1
|
Li Q, Luo L, Guo X, Wang R, Liu J, Fan W, Feng Z, Zhang F. Modulation of the Second-Beyond Coordination Structure in Single-Atom Electrocatalysts for Confirmed Promotion of Ammonia Synthesis. J Am Chem Soc 2025; 147:1884-1892. [PMID: 39812081 DOI: 10.1021/jacs.4c14498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Although microenvironments surrounding single-atom catalysts (SACs) have been widely demonstrated to have a remarkable effect on their catalytic performances, it remains unclear whether the local structure beyond the secondary coordination shells works as well or not. Herein, we employed a series of metal-organic frameworks (MOFs) with well-defined and tunable second-beyond coordination spheres as model SAC electrocatalysts to discuss the influence of long-distance structure on the ammonia synthesis from nitrate, which were synthesized and denoted as Cu12-NDI-X (X = NMe2, H, F). It is first experimentally confirmed that the remote substitution of function groups beyond the secondary coordination sphere can remarkably affect the activity of ammonia synthesis. Meanwhile, the -H endowed Cu12-NND-H exhibits a superior ammonia yield (35.1 mg·h-1·mgcat-1) and FE (98.7%) to those modified with -NMe2 and -F, which also shows good stability at 100 mA·cm-2. The remarkable promotion of the modulated second-beyond coordination structure is unraveled to result from the adjustable d-band center of the Cu active site leading to promoted adsorption of the NO3- and protonation of key intermediates. Encouraged by its extraordinary ammonia yield, we employed the Cu12-NND-H electrode as a cathode to assemble one rechargeable Zn-nitrate battery that exhibits an impressive power density of 34.0 mW·cm-2, demonstrating its promising application in energy conversion and storage.
Collapse
Affiliation(s)
- Qinglin Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Lin Luo
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangyang Guo
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Rong Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- School of Metallurgy and Materials Engineering, Chongqing University of Science & Technology, Chongqing 401331, China
| | - Jinfeng Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Wenjun Fan
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhaochi Feng
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Fuxiang Zhang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
2
|
Lin F, Vera Anaya D, Gong S, Yap LW, Lu Y, Yong Z, Cheng W. Gold Nanowire Sponge Electrochemistry for Permeable Wearable Sweat Analysis Comfortably and Wirelessly. ACS Sens 2024; 9:5414-5424. [PMID: 39298751 DOI: 10.1021/acssensors.4c01635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Electrochemistry-based wearable and wireless sweat analysis is emerging as a promising noninvasive method for real-time health monitoring by tracking chemical and biological markers without the need for invasive blood sampling. It offers the potential to remotely monitor human sweat conditions in relation to metabolic health, stress, and electrolyte balance, which have implications for athletes, patients with chronic conditions, and individuals for the early detection and management of health issues. The state-of-the-art mainstream technology is dominated by the concept of a wearable microfluidic chip, typically based on elastomeric PDMS. While outstanding sensing performance can be realized, the design suffers from the poor permeability of PDMS, which could cause skin redness or irritation. Here, we introduce an omnidirectionally permeable, deformable, and wearable sweat analysis system based on gold nanowire sponges. We demonstrate the concept of all-in-one soft sponge electrochemistry, where the working, reference, and counter electrodes and electrolytes are all integrated within the sponge matrix. The intrinsic porosity of sponge in conjunction with vertically aligned gold nanowire electrodes gives rise to a high electrochemically active surface area of ∼67 cm2. Remarkably, this all-in-one sponge-based electrochemical system exhibited stable performance under a pressure of 10 kPa and 300% omnidirectional strain. The gold sponge biosensing electrodes could be sandwiched between two biocompatible sweat pads, which can serve as natural sweat collection and outflow layers. This naturally biocompatible and permeable platform can be integrated with wireless communication circuits, leading to a wireless sweat analysis system for the real-time monitoring of glucose, lactate, and pH during exercise.
Collapse
Affiliation(s)
- Fenge Lin
- Department of Chemical & Biological Engineering, Faculty of Engineering, Monash University, Clayton 3800, VIC, Australia
| | - David Vera Anaya
- Department of Chemical & Biological Engineering, Faculty of Engineering, Monash University, Clayton 3800, VIC, Australia
| | - Shu Gong
- Department of Chemical & Biological Engineering, Faculty of Engineering, Monash University, Clayton 3800, VIC, Australia
| | - Lim Wei Yap
- Department of Chemical & Biological Engineering, Faculty of Engineering, Monash University, Clayton 3800, VIC, Australia
| | - Yan Lu
- Department of Chemical & Biological Engineering, Faculty of Engineering, Monash University, Clayton 3800, VIC, Australia
| | - Zijun Yong
- Department of Chemical & Biological Engineering, Faculty of Engineering, Monash University, Clayton 3800, VIC, Australia
| | - Wenlong Cheng
- Department of Chemical & Biological Engineering, Faculty of Engineering, Monash University, Clayton 3800, VIC, Australia
- School of Biomedical Engineering, University of Sydney, Darlington 2008, NSW, Australia
| |
Collapse
|
3
|
Zhang T, Zhang C, Li X, Ren D, Zheng M, Zhang S, Yuan F, Du X, Zhang Z. Inflammation assessment and therapeutic monitoring based on highly sensitive and multi-level electrochemical detection of PGE2. Biosens Bioelectron 2024; 262:116539. [PMID: 38950517 DOI: 10.1016/j.bios.2024.116539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/16/2024] [Accepted: 06/26/2024] [Indexed: 07/03/2024]
Abstract
Prostaglandin E2 (PGE2), an eicosane, regulates the physiological activity of inflammatory cells and represents a potential therapeutic target for facilitating tissue repair in vivo. In our work, an electrochemical immunosensor employing Ketjen black-Au nanoparticles (KB-Au) and poly tannic acid nanospheres conjugated with anti-PGE2 polyclonal antibody (PTAN-Ab) was designed to ultra-sensitively analyze PGE2 levels secreted by living cells and tissues. Antibody assembly strategies were explored to achieve signal amplification. Moreover, we studied the therapy effects of docosahexaenoic acid (DHA), arachidonic acid (AA), hyaluronic acid (HA), and small molecule 15-hydroxyprostaglandin dehydrogenase inhibitor (SW033291) on inflammation and evaluated the protective functions of HA and SW033291 in a murine model subjected to colitis induced by dextran sulfate sodium (DSS) using the developed sensor. The sensor exhibited a linear range of 10-5-106 fg/mL and a detection limit (LOD) of 10-5 fg/mL. Fetal bovine serum (FBS) samples were used to achieve high recovery of target analytes. This study not only presents an effective strategy for ultra-sensitively monitoring PGE2 but also provides valuable insights into assessing the degree of inflammation and the therapeutic effect of related drugs. Research on human health monitoring and regenerative medicine could greatly benefit from the findings.
Collapse
Affiliation(s)
- Tingting Zhang
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Congcong Zhang
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Xue Li
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Dongfang Ren
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Mingshuang Zheng
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Shuo Zhang
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Fangping Yuan
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Xin Du
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China.
| | - Zhenguo Zhang
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China.
| |
Collapse
|
4
|
Grewal R, Ortega GA, Geng F, Srinivasan S, Rajabzadeh AR. Label-free electrochemical detection of glycated hemoglobin (HbA1c) and C-reactive protein (CRP) to predict the maturation of coronary heart disease due to diabetes. Bioelectrochemistry 2024; 159:108743. [PMID: 38788312 DOI: 10.1016/j.bioelechem.2024.108743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/13/2024] [Accepted: 05/18/2024] [Indexed: 05/26/2024]
Abstract
The pathophysiological link between diabetes and heightened propensity for the development of coronary heart disease (CHD) is well-established. Prevailing evidence confirms that small increases in low concentrations of high-sensitivity C reactive protein (hs-CRP) in the human body can determine the tendency of developing CHD. Additionally, glycated hemoglobin (HbA1c) is a well-recognized biomarker to evaluate diabetes progression. Given the positive correlation between diabetes and CHD, this research presents a notably unprecedented label-free electrochemical approach for the dual detection of %HbA1c regarding Total Hb and hs-CRP, facilitating early CHD prediction and cost-effective point-of-care diagnostics. Furthermore, a novel redox probe O-(4-Nitrophenylphosphoryl)choline (C11H17N2O6P) was used for the electrochemical detection of CRP, a method not documented in scientific literature before. The calibration curves demonstrate a limit of detection (LOD) of 5 mg/mL in PBS (pH 8) and 6 mg/mL in simulated blood (SB) for a linear range of 0-30 mg/mL of HbA1c. Conjointly, a LOD of 0.007 mg/mL and 0.008 mg/mL for measurement in PBS (pH 7.4) and SB are reported for a linear range of 0-0.05 mg/mL of CRP. The electrochemical systems presented could accurately quantify HbA1c and CRP in mixed samples, demonstrating reasonable specificity and practical applicability for complex biological samples.
Collapse
Affiliation(s)
- Rehmat Grewal
- School of Biomedical Engineering, McMaster University, 1280 Main Street West Hamilton, Ontario L8S 4L7, Canada
| | - Greter A Ortega
- School of Engineering Practice and Technology, McMaster University, 1280 Main Street West Hamilton, Ontario L8S 4L7, Canada
| | - Fei Geng
- School of Biomedical Engineering, McMaster University, 1280 Main Street West Hamilton, Ontario L8S 4L7, Canada; School of Engineering Practice and Technology, McMaster University, 1280 Main Street West Hamilton, Ontario L8S 4L7, Canada
| | - Seshasai Srinivasan
- School of Biomedical Engineering, McMaster University, 1280 Main Street West Hamilton, Ontario L8S 4L7, Canada; School of Engineering Practice and Technology, McMaster University, 1280 Main Street West Hamilton, Ontario L8S 4L7, Canada.
| | - Amin Reza Rajabzadeh
- School of Biomedical Engineering, McMaster University, 1280 Main Street West Hamilton, Ontario L8S 4L7, Canada; School of Engineering Practice and Technology, McMaster University, 1280 Main Street West Hamilton, Ontario L8S 4L7, Canada.
| |
Collapse
|
5
|
Sa’adon SA, Jasni NH, Hamzah HH, Othman N. Electrochemical biosensors for the detection of protozoan parasite: a scoping review. Pathog Glob Health 2024; 118:459-470. [PMID: 39030702 PMCID: PMC11441015 DOI: 10.1080/20477724.2024.2381402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2024] Open
Abstract
The development of rapid, accurate, and efficient detection methods for protozoan parasites can substantially control the outbreak of protozoan parasites infection, which poses a threat to global public health. Idealistically, electrochemical biosensors would be able to overcome the limitations of current detection methods due to their simplified detection procedure, on-site quantitative analysis, rapid detection time, high sensitivity, and portability. The objective of this scoping review is to evaluate the current state of electrochemical biosensors for detecting protozoan parasites. This review followed the most recent Preferred Reporting Items for Systematic Review and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) recommendations. Using electrochemical biosensor and protozoan parasite keywords, a literature search was conducted in PubMed, Scopus, Web of Science, and ScienceDirect on journals published between January 2014 and January 2022. Of the 52 studies, 19 were evaluated for eligibility, and 11 met the review's inclusion criteria to evaluate the effectiveness and limitations of the developed electrochemical biosensor platforms for detecting protozoan parasite including information about the samples, biomarkers, bioreceptors, detection system platform, nanomaterials used in fabrication, and limit of detection (LoD). Most electrochemical biosensors were fabricated using conventional electrodes rather than screen-printed electrodes (SPE). The range of the linear calibration curves for the developed electrochemical biosensors was between 200 ng/ml and 0.77 pM. The encouraging detection performance of the electrochemical biosensors demonstrate their potential as a superior alternative to existing detection techniques. On the other hand, more study is needed to determine the sensitivity and specificity of the electrochemical sensing platform for protozoan parasite detection.
