1
|
Wang F, Wu Z, Zhang Y, Li M, Wei P, Yi T, Li J. Semiconducting polymer nanoprodrugs enable tumor-specific therapy via sono-activatable ferroptosis. Biomaterials 2025; 312:122722. [PMID: 39096841 DOI: 10.1016/j.biomaterials.2024.122722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/06/2024] [Accepted: 07/28/2024] [Indexed: 08/05/2024]
Abstract
Ferroptosis, a recently identified form of cell death, holds promise for cancer therapy, but concerns persist regarding its uncontrolled actions and potential side effects. Here, we present a semiconducting polymer nanoprodrug (SPNpro) featuring an innovative ferroptosis prodrug (DHU-CBA7) to induce sono-activatable ferroptosis for tumor-specific therapy. DHU-CBA7 prodrug incorporate methylene blue, ferrocene and urea bond, which can selectively and specifically respond to singlet oxygen (1O2) to turn on ferroptosis action via rapidly cleaving the urea bonds. DHU-CBA7 prodrug and a semiconducting polymer are self-assembled with an amphiphilic polymer to construct SPNpro. Ultrasound irradiation of SPNpro leads to the production of 1O2 via sonodynamic therapy (SDT) of the semiconducting polymer, and the generated 1O2 activated DHU-CBA7 prodrug to achieve sono-activatable ferroptosis. Consequently, SPNpro combine SDT with the controlled ferroptosis to effectively cure 4T1 tumors covered by 2-cm tissue with a tumor inhibition efficacy as high as 100 %, and also completely restrain tumor metastases. This study introduces a novel sono-activatable prodrug strategy for regulating ferroptosis, allowing for precise cancer therapy.
Collapse
Affiliation(s)
- Fengshuo Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Zhiting Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Yijing Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Meng Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Peng Wei
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China.
| | - Tao Yi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China.
| | - Jingchao Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China.
| |
Collapse
|
2
|
Song BL, Wang JQ, Zhang GX, Yi NB, Zhang YJ, Zhou L, Guan YH, Zhang XH, Zheng WF, Qiao ZY, Wang H. A Coupling-Induced Assembly Strategy for Constructing Artificial Shell on Mitochondria in Living Cells. Angew Chem Int Ed Engl 2024; 63:e202411725. [PMID: 39045805 DOI: 10.1002/anie.202411725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 07/25/2024]
Abstract
The strategy of in vivo self-assembly has been developed for improved enrichment and long-term retention of anticancer drug in tumor tissues. However, most self-assemblies with non-covalent bonding interactions are susceptible to complex physiological environments, leading to weak stability and loss of biological function. Here, we develop a coupling-induced assembly (CIA) strategy to generate covalently crosslinked nanofibers, which is applied for in situ constructing artificial shell on mitochondria. The oxidation-responsive peptide-porphyrin conjugate P1 is synthesized, which self-assemble into nanoparticles. Under the oxidative microenvironment of mitochondria, the coupling of thiols in P1 causes the formation of dimers, which is further ordered and stacked into crosslinked nanofibers. As a result, the artificial shell is constructed on the mitochondria efficiently through multivalent cooperative interactions due to the increased binding sites. Under ultrasound (US) irradiation, the porphyrin molecules in the shell produce a large amount of reactive oxygen species (ROS) that act on the adjacent mitochondrial membrane, exhibiting ~2-fold higher antitumor activity than nanoparticles in vitro and in vivo. Therefore, the mitochondria-targeted CIA strategy provides a novel perspective on improved sonodynamic therapy (SDT) and shows potential applications in antitumor therapies.
Collapse
Affiliation(s)
- Ben-Li Song
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jia-Qi Wang
- Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, 150081, China
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin Medical University, Harbin, 150001, China
| | - Guang-Xu Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Ning-Bo Yi
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Ying-Jin Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Lei Zhou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Ying-Hua Guan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Xue-Hao Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Wen-Fu Zheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Zeng-Ying Qiao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Hao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| |
Collapse
|
3
|
Ismail M, Wang Y, Li Y, Liu J, Zheng M, Zou Y. Stimuli-Responsive Polymeric Nanocarriers Accelerate On-Demand Drug Release to Combat Glioblastoma. Biomacromolecules 2024; 25:6250-6282. [PMID: 39259212 DOI: 10.1021/acs.biomac.4c00722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Glioblastoma multiforme (GBM) is a highly malignant brain tumor with a poor prognosis and limited treatment options. Drug delivery by stimuli-responsive nanocarriers holds great promise for improving the treatment modalities of GBM. At the beginning of the review, we highlighted the stimuli-active polymeric nanocarriers carrying therapies that potentially boost anti-GBM responses by employing endogenous (pH, redox, hypoxia, enzyme) or exogenous stimuli (light, ultrasonic, magnetic, temperature, radiation) as triggers for controlled drug release mainly via hydrophobic/hydrophilic transition, degradability, ionizability, etc. Modifying these nanocarriers with target ligands further enhanced their capacity to traverse the blood-brain barrier (BBB) and preferentially accumulate in glioma cells. These unique features potentially lead to more effective brain cancer treatment with minimal adverse reactions and superior therapeutic outcomes. Finally, the review summarizes the existing difficulties and future prospects in stimuli-responsive nanocarriers for treating GBM. Overall, this review offers theoretical guidelines for developing intelligent and versatile stimuli-responsive nanocarriers to facilitate precise drug delivery and treatment of GBM in clinical settings.
Collapse
Affiliation(s)
- Muhammad Ismail
- Department of Radiotherapy and Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan 475000, China
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Yibin Wang
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Yundong Li
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Jiayi Liu
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Meng Zheng
- Department of Radiotherapy and Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan 475000, China
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Yan Zou
- Department of Radiotherapy and Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan 475000, China
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| |
Collapse
|
4
|
Pantl O, Chiovini B, Szalay G, Turczel G, Kovács E, Mucsi Z, Rózsa B, Cseri L. Seeing and Cleaving: Turn-Off Fluorophore Uncaging and Its Application in Hydrogel Photopatterning and Traceable Neurotransmitter Photocages. ACS APPLIED MATERIALS & INTERFACES 2024; 16. [PMID: 39368105 PMCID: PMC11492179 DOI: 10.1021/acsami.4c10861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/07/2024]
Abstract
The advancements in targeted drug release and experimental neuroscience have amplified the scientific interest in photolabile protecting groups (PPGs) and photouncaging. The growing need for the detection of uncaging events has led to the development of reporters with fluorescence turn-on upon uncaging. In contrast, fluorescent tags with turn-off properties have been drastically underexplored, although there are applications where they would be sought after. In this work, a rhodamine-based fluorescent tag is developed with signal turn-off following photouncaging. One-photon photolysis experiments reveal a ready loss of red fluorescence signal upon UV (365 nm) irradiation, while no significant change is observed in control experiments in the absence of PPG or with irradiation around the absorption maximum of the fluorophore (595 nm). The two-photon photolysis of the turn-off fluorescent tag is explored in hydrogel photolithography experiments. The hydrogel-bound tag enables the power-, dwell time-, and wavelength-dependent construction of intricate patterns and gradients. Finally, a prominent caged neurotransmitter (MNI-Glu) is modified with the fluorescent tag, resulting in the glutamate precursor named as GlutaTrace with fluorescence traceability and turn-off upon photouncaging. GlutaTrace is successfully applied for the visualization of glutamate precursor distribution following capillary microinjection and for the selective excitation of neurons in a mouse brain model.
Collapse
Affiliation(s)
- Orsolya Pantl
- BrainVisionCenter, 43−45 Liliom Str., H-1094 Budapest, Hungary
| | - Balázs Chiovini
- Laboratory
of 3D Functional Network and Dendritic Imaging, HUN-REN Institute of Experimental Medicine, 43 Szigony Str., H-1083 Budapest, Hungary
- The
Faculty of Information Technology, Pázmány
Péter Catholic University, 50 Práter Str., H-1083 Budapest, Hungary
| | - Gergely Szalay
- Laboratory
of 3D Functional Network and Dendritic Imaging, HUN-REN Institute of Experimental Medicine, 43 Szigony Str., H-1083 Budapest, Hungary
| | - Gábor Turczel
- NMR
Research Laboratory, Centre for Structural Science, HUN-REN Research Centre for Natural Sciences, 2 Magyar tudósok körútja, H-1117 Budapest, Hungary
| | - Ervin Kovács
- The
Faculty of Information Technology, Pázmány
Péter Catholic University, 50 Práter Str., H-1083 Budapest, Hungary
- Institute
of Materials and Environmental Chemistry, HUN-REN Research Centre
for Natural Sciences, 2 Magyar tudósok körútja, H-1117 Budapest, Hungary
| | - Zoltán Mucsi
- BrainVisionCenter, 43−45 Liliom Str., H-1094 Budapest, Hungary
- Institute
of Chemistry, Faculty of Materials Science and Engineering, University of Miskolc, H-3515 Miskolc, Hungary
| | - Balázs Rózsa
- BrainVisionCenter, 43−45 Liliom Str., H-1094 Budapest, Hungary
- Laboratory
of 3D Functional Network and Dendritic Imaging, HUN-REN Institute of Experimental Medicine, 43 Szigony Str., H-1083 Budapest, Hungary
- The
Faculty of Information Technology, Pázmány
Péter Catholic University, 50 Práter Str., H-1083 Budapest, Hungary
| | - Levente Cseri
- BrainVisionCenter, 43−45 Liliom Str., H-1094 Budapest, Hungary
- Department
of Organic Chemistry and Technology, Budapest
University of Technology and Economics, 3 Műegyetem rakpart, H-1111 Budapest, Hungary
| |
Collapse
|
5
|
Hu J, Wu P, Li Y, Li Q, Wang S, Liu Y, Qian K, Yang G. Discovering Photoswitchable Molecules for Drug Delivery with Large Language Models and Chemist Instruction Training. Pharmaceuticals (Basel) 2024; 17:1300. [PMID: 39458941 PMCID: PMC11510428 DOI: 10.3390/ph17101300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
Background: As large language models continue to expand in size and diversity, their substantial potential and the relevance of their applications are increasingly being acknowledged. The rapid advancement of these models also holds profound implications for the long-term design of stimulus-responsive materials used in drug delivery. Methods: The large model used Hugging Face's Transformers package with BigBird, Gemma, and GPT NeoX architectures. Pre-training used the PubChem dataset, and fine-tuning used QM7b. Chemist instruction training was based on Direct Preference Optimization. Drug Likeness, Synthetic Accessibility, and PageRank Scores were used to filter molecules. All computational chemistry simulations were performed using ORCA and Time-Dependent Density-Functional Theory. Results: To optimize large models for extensive dataset processing and comprehensive learning akin to a chemist's intuition, the integration of deeper chemical insights is imperative. Our study initially compared the performance of BigBird, Gemma, GPT NeoX, and others, specifically focusing on the design of photoresponsive drug delivery molecules. We gathered excitation energy data through computational chemistry tools and further investigated light-driven isomerization reactions as a critical mechanism in drug delivery. Additionally, we explored the effectiveness of incorporating human feedback into reinforcement learning to imbue large models with chemical intuition, enhancing their understanding of relationships involving -N=N- groups in the photoisomerization transitions of photoresponsive molecules. Conclusions: We implemented an efficient design process based on structural knowledge and data, driven by large language model technology, to obtain a candidate dataset of specific photoswitchable molecules. However, the lack of specialized domain datasets remains a challenge for maximizing model performance.
