1
|
Zheng LM, Shi WQ, Hu F, Guan ZJ, Wang QM. All-Calixarene-Protected Silver Nanocluster with All Silver Atoms in a Face-Centered Cubic Arrangement. J Am Chem Soc 2024; 146:25101-25107. [PMID: 39196903 DOI: 10.1021/jacs.4c08094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
Tailoring the surface ligands of metal nanoclusters is important for engineering unique configurations of metal nanoclusters. Thiacalix[4]arene has found extensive applications in the construction of metal nanoclusters. In this investigation, we present the synthesis and characterization of the first all-calixarene-protected silver nanoclusters, [Ag(CH3CN)4]2[Ag44(BTCA)6] (Ag44, H4BTCA = p-tert-butylthiacalix[4]arene). Single-crystal X-ray structural analysis reveals that all silver atoms are in a face-centered cubic (fcc) arrangement. The formation of such an fcc structure is attributed to the selectively passivation on {100} facets by BTCA4-. Thiacalixarene substantially facilitates the stability of Ag44 due to its multiple coordination sites and bulkiness. Mass spectrometry and theoretical calculations reveal that Ag44 is a superatomic silver nanocluster with 22 free electrons in the following configuration: 1S21P61D61F22S21D4. This work not only elucidates the impact of macrocyclic ligands on the stabilization of silver clusters but also furnishes an approach for assembling atomically precise fcc nanoclusters.
Collapse
Affiliation(s)
- Lu-Ming Zheng
- Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China
| | - Wan-Qi Shi
- Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China
| | - Feng Hu
- Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China
| | - Zong-Jie Guan
- Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China
- Department of Chemistry, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Quan-Ming Wang
- Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
2
|
Li H, Wang T, Han J, Xu Y, Kang X, Li X, Zhu M. Fluorescence resonance energy transfer in atomically precise metal nanoclusters by cocrystallization-induced spatial confinement. Nat Commun 2024; 15:5351. [PMID: 38914548 PMCID: PMC11196639 DOI: 10.1038/s41467-024-49735-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 06/17/2024] [Indexed: 06/26/2024] Open
Abstract
Understanding the fluorescence resonance energy transfer (FRET) of metal nanoparticles at the atomic level has long been a challenge due to the lack of accurate systems with definite distance and orientation of molecules. Here we present the realization of achieving FRET between two atomically precise copper nanoclusters through cocrystallization-induced spatial confinement. In this study, we demonstrate the establishment of FRET in a cocrystallized Cu8(p-MBT)8(PPh3)4@Cu10(p-MBT)10(PPh3)4 system by exploiting the overlapping spectra between the excitation of the Cu10(p-MBT)10(PPh3)4 cluster and the emission of the Cu8(p-MBT)8(PPh3)4 cluster, combined with accurate control over the confined space between the two nanoclusters. Density functional theory is employed to provide deeper insights into the role of the distance and dipole orientations of molecules to illustrate the FRET procedure between two cluster molecules at the electronic structure level.
Collapse
Affiliation(s)
- Hao Li
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui University, 230601, Hefei, China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, 230601, Hefei, China
- Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, 230601, Hefei, China
- School of Materials and Chemical Engineering, Anhui Jianzhu University, 230601, Hefei, China
| | - Tian Wang
- Department of Chemistry, University of Washington, Seattle, WA, 98195-1653, USA
| | - Jiaojiao Han
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui University, 230601, Hefei, China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, 230601, Hefei, China
- Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, 230601, Hefei, China
| | - Ying Xu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui University, 230601, Hefei, China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, 230601, Hefei, China
- Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, 230601, Hefei, China
| | - Xi Kang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui University, 230601, Hefei, China.
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, 230601, Hefei, China.
- Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, 230601, Hefei, China.
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, WA, 98195-1653, USA.
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui University, 230601, Hefei, China.
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, 230601, Hefei, China.
- Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, 230601, Hefei, China.
| |
Collapse
|
3
|
You LX, Zhong HL, Chen SR, Sun YN, Wu GK, Zhao MX, Hu SS, Alwathnani H, Herzberg M, Qin SF, Rensing C. Biosynthesis of silver nanoparticles using Burkholderia contaminans ZCC and mechanistic analysis at the proteome level. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116425. [PMID: 38723385 DOI: 10.1016/j.ecoenv.2024.116425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 03/31/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024]
Abstract
The biogenic synthesis of silver nanoparticles (AgNPs) by microorganisms has been a subject of increasing attention. Despite extensive studies on this biosynthetic pathway, the mechanisms underlying the involvement of proteins and enzymes in AgNPs production have not been fully explored. Herein, we reported that Burkholderia contaminans ZCC was able to reduce Ag+ to AgNPs with a diameter of (10±5) nm inside the cell. Exposure of B. contaminans ZCC to Ag+ ions led to significant changes in the functional groups of cellular proteins, with approximately 5.72% of the (C-OH) bonds being converted to (C-C/C-H) (3.61%) and CO (2.11%) bonds, and 4.52% of the CO (carbonyl) bonds being converted to (C-OH) bonds. Furthermore, the presence of Ag+ and AgNPs induced the ability of extracellular electron transfer for ZCC cells via specific membrane proteins, but this did not occur in the absence of Ag+ ions. Proteomic analysis of the proteins and enzymes involved in heavy metal efflux systems, protein secretion system, oxidative phosphorylation, intracellular electron transfer chain, and glutathione metabolism suggests that glutathione S-transferase and ubiquinol-cytochrome c reductase iron-sulfur subunit play importance roles in the biosynthesis of AgNPs. These findings contribute to a deeper understanding of the functions exerted by glutathione S-transferase and ferredoxin-thioredoxin reductase iron-sulfur subunits in the biogenesis of AgNPs, thereby hold immense potential for optimizing biotechnological techniques aimed at enhancing the yield and purity of biosynthetic AgNPs.
Collapse
Affiliation(s)
- Le-Xing You
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China.
| | - Hong-Lin Zhong
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China; Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Si-Ru Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China
| | - Yi-Nan Sun
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China
| | - Gao-Kai Wu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China
| | - Meng-Xin Zhao
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China
| | - Shan-Shan Hu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China
| | - Hend Alwathnani
- Department of Botany and Microbiology, King Saud University, Riyadh, Saudi Arabia
| | - Martin Herzberg
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Su-Fang Qin
- College of Pharmacy, Jinhua Polytechnic, Jinhua 321007, PR China.
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| |
Collapse
|
4
|
Deng G, Ki T, Yoo S, Liu X, Lee K, Bootharaju MS, Hyeon T. [Au 9Ag 6(CCR) 10(DPPM) 2Cl 2](PPh 4): a four-electron cluster with a bi-decahedral twisted metal core. NANOSCALE 2024; 16:11090-11095. [PMID: 38766759 DOI: 10.1039/d4nr01471e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The assembly of cluster units in a distinct manner can give rise to nanoclusters exhibiting unique geometrical structures and properties. Herein, we present a one-pot synthesis and structural characterization of a AuAg alloy cluster, [Au9Ag6(CCR)10(DPPM)2Cl2](PPh4), denoted as Au9Ag6 (where HCCR is 3,5-bis(trifluoromethyl)phenylacetylene, and DPPM is bis(diphenylphosphino)methane). Single-crystal X-ray diffraction data analysis reveals that Au9Ag6 features a distinctive Au7Ag6 bi-decahedral core, formed by a twisted assembly of two Au4Ag3 decahedra sharing one vertex. The Au4Ag3 building blocks are bridged by two gold atoms on opposite sides of the bi-decahedral core. The Au9Ag6 cluster is monoanionic and it is stabilized by two chloride, two DPPM and ten alkynyl ligands. This cluster represents the first instance of a cluster of clusters built upon decahedral units.