Collapse
Affiliation(s)
- Syahrul Amin Sa’adon
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor, Penang, Malaysia
| | - Nur Hana Jasni
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor, Penang, Malaysia
| | - Hairul Hisham Hamzah
- School of Health and Life Sciences, Teesside University, Middlesbrough, Tees Valley, UK
| | - Nurulhasanah Othman
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor, Penang, Malaysia
| |
Collapse
|
6
|
Yadav AK, Basavegowda N, Shirin S, Raju S, Sekar R, Somu P, Uthappa UT, Abdi G. Emerging Trends of Gold Nanostructures for Point-of-Care Biosensor-Based Detection of COVID-19. Mol Biotechnol 2024:10.1007/s12033-024-01157-y. [PMID: 38703305 DOI: 10.1007/s12033-024-01157-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/26/2024] [Indexed: 05/06/2024]
Abstract
In 2019, a worldwide pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged. SARS-CoV-2 is the deadly microorganism responsible for coronavirus disease 2019 (COVID-19), which has caused millions of deaths and irreversible health problems worldwide. To restrict the spread of SARS-CoV-2, accurate detection of COVID-19 is essential for the identification and control of infected cases. Although recent detection technologies such as the real-time polymerase chain reaction delivers an accurate diagnosis of SARS-CoV-2, they require a long processing duration, expensive equipment, and highly skilled personnel. Therefore, a rapid diagnosis with accurate results is indispensable to offer effective disease suppression. Nanotechnology is the backbone of current science and technology developments including nanoparticles (NPs) that can biomimic the corona and develop deep interaction with its proteins because of their identical structures on the nanoscale. Various NPs have been extensively applied in numerous medical applications, including implants, biosensors, drug delivery, and bioimaging. Among them, point-of-care biosensors mediated with gold nanoparticles (GNPSs) have received great attention due to their accurate sensing characteristics, which are widely used in the detection of amino acids, enzymes, DNA, and RNA in samples. GNPS have reconstructed the biomedical application of biosensors because of its outstanding physicochemical characteristics. This review provides an overview of emerging trends in GNP-mediated point-of-care biosensor strategies for diagnosing various mutated forms of human coronaviruses that incorporate different transducers and biomarkers. The review also specifically highlights trends in gold nanobiosensors for coronavirus detection, ranging from the initial COVID-19 outbreak to its subsequent evolution into a pandemic.
Collapse
Affiliation(s)
- Akhilesh Kumar Yadav
- Department of Environmental Engineering and Management, Chaoyang University of Technology, Taichung, 413310, Taiwan
- Department of Mining Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Nagaraj Basavegowda
- Department of Biotechnology, Yeungnam University, Gyeongsan, 38451, Republic of Korea
| | - Saba Shirin
- Department of Mining Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
- Department of Environmental Science, School of Vocational Studies and Applied Sciences, Gautam Buddha University, Greater Noida, 201312, India
| | - Shiji Raju
- Bioengineering and Nano Medicine Group, Faculty of Medicine and Health Technology, Tampere University, 33720, Tampere, Finland
| | - Rajkumar Sekar
- Department of Chemistry, Karpaga Vinayaga College of Engineering and Technology, GST Road, Chinna Kolambakkam, Chengalpattu, Tamil Nadu, 603308, India
| | - Prathap Somu
- Department of Biotechnology and Chemical Engineering, School of Civil, Biotechnology and Chemical Engineering, Manipal University Jaipur, Dehmi Kalan, Off. Jaipur-Ajmeer Expressway, Jaipur, Rajasthan, 303007, India.
| | - U T Uthappa
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518055, China
- Department of Bioengineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, India
| | - Gholamreza Abdi
- Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, Bushehr, 75169, Iran.
| |
Collapse
|
7
|
Baradoke A, Jarusaitis A, Reinikovaite V, Jafarov A, Elsakova A, Franckevicius M, Skapas M, Slibinskas R, Drobysh M, Liustrovaite V, Ramanavicius A. Detection of antibodies against SARS-CoV-2 Spike protein by screen-printed carbon electrodes modified by colloidal gold nanoparticles. Talanta 2024; 268:125279. [PMID: 37857108 DOI: 10.1016/j.talanta.2023.125279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/30/2023] [Accepted: 10/05/2023] [Indexed: 10/21/2023]
Abstract
In this work, electrochemical bioanalytical systems for the determination of antibodies against the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Spike protein (anti-rS) is reported. Environmentally friendly chemicals were applied in the synthesis of gold nanoparticles (AuNPs). The AuNPs were integrated onto the screen-printed carbon electrodes (SPE), and the biological recognition part was based on recombinant SARS-CoV-2 Spike protein (rS), which during the immobilization was cross-linked by glutaraldehyde. Immobilized rS protein based biological recognition part enabled selective recognition of anti-rS antibodies. The current flux of AuNPs reduction (at +200 mV) in a pure phosphate buffer (PB) was employed as the transduction signal. It has been reported that the formation of anti-rS layers on the surface of AuNPs delays the electrode response time (ts), tracked at the current flux density values of 80 μA cm-2. Using the AuNP-modified SPE, we demonstrated a rapid anti-rS detection within a detection limit of 2 ng mL-1 (0.125 binding antibody units mL-1, 17 pM). This system can be applied to track the response of immune system towards SARS-CoV-2 infection and monitoring of Coronavirus Disease 2019 (COVID-19).
Collapse
Affiliation(s)
- Ausra Baradoke
- State Research Institute Center for Physical Sciences and Technology, Sauletekio ave. 3, 10007, Vilnius, Lithuania
| | - Ainis Jarusaitis
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, 03225, Vilnius, Lithuania
| | - Viktorija Reinikovaite
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, 03225, Vilnius, Lithuania
| | - Ali Jafarov
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, 03225, Vilnius, Lithuania; Institute of Technology, Nooruse 1, 50411, Tartu, Estonia
| | - Alexandra Elsakova
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, 03225, Vilnius, Lithuania; Institute of Biomedicine and Translational Medicine, Ravila 19, 50412, Tartu, Estonia
| | - Marius Franckevicius
- State Research Institute Center for Physical Sciences and Technology, Sauletekio ave. 3, 10007, Vilnius, Lithuania
| | - Martynas Skapas
- State Research Institute Center for Physical Sciences and Technology, Sauletekio ave. 3, 10007, Vilnius, Lithuania
| | - Rimantas Slibinskas
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, 03225, Vilnius, Lithuania; Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio ave. 7, LT-10257, Vilnius, Lithuania
| | - Maryia Drobysh
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, 03225, Vilnius, Lithuania
| | - Viktorija Liustrovaite
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, 03225, Vilnius, Lithuania
| | - Arunas Ramanavicius
- State Research Institute Center for Physical Sciences and Technology, Sauletekio ave. 3, 10007, Vilnius, Lithuania; Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, 03225, Vilnius, Lithuania.
| |
Collapse
|
8
|
Robinson C, Juska VB, O'Riordan A. Surface chemistry applications and development of immunosensors using electrochemical impedance spectroscopy: A comprehensive review. ENVIRONMENTAL RESEARCH 2023; 237:116877. [PMID: 37579966 DOI: 10.1016/j.envres.2023.116877] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/04/2023] [Accepted: 08/10/2023] [Indexed: 08/16/2023]
Abstract
Immunosensors are promising alternatives as detection platforms for the current gold standards methods. Electrochemical immunosensors have already proven their capability for the sensitive, selective, detection of target biomarkers specific to COVID-19, varying cancers or Alzheimer's disease, etc. Among the electrochemical techniques, electrochemical impedance spectroscopy (EIS) is a highly sensitive technique which examines the impedance of an electrochemical cell over a range of frequencies. There are several important critical requirements for the construction of successful impedimetric immunosensor. The applied surface chemistry and immobilisation protocol have impact on the electroanalytical performance of the developed immunosensors. In this Review, we summarise the building blocks of immunosensors based on EIS, including self-assembly monolayers, nanomaterials, polymers, immobilisation protocols and antibody orientation.
Collapse
Affiliation(s)
- Caoimhe Robinson
- Tyndall National Institute, University College Cork, T12 R5CP, Cork, Ireland
| | - Vuslat B Juska
- Tyndall National Institute, University College Cork, T12 R5CP, Cork, Ireland.
| | - Alan O'Riordan
- Tyndall National Institute, University College Cork, T12 R5CP, Cork, Ireland.
| |
Collapse
|
9
|
Kong N, He J, Yang W. Formation of Molecular Junctions by Single-Entity Collision Electrochemistry. J Phys Chem Lett 2023; 14:8513-8524. [PMID: 37722010 DOI: 10.1021/acs.jpclett.3c01955] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Controlling and understanding the chemistry of molecular junctions is one of the major themes in various fields ranging from chemistry and nanotechnology to biotechnology and biology. Stochastic single-entity collision electrochemistry (SECE) provides powerful tools to study a single entity, such as single cells, single particles, and even single molecules, in a nanoconfined space. Molecular junctions formed by SECE collision show various potential applications in monitoring molecular dynamics with high spatial resolution and high temporal resolution and in feasible combination with hybrid techniques. This Perspective highlights the new breakthroughs, seminal studies, and trends in the area that have been most recently reported. In addition, future challenges for the study of molecular junction dynamics with SECE are discussed.