Collapse
Affiliation(s)
- Junjie Hu
- Bioengineering Department and Imperial-X, Imperial College London, London W12 7SL, UK; (J.H.); (Q.L.); (S.W.)
| | - Peng Wu
- School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750014, China;
| | - Yulin Li
- Department of Mathematics, The Chinese University of Hong Kong, Shatin, Hong Kong;
| | - Qi Li
- Bioengineering Department and Imperial-X, Imperial College London, London W12 7SL, UK; (J.H.); (Q.L.); (S.W.)
| | - Shiyi Wang
- Bioengineering Department and Imperial-X, Imperial College London, London W12 7SL, UK; (J.H.); (Q.L.); (S.W.)
| | - Yang Liu
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan 030032, China;
| | - Kun Qian
- Department of Information and Intelligence Development, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Guang Yang
- Bioengineering Department and Imperial-X, Imperial College London, London W12 7SL, UK; (J.H.); (Q.L.); (S.W.)
- National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
- Cardiovascular Research Centre, Royal Brompton Hospital, London SW3 6NP, UK
- School of Biomedical Engineering & Imaging Sciences, King’s College London, London WC2R 2LS, UK
| |
Collapse
|
6
|
Chu H, Xue J, Yang Y, Zheng H, Luo D, Li Z. Advances of Smart Stimulus-Responsive Microneedles in Cancer Treatment. SMALL METHODS 2024; 8:e2301455. [PMID: 38148309 DOI: 10.1002/smtd.202301455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/09/2023] [Indexed: 12/28/2023]
Abstract
Microneedles (MNs) have emerged as a highly promising technology for delivering drugs via the skin. They provide several benefits, including high drug bioavailability, non-invasiveness, painlessness, and high safety. Traditional strategies for intravenous delivery of anti-tumor drugs have risks of systemic toxicity and easy development of drug resistance, while MN technology facilitates precise delivery and on-demand release of drugs in local tissues. In addition, by further combining with stimulus-responsive materials, the construction of smart stimulus-responsive MNs can be achieved, which can respond to specific physical/chemical stimuli from the internal or external environment, thereby further improving the accuracy of tumor treatment and reducing toxicity to surrounding tissues/cells. This review systematically summarizes the classification, materials, and reaction mechanisms of stimulus-responsive MNs, outlines the benefits and challenges of various types of MNs, and details their application and latest progress in cancer treatment. Finally, the development prospects of smart MNs in tumor treatment are also discussed, bringing inspiration for future precision treatment of tumors.
Collapse
Affiliation(s)
- Huaqing Chu
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Jiangtao Xue
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Yuan Yang
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Hui Zheng
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Dan Luo
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Zhou Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| |
Collapse
|
7
|
Zheng Y, Zhu L, Ke C, Li Y, Zhou Z, Jiang M, Wang F, He P, Zhou X, Jiang ZX, Chen S. Fluorinated macromolecular amphiphiles as prototypic molecular drones. Proc Natl Acad Sci U S A 2024; 121:e2405877121. [PMID: 39163338 PMCID: PMC11363298 DOI: 10.1073/pnas.2405877121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/14/2024] [Indexed: 08/22/2024] Open
Abstract
The advent of drones has revolutionized various aspects of our lives, and in the realm of biological systems, molecular drones hold immense promise as "magic bullets" for major diseases. Herein, we introduce a unique class of fluorinated macromolecular amphiphiles, designed in the shape of jellyfish, serving as exemplary molecular drones for fluorine-19 MRI (19F MRI) and fluorescence imaging (FLI)-guided drug delivery, status reporting, and targeted cancer therapy. Functioning akin to their mechanical counterparts, these biocompatible molecular drones autonomously assemble with hydrophobic drugs to form uniform nanoparticles, facilitating efficient drug delivery into cells. The status of drug delivery can be tracked through aggregation-induced emission (AIE) of FLI and 19F MRI. Furthermore, when loaded with a heptamethine cyanine fluorescent dye IR-780, these molecular drones enable near-infrared (NIR) FL detection of tumors and precise delivery of the photosensitizer. Similarly, when loaded with doxorubicin (DOX), they enable targeted chemotherapy with fluorescence resonance energy transfer (FRET) FL for real-time status updates, resulting in enhanced therapeutic efficacy. Compared to conventional drug delivery systems, molecular drones stand out for their simplicity, precise structure, versatility, and ability to provide instantaneous status updates. This study presents prototype molecular drones capable of executing fundamental drone functions, laying the groundwork for the development of more sophisticated molecular machines with significant biomedical implications.
Collapse
Affiliation(s)
- Yujie Zheng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan430071, China
- School of Pharmaceutical Sciences, Wuhan University, Wuhan430071, China
| | - Lijun Zhu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan430071, China
| | - Changsheng Ke
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan430071, China
- School of Pharmaceutical Sciences, Wuhan University, Wuhan430071, China
| | - Yu Li
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan430071, China
| | - Zhiwen Zhou
- School of Pharmaceutical Sciences, Wuhan University, Wuhan430071, China
| | - Mou Jiang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan430071, China
| | - Fang Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan430071, China
| | - Pei He
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan430071, China
| | - Xin Zhou
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan430071, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Zhong-Xing Jiang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan430071, China
- University of Chinese Academy of Sciences, Beijing100049, China
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai200032, China
| | - Shizhen Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan430071, China
- University of Chinese Academy of Sciences, Beijing100049, China
| |
Collapse
|
8
|
Wang Y, Meng L, Zhao F, Zhao L, Gao W, Yu Q, Chen P, Sun Y. Harnessing External Irradiation for Precise Activation of Metal-Based Agents in Cancer Therapy. Chembiochem 2024; 25:e202400305. [PMID: 38825577 DOI: 10.1002/cbic.202400305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/01/2024] [Accepted: 06/02/2024] [Indexed: 06/04/2024]
Abstract
Cancer is a significant global health issue. Platinum-based chemotherapy drugs, including cisplatin, are crucial in clinical anti-cancer treatment. However, these drugs have limitations such as drug resistance, non-specific distribution, and irreversible toxic and side effects. In recent years, the development of metal-based agents has led to the discovery of other anti-cancer effects beyond chemotherapy. Precise spatiotemporal controlled external irradiation can activate metal-based agents at specific sites and play a different role from traditional chemotherapy. These strategies can not only enhance the anti-cancer efficiency, but also show fewer side effects and non-cross-drug resistance, which are ideal approaches to solve the problems caused by traditional platinum-based chemotherapy drugs. In this review, we focus on various metal-based agent-mediated cancer therapies that are activated by three types of external irradiation: near-infrared (NIR) light, ultrasound (US), and X-ray, and give some prospects. We hope that this review will promote the generation of new kinds of metal-based anti-cancer agents.
Collapse
Affiliation(s)
- Yuting Wang
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China
| | - Liling Meng
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China
| | - Fang Zhao
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Nanning, 530021, China
| | - Limei Zhao
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China
| | - Wei Gao
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China
| | - Qi Yu
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China
| | - Peiyao Chen
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China
| | - Yao Sun
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| |
Collapse
|
9
|
Luo J, Zhang H, Chen Q. Near-Infrared Light-Mediated Antibacterial Photodynamic Therapy Based on Erythrosine-Functionalized Mesoporous Silica-Coated Upconversion Nanoplatform. ACS OMEGA 2024; 9:34799-34807. [PMID: 39157091 PMCID: PMC11325522 DOI: 10.1021/acsomega.4c04310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/16/2024] [Accepted: 07/24/2024] [Indexed: 08/20/2024]
Abstract
Infectious diseases caused by bacteria pose a serious threat to public health, and more worryingly, the unregulated application of antibiotics accelerates the emergence of bacterial resistance, presenting a major challenge to the effective treatment of infectious diseases caused by bacteria. Therefore, there is an urgent necessity to develop efficient and safe antimicrobial systems. Photodynamic therapy (PDT) is an attractive therapeutic approach that does not induce bacterial resistance. However, the clinical application of PDT has been limited by several factors, including the lower tissue penetration depth of photoactivation under visible light irradiation and the uncertain biosafety of photosensitizers (PS). This work presents an near infrared (NIR)-triggered core-shell upconversion nanoparticle-based PDT system composed of mesoporous silica-coated lanthanide-doped upconversion nanoparticles loaded with the photosensitizer erythrosine (UCSE). Upon NIR-triggering, erythrosine generates highly efficient reactive oxygen species that disrupt the cell membranes of Staphylococcus aureus and Escherichia coli, exhibiting a potent photodynamic antimicrobial effect. It is worth noting that the UCSE also exhibits excellent biosafety. In conclusion, we present an efficient NIR-triggered nanoantimicrobial system with excellent antimicrobial capacity and biosafety, which is a new therapeutic strategy for the control of bacterial infectious diseases.
Collapse
Affiliation(s)
| | | | - Qingqing Chen
- Department of Stomatology, Chengdu Seventh People’s Hospital (Affiliated
Cancer Hospital of Chengdu Medical College), 610041 Chengdu, China
| |
Collapse
|
10
|
Hu J, Wu P, Wang S, Wang B, Yang G. A Human Feedback Strategy for Photoresponsive Molecules in Drug Delivery: Utilizing GPT-2 and Time-Dependent Density Functional Theory Calculations. Pharmaceutics 2024; 16:1014. [PMID: 39204359 PMCID: PMC11359544 DOI: 10.3390/pharmaceutics16081014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/11/2024] [Accepted: 07/19/2024] [Indexed: 09/04/2024] Open
Abstract
Photoresponsive drug delivery stands as a pivotal frontier in smart drug administration, leveraging the non-invasive, stable, and finely tunable nature of light-triggered methodologies. The generative pre-trained transformer (GPT) has been employed to generate molecular structures. In our study, we harnessed GPT-2 on the QM7b dataset to refine a UV-GPT model with adapters, enabling the generation of molecules responsive to UV light excitation. Utilizing the Coulomb matrix as a molecular descriptor, we predicted the excitation wavelengths of these molecules. Furthermore, we validated the excited state properties through quantum chemical simulations. Based on the results of these calculations, we summarized some tips for chemical structures and integrated them into the alignment of large-scale language models within the reinforcement learning from human feedback (RLHF) framework. The synergy of these findings underscores the successful application of GPT technology in this critical domain.
Collapse
Affiliation(s)
- Junjie Hu
- Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Peng Wu
- School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750014, China
| | - Shiyi Wang
- Bioengineering Department and Imperial-X, Imperial College London, London W12 7SL, UK
| | - Binju Wang
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Guang Yang
- Bioengineering Department and Imperial-X, Imperial College London, London W12 7SL, UK
- National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
- Cardiovascular Research Centre, Royal Brompton Hospital, London SW3 6NP, UK
- School of Biomedical Engineering & Imaging Sciences, King's College London, London WC2R 2LS, UK
| |
Collapse
|
11
|
Yu N, Zhou J, Ding M, Li M, Peng S, Li J. Sono-Triggered Cascade Lactate Depletion by Semiconducting Polymer Nanoreactors for Cuproptosis-Immunotherapy of Pancreatic Cancer. Angew Chem Int Ed Engl 2024; 63:e202405639. [PMID: 38708791 DOI: 10.1002/anie.202405639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/07/2024]
Abstract
The high level of lactate in tumor microenvironment not only promotes tumor development and metastasis, but also induces immune escape, which often leads to failures of various tumor therapy strategies. We here report a sono-triggered cascade lactate depletion strategy by using semiconducting polymer nanoreactors (SPNLCu) for cancer cuproptosis-immunotherapy. The SPNLCu mainly contain a semiconducting polymer as sonosensitizer, lactate oxidase (LOx) conjugated via a reactive oxygen species (ROS)-cleavable linker and chelated Cu2+. Upon ultrasound (US) irradiation, the semiconducting polymer generates singlet oxygen (1O2) to cut ROS-cleavable linker to allow the release of LOx that catalyzes lactate depletion to produce hydrogen peroxide (H2O2). The Cu2+ will be reduced to Cu+ in tumor microenvironment, which reacts with the produced H2O2 to obtain hydroxyl radical (⋅OH) that further improves LOx release via destroying ROS-cleavable linkers. As such, sono-triggered cascade release of LOx achieves effective lactate depletion, thus relieving immunosuppressive roles of lactate. Moreover, the toxic Cu+ induces cuproptosis to cause immunogenic cell death (ICD) for activating antitumor immunological effect. SPNLCu are used to treat both subcutaneous and deep-tissue orthotopic pancreatic cancer with observably enhanced efficacy in restricting the tumor growths. This study thus provides a precise and effective lactate depletion tactic for cancer therapy.