Collapse
Affiliation(s)
- Guocheng Deng
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Taeyoung Ki
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Seungwoo Yoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Xiaolin Liu
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Kangjae Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Megalamane S Bootharaju
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
5
|
Li S, Li NN, Dong XY, Zang SQ, Mak TCW. Chemical Flexibility of Atomically Precise Metal Clusters. Chem Rev 2024; 124:7262-7378. [PMID: 38696258 DOI: 10.1021/acs.chemrev.3c00896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
Ligand-protected metal clusters possess hybrid properties that seamlessly combine an inorganic core with an organic ligand shell, imparting them exceptional chemical flexibility and unlocking remarkable application potential in diverse fields. Leveraging chemical flexibility to expand the library of available materials and stimulate the development of new functionalities is becoming an increasingly pressing requirement. This Review focuses on the origin of chemical flexibility from the structural analysis, including intra-cluster bonding, inter-cluster interactions, cluster-environments interactions, metal-to-ligand ratios, and thermodynamic effects. In the introduction, we briefly outline the development of metal clusters and explain the differences and commonalities of M(I)/M(I/0) coinage metal clusters. Additionally, we distinguish the bonding characteristics of metal atoms in the inorganic core, which give rise to their distinct chemical flexibility. Section 2 delves into the structural analysis, bonding categories, and thermodynamic theories related to metal clusters. In the following sections 3 to 7, we primarily elucidate the mechanisms that trigger chemical flexibility, the dynamic processes in transformation, the resultant alterations in structure, and the ensuing modifications in physical-chemical properties. Section 8 presents the notable applications that have emerged from utilizing metal clusters and their assemblies. Finally, in section 9, we discuss future challenges and opportunities within this area.
Collapse
Affiliation(s)
- Si Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Na-Na Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Xi-Yan Dong
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Shuang-Quan Zang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Thomas C W Mak
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, SAR 999077, China
| |
Collapse
|
6
|
Chathoth NE, S HK, Krishna M, Anjukandi P. Exceptional stability of ultrasmall cubic copper metal nanoclusters - a molecular dynamics study. J Mater Chem B 2024; 12:3908-3916. [PMID: 38567452 DOI: 10.1039/d3tb02474a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The fabrication of shape-selective coinage metal nanoclusters (MNCs) has promising applications due to their exceptional physical and chemical molecule-like properties. However, the stability of the specific geometry of the nanoclusters, such as their cubic shapes, is unclear and has been unraveled by assessing the nanoclusters' interactions with different environments. In this work, we investigate the morphological stability of cubic structured, coinage metal nanoclusters of varying sizes ranging from 14 to 1099 atoms. The impact of solvent environments like water and the presence of ionic liquids (IL) on the stabilization of the MNCs were assessed using molecular dynamics (MD) simulations. In general, smaller MNCs composed of less than 256 atoms encountered structural distortion easily compared to the larger ones, which preserved their cubic morphology with minimal surface aberrations in water. However, in the presence of 4M 1-butyl-1,1,1-trimethyl ammonium methane sulfonate [N1114][C1SO3] IL solution, the overall cubic shape of the MNCs was successfully preserved. Strikingly, it is observed that in contrast to the noble MNCs like Au and Ag, the cubic morphology for Cu MNCs with sizes less than 256 atoms exhibited significant stability even in the absence of IL.
Collapse
Affiliation(s)
- Nayana Edavan Chathoth
- Department of Chemistry, Indian Institute of Technology, Palakkad-678623, Kerala, India.
| | - Hafila Khairun S
- Department of Chemistry, Indian Institute of Technology, Palakkad-678623, Kerala, India.
| | - Manya Krishna
- Department of Chemistry, National Institute of Technology Meghalaya, Shillong, 793003, Meghalaya, India
| | - Padmesh Anjukandi
- Department of Chemistry, Indian Institute of Technology, Palakkad-678623, Kerala, India.
| |
Collapse
|
7
|
Zhang Q, Zheng H, Zhou J, Yang JJ, Xu KY, Shen LY, Guan ZJ, Yang Y. A bowl-shaped phosphangulene-protected cubic Cu 58 nanocluster. Chem Commun (Camb) 2024; 60:2389-2392. [PMID: 38321973 DOI: 10.1039/d3cc05791g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
A bowl-shaped phosphangulene-protected cubic Cu58 nanocluster has been synthesized. The structure was determined by X-ray crystallography and further analyzed by multiple techniques. The phosphangulenes not only enable ligand substitutions with triphenylphosphines in a cluster-to-cluster transformation way, but also facilitate inter-cluster interactions with fullerenes. These interactions further influence the entirety's photocurrent response and ability to liberate hydrogen when stimulated by light.