Collapse
Affiliation(s)
- Na Kong
- School of Life and Environmental Science, Centre for Sustainable Bioproducts, Deakin University, Geelong, Victoria 3216, Australia
| | - Jin He
- Physics Department, Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
| | - Wenrong Yang
- School of Life and Environmental Science, Centre for Sustainable Bioproducts, Deakin University, Geelong, Victoria 3216, Australia
| |
Collapse
|
10
|
Liu Z, Ge X, Wang Y, Niu M, Yuan W, Zhang LY. Selective edge etching of Pd metallene for enhanced formic acid electrooxidation. Chem Commun (Camb) 2023; 59:11588-11591. [PMID: 37694727 DOI: 10.1039/d3cc03278g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
We develop a facile, selective edge etching strategy to create edge sites in Pd metallene using acetic acid. The created edge sites remarkably increase the electrochemically active surface area but reduce the charge transfer resistance, resulting in significant enhancement of catalytic activity and stability toward formic acid oxidation.
Collapse
Affiliation(s)
- Ze Liu
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China.
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, P. R. China.
| | - Xiaohang Ge
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China.
| | - Yanrui Wang
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China.
| | - Mang Niu
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China.
| | - Weiyong Yuan
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, P. R. China
| | - Lian Ying Zhang
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China.
| |
Collapse
|
11
|
Long H, Wen K, Liu C, Liu X, Hu H. Effect of Carbon Layer Thickness on the Electrocatalytic Oxidation of Glucose in a Ni/BDD Composite Electrode. Molecules 2023; 28:5798. [PMID: 37570767 PMCID: PMC10421277 DOI: 10.3390/molecules28155798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/27/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
High-performance non-enzymatic glucose sensor composite electrodes were prepared by loading Ni onto a boron-doped diamond (BDD) film surface through a thermal catalytic etching method. A carbon precipitate with a desired thickness could be formed on the Ni/BDD composite electrode surface by tuning the processing conditions. A systematic study regarding the influence of the precipitated carbon layer thickness on the electrocatalytic oxidation of glucose was conducted. While an oxygen plasma was used to etch the precipitated carbon, Ni/BDD-based composite electrodes with the precipitated carbon layers of different thicknesses could be obtained by controlling the oxygen plasma power. These Ni/BDD electrodes were characterized by SEM microscopies, Raman and XPS spectroscopies, and electrochemical tests. The results showed that the carbon layer thickness exerted a significant impact on the resulting electrocatalytic performance. The electrode etched under 200 W power exhibited the best performance, followed by the untreated electrode and the electrode etched under 400 W power with the worst performance. Specifically, the electrode etched under 200 W was demonstrated to possess the highest sensitivity of 1443.75 μA cm-2 mM-1 and the lowest detection limit of 0.5 μM.
Collapse
Affiliation(s)
- Hangyu Long
- School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528000, China; (H.L.); (C.L.)
| | - Kui Wen
- National Engineering Laboratory for Modern Materials Surface Engineering Technology, Guangdong Institute of New Materials, Guangzhou 510651, China;
| | - Cuiyin Liu
- School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528000, China; (H.L.); (C.L.)
| | - Xuezhang Liu
- School of Materials and Mechanical Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Huawen Hu
- School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528000, China; (H.L.); (C.L.)
| |
Collapse
|
12
|
Xia Q, Liu R, Chen X, Chen Z, Zhu JJ. In Vivo Voltammetric Imaging of Metal Nanoparticle-Catalyzed Single-Cell Electron Transfer by Fermi Level-Responsive Graphene. RESEARCH (WASHINGTON, D.C.) 2023; 6:0145. [PMID: 37223464 PMCID: PMC10200910 DOI: 10.34133/research.0145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 04/20/2023] [Indexed: 05/25/2023]
Abstract
Metal nanomaterials can facilitate microbial extracellular electron transfer (EET) in the electrochemically active biofilm. However, the role of nanomaterials/bacteria interaction in this process is still unclear. Here, we reported the single-cell voltammetric imaging of Shewanella oneidensis MR-1 at the single-cell level to elucidate the metal-enhanced EET mechanism in vivo by the Fermi level-responsive graphene electrode. Quantified oxidation currents of ~20 fA were observed from single native cells and gold nanoparticle (AuNP)-coated cells in linear sweep voltammetry analysis. On the contrary, the oxidation potential was reduced by up to 100 mV after AuNP modification. It revealed the mechanism of AuNP-catalyzed direct EET decreasing the oxidation barrier between the outer membrane cytochromes and the electrode. Our method offered a promising strategy to understand the nanomaterials/bacteria interaction and guide the rational construction of EET-related microbial fuel cells.
Collapse
Affiliation(s)
- Qing Xia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering,
Nanjing University, Nanjing 210023, P. R. China
| | - Rui Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering,
Nanjing University, Nanjing 210023, P. R. China
| | - Xueqin Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering,
Nanjing University, Nanjing 210023, P. R. China
| | - Zixuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering,
Nanjing University, Nanjing 210023, P. R. China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering,
Nanjing University, Nanjing 210023, P. R. China
- Shenzhen Research Institute of Nanjing University, Shenzhen 518000, P. R. China
| |
Collapse
|
13
|
Lu Y, Zhou Y, Xia J, Zhong S, Liu Y, Chen Q, Chen H. Raspberry-Like Gold Nanoparticles Based On Nanoclusters Anchored on Cyclodextrin-Functionalized Nanoparticles: Synthesis and Ultrasensitive Electrochemical Detection of Chromium(VI) Ions. Chempluschem 2022; 87:e202200385. [PMID: 36515239 DOI: 10.1002/cplu.202200385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/23/2022] [Indexed: 11/26/2022]
Abstract
A facile synthetic strategy is devised to construct raspberry like gold nanoparticles (RbNPs) formed by gold nanoclusters wrapped around β-cyclodextrin functionalized gold nanoparticles (CD-AuNPs@AuNCs). An efficient and sensitive electrochemical sensor for the detection of Cr(VI) has been developed based on RbNPs. The sensing platform exhibits an excellent wide linear range (100 pg mL-1 to 10 μg mL-1 ), extremely low detection limit (40.91 fg mL-1 i. e. 0.79 pM), which may pave a new way to fabricate other ultrasensitive electrochemical sensors based on the designed RbNPs.
Collapse
Affiliation(s)
- Yongkai Lu
- School of Life Sciences, Shanghai University, Shanghai, 200444, P.R.China
| | - Yangyang Zhou
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Junjie Xia
- School of Life Sciences, Shanghai University, Shanghai, 200444, P.R.China
| | - Suyun Zhong
- School of Life Sciences, Shanghai University, Shanghai, 200444, P.R.China
| | - Yawen Liu
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Qiang Chen
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Hongxia Chen
- School of Life Sciences, Shanghai University, Shanghai, 200444, P.R.China
| |
Collapse
|
14
|
Farzin MA, Abdoos H, Saber R. AuNP-based biosensors for the diagnosis of pathogenic human coronaviruses: COVID-19 pandemic developments. Anal Bioanal Chem 2022; 414:7069-7084. [PMID: 35781591 PMCID: PMC9251037 DOI: 10.1007/s00216-022-04193-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 12/15/2022]
Abstract
The outbreak rate of human coronaviruses (CoVs) especially highly pathogenic CoVs is increasing alarmingly. Early detection of these viruses allows treatment interventions to be provided more quickly to people at higher risk, as well as helping to identify asymptomatic carriers and isolate them as quickly as possible, thus preventing the disease transmission chain. The current diagnostic methods such as RT-PCR are not ideal due to high cost, low accuracy, low speed, and probability of false results. Therefore, a reliable and accurate method for the detection of CoVs in biofluids can become a front-line tool in order to deal with the spread of these deadly viruses. Currently, the nanomaterial-based sensing devices for detection of human coronaviruses from laboratory diagnosis to point-of-care (PoC) diagnosis are progressing rapidly. Gold nanoparticles (AuNPs) have revolutionized the field of biosensors because of the outstanding optical and electrochemical properties. In this review paper, a detailed overview of AuNP-based biosensing strategies with the varied transducers (electrochemical, optical, etc.) and also different biomarkers (protein antigens and nucleic acids) was presented for the detection of human coronaviruses including SARS-CoV-2, SARS-CoV-1, and MERS-CoV and lowly pathogenic CoVs. The present review highlights the newest trends in the SARS-CoV-2 nanobiosensors from the beginning of the COVID-19 epidemic until 2022. We hope that the presented examples in this review paper convince readers that AuNPs are a suitable platform for the designing of biosensors.
Collapse
Affiliation(s)
- Mohammad Ali Farzin
- Department of Nanotechnology, Faculty of New Sciences and Technologies, Semnan University, P. O. Box: 35131-19111, Semnan, Iran
| | - Hassan Abdoos
- Department of Nanotechnology, Faculty of New Sciences and Technologies, Semnan University, P. O. Box: 35131-19111, Semnan, Iran.
| | - Reza Saber
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Liu X, Tian Q, Li Y, Zhou Z, Wang J, Liu S, Wang C. Electron transfer dynamics and electrocatalytic oxygen evolution activities of the Co3O4 nanoparticles attached to indium tin oxide by self-assembled monolayers. Front Chem 2022; 10:919192. [PMID: 36092657 PMCID: PMC9448888 DOI: 10.3389/fchem.2022.919192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
The Co3O4 nanoparticle-modified indium tin oxide-coated glass slide (ITO) electrodes are successfully prepared using dicarboxylic acid as the self-assembled monolayer through a surface esterification reaction. The ITO-SAM-Co3O4 (SAM = dicarboxylic acid) are active to electrochemically catalyze oxygen evolution reaction (OER) in acid. The most active assembly, with Co loading at 3.31 × 10−8 mol cm−2, exhibits 374 mV onset overpotential and 497 mV overpotential to reach 1 mA cm−2 OER current in 0.1 M HClO4. The electron transfer rate constant (k) is acquired using Laviron’s approach, and the results show that k is not affected by the carbon chain lengths of the SAM (up to 18 -CH2 groups) and that an increase in the average diameter of Co3O4 nanoparticles enhances the k. In addition, shorter carbon chains and smaller Co3O4 nanoparticles can increase the turn-over frequency (TOF) of Co sites toward OER. The Co3O4 nanoparticles tethered to the ITO surface show both a higher number of electrochemically active Co sites and a higher TOF of OER than the Co3O4 nanoparticles bound to ITO using Nafion.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Chao Wang
- *Correspondence: Shuling Liu, ; Chao Wang,
| |
Collapse
|
16
|
Niedzialkowski P, Koterwa A, Olejnik A, Zielinski A, Gornicka K, Brodowski M, Bogdanowicz R, Ryl J. Deciphering the Molecular Mechanism of Substrate-Induced Assembly of Gold Nanocube Arrays toward an Accelerated Electrocatalytic Effect Employing Heterogeneous Diffusion Field Confinement. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:9597-9610. [PMID: 35894869 PMCID: PMC9367014 DOI: 10.1021/acs.langmuir.2c01001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/20/2022] [Indexed: 06/15/2023]
Abstract
The complex electrocatalytic performance of gold nanocubes (AuNCs) is the focus of this work. The faceted shapes of AuNCs and the individual assembly processes at the electrode surfaces define the heterogeneous conditions for the purpose of electrocatalytic processes. Topographic and electron imaging demonstrated slightly rounded AuNC (average of 38 nm) assemblies with sizes of ≤1 μm, where the dominating patterns are (111) and (200) crystallographic planes. The AuNCs significantly impact the electrochemical performance of the investigated electrode [indium-tin oxide (ITO), glassy carbon (GC), and bulk gold] systems driven by surface electrons promoting the catalytic effect. Cyclic voltammetry in combination with scanning electrochemical microscopy allowed us to decipher the molecular mechanism of substrate-induced electrostatic assembly of gold nanocube arrays, revealing that the accelerated electrocatalytic effect should be attributed to the confinement of the heterogeneous diffusion fields with tremendous electrochemically active surface area variations. AuNC drop-casting at ITO, GC, and Au led to various mechanisms of heterogeneous charge transfer; only in the case of GC did the decoration significantly increase the electrochemically active surface area (EASA) and ferrocyanide redox kinetics. For ITO and Au substrates, AuNC drop-casting decreases system dimensionality rather than increasing the EASA, where Au-Au self-diffusion was also observed. Interactions of the gold, ITO, and GC surfaces with themselves and with surfactant CTAB and ferrocyanide molecules were investigated using density functional theory.