Collapse
Affiliation(s)
- Ningyue Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Jianhui Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Mengbin Ding
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Meng Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Shaojun Peng
- Center for Biological Science and Technology & College of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China
| | - Jingchao Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
12
|
Shao Q, Zhang F, Li C, Yang Y, Liu S, Chen G, Fan B. Design of a prodrug photocage for cancer cells detection and anticancer drug release. Talanta 2024; 274:126002. [PMID: 38613948 DOI: 10.1016/j.talanta.2024.126002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/15/2024]
Abstract
Developing probes for simultaneous diagnosis and killing of cancer cells is crucial, yet challenging. This article presents the design and synthesis of a novel Rhodamine B fluorescence probe. The design strategy involves utilizing an anticancer drug (Melphalan) to bind with a fluorescent group (HRhod-OH), forming HRhod-MeL, which is non-fluorescent. However, when exposed to the high levels of reactive oxygen species (ROS) of cancer cells, HRhod-MeL transforms into a red-emitting Photocage (Rhod-MeL), and selectively accumulates in the mitochondria of cancer cells, where, when activated with green light (556 nm), anti-cancer drugs released. The Photocage improve the efficacy of anti-cancer drugs and enables the precise diagnosis and killing of cancer cells. Therefore, the prepared Photocage can detect cancer cells and release anticancer drugs in situ, which provides a new method for the development of prodrugs.
Collapse
Affiliation(s)
- Qianshan Shao
- School of Pharmacy, Hubei University of Science and Technology, No.88, Xianning avenue, XiananDistrict, Xianning, 437000, China
| | - Fei Zhang
- Hubei Provincial Key Laboratory of Radiation Chemistry and Functional Materials, Hubei University of Science and Technology, No.88, Xianning Avenue, Xianan District, Xianning, 437000, China
| | - Chunxiao Li
- School of Pharmacy, Hubei University of Science and Technology, No.88, Xianning avenue, XiananDistrict, Xianning, 437000, China
| | - Yuyu Yang
- School of Pharmacy, Hubei University of Science and Technology, No.88, Xianning avenue, XiananDistrict, Xianning, 437000, China
| | - Shihan Liu
- School of Pharmacy, Hubei University of Science and Technology, No.88, Xianning avenue, XiananDistrict, Xianning, 437000, China
| | - Guang Chen
- Shanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shanxi University of Science and Technology, Xi'an, 710021, China.
| | - Baolei Fan
- School of Pharmacy, Hubei University of Science and Technology, No.88, Xianning avenue, XiananDistrict, Xianning, 437000, China; Hubei Provincial Key Laboratory of Radiation Chemistry and Functional Materials, Hubei University of Science and Technology, No.88, Xianning Avenue, Xianan District, Xianning, 437000, China.
| |
Collapse
|
13
|
Zhou Y, Xu M, Shen W, Xu Y, Shao A, Xu P, Yao K, Han H, Ye J. Recent Advances in Nanomedicine for Ocular Fundus Neovascularization Disease Management. Adv Healthc Mater 2024; 13:e2304626. [PMID: 38406994 PMCID: PMC11468720 DOI: 10.1002/adhm.202304626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/22/2024] [Indexed: 02/27/2024]
Abstract
As an indispensable part of the human sensory system, visual acuity may be impaired and even develop into irreversible blindness due to various ocular pathologies. Among ocular diseases, fundus neovascularization diseases (FNDs) are prominent etiologies of visual impairment worldwide. Intravitreal injection of anti-vascular endothelial growth factor drugs remains the primary therapy but is hurdled by common complications and incomplete potency. To renovate the current therapeutic modalities, nanomedicine emerged as the times required, which is endowed with advanced capabilities, able to fulfill the effective ocular fundus drug delivery and achieve precise drug release control, thus further improving the therapeutic effect. This review provides a comprehensive summary of advances in nanomedicine for FND management from state-of-the-art studies. First, the current therapeutic modalities for FNDs are thoroughly introduced, focusing on the key challenges of ocular fundus drug delivery. Second, nanocarriers are comprehensively reviewed for ocular posterior drug delivery based on the nanostructures: polymer-based nanocarriers, lipid-based nanocarriers, and inorganic nanoparticles. Thirdly, the characteristics of the fundus microenvironment, their pathological changes during FNDs, and corresponding strategies for constructing smart nanocarriers are elaborated. Furthermore, the challenges and prospects of nanomedicine for FND management are thoroughly discussed.
Collapse
Affiliation(s)
- Yifan Zhou
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Mingyu Xu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Wenyue Shen
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Yufeng Xu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - An Shao
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Peifang Xu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Ke Yao
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Haijie Han
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Juan Ye
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| |
Collapse
|
14
|
Jeon S, Ahn J, Jung MC, Woo HK, Bang J, Jung BK, Oh S, Lee SY, Lee KJ, Paik T, Ha DH, Ahn JP, Jeong S, Kim DH, Noh JH, Jang HS, Han MJ, Oh SJ. Defect Engineering of Metal Halide Perovskite Nanocrystals via Spontaneous Diffusion of Ag Nanocrystals. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307032. [PMID: 38145359 DOI: 10.1002/smll.202307032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/19/2023] [Indexed: 12/26/2023]
Abstract
Perovskite nanocrystals (NCs) have emerged as a promising building block for the fabrication of optic-/optoelectronic-/electronic devices owing to their superior characteristics, such as high absorption coefficient, rapid ion mobilities, and tunable energy levels. However, their low structural stability and poor surface passivation have restricted their application to next-generation devices. Herein, a drug delivery system (DDS)-inspired post-treatment strategy is reported for improving their structural stability by doping of Ag into CsPbBr3 (CPB) perovskite NCs; delivery to damaged sites can promote their structural recovery slowly and uniformly, averting the permanent loss of their intrinsic characteristics. Ag NCs are designed through surface-chemistry tuning and structural engineering to enable their circulation in CPB NC dispersions, followed by their delivery to the CPB NC surface, defect-site recovery, and defect prevention. The perovskite-structure healing process through the DDS-type process (with Ag NCs as the drug) is analyzed by a combination of theoretical calculations (with density functional theory) and experimental analyses. The proposed DDS-inspired healing strategy significantly enhances the optical properties and stability of perovskite NCs, enabling the fabrication of white light-emitting diodes.
Collapse
Affiliation(s)
- Sanghyun Jeon
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Junhyuk Ahn
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Myung-Chul Jung
- Department Physics, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Ho Kun Woo
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Junsung Bang
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Byung Ku Jung
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Seongkeun Oh
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Sang Yeop Lee
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Kyu Joon Lee
- Advanced Analysis Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Taejong Paik
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Don-Hyung Ha
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Jae-Pyoung Ahn
- Advanced Analysis Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Sohee Jeong
- Materials Architecturing Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Dong Hoe Kim
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jun Hong Noh
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, 02841, Republic of Korea
- KU-KIST Green School Graduate School of Energy and Environment, Korea University, Seoul, 02841, Republic of Korea
- Department of Integrative Energy Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Ho Seong Jang
- Materials Architecturing Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Myung Joon Han
- Department Physics, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Soong Ju Oh
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
15
|
Tang J, Luo Y, Wang Q, Wu J, Wei Y. Stimuli-Responsive Delivery Systems for Intervertebral Disc Degeneration. Int J Nanomedicine 2024; 19:4735-4757. [PMID: 38813390 PMCID: PMC11135562 DOI: 10.2147/ijn.s463939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/13/2024] [Indexed: 05/31/2024] Open
Abstract
As a major cause of low back pain, intervertebral disc degeneration is an increasingly prevalent chronic disease worldwide that leads to huge annual financial losses. The intervertebral disc consists of the inner nucleus pulposus, outer annulus fibrosus, and sandwiched cartilage endplates. All these factors collectively participate in maintaining the structure and physiological functions of the disc. During the unavoidable degeneration stage, the degenerated discs are surrounded by a harsh microenvironment characterized by acidic, oxidative, inflammatory, and chaotic cytokine expression. Loss of stem cell markers, imbalance of the extracellular matrix, increase in inflammation, sensory hyperinnervation, and vascularization have been considered as the reasons for the progression of intervertebral disc degeneration. The current treatment approaches include conservative therapy and surgery, both of which have drawbacks. Novel stimuli-responsive delivery systems are more promising future therapeutic options than traditional treatments. By combining bioactive agents with specially designed hydrogels, scaffolds, microspheres, and nanoparticles, novel stimuli-responsive delivery systems can realize the targeted and sustained release of drugs, which can both reduce systematic adverse effects and maximize therapeutic efficacy. Trigger factors are categorized into internal (pH, reactive oxygen species, enzymes, etc.) and external stimuli (photo, ultrasound, magnetic, etc.) based on their intrinsic properties. This review systematically summarizes novel stimuli-responsive delivery systems for intervertebral disc degeneration, shedding new light on intervertebral disc therapy.
Collapse
Affiliation(s)
- Jianing Tang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- First Clinic School, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Yuexin Luo
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- First Clinic School, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Qirui Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- First Clinic School, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Juntao Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- First Clinic School, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Yulong Wei
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| |
Collapse
|
16
|
Sun L, Li Z, Lan J, Wu Y, Zhang T, Ding Y. Better together: nanoscale co-delivery systems of therapeutic agents for high-performance cancer therapy. Front Pharmacol 2024; 15:1389922. [PMID: 38831883 PMCID: PMC11144913 DOI: 10.3389/fphar.2024.1389922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/22/2024] [Indexed: 06/05/2024] Open
Abstract
Combination therapies can enhance the sensitivity of cancer to drugs, lower drug doses, and reduce side effects in cancer treatment. However, differences in the physicochemical properties and pharmacokinetics of different therapeutic agents limit their application. To avoid the above dilemma and achieve accurate control of the synergetic ratio, a nanoscale co-delivery system (NCDS) has emerged as a prospective tool for combined therapy in cancer treatment, which is increasingly being used to co-load different therapeutic agents. In this study, we have summarized the mechanisms of therapeutic agents in combination for cancer therapy, nanoscale carriers for co-delivery, drug-loading strategies, and controlled/targeted co-delivery systems, aiming to give a general picture of these powerful approaches for future NCDS research studies.
Collapse
Affiliation(s)
- Liyan Sun
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhe Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jinshuai Lan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ya Wu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue Ding
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
17
|
Guidi L, Cascone MG, Rosellini E. Light-responsive polymeric nanoparticles for retinal drug delivery: design cues, challenges and future perspectives. Heliyon 2024; 10:e26616. [PMID: 38434257 PMCID: PMC10906429 DOI: 10.1016/j.heliyon.2024.e26616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/05/2024] Open
Abstract
A multitude of sight-threatening retinal diseases, affecting hundreds of millions around the globe, lack effective pharmacological treatments due to ocular barriers and common drug delivery limitations. Polymeric nanoparticles (PNPs) are versatile drug carriers with sustained drug release profiles and tunable physicochemical properties which have been explored for ocular drug delivery to both anterior and posterior ocular tissues. PNPs can incorporate a wide range of drugs and overcome the challenges of conventional retinal drug delivery. Moreover, PNPs can be engineered to respond to specific stimuli such as ultraviolet, visible, or near-infrared light, and allow precise spatiotemporal control of the drug release, enabling tailored treatment regimens and reducing the number of required administrations. The objective of this study is to emphasize the therapeutic potential of light-triggered drug-loaded polymeric nanoparticles to treat retinal diseases through an exploration of ocular pathologies, challenges in drug delivery, current production methodologies and recent applications. Despite challenges, light-responsive PNPs hold the promise of substantially enhancing the treatment landscape for ocular diseases, aiming for an improved quality of life for patients.