Collapse
Affiliation(s)
- Qian Zhang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China.
| | - Hao Zheng
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China.
| | - Jie Zhou
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China.
| | - Jia-Ji Yang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China.
| | - Kai-Yue Xu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China.
| | - Lian-Yun Shen
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China.
| | - Zong-Jie Guan
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yang Yang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China.
| |
Collapse
|
8
|
Qu M, Zhang FQ, Zhang GL, Qiao MM, Zhao LX, Li SL, Walter M, Zhang XM. Cocrystallization-driven Formation of fcc-based Ag 110 Nanocluster with Chinese Triple Luban Lock Shape. Angew Chem Int Ed Engl 2024; 63:e202318390. [PMID: 38117040 DOI: 10.1002/anie.202318390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023]
Abstract
Luban locks with mortise and tenon structure have structural diversity and architectural stability, and it is extremely challenging to synthesize Luban lock-like structures at the molecular level. In this work, we report the cocrystallization of two structurally related atom-precise fcc silver nanoclusters Ag110 (SPhF)48 (PPh3 )12 (Ag110 ) and Ag14 (μ6 -S)(SPhF)12 (PPh3 )8 (Ag14 ). It is worth noting that the Ag110 cluster is the first compound to simulate the complex Luban lock structure at the molecular level. Meanwhile, Ag110 is the largest known fcc-based silver nanocluster, so far, there is no precedent for fcc silver nanocluster with more than 100 silver atoms. DFT calculations show that Ag110 is a 58-electron superatom with an electronically closed shell1S2 1P6 1D10 2S2 1F14 2P6 1G18 . Ag110 ⋅Ag14 can rapidly catalyze the reduction of 4-nitrophenol within 4 minutes. In addition, Ag110 presents clear structural evidence to reveal the critical size and mechanism of the transformation of metal core from fcc stacking to quasi-spherical superatom. This research work provides an important structural model for studying the nucleation mechanism and structural assembly of silver nanoclusters.
Collapse
Affiliation(s)
- Mei Qu
- Key Laboratory of Magnetic Molecules and Magnetic Information of Ministry of Education, School of Chemistry and Material Science, Shanxi Normal University, Taiyuan, Shanxi, 030031, P. R. China
| | - Fu-Qiang Zhang
- Key Laboratory of Magnetic Molecules and Magnetic Information of Ministry of Education, School of Chemistry and Material Science, Shanxi Normal University, Taiyuan, Shanxi, 030031, P. R. China
| | - Gai-Li Zhang
- Key Laboratory of Magnetic Molecules and Magnetic Information of Ministry of Education, School of Chemistry and Material Science, Shanxi Normal University, Taiyuan, Shanxi, 030031, P. R. China
| | - Miao-Miao Qiao
- Key Laboratory of Magnetic Molecules and Magnetic Information of Ministry of Education, School of Chemistry and Material Science, Shanxi Normal University, Taiyuan, Shanxi, 030031, P. R. China
| | - Li-Xiang Zhao
- Key Laboratory of Magnetic Molecules and Magnetic Information of Ministry of Education, School of Chemistry and Material Science, Shanxi Normal University, Taiyuan, Shanxi, 030031, P. R. China
| | - Shi-Li Li
- Key Laboratory of Magnetic Molecules and Magnetic Information of Ministry of Education, School of Chemistry and Material Science, Shanxi Normal University, Taiyuan, Shanxi, 030031, P. R. China
| | - Michael Walter
- FIT Freiburg Centre for Interactive Materials and Bioinspired Technologies, University of Freiburg, 79110, Freiburg, Germany
- Cluster of Excellence livMatS @ FIT, 79110, Freiburg, Germany
- Fraunhofer IWM, MikroTribologie Centrum μTC, 79108, Freiburg, Germany
| | - Xian-Ming Zhang
- Key Laboratory of Magnetic Molecules and Magnetic Information of Ministry of Education, School of Chemistry and Material Science, Shanxi Normal University, Taiyuan, Shanxi, 030031, P. R. China
- College of Chemistry, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, P. R. China
| |
Collapse
|
9
|
Tang L, Han Q, Wang B, Yang Z, Song C, Feng G, Wang S. Constructing perfect cubic Ag-Cu alloyed nanoclusters through selective elimination of phosphine ligands. Phys Chem Chem Phys 2023; 26:62-66. [PMID: 38086629 DOI: 10.1039/d3cp04224c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
The aspiration of chemists has always been to design and achieve control over nanoparticle morphology at the atomic level. Here, we report a synthesis strategy and crystal structure of a perfect cubic Ag-Cu alloyed nanocluster, [Ag55Cu8I12(S-C6H32,4(CH3)2)24][(PPh4)] (Ag55Cu8I12 for short). The structure of this cluster was determined by single-crystal X-ray diffraction (SCXRD) and further validated by X-ray photoelectron spectroscopy (XPS), inductively coupled plasma (ICP), Energy-dispersive X-ray spectroscopy (EDX), thermogravimetric analysis (TGA), and 1H and 31P nuclear magnetic resonance (NMR). The surface deviation of the cube was measured to be 0.291 Å, making it the flattest known cube to date.