Collapse
Affiliation(s)
- Pawel Niedzialkowski
- Department
of Analytic Chemistry, University of Gdańsk, Wita Stwosza 63, 80-952 Gdańsk, Poland
| | - Adrian Koterwa
- Department
of Analytic Chemistry, University of Gdańsk, Wita Stwosza 63, 80-952 Gdańsk, Poland
| | - Adrian Olejnik
- Department
of Metrology and Optoelectronics, Faculty of Electronics, Telecommunications
and Informatics, Gdańsk University
of Technology, Narutowicza
11/12, 80-233 Gdańsk, Poland
- Centre
for Plasma and Laser Engineering, The Szewalski Institute of Fluid-Flow
Machinery, Polish Academy of Sciences, Fiszera 14, 80-231 Gdańsk, Poland
| | - Artur Zielinski
- Department
of Electrochemistry, Corrosion and Materials Engineering, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Karolina Gornicka
- Institute
of Nanotechnology and Materials Engineering and Advanced Materials
Center, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Mateusz Brodowski
- Institute
of Nanotechnology and Materials Engineering and Advanced Materials
Center, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Robert Bogdanowicz
- Department
of Metrology and Optoelectronics, Faculty of Electronics, Telecommunications
and Informatics, Gdańsk University
of Technology, Narutowicza
11/12, 80-233 Gdańsk, Poland
| | - Jacek Ryl
- Institute
of Nanotechnology and Materials Engineering and Advanced Materials
Center, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| |
Collapse
|
17
|
Wang CY, Ge Q, Jiang N, Cong H, Tao Z, Liu M, Fan Y. A label-free electrochemical sensor constructed with layer-by-layer assembly of GCE-AuNPs-Q[7]·HAuCl 4 for detection of diphenylamine. ANAL SCI 2022; 38:1181-1188. [PMID: 35829921 DOI: 10.1007/s44211-022-00141-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 06/02/2022] [Indexed: 11/28/2022]
Abstract
Metal-organic frameworks (MOFs) including cucurbit[7]uril block (Q[7]·HAuCl4) were employed to develop a diphenylamine (DPA) sensor in electrochemical method, the presence of HAuCl4 improved the conductivity of the macrocyclic compound. To further enhance of the sensitivity, Au nanoparticles were inserted between the surface of glassy carbon electrode and Q[7]·HAuCl4 MOFs (GCE-AuNPs-Q[7]·HAuCl4). Cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and differential pulse voltammetry (DPV) were applied for evaluation on the electrochemical behavior. For the electrochemical inertness of DPA, a label-free electrochemical sensor in 5 mM K3[Fe(CN)6] solution was achieved, to produce a limit of detection as low as 4.6 µM in a linear range of 5-1000 µM with good reproducibility, high stability and acceptable anti-interference ability. Application of the proposed electrode for the quantitative determination of DPA in tap water and apple juice confirms its real value.
Collapse
Affiliation(s)
- Cheng-Yan Wang
- Enterprise Technology Center of Guizhou Province, Guizhou University, Guiyang, 550025, China
| | - Qingmei Ge
- Enterprise Technology Center of Guizhou Province, Guizhou University, Guiyang, 550025, China
| | - Nan Jiang
- Enterprise Technology Center of Guizhou Province, Guizhou University, Guiyang, 550025, China
| | - Hang Cong
- Enterprise Technology Center of Guizhou Province, Guizhou University, Guiyang, 550025, China.
| | - Zhu Tao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, 550025, China
| | - Mao Liu
- Enterprise Technology Center of Guizhou Province, Guizhou University, Guiyang, 550025, China
| | - Ying Fan
- Enterprise Technology Center of Guizhou Province, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
18
|
Gupta A, Singh S. Multimodal Potentials of Gold Nanoparticles for Bone Tissue Engineering and Regenerative Medicine: Avenues and Prospects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201462. [PMID: 35758545 DOI: 10.1002/smll.202201462] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Osseous tissue repair has advanced due to the introduction of tissue engineering. The key elements required while engineering new tissues involve scaffolds, cells, and bioactive cues. The macrostructural to the nanostructural framework of such complex tissue has engrossed the intervention of nanotechnology for efficient neo-bone formation. Gold nanoparticles (GNPs) have recently gained interest in bone tissue regeneration due to their multimodal functionality. They are proven to modulate the properties of scaffolds and the osteogenic cells significantly. GNPs also influence different metabolic functions within the body, which directly or indirectly govern the mechanism of bone regeneration. Therefore, this review highlights nanoparticle-mediated osteogenic development, focusing on different aspects of GNPs ranging from scaffold modulation to cellular stimulation. The toxic aspects of gold nanoparticles studied so far are critically explicated, while further insight into the advancements and prospects of these nanoparticles in bone regeneration is also highlighted.
Collapse
Affiliation(s)
- Archita Gupta
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Sneha Singh
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| |
Collapse
|
19
|
Chakraborty T, Das M, Lin CY, Lei KF, Kao CH. Highly sensitive and selective electrochemical detection of lipocalin 2 by NiO nanoparticles/perovskite CeCuOx based immunosensor to diagnose renal failure. Anal Chim Acta 2022; 1205:339754. [DOI: 10.1016/j.aca.2022.339754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/14/2022] [Accepted: 03/20/2022] [Indexed: 11/01/2022]
|
20
|
Yoon J, Conley BM, Shin M, Choi JH, Bektas CK, Choi JW, Lee KB. Ultrasensitive Electrochemical Detection of Mutated Viral RNAs with Single-Nucleotide Resolution Using a Nanoporous Electrode Array (NPEA). ACS NANO 2022; 16:5764-5777. [PMID: 35362957 DOI: 10.1021/acsnano.1c10824] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The detection of nucleic acids and their mutation derivatives is vital for biomedical science and applications. Although many nucleic acid biosensors have been developed, they often require pretreatment processes, such as target amplification and tagging probes to nucleic acids. Moreover, current biosensors typically cannot detect sequence-specific mutations in the targeted nucleic acids. To address the above problems, herein, we developed an electrochemical nanobiosensing system using a phenomenon comprising metal ion intercalation into the targeted mismatched double-stranded nucleic acids and a homogeneous Au nanoporous electrode array (Au NPEA) to obtain (i) sensitive detection of viral RNA without conventional tagging and amplifying processes, (ii) determination of viral mutation occurrence in a simple detection manner, and (iii) multiplexed detection of several RNA targets simultaneously. As a proof-of-concept demonstration, a SARS-CoV-2 viral RNA and its mutation derivative were used in this study. Our developed nanobiosensor exhibited highly sensitive detection of SARS-CoV-2 RNA (∼1 fM detection limit) without tagging and amplifying steps. In addition, a single point mutation of SARS-CoV-2 RNA was detected in a one-step analysis. Furthermore, multiplexed detection of several SARS-CoV-2 RNAs was successfully demonstrated using a single chip with four combinatorial NPEAs generated by a 3D printing technique. Collectively, our developed nanobiosensor provides a promising platform technology capable of detecting various nucleic acids and their mutation derivatives in highly sensitive, simple, and time-effective manners for point-of-care biosensing.
Collapse
Affiliation(s)
- Jinho Yoon
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey,123 Bevier Road, Piscataway, New Jersey 08854, United States
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Brian M Conley
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey,123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Minkyu Shin
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Jin-Ha Choi
- School of Chemical Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeollabuk-do 54896, Republic of Korea
| | - Cemile Kilic Bektas
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey,123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Jeong-Woo Choi
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey,123 Bevier Road, Piscataway, New Jersey 08854, United States
| |
Collapse
|
21
|
Othman A, Bilan HK, Katz E, Smutok O. Highly Porous Gold Electrodes – Preparation and Characterization. ChemElectroChem 2022. [DOI: 10.1002/celc.202200099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ali Othman
- Clarkson University Department of Chemistry and Biomolecular Science 13699 Potsdam UNITED STATES
| | - Hubert K. Bilan
- Clarkson University Department of Chemistry and Biomolecular Science 13699 Potsdam UNITED STATES
| | - Evgeny Katz
- Clarkson University Chemistry Department 8 Clarkson Avenue 13699-5810 Potsdam UNITED STATES
| | - Oleh Smutok
- Clarkson University Department of Chemistry and Biomolecule Science 13699 Potsdam UNITED STATES
| |
Collapse
|
22
|
Zhang L, Zheng H, Gan Y, Wu B, Chen Z, Wei S, Zhang G, Zhang S, Pan B, Chen C. An all-in-one approach for synthesis and functionalization of nano colloidal gold with acetylacetone. NANOTECHNOLOGY 2021; 33:075605. [PMID: 34763330 DOI: 10.1088/1361-6528/ac38e7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
Controllable synthesis, proper dispersion, and feasible functionalization are crucial requirements for the application of nanomaterials in many scenarios. Here, we report an all-in-one approach for the synthesis and functionalization of gold nanoparticles (AuNPs) with the simplestβ-diketone, acetylacetone (AcAc). With this approach, the particle size of the resultant AuNPs was tunable by simply adjusting the light intensity or AcAc dosage. Moreover, owing to the capping role of AcAc, the resultant AuNPs could be stably dispersed in water for a year without obvious change in morphology and photochemical property. Formation of ligand to metal charge transfer complexes was found to play an important role in the redox conversion of Au with AcAc. Meanwhile, the moderate complexation ability enables the surface AcAc on the AuNPs to undergo ligand exchange reactions (LER). With the aid of Ag+, the AuNPs underwent LER with glutathione and exhibited enhanced photoluminescence (PL) with a maximum of 22-fold increase in PL intensity. The PL response was linear to the concentration of glutathione in the range of 0-500μM. Such a LER makes the obtained AuNPs being good imaging probes. To the best of our knowledge, this is the first work on illustrating the roles of AcAc as a multifunctional ligand in fabrication of NPs, which sheds new light on the surface modulation in synthesis of nanomaterials.