Collapse
Affiliation(s)
- Lorenzo Guidi
- Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122, Pisa, Italy
| | - Maria Grazia Cascone
- Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122, Pisa, Italy
| | - Elisabetta Rosellini
- Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122, Pisa, Italy
| |
Collapse
|
18
|
Zhu WF, Empel C, Pelliccia S, Koenigs RM, Proschak E, Hernandez-Olmos V. Photochemistry in Medicinal Chemistry and Chemical Biology. J Med Chem 2024. [PMID: 38457829 DOI: 10.1021/acs.jmedchem.3c02109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Photochemistry has emerged as a transformative force in organic chemistry, significantly expanding the chemical space accessible for medicinal chemistry. Light-induced reactions enable the efficient synthesis of intricate organic structures and have found applications throughout the different stages of the drug discovery and development processes. Moreover, photochemical techniques provide innovative solutions in chemical biology, allowing precise spatiotemporal drug activation and targeted delivery. In this Perspective, we highlight the already numerous remarkable applications and the even more promising future of photochemistry in medicinal chemistry and chemical biology.
Collapse
Affiliation(s)
- W Felix Zhu
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Claire Empel
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074 Aachen, Germany
| | - Sveva Pelliccia
- Department of Pharmacy (DoE 2023-2027), University of Naples Federico II, via D. Montesano 49, 80131 Naples, Italy
| | - Rene M Koenigs
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074 Aachen, Germany
| | - Ewgenij Proschak
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Victor Hernandez-Olmos
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| |
Collapse
|
19
|
Sadiq S, Khan S, Khan I, Khan A, Humayun M, Wu P, Usman M, Khan A, Alanazi AF, Bououdina M. A critical review on metal-organic frameworks (MOFs) based nanomaterials for biomedical applications: Designing, recent trends, challenges, and prospects. Heliyon 2024; 10:e25521. [PMID: 38356588 PMCID: PMC10864983 DOI: 10.1016/j.heliyon.2024.e25521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/16/2024] Open
Abstract
Nanomaterials (NMs) have garnered significant attention in recent decades due to their versatile applications in a wide range of fields. Thanks to their tiny size, enhanced surface modifications, impressive volume-to-surface area ratio, magnetic properties, and customized optical dispersion. NMs experienced an incredible upsurge in biomedical applications including diagnostics, therapeutics, and drug delivery. This minireview will focus on notable examples of NMs that tackle important issues, demonstrating various aspects such as their design, synthesis, morphology, classification, and use in cutting-edge applications. Furthermore, we have classified and outlined the distinctive characteristics of the advanced NMs as nanoscale particles and hybrid NMs. Meanwhile, we emphasize the incredible potential of metal-organic frameworks (MOFs), a highly versatile group of NMs. These MOFs have gained recognition as promising candidates for a wide range of bio-applications, including bioimaging, biosensing, antiviral therapy, anticancer therapy, nanomedicines, theranostics, immunotherapy, photodynamic therapy, photothermal therapy, gene therapy, and drug delivery. Although advanced NMs have shown great potential in the biomedical field, their use in clinical applications is still limited by issues such as stability, cytotoxicity, biocompatibility, and health concerns. This review article provides a thorough analysis offering valuable insights for researchers investigating to explore new design, development, and expansion opportunities. Remarkably, we ponder the prospects of NMs and nanocomposites in conjunction with current technology.
Collapse
Affiliation(s)
- Samreen Sadiq
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Shoaib Khan
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Iltaf Khan
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Aftab Khan
- Department of Physics, School of Science, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212100, China
| | - Muhammad Humayun
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh, 11586, Saudi Arabia
| | - Ping Wu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Muhammad Usman
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Abbas Khan
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh, 11586, Saudi Arabia
- Department of Chemistry, Abdul Wali Khan University Mardan, 23200, Pakistan
| | - Amal Faleh Alanazi
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh, 11586, Saudi Arabia
| | - Mohamed Bououdina
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh, 11586, Saudi Arabia
| |
Collapse
|
20
|
Wang F, Dong G, Ding M, Yu N, Sheng C, Li J. Dual-Programmable Semiconducting Polymer NanoPROTACs for Deep-Tissue Sonodynamic-Ferroptosis Activatable Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306378. [PMID: 37817359 DOI: 10.1002/smll.202306378] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/14/2023] [Indexed: 10/12/2023]
Abstract
Proteolysis-targeting chimeras (PROTACs) can provide promising opportunities for cancer treatment, while precise regulation of their activities remains challenging to achieve effective and safe therapeutic outcomes. A semiconducting polymer nanoPROTAC (SPNFeP ) is reported that can achieve ultrasound (US) and tumor microenvironment dual-programmable PROTAC activity for deep-tissue sonodynamic-ferroptosis activatable immunotherapy. SPNFeP is formed through a nano-precipitation of a sonodynamic semiconducting polymer, a ferroptosis inducer, and a newly synthesized PROTAC molecule. The semiconducting polymers work as sonosensitizers to produce singlet oxygen (1 O2 ) via sonodynamic effect under US irradiation, and ferroptosis inducers react with intratumoral hydrogen peroxide (H2 O2 ) to generate hydroxyl radical (·OH). Such a dual-programmable reactive oxygen species (ROS) generation not only triggers ferroptosis and immunogenic cell death (ICD), but also induces on-demand activatable delivery of PROTAC molecules into tumor sites. The effectively activated nanoPROTACs degrade nicotinamide phosphoribosyl transferase (NAMPT) to suppress tumor infiltration of myeloid-derived suppressive cells (MDSCs), thus promoting antitumor immunity. In such a way, SPNFeP mediates sonodynamic-ferroptosis activatable immunotherapy for entirely inhibiting tumor growths in both subcutaneous and 2-cm tissue-covered deep tumor mouse models. This study presents a dual-programmable activatable strategy based on PROTACs for effective and precise cancer combinational therapy.
Collapse
Affiliation(s)
- Fengshuo Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Guoqiang Dong
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Mengbin Ding
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Ningyue Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Chunquan Sheng
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Jingchao Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
21
|
Liu H, Lu HH, Alp Y, Wu R, Thayumanavan S. Structural Determinants of Stimuli-Responsiveness in Amphiphilic Macromolecular Nano-assemblies. Prog Polym Sci 2024; 148:101765. [PMID: 38476148 PMCID: PMC10927256 DOI: 10.1016/j.progpolymsci.2023.101765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Stimuli-responsive nano-assemblies from amphiphilic macromolecules could undergo controlled structural transformations and generate diverse macroscopic phenomenon under stimuli. Due to the controllable responsiveness, they have been applied for broad material and biomedical applications, such as biologics delivery, sensing, imaging, and catalysis. Understanding the mechanisms of the assembly-disassembly processes and structural determinants behind the responsive properties is fundamentally important for designing the next generation of nano-assemblies with programmable responsiveness. In this review, we focus on structural determinants of assemblies from amphiphilic macromolecules and their macromolecular level alterations under stimuli, such as the disruption of hydrophilic-lipophilic balance (HLB), depolymerization, decrosslinking, and changes of molecular packing in assemblies, which eventually lead to a series of macroscopic phenomenon for practical purposes. Applications of stimuli-responsive nano-assemblies in delivery, sensing and imaging were also summarized based on their structural features. We expect this review could provide readers an overview of the structural considerations in the design and applications of nanoassemblies and incentivize more explorations in stimuli-responsive soft matters.
Collapse
Affiliation(s)
- Hongxu Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065 P. R. China
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Hung-Hsun Lu
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Yasin Alp
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Ruiling Wu
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - S. Thayumanavan
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
- Department of Biomedical Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
22
|
Gordel-Wójcik M, Malik M, Siomra A, Samoć M, Nyk M. Third-Order Nonlinear Optical Properties of Aqueous Silver Sulfide Quantum Dots. J Phys Chem Lett 2023; 14:11117-11124. [PMID: 38054438 PMCID: PMC10755751 DOI: 10.1021/acs.jpclett.3c02820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 12/07/2023]
Abstract
Wide spectral wavelength range (500-1600 nm) measurements of nonlinear optical properties of silver sulfide (Ag2S, with 2- or 3-mercaptopropionic acid, 2 or 3MPA ligands) quantum dots (QDs) in aqueous colloidal solutions were performed using the Z-scan technique with tunable ∼55 fs laser pulses at 1 kHz. We have identified regions of the occurrence of various NLO effects including two-photon absorption, nonlinear refraction, as well as saturation of one-photon absorption. At the same time, we evaluated the relationship between the properties of the QDs and the variation of the material that covers their surface. The peak two-photon absorption cross section (σ2) values were determined to be 632 ± 271 GM (at 850 nm) for Ag2S-2MPA QDs and 772 ± 100 GM (at 875 nm) for Ag2S-3MPA QDs. The physicochemical factors influencing the three-dimensional self-organization of Ag2S QDs in water as well as their impact on spectroscopic properties were also investigated.
Collapse
Affiliation(s)
- Marta Gordel-Wójcik
- Faculty of Chemistry, University of Wrocław, 14.p F. Joliot-Curie Street, 50-383 Wrocław, Poland
| | - Magdalena Malik
- Faculty of Chemistry, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Agnieszka Siomra
- Institute of Advanced Materials, Faculty of Chemistry,Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, PL-50370 Wrocław, Poland
| | - Marek Samoć
- Institute of Advanced Materials, Faculty of Chemistry,Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, PL-50370 Wrocław, Poland
| | - Marcin Nyk
- Institute of Advanced Materials, Faculty of Chemistry,Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, PL-50370 Wrocław, Poland
| |
Collapse
|
23
|
Li W, Liang M, Qi J, Ding D. Semiconducting Polymers for Cancer Immunotherapy. Macromol Rapid Commun 2023; 44:e2300496. [PMID: 37712920 DOI: 10.1002/marc.202300496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/09/2023] [Indexed: 09/16/2023]
Abstract
As a monumental breakthrough in cancer treatment, immunotherapy has attracted tremendous attention in recent years. However, one challenge faced by immunotherapy is the low response rate and the immune-related adverse events (irAEs). Therefore, it is important to explore new therapeutic strategies and platforms for boosting therapeutic benefits and decreasing the side effects of immunotherapy. In recent years, semiconducting polymer (SP), a category of organic materials with π-conjugated aromatic backbone, has been attracting considerable attention because of their outstanding characteristics such as excellent photophysical features, good biosafety, adjustable chemical flexibility, easy fabrication, and high stability. With these distinct advantages, SP is extensively explored for bioimaging and photo- or ultrasound-activated tumor therapy. Here, the recent advancements in SP-based nanomedicines are summarized for enhanced tumor immunotherapy. According to the photophysical properties of SPs, the cancer immunotherapies enabled by SPs with the photothermal, photodynamic, or sonodynamic functions are highlighted in detail, with a particular focus on the construction of combination immunotherapy and activatable nanoplatforms to maximize the benefits of cancer immunotherapy. Herein, new guidance and comprehensive insights are provided for the design of SPs with desired photophysical properties to realize maximized effectiveness of required biomedical applications.
