancheng, Jiangsu 224007, China
| | | | | |
Collapse
|
48
|
Liu Y, Duan Y, Gill AD, Perez L, Jiang Q, Hooley RJ, Zhong W. Metal-assisted selective recognition of biothiols by a synthetic receptor array. Chem Commun (Camb) 2018; 54:13147-13150. [DOI: 10.1039/c8cc07220e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A synergistic combination of a deep cavitand host, fluorophore guests and transition metal ions can be used to sense small molecule thiols of biological interest with good efficiency and selectivity in complex aqueous media.
Collapse
Affiliation(s)
- Yang Liu
- Department of Environmental Toxicology Program
- University of California-Riverside
- Riverside
- USA
| | - Yaokai Duan
- Department of Chemistry
- University of California-Riverside
- Riverside
- USA
| | - Adam D. Gill
- Department of Biochemistry and Molecular Biology
- University of California-Riverside
- Riverside
- USA
| | - Lizeth Perez
- Department of Chemistry
- University of California-Riverside
- Riverside
- USA
| | - Qiaoshi Jiang
- Department of Environmental Toxicology Program
- University of California-Riverside
- Riverside
- USA
| | - Richard J. Hooley
- Department of Chemistry
- University of California-Riverside
- Riverside
- USA
- Department of Biochemistry and Molecular Biology
| | - Wenwan Zhong
- Department of Environmental Toxicology Program
- University of California-Riverside
- Riverside
- USA
- Department of Chemistry
| |
Collapse
|
49
|
Smith JN, Lucas NT. Rigid tetraarylene-bridged cavitands from reduced-symmetry resorcin[4]arene derivatives. Chem Commun (Camb) 2018; 54:4716-4719. [DOI: 10.1039/c8cc01903g] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Two tetraaryl-extended macrocycles were prepared from resorcin[4]arenes. The C2v-symmetric isomer afforded a new rigid cyclooctaphenylene cavitand following oxidative cyclodehydrogenation.
Collapse
Affiliation(s)
- Jordan N. Smith
- MacDiarmid Institute for Advanced Materials and Nanotechnology
- Department of Chemistry
- University of Otago
- Dunedin 9016
- New Zealand
| | - Nigel T. Lucas
- MacDiarmid Institute for Advanced Materials and Nanotechnology
- Department of Chemistry
- University of Otago
- Dunedin 9016
- New Zealand
| |
Collapse
|
50
|
Qin SJ, Qu XL, Yan B. A self-calibrating bimetallic lanthanide metal–organic luminescent sensor integrated with logic gate operation for detecting N-methylformamide. Inorg Chem Front 2018. [DOI: 10.1039/c8qi00958a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A luminescent [Eu0.1Tb1.9(FDA)3(DMF)2]·2DMF sensor has been constructed integrated with a logic gate capable of detecting NMF by intelligent discrimination.
Collapse
Affiliation(s)
- Si-Jia Qin
- China-Australia Joint Laboratory of Functional Molecules and Ordered Matters
- School of Chemical Science and Engineering
- Tongji University
- Shanghai 200092
- P.R. China
| | - Xiang-Long Qu
- China-Australia Joint Laboratory of Functional Molecules and Ordered Matters
- School of Chemical Science and Engineering
- Tongji University
- Shanghai 200092
- P.R. China
| | - Bing Yan
- China-Australia Joint Laboratory of Functional Molecules and Ordered Matters
- School of Chemical Science and Engineering
- Tongji University
- Shanghai 200092
- P.R. China
| |
Collapse
|