Collapse
Affiliation(s)
- Li Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Hongcen Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Yonghai Gan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Bingdang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Zhihao Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Shuangshuang Wei
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Guoyang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Shujuan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Bingcai Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Chuncheng Chen
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
23
|
Wang Z, Liu R, Chen HY, Wang H. Plasmonic Imaging of Tuning Electron Tunneling Mediated by a Molecular Monolayer. JACS AU 2021; 1:1700-1707. [PMID: 34723273 PMCID: PMC8549056 DOI: 10.1021/jacsau.1c00292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Probing and tuning the electron tunneling in metal electrode-insulator-metal nanoparticle systems provide a unique vision for understanding the fundamental mechanism of electrochemistry and broadening the horizon in practical applications of molecular electronics in many electrochemical systems. Here we report a plasmonic imaging technique to monitor the local double-layer charging of individual Au nanoparticles deposited on gold electrode separated by monolayer of n-alkanethiol molecules. The thickness of molecular monolayer tunes the tunneling kinetics and conductivity, which predicts the heterogeneous behavior on the modified electrode surface for different electrochemical systems. We studied the distance dependence of the electron tunneling and double layer charging processes by a plasmonic-based electrical impedance microscopy. By performing fast Fourier transform analysis of the recorded plasmonic image sequences, we can quantify the interfacial impedance of single nanoparticles and the tunneling decay constant of molecular layer. We further observed the electron neutralization dynamics during single-nanoparticle collisions on different surfaces. This optical readout of electron tunneling demonstrates an imaging approach to determine the electrical properties of metal electrode-insulator-metal nanoparticle systems, which include the electron tunneling mechanism and local impedance.
Collapse
Affiliation(s)
- Zixiao Wang
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, China
| | - Ruihong Liu
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, China
- Zhengzhou
Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Hong-Yuan Chen
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, China
| | - Hui Wang
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, China
| |
Collapse
|
24
|
Construction of iridium oxide nanoparticle modified indium tin oxide electrodes with polycarboxylic acids and pyrophosphoric acid and their application to water oxidation reactions. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
25
|
Strasser JW, Hersbach TJP, Liu J, Lapp AS, Frenkel AI, Crooks RM. Electrochemical Cleaning Stability and Oxygen Reduction Reaction Activity of 1‐2 nm Dendrimer‐Encapsulated Au Nanoparticles. ChemElectroChem 2021. [DOI: 10.1002/celc.202100549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Juliette W. Strasser
- Department of Chemistry and Texas Materials Institute The University of Texas at Austin 2506 Speedway, Stop A5300 Austin TX 78712-1224, U.S.A
| | - Thomas J. P. Hersbach
- Department of Chemistry and Texas Materials Institute The University of Texas at Austin 2506 Speedway, Stop A5300 Austin TX 78712-1224, U.S.A
| | - Jing Liu
- Department of Physics Manhattan College Riverdale NY 10471 USA
| | - Aliya S. Lapp
- Department of Chemistry and Texas Materials Institute The University of Texas at Austin 2506 Speedway, Stop A5300 Austin TX 78712-1224, U.S.A
| | - Anatoly I. Frenkel
- Department of Materials Science and Chemical Engineering Stony Brook University Stony Brook NY 11794 USA
- Division of Chemistry Brookhaven National Laboratory Upton NY 11973 USA
| | - Richard M. Crooks
- Department of Chemistry and Texas Materials Institute The University of Texas at Austin 2506 Speedway, Stop A5300 Austin TX 78712-1224, U.S.A
| |
Collapse
|
26
|
Zhang ZH, Hu J, Chen Q, Chen J, Hu X, Koh K, Chen H, Xu XH. The magnetic-nanoparticle-assisted sensitive detection of nitrated α-syn in blood based on a sensitizing electrochemical layer. NANOSCALE 2021; 13:8107-8117. [PMID: 33881108 DOI: 10.1039/d1nr01415c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disease. Nitrated α-synuclein (α-syn) in the blood is a potentially efficient biomarker for PD in its early stages. In this work, an ultrasensitive electrochemical immunosensor was developed for the specific detection of nitrated α-syn. Supramolecule-mediated AuNP composites (GNCs) were modified on the gold electrode as a sensing film to capture anti-nitrated α-syn. Basic characterization studies revealed that GNCs were composed of abundant binding sites and had high conductivity with a large surface area, biocompatibility, and remarkable electrochemical activity. Anti-α-syn-modified magnetic nanoparticles (MNPs) were used as signal amplification tags to construct a sensitive sandwich assay. With a high specific surface area, strong conductivity, and abundant active sites, GNCs as an amplifying matrix can enhance the performance of the immunoassay and obtain preliminary signal amplification. MNPs showed excellent stability and led to a net decrease in the charge-transfer resistance due to their unique spherical structure and high conductivity, resulting in a sensitive electrochemical signal change according to the nitrated α-syn concentration in the sample. Therefore, this simple nitrated α-syn immunoassay with sensitivity and selectivity has potential for practical clinical applications.
Collapse
Affiliation(s)
- Zhao-Huan Zhang
- Department of Laboratory Medicine, Changzheng Hospital, Naval Medical University, Shanghai, 200003, PR China
| | - Junjie Hu
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, PR China.
| | - Qiang Chen
- School of Medicine, Shanghai University, Shanghai 200444, PR China
| | - Jie Chen
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, PR China. and School of Medicine, Shanghai University, Shanghai 200444, PR China
| | - Xiaojun Hu
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, PR China.
| | - Kwangnak Koh
- Institute of General Education, Pusan National University, Busan, 609-735, Republic of Korea
| | - Hongxia Chen
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, PR China.
| | - Xiao-Hui Xu
- School of Preclinical Medicine, Wannan Medical College, Wuhu 241001, PR China. and School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| |
Collapse
|
27
|
Alafeef M, Dighe K, Moitra P, Pan D. Rapid, Ultrasensitive, and Quantitative Detection of SARS-CoV-2 Using Antisense Oligonucleotides Directed Electrochemical Biosensor Chip. ACS NANO 2020; 14:17028-17045. [PMID: 33079516 PMCID: PMC7586458 DOI: 10.1021/acsnano.0c06392] [Citation(s) in RCA: 313] [Impact Index Per Article: 62.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/13/2020] [Indexed: 05/14/2023]
Abstract
A large-scale diagnosis of the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) is essential to downregulate its spread within as well as across communities and mitigate the current outbreak of the pandemic novel coronavirus disease 2019 (COVID-19). Herein, we report the development of a rapid (less than 5 min), low-cost, easy-to-implement, and quantitative paper-based electrochemical sensor chip to enable the digital detection of SARS-CoV-2 genetic material. The biosensor uses gold nanoparticles (AuNPs), capped with highly specific antisense oligonucleotides (ssDNA) targeting viral nucleocapsid phosphoprotein (N-gene). The sensing probes are immobilized on a paper-based electrochemical platform to yield a nucleic-acid-testing device with a readout that can be recorded with a simple hand-held reader. The biosensor chip has been tested using samples collected from Vero cells infected with SARS-CoV-2 virus and clinical samples. The sensor provides a significant improvement in output signal only in the presence of its target-SARS-CoV-2 RNA-within less than 5 min of incubation time, with a sensitivity of 231 (copies μL-1)-1 and limit of detection of 6.9 copies/μL without the need for any further amplification. The sensor chip performance has been tested using clinical samples from 22 COVID-19 positive patients and 26 healthy asymptomatic subjects confirmed using the FDA-approved RT-PCR COVID-19 diagnostic kit. The sensor successfully distinguishes the positive COVID-19 samples from the negative ones with almost 100% accuracy, sensitivity, and specificity and exhibits an insignificant change in output signal for the samples lacking a SARS-CoV-2 viral target segment (e.g., SARS-CoV, MERS-CoV, or negative COVID-19 samples collected from healthy subjects). The feasibility of the sensor even during the genomic mutation of the virus is also ensured from the design of the ssDNA-conjugated AuNPs that simultaneously target two separate regions of the same SARS-CoV-2 N-gene.
Collapse
Affiliation(s)
- Maha Alafeef
- Bioengineering Department,
University of Illinois at
Urbana−Champaign, Urbana, Illinois 61801,
United States
- Departments of Diagnostic Radiology
and Nuclear Medicine and Pediatrics, Center for Blood Oxygen Transport
and Hemostasis, University of Maryland Baltimore School
of Medicine, Health Sciences Research Facility
III, 670 W Baltimore Street, Baltimore, Maryland 21201,
United States
- Biomedical Engineering Department,
Jordan University of Science and
Technology, Irbid 22110,
Jordan
| | - Ketan Dighe
- Bioengineering Department,
University of Illinois at
Urbana−Champaign, Urbana, Illinois 61801,
United States
- Department of Chemical, Biochemical
and Environmental Engineering, University of Maryland
Baltimore County, Interdisciplinary Health
Sciences Facility, 1000 Hilltop Circle, Baltimore, Maryland 21250,
United States
| | - Parikshit Moitra
- Departments of Diagnostic Radiology
and Nuclear Medicine and Pediatrics, Center for Blood Oxygen Transport
and Hemostasis, University of Maryland Baltimore School
of Medicine, Health Sciences Research Facility
III, 670 W Baltimore Street, Baltimore, Maryland 21201,
United States
| | - Dipanjan Pan
- Bioengineering Department,
University of Illinois at
Urbana−Champaign, Urbana, Illinois 61801,
United States
- Departments of Diagnostic Radiology
and Nuclear Medicine and Pediatrics, Center for Blood Oxygen Transport
and Hemostasis, University of Maryland Baltimore School
of Medicine, Health Sciences Research Facility
III, 670 W Baltimore Street, Baltimore, Maryland 21201,
United States
- Department of Chemical, Biochemical
and Environmental Engineering, University of Maryland
Baltimore County, Interdisciplinary Health
Sciences Facility, 1000 Hilltop Circle, Baltimore, Maryland 21250,
United States
| |
Collapse
|
28
|
Torres-Pérez SA, Torres-Pérez CE, Pedraza-Escalona M, Pérez-Tapia SM, Ramón-Gallegos E. Glycosylated Nanoparticles for Cancer-Targeted Drug Delivery. Front Oncol 2020; 10:605037. [PMID: 33330106 PMCID: PMC7735155 DOI: 10.3389/fonc.2020.605037] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/30/2020] [Indexed: 12/17/2022] Open
Abstract
Nanoparticles (NPs) are novel platforms that can carry both cancer-targeting molecules and drugs to avoid severe side effects due to nonspecific drug delivery in standard chemotherapy treatments. Cancer cells are characterized by abnormal membranes, metabolic changes, the presence of lectin receptors, glucose transporters (GLUT) overexpression, and glycosylation of immune receptors of programmed death on cell surfaces. These characteristics have led to the development of several strategies for cancer therapy, including a large number of carbohydrate-modified NPs, which have become desirable for use in cell-selective drug delivery systems because they increase nanoparticle-cell interactions and uptake of carried drugs. Currently, the potential of NP glycosylation to enhance the safety and efficacy of carried therapeutic antitumor agents has been widely acknowledged, and much information is accumulating in this field. This review seeks to highlight recent advances in NP stabilization, toxicity reduction, and pharmacokinetic improvement and the promising potential of NP glycosylation from the perspective of molecular mechanisms described for drug delivery systems for cancer therapy. From preclinical proof-of-concept to demonstration of therapeutic value in the clinic, the challenges and opportunities presented by glycosylated NPs, with a focus on their applicability in the development of nanodrugs, are discussed in this review.