Collapse
Affiliation(s)
- Wen Li
- Tianjin Key Laboratory of Biomedical Materials and Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Mengyun Liang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Ji Qi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
- School of Materials Science and Engineering & Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, China
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
- School of Materials Science and Engineering & Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, China
| |
Collapse
|
24
|
Rana S, Kumar A. Effect of long-term exposure of mixture of ZnO and CuO nanoparticles on Scenedesmus obliquus. ECOTOXICOLOGY (LONDON, ENGLAND) 2023; 32:1233-1246. [PMID: 38040998 DOI: 10.1007/s10646-023-02710-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/22/2023] [Indexed: 12/03/2023]
Abstract
The present study investigated the possible toxic effect of ZnO and CuO nanoparticles (NPs) on freshwater microalgae, Scenedesmus obliquus at environmentally- relevant nanoparticle concentration (1 mg/L) and high concentration (10 mg/L) in BG-11 medium under white light LED-illumination over 35 days. The effect of time on the stability of media, nanoparticles, and their relation to toxicity to algae was also studied. The transmission electron microscopy indicated structural damage to algae due to the presence of a mixture of nanoparticles (at 10 mg/L). FTIR (Fourier Transform infrared) analysis of a sample containing a mixture of nanoparticles showed an addition of bonds and a difference in the peak location and its intensity values. The inhibition time for biomass was observed between 14 days and 21 days at 10 mg/L NPs. At 1 mg/L, the order of toxicity of NPs to algae was found to be: CuO NPs (highest toxicity) > ZnO NPs>ZnO + CuO NPs (least toxicity). During exposure of algae cells to a mixture of NPs at 10 mg/L NP concentration, a smaller value of metal deposition was observed than that during exposure to individual NPs. Antagonistic toxic effects of two NPs on dry cell weight of algae was observed at both concentration levels. Future work is needed to understand the steps involved in toxicity due to mixture of NPs to algae so that environmental exposures of algae to NPs can be managed and minimized.
Collapse
Affiliation(s)
- Samridhi Rana
- Graduate Student, Department of Civil Engineering, Indian Institute of Technology, New Delhi, India
| | - Arun Kumar
- Professor, Department of Civil Engineering, Indian Institute of Technology, New Delhi, India.
| |
Collapse
|
25
|
Moreira D, Regev O, Basílio N, Marques EF. Light and pH responsive catanionic vesicles based on a chalcone/flavylium photoswitch for smart drug delivery: From molecular design to the controlled release of doxorubicin. J Colloid Interface Sci 2023; 650:2024-2034. [PMID: 37536006 DOI: 10.1016/j.jcis.2023.07.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/08/2023] [Accepted: 07/20/2023] [Indexed: 08/05/2023]
Abstract
Spatially and temporally localized delivery is a promising strategy to circumvent adverse effects of traditional drug therapy such as drug toxicity and prolonged treatments. Stimuli-responsive colloidal nanocarriers can be crucial to attain such goals. Here, we develop a delivery system based on dual light and pH responsive vesicles having a cationic bis-quat gemini surfactant, 12-2-12, and a negatively charged amphiphilic chalcone, C4SCh. The premise is to exploit the chalcone/flavylium interconversion to elicit a morphological change of the vesicles leading to the controlled release of an encapsulated drug. First, the phase behavior of the catanionic system is studied and the desirable composition yielding stable unilamellar vesicles identified and selected for further studies. The solutions containing vesicles (Dh ≈ 200 nm, ζ-potential ≈ 80 mV) are in-depth characterized by light microscopy, cryo-transmission electron microscopy (cryo-TEM), dynamic light scattering (DLS) and surface tension measurements. Upon subjecting the vesicles to UV irradiation (λ = 365 nm) at near neutral pH (≈ 6.0), no morphological effects are observed, yet when irradiation is coupled with pH = 3.0, the majority of the vesicles are disrupted into bilayer fragments. The anticancer drug doxorubicin (DOX) is successfully entrapped in the non-irradiated vesicles, yielding an encapsulation efficiency of ≈ 25% and a loading capacity of ≈ 3%. The release profile of the drug-loaded vesicles is then studied in vitro in four conditions: i) no stimuli (pH = 6.0); ii) irradiation, pH = 6.0; iii) no irradiation and adjusted pH = 3.0; iv) irradiation and adjusted pH = 3.0 Crucially, irradiation at pH = 3.0 leads to a sustained release of DOX to ca. 80% (within 4 h), whereas cases i) and ii) lead to only ≈ 25 % release and case iii) to 50% release but precipitation of the vesicles. Thus, our initial hypothesis is confirmed: we present a proof of concept delivery system where light and pH act as inputs of an AND logic gate mechanism for the controlled release of a relevant biomedical drug (output). This may prove useful if the irradiated nanocarriers meet acidified physiological environments such as tumors sites, endosomes or lysosomes.
Collapse
Affiliation(s)
- Dmitriy Moreira
- CIQUP, IMS (Institute of Molecular Sciences), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal; LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Oren Regev
- Department of Chemical Engineering and (d)Ilse Katz Institute for Nanotechnology, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
| | - Nuno Basílio
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| | - Eduardo F Marques
- CIQUP, IMS (Institute of Molecular Sciences), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal.
| |
Collapse
|
26
|
Zhang J, Li X, Yin Y, Cao G, Wang H. A Biodegradable Nucleotide Coordination Polymer for Enhanced NSCLC Therapy in Combination with Metabolic Modulation. Adv Healthc Mater 2023; 12:e2302187. [PMID: 37607115 DOI: 10.1002/adhm.202302187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/09/2023] [Indexed: 08/24/2023]
Abstract
Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) in the treatment of non-small cell lung cancer (NSCLC) still face challenges of acquired resistance and non-negligible side effects. To overcome these limitations, a biodegradable coordination polymer using guanine deoxynucleotide and ferrous iron (dGNP) is developed for targeted delivery of EGFR-TKIs. dGNPs can efficiently target nucleoside transporters in tumor cells that are regulated by fasting-mimicking diet (FMD). Meanwhile, FMD can augment the therapeutic efficacy of EGFR-TKIs by suppressing EGFR tyrosine kinase phosphorylation and related downstream pathways. In vivo results demonstrate that EGFR-TKIs-laden dGNPs combined with FMD treatment exhibit superior antitumor efficacy and reduced side effect. This study provides an innovative approach to enhance the therapeutic efficacy of EGFR-TKIs through nucleotide nanocarrier and metabolic modulation.
Collapse
Affiliation(s)
- Jie Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoyang Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yue Yin
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Guoliang Cao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Hai Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
27
|
Najjari Z, Sadri F, Varshosaz J. Smart stimuli-responsive drug delivery systems in spotlight of COVID-19. Asian J Pharm Sci 2023; 18:100873. [PMID: 38173712 PMCID: PMC10762358 DOI: 10.1016/j.ajps.2023.100873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/15/2023] [Accepted: 10/11/2023] [Indexed: 01/05/2024] Open
Abstract
The world has been dealing with a novel severe acute respiratory syndrome (SARS-CoV-2) since the end of 2019, which threatens the lives of many people worldwide. COVID-19 causes respiratory infection with different symptoms, from sneezing and coughing to pneumonia and sometimes gastric symptoms. Researchers worldwide are actively developing novel drug delivery systems (DDSs), such as stimuli-responsive DDSs. The ability of these carriers to respond to external/internal and even multiple stimuli is essential in creating "smart" DDS that can effectively control dosage, sustained release, individual variations, and targeted delivery. To conduct a comprehensive literature survey for this article, the terms "Stimuli-responsive", "COVID-19″ and "Drug delivery" were searched on databases/search engines like "Google Scholar", "NCBI", "PubMed", and "Science Direct". Many different types of DDSs have been proposed, including those responsive to various exogenous (light, heat, ultrasound and magnetic field) or endogenous (microenvironmental changes in pH, ROS and enzymes) stimuli. Despite significant progress in DDS research, several challenging issues must be addressed to fill the gaps in the literature. Therefore, this study reviews the drug release mechanisms and applications of endogenous/exogenous stimuli-responsive DDSs while also exploring their potential with respect to COVID-19.
Collapse
Affiliation(s)
- Zeinab Najjari
- Novel Drug Delivery Systems Research Center, Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farzaneh Sadri
- Novel Drug Delivery Systems Research Center, Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jaleh Varshosaz
- Novel Drug Delivery Systems Research Center, Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
28
|
Yang C, Gong Y, Deng M, Ling Y, Wang J, Zhou Y. Discovery of a photosensitizing PI3K inhibitor for tumor therapy: Design, synthesis and in vitro biological evaluation. Bioorg Med Chem Lett 2023; 94:129459. [PMID: 37634762 DOI: 10.1016/j.bmcl.2023.129459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/31/2023] [Accepted: 08/22/2023] [Indexed: 08/29/2023]
Abstract
In drug development, optical triggering of cancer therapy is increasingly used. Herein, we report a novel photosensitive PI3K inhibitor FD2157, which bears a photoprotecting moiety and can be efficiently cleaved with enhanced anticancer activity upon short-term light irradiation. In biological assessment, FD2157 exhibited remarkably enhanced anticancer activity in inhibition of PI3K pathway against melanoma cell lines upon light irradiation (4 min). Hence, this photosensitive PI3K inhibitor FD2157 may represent a valuable tool compound for studying the PI3K pathway and further optimization toward light-triggered cancer treatment.
Collapse
Affiliation(s)
- Chengbin Yang
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China; Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Yimin Gong
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Mingli Deng
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Yun Ling
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Jianxin Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China.
| | - Yaming Zhou
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433, China.
| |
Collapse
|
29
|
Sahandi Zangabad P, Abousalman Rezvani Z, Tong Z, Esser L, Vasani RB, Voelcker NH. Recent Advances in Formulations for Long-Acting Delivery of Therapeutic Peptides. ACS APPLIED BIO MATERIALS 2023; 6:3532-3554. [PMID: 37294445 DOI: 10.1021/acsabm.3c00193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Recent preclinical and clinical studies have focused on the active area of therapeutic peptides due to their high potency, selectivity, and specificity in treating a broad range of diseases. However, therapeutic peptides suffer from multiple disadvantages, such as limited oral bioavailability, short half-life, rapid clearance from the body, and susceptibility to physiological conditions (e.g., acidic pH and enzymolysis). Therefore, high peptide dosages and dose frequencies are required for effective patient treatment. Recent innovations in pharmaceutical formulations have substantially improved therapeutic peptide administration by providing the following advantages: long-acting delivery, precise dose administration, retention of biological activity, and improvement of patient compliance. This review discusses therapeutic peptides and challenges in their delivery and explores recent peptide delivery formulations, including micro/nanoparticles (based on lipids, polymers, porous silicon, silica, and stimuli-responsive materials), (stimuli-responsive) hydrogels, particle/hydrogel composites, and (natural or synthetic) scaffolds. This review further covers the applications of these formulations for prolonged delivery and sustained release of therapeutic peptides and their impact on peptide bioactivity, loading efficiency, and (in vitro/in vivo) release parameters.
Collapse
Affiliation(s)
- Parham Sahandi Zangabad
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutics Science, Monash University, Parkville Campus, Parkville, Victoria 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
| | - Zahra Abousalman Rezvani
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutics Science, Monash University, Parkville Campus, Parkville, Victoria 3052, Australia
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, Victoria 3168, Australia
| | - Ziqiu Tong
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutics Science, Monash University, Parkville Campus, Parkville, Victoria 3052, Australia
| | - Lars Esser
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutics Science, Monash University, Parkville Campus, Parkville, Victoria 3052, Australia
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, Victoria 3168, Australia
| | - Roshan B Vasani
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutics Science, Monash University, Parkville Campus, Parkville, Victoria 3052, Australia
| | - Nicolas H Voelcker
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutics Science, Monash University, Parkville Campus, Parkville, Victoria 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
30
|
Deng Y, Ding M, Zhu L, Zhang Y, Wang F, Zhao L, Li J. Near-infrared light-activated ROS generation using semiconducting polymer nanocatalysts for photodynamic-chemodynamic therapy. J Mater Chem B 2023; 11:8484-8491. [PMID: 37593820 DOI: 10.1039/d3tb00642e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Chemodynamic therapy (CDT) is an emerging treatment strategy for cancer, but the low therapeutic efficacy and potential side effects still limit its applications. In this study, we report a semiconducting polymer nanocatalyst (PGFe) that can generate reactive oxygen species (ROS) only upon near-infrared (NIR) light-activation for photodynamic therapy (PDT)-synergized CDT. Such PGFe consists of a semiconducting polymer as a photosensitizer, iron oxide (Fe3O4) nanoparticles as CDT agents, and glucose oxidase (GOx), all of which are loaded into a singlet oxygen (1O2)-responsive nanocarrier. Under NIR laser irradiation, PGFe produces 1O2 through a photosensitizer-mediated PDT effect, and the produced 1O2 destroys the 1O2-responsive nanocarriers, leading to controlled releases of Fe3O4 nanoparticles and GOx. In a tumor microenvironment, GOx catalyzes glucose degradation to form hydrogen peroxide (H2O2), and thus the CDT effect of Fe3O4 nanoparticles is greatly improved. As such, an amplified ROS level in tumor cells is obtained by PGFe to induce cell death. PGFe can be utilized to treat subcutaneous 4T1 tumors, observably inhibiting the tumor growth and suppressing lung and liver metastasis. This study thus provides a NIR light-activated ROS generation strategy for precise and effective treatments of tumors.
Collapse
Affiliation(s)
- Yingyi Deng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Mengbin Ding
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Liyun Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Yijing Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Fengshuo Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Lingzhou Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| | - Jingchao Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
31
|
Abu-Huwaij R, Alkarawi A, Salman D, Alkarawi F. Exploring the use of niosomes in cosmetics for efficient dermal drug delivery. Pharm Dev Technol 2023; 28:708-718. [PMID: 37448342 DOI: 10.1080/10837450.2023.2233613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/27/2023] [Accepted: 07/02/2023] [Indexed: 07/15/2023]
Abstract
Dermal drug delivery has emerged as a promising alternative to traditional methods of drug administration due to its non-invasive nature and ease of use. However, the stratum corneum, the outermost layer of the skin, presents a significant barrier to drug penetration. Niosomes, self-assembled vesicular structures composed of nonionic surfactants and cholesterol, have been extensively investigated as a means of overcoming this barrier and improving the efficacy of dermal drug delivery. This review summarizes the current state of research on the use of niosomes in dermal drug delivery in cosmetics, with a particular focus on their formulation, characterization, and application in the delivery of various drug classes. The review highlights the advantages of niosomes over conventional drug delivery methods, including improved solubility and stability of drugs, controlled release, and enhanced skin permeation. The review also discusses the challenges associated with niosome-based drug delivery, such as their complex formulation and optimization, and the need for further studies on their long-term safety and toxicity.
Collapse
Affiliation(s)
| | - Adian Alkarawi
- College of Pharmacy, Amman Arab University, Mubis, Jordan
| | - Dima Salman
- College of Pharmacy, Amman Arab University, Mubis, Jordan
| | | |
Collapse
|
32
|
Yan J, Jiang W, Kang G, Li Q, Tao L, Wang X, Yin J. Synergistic chemo-photo anticancer therapy by using reversible Diels-Alder dynamic covalent bond mediated polyprodrug amphiphiles and immunoactivation investigation. Biomater Sci 2023; 11:5819-5830. [PMID: 37439438 DOI: 10.1039/d3bm00889d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Highly efficient endocytosis and multi-approach integrated therapeutic tactics are important factors in oncotherapy. With the aid of thermally reversible furan-maleimide dynamic covalent bonds and the "polyprodrug amphiphiles" concept, thermo- and reduction-responsive PEG(-COOH)Fu/MI(-SS-)CPT copolymers were fabricated by the Diels-Alder (D-A) coupling of hydrophilic Fu(-COOH)-PEG and hydrophobic MI(-SS-)-CPT building blocks. The copolymers could self-assemble to form composite nanoparticles with a photothermal conversion reagent (IR780) and maintain excellent stability. In the in vitro simulated environments, the composite nanoparticles could detach Fu(-COOH)-PEG chains by a retro-D-A reaction upon near-infrared light (NIR) irradiation and reduce the size to facilitate endocytosis. Once in the intracellular environment, glutathione (GSH) could trigger a cascade reaction to release active CPT drugs to achieve chemotherapy, which could be further promoted by NIR light induced photothermal therapy. The in vivo mouse tumor model experiments demonstrated that these nanoparticles had an excellent therapeutic effect on solid tumors and inhibited their recurrence. Not only that, the synergistic chemical and optical therapy induced body immune response was also systematically evaluated; the maturation of dendritic cells, the proliferation of T cells, the increase of high mobility group box protein 1, and the decrease of immunosuppressive regulatory T cells confirmed that such synergistic therapy could effectively provide immune protection to the body. We believe such in situ generation of small-sized therapeutic units brought by a dynamically reversible D-A reaction could expand the pathway to design next generation drug delivery systems possessing superior design philosophy and excellent practice effects compared to currently available ones.
Collapse
Affiliation(s)
- Jinhao Yan
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering Hefei, Anhui, 230009, P. R. China.
| | - Wenlong Jiang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering Hefei, Anhui, 230009, P. R. China.
| | - Guijie Kang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University Hefei, Anhui, 230032, P. R. China.
| | - Qingjie Li
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering Hefei, Anhui, 230009, P. R. China.
| | - Longxiang Tao
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University Hefei, Anhui, 230022, P. R. China.
| | - Xuefu Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University Hefei, Anhui, 230032, P. R. China.
| | - Jun Yin
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering Hefei, Anhui, 230009, P. R. China.
| |
Collapse
|
33
|
Li X, Meng Y, Cheng Z, Li B. Research Progress and Prospect of Stimuli-Responsive Lignin Functional Materials. Polymers (Basel) 2023; 15:3372. [PMID: 37631428 PMCID: PMC10458107 DOI: 10.3390/polym15163372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
As the world's second most abundant renewable natural phenolic polymer after cellulose, lignin is an extremely complex, amorphous, highly cross-linked class of aromatic polyphenolic macromolecules. Due to its special aromatic structure, lignin is considered to be one of the most suitable candidates to replace fossil materials, thus the research on lignin functional materials has received extensive attention. Because lignin has stimuli-sensitive groups such as phenolic hydroxyl, hydroxyl, and carboxyl, the preparation of stimuli-responsive lignin-based functional materials by combining lignin with some stimuli-responsive polymers is a current research hotspot. Therefore, this article will review the research progress of stimuli-responsive lignin-based functional materials in order to guide the subsequent work. Firstly, we elaborate the source and preparation of lignin and various types of lignin pretreatment methods. We then sort out and discuss the preparation of lignin stimulus-responsive functional materials according to different stimuli (pH, light, temperature, ions, etc.). Finally, we further envision the scope and potential value of lignin stimulus-responsive functional materials for applications in actuators, optical coding, optical switches, solar photothermal converters, tissue engineering, and biomedicine.
Collapse
Affiliation(s)
| | | | | | - Bin Li
- College of Chemistry Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; (X.L.); (Y.M.); (Z.C.)
| |
Collapse
|
34
|
Rosales TKO, da Silva FFA, Bernardes ES, Paulo Fabi J. Plant-derived polyphenolic compounds: nanodelivery through polysaccharide-based systems to improve the biological properties. Crit Rev Food Sci Nutr 2023:1-25. [PMID: 37585699 DOI: 10.1080/10408398.2023.2245038] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Plant-derived polyphenols are naturally occurring compounds widely distributed in plants. They have received greater attention in the food and pharmaceutical industries due to their potential health benefits, reducing the risk of some chronic diseases due to their antioxidant, anti-inflammatory, anticancer, cardioprotective, and neuro-action properties. Polyphenolic compounds orally administered can be used as adjuvants in several treatments but with restricted uses due to chemical instability. The review discusses the different structural compositions of polyphenols and their influence on chemical stability. Despite the potential and wide applications, there is a need to improve the delivery of polyphenolics to target the human intestine without massive chemical modifications. Oral administration of polyphenols is unfeasible due to instability, low bioaccessibility, and limited bioavailability. Nano-delivery systems based on polysaccharides (starch, pectin, chitosan, and cellulose) have been identified as a viable option for oral ingestion, potentiate biological effects, and direct-controlled delivery in specific tissues. The time and dose can be individualized for specific diseases, such as intestinal cancer. This review will address the mechanisms by which polysaccharides-based nanostructured systems can protect against degradation and enhance intestinal permeation, oral bioavailability, and the potential application of polysaccharides as nanocarriers for the controlled and targeted delivery of polyphenolic compounds.
Collapse
Affiliation(s)
- Thiécla Katiane Osvaldt Rosales
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
- Instituto de Pesquisa Energéticas e Nucleares - IPEN, São Paulo, SP, Brazil
| | | | | | - João Paulo Fabi
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
- Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo, SP, Brazil
- Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
35
|
Yang Y, Li C, Palmer LC, Stupp SI. Autonomous hydrogel locomotion regulated by light and electric fields. SCIENCE ADVANCES 2023; 9:eadi4566. [PMID: 37531426 PMCID: PMC10396299 DOI: 10.1126/sciadv.adi4566] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/28/2023] [Indexed: 08/04/2023]
Abstract
Autonomous robotic functions in materials beyond simple stimulus-response actuation require the development of functional soft matter that can complete well-organized tasks without step-by-step control. We report the design of photo- and electroactivated hydrogels that can capture and deliver cargo, avoid obstacles, and return without external, stepwise control. By incorporating two spiropyran monomers with different chemical substituents in the hydrogel, we created chemically random networks that enabled photoregulated charge reversal and autonomous behaviors under a constant electric field. In addition, using perturbations in the electric field induced by a dielectric inhomogeneity, the hydrogel could be attracted to high dielectric constant materials and autonomously bypasses the low dielectric constant materials under the guidance of the electric field vector. The photo- and electroactive hydrogels investigated here can autonomously perform tasks using constant external stimuli, an encouraging observation for the potential development of molecularly designed intelligent robotic materials.