Collapse
Affiliation(s)
- Sergio Andrés Torres-Pérez
- Laboratorio de Citopatología Ambiental, Departamento de Morfología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Campus Zacatenco, Mexico City, Mexico
| | - Cindy Estefani Torres-Pérez
- Laboratorio de Citopatología Ambiental, Departamento de Morfología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Campus Zacatenco, Mexico City, Mexico
| | - Martha Pedraza-Escalona
- CONACYT-UDIBI-ENCB-Instituto Politécnico Nacional, Unidad Profesional Lázaro Cárdenas, Mexico City, Mexico
| | - Sonia Mayra Pérez-Tapia
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Eva Ramón-Gallegos
- Laboratorio de Citopatología Ambiental, Departamento de Morfología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Campus Zacatenco, Mexico City, Mexico
| |
Collapse
|
29
|
Peng Y, Peng Y, Tang S, Shen H, Sheng S, Wang Y, Wang T, Cai J, Xie G, Feng W. PdIrBP mesoporous nanospheres combined with superconductive carbon black for the electrochemical determination and collection of circulating tumor cells. Mikrochim Acta 2020; 187:216. [PMID: 32162013 DOI: 10.1007/s00604-020-4213-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/03/2020] [Indexed: 12/17/2022]
Abstract
An integrated electrochemical immunoassay is described for the determination of circulating tumor cells (CTCs). For the first time, Ketjen black (KB), which is a superconductive carbon material, was incorporated with Au nanoparticles (AuNPs) and used to modify the surface of gold electrodes. A cocktail of anti-epithelial cell adhesion molecules (EpCAM) and anti-vimentin antibodies was chosen to capture the CTCs. Palladium-iridium-boron-phosphorus alloy-modified mesoporous nanospheres (PdIrBPMNS) served as a catalytic tag to amplify the current signal. Glycine-HCl (Gly-HCl) was used as an antibody eluent to release and collect the captured CTCs from the electrodes for further clinical research without compromising cell viability. The response of the method increased linearly from 10 to 1 × 106 cells mL-1 CTCs, while the detection limit was calculated to be as low as 2 cells mL-1. This method was successfully used to determine CTCs in spiked blood samples and demonstrated good recovery. Graphical abstractKetjen black/AuNPs was incorporated in the electrochemical platform to enhance the electron transfer ability of the electrode surface. PdIrBP mesoporous nanospheres were used to amplify DPV signal in this assay. The introduction of Gly-HCl realized nondestructive recovery of circulating tumor cells.
Collapse
Affiliation(s)
- Yang Peng
- Department of Laboratory Medicine, Key Laboratory of Medical Diagnostics of Ministry of Education, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing, 400016, People's Republic of China
| | - Yuhang Peng
- Department of Laboratory Medicine, Key Laboratory of Medical Diagnostics of Ministry of Education, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing, 400016, People's Republic of China
| | - Sitian Tang
- Department of Laboratory Medicine, Key Laboratory of Medical Diagnostics of Ministry of Education, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing, 400016, People's Republic of China
| | - Huawei Shen
- Traditional Chinese Medicine Hospital of Chongqing, Chongqing, 400021, People's Republic of China
| | - Shangchun Sheng
- Clinical Laboratory of Hospital Affiliated to Chengdu University, Chengdu, 610081, People's Republic of China
| | - Yonghong Wang
- Department of Laboratory Medicine, Key Laboratory of Medical Diagnostics of Ministry of Education, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing, 400016, People's Republic of China
| | - Teng Wang
- Department of Laboratory Medicine, Key Laboratory of Medical Diagnostics of Ministry of Education, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing, 400016, People's Republic of China
| | - Juan Cai
- Department of Laboratory Medicine, Key Laboratory of Medical Diagnostics of Ministry of Education, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing, 400016, People's Republic of China
| | - Guoming Xie
- Department of Laboratory Medicine, Key Laboratory of Medical Diagnostics of Ministry of Education, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing, 400016, People's Republic of China.
| | - Wenli Feng
- Department of Laboratory Medicine, Key Laboratory of Medical Diagnostics of Ministry of Education, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
30
|
Iriarte-Mesa C, López YC, Matos-Peralta Y, de la Vega-Hernández K, Antuch M. Gold, Silver and Iron Oxide Nanoparticles: Synthesis and Bionanoconjugation Strategies Aimed at Electrochemical Applications. Top Curr Chem (Cham) 2020; 378:12. [PMID: 31907672 DOI: 10.1007/s41061-019-0275-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/13/2019] [Indexed: 12/22/2022]
Abstract
Nanomaterials have revolutionized the sensing and biosensing fields, with the development of more sensitive and selective devices for multiple applications. Gold, silver and iron oxide nanoparticles have played a particularly major role in this development. In this review, we provide a general overview of the synthesis and characteristics of gold, silver and iron oxide nanoparticles, along with the main strategies for their surface functionalization with ligands and biomolecules. Finally, different architectures suitable for electrochemical applications are reviewed, as well as their main fabrication procedures. We conclude with some considerations from the authors' perspective regarding the promising use of these materials and the challenges to be faced in the near future.
Collapse
Affiliation(s)
- Claudia Iriarte-Mesa
- Laboratorio de Química Bioinorgánica, Departamento de Química General e Inorgánica, Facultad de Química, Universidad de La Habana, Zapata y G, Vedado, Plaza de la Revolución, 10 400, La Habana, Cuba
| | - Yeisy C López
- Laboratorio de Química Bioinorgánica, Departamento de Química General e Inorgánica, Facultad de Química, Universidad de La Habana, Zapata y G, Vedado, Plaza de la Revolución, 10 400, La Habana, Cuba.,Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Calzada Legaria 694, Col. Irrigación, 11 500, Ciudad de México, Mexico
| | - Yasser Matos-Peralta
- Laboratorio de Química Bioinorgánica, Departamento de Química General e Inorgánica, Facultad de Química, Universidad de La Habana, Zapata y G, Vedado, Plaza de la Revolución, 10 400, La Habana, Cuba
| | | | - Manuel Antuch
- Unité de Chimie et Procédés, École Nationale Supérieure de Techniques Avancées (ENSTA), Institut Polytechnique de Paris, 828 Boulevard des Maréchaux, 91120, Palaiseau, France.
| |
Collapse
|
31
|
Lee BHJ, Arya G. Orientational phase behavior of polymer-grafted nanocubes. NANOSCALE 2019; 11:15939-15957. [PMID: 31417994 DOI: 10.1039/c9nr04859f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Surface functionalization of nanoparticles with polymer grafts was recently shown to be a viable strategy for controlling the relative orientation of shaped nanoparticles in their higher-order assemblies. In this study, we investigated in silico the orientational phase behavior of coplanar polymer-grafted nanocubes confined in a thin film. We first used Monte Carlo simulations to compute the two-particle interaction free-energy landscape of the nanocubes and identify their globally stable configurations. The nanocubes were found to exhibit four stable phases: those with edge-edge and face-face orientations, and those exhibiting partially overlapped slanted and parallel faces previously assumed to be metastable. Moreover, the edge-edge configuration originally thought to involve kissing edges instead displayed partly overlapping edges, where the extent of the overlap depends on the attachment positions of the grafts. We next formulated analytical scaling expressions for the free energies of the identified configurations, which were used for constructing a comprehensive phase diagram of nanocube orientation in a multidimensional parameter space comprising of the size and interaction strength of the nanocubes and the Kuhn length and surface density of the grafts. The morphology of the phase diagram was shown to arise from an interplay between polymer- and surface-mediated interactions, especially differences in their scalings with respect to nanocube size and grafting density across the four phases. The phase diagram provided insights into tuning these interactions through the various parameters of the system for achieving target configurations. Overall, this work provides a framework for predicting and engineering interparticle configurations, with possible applications in plasmonic nanocomposites where control over particle orientation is critical.
Collapse
Affiliation(s)
- Brian Hyun-Jong Lee
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA.
| | | |
Collapse
|
32
|
Fermi level-tuned optics of graphene for attocoulomb-scale quantification of electron transfer at single gold nanoparticles. Nat Commun 2019; 10:3849. [PMID: 31451698 PMCID: PMC6710286 DOI: 10.1038/s41467-019-11816-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 08/06/2019] [Indexed: 01/21/2023] Open
Abstract
Measurement of electron transfer at single-molecule level is normally restricted by the detection limit of faraday current, currently in a picoampere to nanoampere range. Here we demonstrate a unique graphene-based electrochemical microscopy technique to make an advance in the detection limit. The optical signal of electron transfer arises from the Fermi level-tuned Rayleigh scattering of graphene, which is further enhanced by immobilized gold nanostars. Owing to the specific response to surface charged carriers, graphene-based electrochemical microscopy enables an attoampere-scale detection limit of faraday current at multiple individual gold nanoelectrodes simultaneously. Using the graphene-based electrochemical microscopy, we show the capability to quantitatively measure the attocoulomb-scale electron transfer in cytochrome c adsorbed at a single nanoelectrode. We anticipate the graphene-based electrochemical microscopy to be a potential electrochemical tool for in situ study of biological electron transfer process in organelles, for example the mitochondrial electron transfer, in consideration of the anti-interference ability to chemicals and organisms.