Collapse
Affiliation(s)
- Yang Yang
- Center for Bio-Inspired Energy Science, Northwestern University, Evanston, IL 60208, USA
| | - Chuang Li
- Center for Bio-Inspired Energy Science, Northwestern University, Evanston, IL 60208, USA
| | - Liam C Palmer
- Center for Bio-Inspired Energy Science, Northwestern University, Evanston, IL 60208, USA
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL 60611, USA
| | - Samuel I Stupp
- Center for Bio-Inspired Energy Science, Northwestern University, Evanston, IL 60208, USA
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL 60611, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
36
|
Wang X, Zhang H, Chen X, Wu C, Ding K, Sun G, Luo Y, Xiang D. Overcoming tumor microenvironment obstacles: Current approaches for boosting nanodrug delivery. Acta Biomater 2023; 166:42-68. [PMID: 37257574 DOI: 10.1016/j.actbio.2023.05.043] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/12/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023]
Abstract
In order to achieve targeted delivery of anticancer drugs, efficacy improvement, and side effect reduction, various types of nanoparticles are employed. However, their therapeutic effects are not ideal. This phenomenon is caused by tumor microenvironment abnormalities such as abnormal blood vessels, elevated interstitial fluid pressure, and dense extracellular matrix that affect nanoparticle penetration into the tumor's interstitium. Furthermore, nanoparticle properties including size, charge, and shape affect nanoparticle transport into tumors. This review comprehensively goes over the factors hindering nanoparticle penetration into tumors and describes methods for improving nanoparticle distribution by remodeling the tumor microenvironment and optimizing nanoparticle physicochemical properties. Finally, a critical analysis of future development of nanodrug delivery in oncology is further discussed. STATEMENT OF SIGNIFICANCE: This article reviews the factors that hinder the distribution of nanoparticles in tumors, and describes existing methods and approaches for improving the tumor accumulation from the aspects of remodeling the tumor microenvironment and optimizing the properties of nanoparticles. The description of the existing methods and approaches is followed by highlighting their advantages and disadvantages and put forward possible directions for the future researches. At last, the challenges of improving tumor accumulation in nanomedicines design were also discussed. This review will be of great interest to the broad readers who are committed to delivering nanomedicine for cancer treatment.
Collapse
Affiliation(s)
- Xiaohui Wang
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China; Department of Oncology, Chongqing University Jiangjin Hospital, Chongqing 402260, China; Department of Oncology, Jiangjin Central Hospital of Chongqing, Chongqing 402260, China
| | - Hong Zhang
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China; Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong, 250033, China
| | - Xiaohui Chen
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Chunrong Wu
- Department of Oncology, Chongqing University Jiangjin Hospital, Chongqing 402260, China; Department of Oncology, Jiangjin Central Hospital of Chongqing, Chongqing 402260, China
| | - Ke Ding
- Department of Oncology, Chongqing University Jiangjin Hospital, Chongqing 402260, China; Department of Oncology, Jiangjin Central Hospital of Chongqing, Chongqing 402260, China
| | - Guiyin Sun
- Department of Oncology, Chongqing University Jiangjin Hospital, Chongqing 402260, China; Department of Oncology, Jiangjin Central Hospital of Chongqing, Chongqing 402260, China.
| | - Yang Luo
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| | - Debing Xiang
- Department of Oncology, Chongqing University Jiangjin Hospital, Chongqing 402260, China; Department of Oncology, Jiangjin Central Hospital of Chongqing, Chongqing 402260, China.
| |
Collapse
|
37
|
Shamsipur M, Ghavidast A, Pashabadi A. Phototriggered structures: Latest advances in biomedical applications. Acta Pharm Sin B 2023; 13:2844-2876. [PMID: 37521863 PMCID: PMC10372844 DOI: 10.1016/j.apsb.2023.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/12/2023] [Accepted: 04/11/2023] [Indexed: 08/01/2023] Open
Abstract
Non-invasive control of the drug molecules accessibility is a key issue in improving diagnostic and therapeutic procedures. Some studies have explored the spatiotemporal control by light as a peripheral stimulus. Phototriggered drug delivery systems (PTDDSs) have received interest in the past decade among biological researchers due to their capability the control drug release. To this end, a wide range of phototrigger molecular structures participated in the DDSs to serve additional efficiency and a high-conversion release of active fragments under light irradiation. Up to now, several categories of PTDDSs have been extended to upgrade the performance of controlled delivery of therapeutic agents based on well-known phototrigger molecular structures like o-nitrobenzyl, coumarinyl, anthracenyl, quinolinyl, o-hydroxycinnamate and hydroxyphenacyl, where either of one endows an exclusive feature and distinct mechanistic approach. This review conveys the design, photochemical properties and essential mechanism of the most important phototriggered structures for the release of single and dual (similar or different) active molecules that have the ability to quickly reason of the large variety of dynamic biological phenomena for biomedical applications like photo-regulated drug release, synergistic outcomes, real-time monitoring, and biocompatibility potential.
Collapse
|
38
|
Zheng Y, Liu Y, Wu Z, Peng C, Wang Z, Yan J, Yan Y, Li Z, Liu C, Xue J, Tan H, Fu Q, Ding M. Photoallosteric Polymersomes toward On-Demand Drug Delivery and Multimodal Cancer Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210986. [PMID: 36852633 DOI: 10.1002/adma.202210986] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/16/2023] [Indexed: 06/16/2023]
Abstract
Allosteric transitions can modulate the self-assembly and biological function of proteins. It remains, however, tremendously challenging to design synthetic allosteric polymeric assemblies with spatiotemporally switchable hierarchical structures and functionalities. Here, a photoallosteric polymersome is constructed that undergoes a rapid conformational transition from β-sheet to α-helix upon exposure to near-infrared light irradiation. In addition to improving nanoparticle cell penetration and lysosome escape, photoinduced allosteric behavior reconstructs the vesicular membrane structure, which stimulates the release of hydrophilic cytolytic peptide melittin and hydrophobic kinase inhibitor sorafenib. Combining on-demand delivery of multiple therapeutics with phototherapy results in apoptosis and immunogenic death of tumor cells, remold the immune microenvironment and achieve an excellent synergistic anticancer efficacy in vivo without tumor recurrence and metastasis. Such a light-modulated allosteric transition in non-photosensitive polymers provides new insight into the development of smart nanomaterials for biosensing and drug delivery applications.
Collapse
Affiliation(s)
- Yi Zheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yang Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Zhongchao Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Chuan Peng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Zuojie Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Jingyue Yan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yue Yan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Zifen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Congcong Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Jianxin Xue
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Hong Tan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Qiang Fu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Mingming Ding
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
39
|
Zhao T, Chen L, Liu M, Lin R, Cai W, Hung CT, Wang S, Duan L, Zhang F, Elzatahry A, Li X, Zhao D. Emulsion-oriented assembly for Janus double-spherical mesoporous nanoparticles as biological logic gates. Nat Chem 2023; 15:832-840. [PMID: 37055572 DOI: 10.1038/s41557-023-01183-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 03/13/2023] [Indexed: 04/15/2023]
Abstract
The ability of Janus nanoparticles to establish biological logic systems has been widely exploited, yet conventional non/uni-porous Janus nanoparticles are unable to fully mimic biological communications. Here we demonstrate an emulsion-oriented assembly approach for the fabrication of highly uniform Janus double-spherical MSN&mPDA (MSN, mesoporous silica nanoparticle; mPDA, mesoporous polydopamine) nanoparticles. The delicate Janus nanoparticle possesses a spherical MSN with a diameter of ~150 nm and an mPDA hemisphere with a diameter of ~120 nm. In addition, the mesopore size in the MSN compartment is tunable from ~3 to ~25 nm, while those in the mPDA compartments range from ~5 to ~50 nm. Due to the different chemical properties and mesopore sizes in the two compartments, we achieve selective loading of guests in different compartments, and successfully establish single-particle-level biological logic gates. The dual-mesoporous structure enables consecutive valve-opening and matter-releasing reactions within one single nanoparticle, facilitating the design of single-particle-level logic systems.
Collapse
Affiliation(s)
- Tiancong Zhao
- Department of Chemistry and Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), College of Chemistry and Materials, Fudan University, Shanghai, P. R. China
| | - Liang Chen
- Department of Chemistry and Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), College of Chemistry and Materials, Fudan University, Shanghai, P. R. China
| | - Minchao Liu
- Department of Chemistry and Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), College of Chemistry and Materials, Fudan University, Shanghai, P. R. China
| | - Runfeng Lin
- Department of Chemistry and Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), College of Chemistry and Materials, Fudan University, Shanghai, P. R. China
| | - Weiluo Cai
- Department of Musculoskeletal Tumor, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Chin-Te Hung
- Department of Chemistry and Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), College of Chemistry and Materials, Fudan University, Shanghai, P. R. China
| | - Shangfeng Wang
- Department of Chemistry and Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), College of Chemistry and Materials, Fudan University, Shanghai, P. R. China
| | - Linlin Duan
- Department of Chemistry and Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), College of Chemistry and Materials, Fudan University, Shanghai, P. R. China
| | - Fan Zhang
- Department of Chemistry and Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), College of Chemistry and Materials, Fudan University, Shanghai, P. R. China
| | - Ahmed Elzatahry
- Materials Science and Technology Program, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Xiaomin Li
- Department of Chemistry and Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), College of Chemistry and Materials, Fudan University, Shanghai, P. R. China.
| | - Dongyuan Zhao
- Department of Chemistry and Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), College of Chemistry and Materials, Fudan University, Shanghai, P. R. China.
| |
Collapse
|
40
|
Yang T, Zhang X, Yang X, Li Y, Xiang J, Xiang C, Liu Z, Hai L, Huang S, Zhou L, Liang R, Gong P. A mitochondria-targeting self-assembled carrier-free lonidamine nanodrug for redox-activated drug release to enhance cancer chemotherapy. J Mater Chem B 2023; 11:3951-3957. [PMID: 37067569 DOI: 10.1039/d2tb02728c] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Mitochondria play a vital role in maintaining cellular homeostasis. In recent years, studies have found that mitochondria have an important role in the occurrence and development of tumors, and targeting mitochondria has become a new strategy for tumor treatment. Lonidamine (LND), as a hexokinase inhibitor, can block the energy supply and destroy mitochondria. However, poor water solubility and low mitochondrial selectivity limit its clinical application. To overcome these obstacles, we report redox-activated self-assembled carrier-free nanoparticles (Cy-TK-LND NPs) based on a small molecule prodrug, in which photosensitizer IR780 (Cy) which targets mitochondria is conjugated to LND via a sensitive thioketal (TK) linker. Intracellular oxidative stress induced by laser radiation leads to the responsive cleavage of Cy-TK-LND NPs, facilitating the release of free LND into mitochondria. Subsequently, LND damages mitochondria, triggering the apoptosis pathway. The results show the effective killing effect of Cy-TK-LND NPs on cancer cells in vitro and in vivo. The IC50 value of irradiated Cy-TK-LND NPs is 5-fold lower than that of free LND. Moreover, tumor tissue section staining results demonstrate that irradiated Cy-TK-LND NPs induce necrosis and apoptosis of tumor cells, upregulate cytochrome C and pro-apoptotic Bax, and downregulate anti-apoptotic Bcl-2. Generally, Cy-TK-LND NPs exhibit efficient mitochondria-targeted delivery to improve the medicinal availability of LND. Accordingly, such a carrier-free prodrug-based nanomedicine holds promise as an effective cancer chemotherapy strategy.
Collapse
Affiliation(s)
- Ting Yang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xianfen Zhang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China.
- School of Chemical Engineering, Northwest University, Xi'an, 710069, P. R. China.
| | - Xing Yang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China.
| | - Ying Li
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China.
| | - Jingjing Xiang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China.
| | - Chunbai Xiang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China.
| | - Zhongke Liu
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China.
- Nano Science and Technology Institute, University of Science & Technology of China, Suzhou, 215123, P. R. China
| | - Luo Hai
- Central Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, P. R. China
| | - Saipeng Huang
- School of Chemical Engineering, Northwest University, Xi'an, 710069, P. R. China.
| | - Lihua Zhou
- School of Applied Biology, Shenzhen Institute of Technology, No. 1 Jiangjunmao, Shenzhen, 518116, P. R. China.
| | - Ruijing Liang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China.
| | - Ping Gong
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China.
| |
Collapse
|
41
|
Xu X, Wang C, Guan W, Wang F, Li X, Yuan J, Xu G. Protoporphyrin IX-loaded albumin nanoparticles reverse cancer chemoresistance by enhancing intracellular reactive oxygen species. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 51:102688. [PMID: 37121460 DOI: 10.1016/j.nano.2023.102688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 04/05/2023] [Accepted: 04/23/2023] [Indexed: 05/02/2023]
Abstract
Chemoresistance is the main cause of chemotherapy failure in ovarian cancer (OC). The enhanced scavenging of reactive oxygen species (ROS) by the thioredoxin system resulted in insufficient intracellular concentrations of effective ROS, leading to chemoresistance. To induce OC cell apoptosis by enhancing intracellular ROS levels, protoporphyrin IX (PpIX) and albumin-bound PTX nanoparticles (APNP) were utilized to fabricate APNP-PpIX nanoparticles. APNP-PpIX effectively generated ROS and increased the effective ROS concentration in chemoresistant cancer cells. The in vitro and in vivo experiments confirmed the effective inhibition of APNP-PpIX on chemoresistant OC cell proliferation and tumor formation. APNP-PpIX significantly improved the effectiveness of chemotherapy and photodynamic therapy, thus providing a new approach for the clinical treatment of chemoresistant OC.