Collapse
|
33
|
Ganesh HVS, Patel BR, Fini H, Chow AM, Kerman K. Electrochemical Detection of Gallic Acid-Capped Gold Nanoparticles Using a Multiwalled Carbon Nanotube-Reduced Graphene Oxide Nanocomposite Electrode. Anal Chem 2019; 91:10116-10124. [PMID: 31250649 DOI: 10.1021/acs.analchem.9b02132] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Recently, a plethora of ecofriendly methods have been developed for the synthesis of AuNPs using a multitude of biogenic agents. Polyphenols from plants are particularly attractive for producing AuNPs because in addition to helping with the synthesis of AuNPs, the polyphenol capping of the NPs can be used as a platform for versatile applications. Polyphenol-capped AuNPs could also make the detection of AuNPs possible, should they be released into the environment. Because polyphenols are redox-active, they can be used as a probe to detect AuNPs using electrochemical techniques. In this work, we have developed an MWCNT-rGO nanocomposite electrode for the sensitive detection of AuNPs capped with gallic acid (GA, a green-tea-derived polyphenol) using differential pulse voltammetry (DPV). The reduction of gallic acid-capped AuNPs was used as the quantification signal, and the calibration curve displayed a detection limit of 2.57 pM. Using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), we have shown that the modification of the electrode surface with an MWCNT-rGO hybrid nanocomposite resulted in a 10-fold increase in current response leading to the sensitive detection of GA-AuNPs compared to unmodified electrodes. We have also demonstrated the applicability of the electrochemical sensor in detecting GA-AuNPs in various analytical matrixes such as human serum and natural creek water (Highland Creek, ON) with good recovery.
Collapse
Affiliation(s)
- Hashwin V S Ganesh
- Department of Physical and Environmental Sciences , University of Toronto , Scarborough 1265 Military Trail , Toronto , ON M1C 1A4 , Canada
| | - Bhargav R Patel
- Department of Physical and Environmental Sciences , University of Toronto , Scarborough 1265 Military Trail , Toronto , ON M1C 1A4 , Canada
| | - Hamid Fini
- Department of Physical and Environmental Sciences , University of Toronto , Scarborough 1265 Military Trail , Toronto , ON M1C 1A4 , Canada
| | - Ari M Chow
- Department of Physical and Environmental Sciences , University of Toronto , Scarborough 1265 Military Trail , Toronto , ON M1C 1A4 , Canada
| | - Kagan Kerman
- Department of Physical and Environmental Sciences , University of Toronto , Scarborough 1265 Military Trail , Toronto , ON M1C 1A4 , Canada
| |
Collapse
|
34
|
Liu R, Shan X, Wang H, Tao N. Plasmonic Measurement of Electron Transfer between a Single Metal Nanoparticle and an Electrode through a Molecular Layer. J Am Chem Soc 2019; 141:11694-11699. [PMID: 31260624 DOI: 10.1021/jacs.9b05388] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We study electron transfer associated with electrocatalytic reduction of hydrogen on single platinum nanoparticles separated from an electrode surface with an alkanethiol monolayer using a plasmonic imaging technique. By varying the monolayer thickness, we show that the reaction rate depends on electron tunneling from the electrode to the nanoparticle. The tunneling decay constant is ∼4.3 nm-1, which is small compared to those in literature for alkanethiols. We attribute it to a reduced tunneling barrier resulting from biasing the electrode potential negatively to the hydrogen reduction regime. In addition to allowing study of electron transfer of single nanoparticles, the work demonstrates an optical method to measure charge transport in molecules electrically wired to two electrodes.
Collapse
Affiliation(s)
- Ruihong Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Xiaonan Shan
- Department of Electrical and Computer Engineering , University of Houston , Houston , Texas 77204 , United States
| | - Hui Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Nongjian Tao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China.,Biodesign Center for Bioelectronics and Biosensors and School of Electrical, Energy and Computer Engineering , Arizona State University , Tempe , Arizona 85287 , United States
| |
Collapse
|
35
|
Herrera SE, Davia FG, Williams FJ, Calvo EJ. Metal Nanoparticle Enhancement of Electron Transfer to Tethered Redox Centers through Self-Assembled Molecular Films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:6297-6303. [PMID: 31012590 DOI: 10.1021/acs.langmuir.9b00280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Metal-nanoparticle-mediated electron transfer (ET) across an insulator thin film containing nanoparticles with attached redox centers was studied using electrochemical impedance spectroscopy. Specifically, a gold spherical microelectrode was modified with 16-amino-1-hexa-decanethiol, creating an insulator film. This was followed by the electrostatic adsorption of gold nanoparticles and the covalent attachment of Os2+ redox centers. A variation of the Creager-Wooster method was developed to get quantitative information regarding the ET kinetics of the system. The experimental data obtained from a single measurement was fitted with a model that decouples two or more ET processes with different time constants and considers a Gaussian distribution of tunneling distances. Two parallel ET mechanisms were observed: one in which the electrons flow by tunneling between the surface and the redox couples with a low kET0 = 1.3 s-1 and a second one in which an enhancement of the electron transfer is produced due to the presence of the gold nanoparticles with a kET0 = 7 × 104 s-1. In this study, we demonstrate that the gold nanoparticle electron transfer enhancement is present only in the local environment of the nanoparticle, showing that the nanoscale architecture is crucial to maximize the enhancement effect.
Collapse
Affiliation(s)
- Santiago E Herrera
- Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires , Ciudad Universitaria, Pabellón 2 , Buenos Aires C1428EHA , Argentina
| | - Federico G Davia
- Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires , Ciudad Universitaria, Pabellón 2 , Buenos Aires C1428EHA , Argentina
| | - Federico J Williams
- Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires , Ciudad Universitaria, Pabellón 2 , Buenos Aires C1428EHA , Argentina
| | - Ernesto J Calvo
- Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires , Ciudad Universitaria, Pabellón 2 , Buenos Aires C1428EHA , Argentina
| |
Collapse
|
36
|
Guo WJ, Wu Z, Yang XY, Pang DW, Zhang ZL. Ultrasensitive electrochemical detection of microRNA-21 with wide linear dynamic range based on dual signal amplification. Biosens Bioelectron 2019; 131:267-273. [DOI: 10.1016/j.bios.2019.02.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/18/2019] [Accepted: 02/11/2019] [Indexed: 12/18/2022]
|
37
|
Chang J, Lee J, Georgescu A, Huh D, Kang T. Generalized On-Demand Production of Nanoparticle Monolayers on Arbitrary Solid Surfaces via Capillarity-Mediated Inverse Transfer. NANO LETTERS 2019; 19:2074-2083. [PMID: 30785755 DOI: 10.1021/acs.nanolett.9b00248] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Century-old Langmuir monolayer deposition still represents the most convenient approach to the production of monolayers of colloidal nanoparticles on solid substrates for practical biological and chemical-sensing applications. However, this approach simply yields arbitrarily shaped large monolayers on a flat surface and is strongly limited by substrate topography and interfacial energy. Here, we describe a generalized and facile method of rapidly producing uniform monolayers of various colloidal nanoparticles on arbitrary solid substrates by using an ordinary capillary tube. Our method is based on an interesting finding of inversion phenomenon of a nanoparticle-laden air-water interface by flowing through a capillary tube in a manner that prevents the particles from adhesion to the capillary sidewall, thereby presenting the nanoparticles face-first at the tube's opposite end for direct and one-step deposition onto a substrate. We show that our method not only allows the placement of a nanoparticle monolayer at target locations of solid substrates regardless of their surface geometry and adhesion but also enables the production of monolayers containing nanoparticles with different size, shape, surface charge, and composition. To explore the potential of our approach, we demonstrate the facile integration of gold nanoparticle monolayers into microfluidic devices for the real-time monitoring of molecular Raman signals under dynamic flow conditions. Moreover, we successfully extend the use of our method to developing on-demand Raman sensors that can be built directly on the surface of consumer products for practical chemical sensing and fingerprinting. Specifically, we achieve both the pinpoint deposition of gold nanoparticle monolayers and sensitive molecular detection from the deposited region on clothing fabric for the detection of illegal drug substances, a single grain of rice and an orange for pesticide monitoring, and a $100 bill as a potential anti-counterfeit measure, respectively. We believe that our method will provide unique opportunities to expand the utility of colloidal nanoparticles and to greatly improve the accessibility of nanoparticle-based sensing technologies.
Collapse
Affiliation(s)
- Jeehan Chang
- Department of Chemical and Biomolecular Engineering , Sogang University , Seoul 04107 , Korea
| | - Jaekyeong Lee
- Department of Chemical and Biomolecular Engineering , Sogang University , Seoul 04107 , Korea
| | - Andrei Georgescu
- Department of Bioengineering, School of Engineering and Applied Science , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Dongeun Huh
- Department of Bioengineering, School of Engineering and Applied Science , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Taewook Kang
- Department of Chemical and Biomolecular Engineering , Sogang University , Seoul 04107 , Korea
| |
Collapse
|
38
|
Tran DT, Hoa VH, Tuan LH, Kim NH, Lee JH. Cu-Au nanocrystals functionalized carbon nanotube arrays vertically grown on carbon spheres for highly sensitive detecting cancer biomarker. Biosens Bioelectron 2018; 119:134-140. [DOI: 10.1016/j.bios.2018.08.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/23/2018] [Accepted: 08/10/2018] [Indexed: 12/22/2022]
|
39
|
Jin CM, Lee W, Kim D, Kang T, Choi I. Photothermal Convection Lithography for Rapid and Direct Assembly of Colloidal Plasmonic Nanoparticles on Generic Substrates. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1803055. [PMID: 30294867 DOI: 10.1002/smll.201803055] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/11/2018] [Indexed: 06/08/2023]
Abstract
Controlled assembly of colloidal nanoparticles onto solid substrates generally needs to overcome their thermal diffusion in water. For this purpose, several techniques that are based on chemical bonding, capillary interactions with substrate patterning, optical force, and optofluidic heating of light-absorbing substrates are proposed. However, the direct assembly of colloidal nanoparticles on generic substrates without chemical linkers and substrate patterning still remains challenging. Here, photothermal convection lithography is proposed, which allows the rapid placement of colloidal nanoparticles onto the surface of diverse solid substrates. It is based on local photothermal heating of colloidal nanoparticles by resonant light focusing without substrate heating, which induces convective flow. The convective flow, then, forces the colloidal nanoparticles to assemble at the illumination point of light. The size of the assembly is increased by either increasing the light intensity or illumination time. It is shown that three types of colloidal gold nanoparticles with different shapes (rod, star, and sphere) can be uniformly assembled by the proposed method. Each assembly with a diameter of tens of micrometers can be completed within a minute and its patterned arrays can also be achieved rapidly.