Collapse
Affiliation(s)
- Xiaolin Xu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai 201508, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Chenglong Wang
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai 201508, China.
| | - Wencai Guan
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai 201508, China
| | - Fanchen Wang
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai 201508, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xin Li
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai 201508, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jia Yuan
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai 201508, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Guoxiong Xu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai 201508, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
42
|
Muratspahić E, Schöffmann J, Jiang Q, Bismarck A. Poly(acrylamide- co-styrene): A Macrosurfactant for Oil/Water Emulsion Templating toward Robust Macroporous Hydrogels. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Affiliation(s)
- Emina Muratspahić
- Institute of Materials Chemistry and Research, Polymer and Composite Engineering (PaCE) Group, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria
- Doctoral College Advanced Functional Materials, University of Vienna, Strudlhofgasse 4, 1090 Vienna, Austria
| | - Jana Schöffmann
- Institute of Materials Chemistry and Research, Polymer and Composite Engineering (PaCE) Group, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria
| | - Qixiang Jiang
- Institute of Materials Chemistry and Research, Polymer and Composite Engineering (PaCE) Group, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria
| | - Alexander Bismarck
- Institute of Materials Chemistry and Research, Polymer and Composite Engineering (PaCE) Group, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K
| |
Collapse
|
43
|
Recent applications of phase-change materials in tumor therapy and theranostics. BIOMATERIALS ADVANCES 2023; 147:213309. [PMID: 36739784 DOI: 10.1016/j.bioadv.2023.213309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
Phase-change materials (PCMs) are a type of special material which can store and release a large amount of thermal energy without any significant temperature change. They are emerging in recent years as a promising functional material in tumor therapy and theranostics due to their accurate responses to the temperature variations, biocompatibility and low toxicity. In this review, we will introduce the main types of PCMs and their desirable physiochemical properties for biomedical applications, and highlight the recent progress of PCM's applications in the modulated release of antitumor drugs, with special attentions paid to various ways to initiate temperature-dependent phase change, the concomitant thermal therapy and its combination with or activation of other therapies, particularly unconventional therapies. We will also summarize PCM's recent applications in tumor theranostics, where both drugs and imaging probes are delivered by PCMs for controlled drug release and imaging-guided therapy. Finally, the future perspectives and potential limitations of harnessing PCMs in tumor therapy will be discussed.
Collapse
|
44
|
Remmers RCPA, Neumann K. Reaching new lights: a review on photo-controlled nanomedicines and their in vivo evaluation. Biomater Sci 2023; 11:1607-1624. [PMID: 36727448 DOI: 10.1039/d2bm01621d] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The selective and efficient delivery of bioactive molecules to sites of interest remains a formidable challenge in medicine. In recent years, it has been shown that stimuli-responsive drug delivery systems display several advantages over traditional drug administration such as an improved pharmacokinetic profile and the desirable ability to gain control over release. Light emerged as one of the most powerful stimuli due to its high biocompatibility, spatio-temporal control, and non-invasiveness. On the road to clinical translation, various chemical systems of high complexity have been reported with the aim to improve efficacy, safety, and versatility of drug delivery under complex biological conditions. For future research on the chemical design of such photo-controlled nanomedicines, it is essential to gain an understanding of their in vivo translation and efficiency. Here, we discuss photo-controlled nanomedicines that have been evaluated in vivo and provide an overview of the state-of-the-art that should guide future research design.
Collapse
Affiliation(s)
- Rik C P A Remmers
- Institute for Molecules and Materials, Radboud University, Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands.
| | - Kevin Neumann
- Institute for Molecules and Materials, Radboud University, Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands.
| |
Collapse
|
45
|
Nguyen HX, Nguyen CN. Microneedle-Mediated Transdermal Delivery of Biopharmaceuticals. Pharmaceutics 2023; 15:277. [PMID: 36678906 PMCID: PMC9864466 DOI: 10.3390/pharmaceutics15010277] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Transdermal delivery provides numerous benefits over conventional routes of administration. However, this strategy is generally limited to a few molecules with specific physicochemical properties (low molecular weight, high potency, and moderate lipophilicity) due to the barrier function of the stratum corneum layer. Researchers have developed several physical enhancement techniques to expand the applications of the transdermal field; among these, microneedle technology has recently emerged as a promising platform to deliver therapeutic agents of any size into and across the skin. Typically, hydrophilic biomolecules cannot penetrate the skin by passive diffusion. Microneedle insertion disrupts skin integrity and compromises its protective function, thus creating pathways (microchannels) for enhanced permeation of macromolecules. Microneedles not only improve stability but also enhance skin delivery of various biomolecules. Academic institutions and industrial companies have invested substantial resources in the development of microneedle systems for biopharmaceutical delivery. This review article summarizes the most recent research to provide a comprehensive discussion about microneedle-mediated delivery of macromolecules, covering various topics from the introduction of the skin, transdermal delivery, microneedles, and biopharmaceuticals (current status, conventional administration, and stability issues), to different microneedle types, clinical trials, safety and acceptability of microneedles, manufacturing and regulatory issues, and the future of microneedle technology.
Collapse
Affiliation(s)
- Hiep X. Nguyen
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| | - Chien N. Nguyen
- National Institute of Pharmaceutical Technology, Hanoi University of Pharmacy, Hanoi 100000, Vietnam
- Faculty of Pharmaceutics and Pharmaceutical Technology, Hanoi University of Pharmacy, Hanoi 100000, Vietnam
| |
Collapse
|
46
|
Chen P, Cai X, Mu G, Duan Y, Jing C, Yang Z, Yang C, Wang X. Supramolecular nanofibers co-loaded with dabrafenib and doxorubicin for targeted and synergistic therapy of differentiated thyroid carcinoma. Theranostics 2023; 13:2140-2153. [PMID: 37153748 PMCID: PMC10157742 DOI: 10.7150/thno.82140] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 03/27/2023] [Indexed: 05/10/2023] Open
Abstract
Rationale: Although surgery, radioiodine therapy, and thyroid hormone therapy are the primary clinical treatments for differentiated thyroid carcinoma (DTC), effective therapy for locally advanced or progressive DTC remains challenging. BRAF V600E, the most common BRAF mutation subtype, is highly related to DTC. Previous studies prove that combination of kinase inhibitors and chemotherapeutic drugs may be a potential approach for DTC treatment. In this study, a supramolecular peptide nanofiber (SPNs) co-loaded with dabrafenib (Da) and doxorubicin (Dox) was constructed for targeted and synergistic therapy with BRAF V600E+ DTC. Methods: A self-assembling peptide nanofiber (Biotin-GDFDFDYGRGD, termed SPNs) bearing biotin at the N-terminus and a cancer-targeting ligand RGD at the C-terminus was used as a carrier for co-loading Da and Dox. D-phenylalanine and D-tyrosine (DFDFDY) are used to improve the stability of peptides in vivo. Under multiple non-covalent interactions, SPNs/Da/Dox assembled into longer and denser nanofibers. RGD ligand endows self-assembled nanofibers with targeting cancer cells and co-delivery, thereby improving cellular uptake of payloads. Results: Both Da and Dox indicated decreased IC50 values upon encapsulation in SPNs. Co-delivery of Da and Dox by SPNs exhibited the strongest therapeutic effect in vitro and in vivo by inhibiting ERK phosphorylation in BRAF V600E mutant thyroid cancer cells. Moreover, SPNs enable efficient drug delivery and lower Dox dosage, thereby significantly reducing its side effects. Conclusion: This study proposes a promising paradigm for the synergistic treatment of DTC with Da and Dox using supramolecular self-assembled peptides as carriers.
Collapse
Affiliation(s)
- Peng Chen
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Xiaoyao Cai
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Ganen Mu
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Yuansheng Duan
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Chao Jing
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Zhimou Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Key Laboratory of Bioactive Materials, Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, and National Institute of Functional Materials, Nankai University, Tianjin 300071, China
| | - Cuihong Yang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
- ✉ Corresponding authors: E-mail addresses: Dr. Xudong Wang () and Dr. Cuihong Yang ()
| | - Xudong Wang
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
- ✉ Corresponding authors: E-mail addresses: Dr. Xudong Wang () and Dr. Cuihong Yang ()
| |
Collapse
|
47
|
Rosales TKO, Pedrosa LDF, Nascimento KR, Fioroto AM, Toniazzo T, Tadini CC, Purgatto E, Hassimotto NMA, Fabi JP. Nano-encapsulated anthocyanins: A new technological approach to increase physical-chemical stability and bioaccessibility. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
48
|
Poly lactide-co-glycolide encapsulated nano-curcumin promoting antagonistic interactions between HSP 90 and XRCC1 proteins to prevent cypermethrin-induced toxicity: An in silico predicted in vitro and in vivo approach. Colloids Surf B Biointerfaces 2022; 220:112905. [DOI: 10.1016/j.colsurfb.2022.112905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/11/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022]
|
49
|
Yang R, Wei Y, Zhao M, Shi M, Zhao Y, Sun P. PBA functionalized single-atom Fe for efficient therapy of multidrug-resistant bacterial infections. Colloids Surf B Biointerfaces 2022; 219:112811. [PMID: 36067683 DOI: 10.1016/j.colsurfb.2022.112811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 10/31/2022]
Abstract
The abuse of antibiotics has led to the emergence of multidrug-resistant bacterial strains worldwide, which greatly threatens human health. In the present work, we developed single-atom catalysts (SACs) with atomically dispersed Fe as catalytic sites (Fe-SACs) to combat multidrug-resistant bacteria by elevating cellular reactive oxygen species (ROS). Our intensive studies confirmed that Fe-SACs were successfully prepared and exhibited excellent catalase (CAT)-, oxidase (OXD)-, and peroxidase (POD)-like activities. To enhance water dispersibility, biosafety and the interactions between the nanodrugs and gram-positive bacteria, phenylboronic acid group-functionalized carboxylated chitosan (CCS-PBA) was coated on the surface of Fe-SACs to yield Fe-SACs@CCS-PBA for in vitro and in vivo studies. The synergistic catalytic activity and photothermal activity of Fe-SACs@CCS-PBA effectively overcame multidrug-resistant bacterial strains (MRSA) in vitro and significantly accelerated wound healing in vivo, suggesting the great potential of SACs to overcome infectious disease caused by multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Ruigeng Yang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Yueru Wei
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Mengyang Zhao
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Mengxiao Shi
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Yongxing Zhao
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, Henan, PR China; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China.
| | - Pengchao Sun
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, Henan, PR China; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China.
| |
Collapse
|
50
|
Zhang Y, Li J, Pu K. Recent advances in dual- and multi-responsive nanomedicines for precision cancer therapy. Biomaterials 2022; 291:121906. [DOI: 10.1016/j.biomaterials.2022.121906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022]
|