Collapse
Affiliation(s)
- Chang Min Jin
- Department of Life Science, University of Seoul, Seoul, 130-743, Republic of Korea
| | - Wooju Lee
- Department of Mechanical Engineering, Sogang University, Seoul, 121-742, Republic of Korea
| | - Dongchoul Kim
- Department of Mechanical Engineering, Sogang University, Seoul, 121-742, Republic of Korea
| | - Taewook Kang
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 121-742, Republic of Korea
| | - Inhee Choi
- Department of Life Science, University of Seoul, Seoul, 130-743, Republic of Korea
| |
Collapse
|
40
|
Kogikoski S, Kubota LT. Electrochemical behavior of self-assembled DNA–gold nanoparticle lattice films. Electrochem commun 2018. [DOI: 10.1016/j.elecom.2018.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
41
|
Brust M, Ramírez SA, Gordillo GJ. Site‐Specific Modification of Gold Nanoparticles by Underpotential Deposition of Cadmium Atoms. ChemElectroChem 2018. [DOI: 10.1002/celc.201800282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mathias Brust
- Department of ChemistryUniversity of Liverpool Crown Street Liverpool L69 7ZD United Kingdom
| | - Silvana A. Ramírez
- Area Química, Instituto de CienciasUniversidad Nacional de General Sarmiento J.M. Gutierrez 1150(1613) Los Polvorines, Buenos Aires Argentina
| | - Gabriel J. Gordillo
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, INQUIMAE (CONICET)Universidad de Buenos Aires
- Ciudad Universitaria Pabellón 2 (1428) Buenos Aires Argentina
| |
Collapse
|
42
|
Wu Z, Guo WJ, Bai YY, Zhang L, Hu J, Pang DW, Zhang ZL. Digital Single Virus Electrochemical Enzyme-Linked Immunoassay for Ultrasensitive H7N9 Avian Influenza Virus Counting. Anal Chem 2018; 90:1683-1690. [PMID: 29260556 DOI: 10.1021/acs.analchem.7b03281] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Electrochemistry has been widely used to explore fundamental properties of single molecules due to its fast response and high specificity. However, the lack of efficient signal amplification strategies and quantitative method limit its clinical application. Here, we proposed a digital single virus electrochemical enzyme-linked immunoassay (digital ELISA) for H7N9 avian influenza virus (H7N9 AIV) counting by integration of digital analysis, bifunctional fluorescence magnetic nanospheres (bi-FMNs) with monolayer gold nanoparticles (Au NPs) modified microelectrode array (MA). Bi-FMNs are fabricated by coimmobilizing polyclonal antibody (pAb) and alkaline phosphatase (ALP). At most, one target will be captured per bi-FMNs by controlling the proportion of bi-FMNs to target concentrations (≥5:1). The introduction of digital analysis can solve signal fluctuation and the reliability of single virus detection, enabling the digital ELISA to be sensitively and accurately applied for H7N9 AIV detection with a low detection limit of 7.8 fg/mL, which is greatly promising in single biomolecular detection, early diagnosis of disease, and practical application.
Collapse
Affiliation(s)
- Zhen Wu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, Wuhan University , Wuhan, 430072, People's Republic of China
| | - Wen-Jing Guo
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, Wuhan University , Wuhan, 430072, People's Republic of China
| | - Yi-Yan Bai
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, Wuhan University , Wuhan, 430072, People's Republic of China
| | - Li Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, Wuhan University , Wuhan, 430072, People's Republic of China
| | - Jiao Hu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, Wuhan University , Wuhan, 430072, People's Republic of China
| | - Dai-Wen Pang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, Wuhan University , Wuhan, 430072, People's Republic of China
| | - Zhi-Ling Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, Wuhan University , Wuhan, 430072, People's Republic of China
| |
Collapse
|
43
|
para-Sulfonatocalix[4]arene stabilized gold nanoparticles multilayers interfaced to electrodes through host-guest interaction for sensitive ErbB2 detection. Biosens Bioelectron 2018; 99:375-381. [DOI: 10.1016/j.bios.2017.08.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 07/31/2017] [Accepted: 08/07/2017] [Indexed: 01/22/2023]
|
44
|
Yin Z, Zheng Y, Wang H, Li J, Zhu Q, Wang Y, Ma N, Hu G, He B, Knop-Gericke A, Schlögl R, Ma D. Engineering Interface with One-Dimensional Co 3O 4 Nanostructure in Catalytic Membrane Electrode: Toward an Advanced Electrocatalyst for Alcohol Oxidation. ACS NANO 2017; 11:12365-12377. [PMID: 29141144 DOI: 10.1021/acsnano.7b06287] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Electrochemical oxidation has attracted vast interest as a promising alternative to traditional chemical processes in fine chemical synthesis owing to its fast and sustainable features. An electrocatalytic membrane reactor (ECMR) with a three-dimensional (3D) electrode has been successfully designed for the selective oxidation of alcohols with high current efficiency to the corresponding acids or ketones. The anode electrode was fabricated by the in situ loading of one-dimensional (1D) Co3O4 nanowires (NWs) on the conductive porous Ti membrane (Co3O4 NWs/Ti) via the combination of a facile hydrothermal synthesis and subsequent thermal treatment. The electrocatalytic oxidation (ECO) results of alcohols exhibited superior catalytic performance with a higher current efficiency on the Co3O4 NWs/Ti membrane compared with those of Co3O4 nanoparticles on the Ti membrane (Co3O4 NPs/Ti). Even under low reaction temperatures such as 0 °C, it still displayed a very high ECO activity for alcohol oxidation in the ECMR. For example, >99% conversion and 92% selectivity toward benzoic acid were obtained for the benzyl alcohol electrooxidation. The electrode is particularly effective for the cyclohexanol oxidation, and a selectivity of >99% to cyclohexanone was achieved at 0 °C, higher than most reported noble-metal catalysts under the aerobic reaction conditions. The extraordinary electrocatalytic performance of the 3D Co3O4 NWs/Ti membrane electrode demonstrates the significant influence of morphology effect and engineering interfaces in membrane electrodes on the electrocatalytic activity and charge transfer process of nanocatalysts. Our results propose that similar membrane electrodes serve as versatile platforms for the applications of 1D nanomaterials, porous electrodes, and ECMRs.
Collapse
Affiliation(s)
- Zhen Yin
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Membrane Science and Technology, School of Environmental and Chemical Engineering, Tianjin Polytechnic University , 399 Binshui West Road, Tianjin 300387, People's Republic of China
| | - Yumei Zheng
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Membrane Science and Technology, School of Environmental and Chemical Engineering, Tianjin Polytechnic University , 399 Binshui West Road, Tianjin 300387, People's Republic of China
| | - Hong Wang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Membrane Science and Technology, School of Materials Science and Engineering, Tianjin Polytechnic University , 399 Binshui West Road, Tianjin 300387, People's Republic of China
| | - Jianxin Li
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Membrane Science and Technology, School of Materials Science and Engineering, Tianjin Polytechnic University , 399 Binshui West Road, Tianjin 300387, People's Republic of China
| | - Qingjun Zhu
- Fritz-Haber-Institut der Max-Planck-Gesellschaft , Faradayweg 4-6, D-14195 Berlin, Germany
| | - Ye Wang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Membrane Science and Technology, School of Environmental and Chemical Engineering, Tianjin Polytechnic University , 399 Binshui West Road, Tianjin 300387, People's Republic of China
| | - Na Ma
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Membrane Science and Technology, School of Materials Science and Engineering, Tianjin Polytechnic University , 399 Binshui West Road, Tianjin 300387, People's Republic of China
| | - Gang Hu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, People's Republic of China
| | - Benqiao He
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Membrane Science and Technology, School of Materials Science and Engineering, Tianjin Polytechnic University , 399 Binshui West Road, Tianjin 300387, People's Republic of China
| | - Axel Knop-Gericke
- Fritz-Haber-Institut der Max-Planck-Gesellschaft , Faradayweg 4-6, D-14195 Berlin, Germany
| | - Robert Schlögl
- Fritz-Haber-Institut der Max-Planck-Gesellschaft , Faradayweg 4-6, D-14195 Berlin, Germany
| | - Ding Ma
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, People's Republic of China
| |
Collapse
|
45
|
Barman K, Changmai B, Jasimuddin S. Electrochemical Detection of Para-nitrophenol using Copper Metal Nanoparticles Modified Gold Electrode. ELECTROANAL 2017. [DOI: 10.1002/elan.201700430] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Koushik Barman
- Department of Chemistry; Assam University, Silchar; Assam- 788011 India
| | | | - Sk Jasimuddin
- Department of Chemistry; Assam University, Silchar; Assam- 788011 India
| |
Collapse
|
46
|
Kumar-Krishnan S, Guadalupe-Ferreira García M, Prokhorov E, Estevez-González M, Pérez R, Esparza R, Meyyappan M. Synthesis of gold nanoparticles supported on functionalized nanosilica using deep eutectic solvent for an electrochemical enzymatic glucose biosensor. J Mater Chem B 2017; 5:7072-7081. [PMID: 32263898 DOI: 10.1039/c7tb01346a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Engineering of nanoparticle (NP) surfaces offers an effective approach for the development of enzymatic biosensors or microbial fuel cells with a greatly enhanced direct electron transport process. However, lack of control over the surface functionalization process and the operational instability of the immobilized enzymes are serious issues. Herein, we demonstrate a facile and green deep eutectic solvent (DES)-mediated synthetic strategy for efficient amine-surface functionalization of silicon dioxide and to integrate small gold nanoparticles (AuNPs) for a glucose biosensor. Owing to the higher viscosity of the DES, it provides uniform surface functionalization and further coupling of the AuNPs on the SiO2 support with improved stability and dispersion. The amine groups of the functionalized Au-SiO2NPs were covalently linked to the FAD-center of glucose oxidase (GOx) through glutaraldehyde as a bifunctional cross-linker, which promotes formation of "electrical wiring" with the immobilized enzymes. The Au-SiO2NP/GOx/GC electrode exhibits direct electron transfer (DET) for sensing of glucose with a sensitivity of 9.69 μA mM-1, a wide linear range from 0.2 to 7 mM and excellent stability. The present green DES-mediated synthetic approach expands the possibilities to support different metal NPs on SiO2 as a potential platform for biosensor applications.
Collapse
Affiliation(s)
- Siva Kumar-Krishnan
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Santiago de Querétaro, Qro., 76230, Mexico.
| | | | | | | | | | | | | |
Collapse
|
47
|
Li M, Wang Y, Ye X, Wang Z, Wu T, Li C. Controlled synthesis of icosahedral gold nanocrystals, and their self-assembly with an ionic liquid for enhanced immunosensing of squamous cell carcinoma antigen. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2377-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|