Collapse
Affiliation(s)
- Li Tang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, P. R. China.
| | - Qikai Han
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, P. R. China.
| | - Bin Wang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, P. R. China.
| | - Zhonghua Yang
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, P. R. China
| | - Chunyuan Song
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, P. R. China.
| | - Guanyu Feng
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, P. R. China.
| | - Shuxin Wang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, P. R. China.
| |
Collapse
|
10
|
Yang S, Fu Y, Tian Y, Zhao L, Wang X, Li B. Design and oxidative desulfurization of Ag/Ti heterometallic clusters based on Hard-Soft Acid-Base principle. Dalton Trans 2023; 52:17792-17796. [PMID: 37969004 DOI: 10.1039/d3dt02387g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Hard-Soft Acid-Base (HSAB) principle plays an important guiding role in the design and synthesis of novel clusters and coordination compounds, in which "soft acids prefer to react with soft bases, while hard acids have an affinity for hard bases". Based on HSAB principle, four Ag/Ti heterometallic clusters, including Ag2Ti10, Ag2Ti11 with "Ti-encapsulated Ag" configurations, and two "Ag-encapsulated Ti" structures Ag2Ti2 and Ag2Ti12, were synthesized under solvothermal conditions. In addition, Ag2Ti12 exhibited an efficient and stable catalytic activity for sulfide oxidation. This work provides not only a new structural model for the modulation of the catalytic oxidative desulfurization properties of Ag/Ti heterometallic clusters but also a new insight of the utilization of phosphine-containing ligands to regulate the structure of Ag/Ti heterometallic clusters.
Collapse
Affiliation(s)
- Shuyi Yang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun, 130024, China.
| | - Yaomei Fu
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang, 262700, China
| | - Yiran Tian
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun, 130024, China.
| | - Liang Zhao
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun, 130024, China.
- Changchun Baoli Science and Technology Co., Changchun, 130024, China
| | - Xinlong Wang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun, 130024, China.
| | - Baoli Li
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun, 130024, China.
- Changchun Baoli Science and Technology Co., Changchun, 130024, China
| |
Collapse
|
11
|
Li XH, Dai S, Yan XY, Lei H, Liu XY, Liu Y, Zhang W, Xu X, Yin JF, Wu Y, Ye F, Guo QY, Cheng SZD. A Thiol-Michael Approach Towards Versatile Functionalized Cyclic Titanium-Oxo Clusters. Chemistry 2023; 29:e202302352. [PMID: 37584964 DOI: 10.1002/chem.202302352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/17/2023]
Abstract
In expanding our research activities of superlattice engineering, designing new giant molecules is the necessary first step. One attempt is to use inorganic transition metal clusters as building blocks. Efficient functionalization of chemically precise transition metal clusters, however, remains a great challenge to material scientists. Herein, we report an efficient thiol-Michael addition approach for the modifications of cyclic titanium-oxo cluster (CTOC). Several advantages, including high efficiency, mild reaction condition, capability of complete addition, high atom economy, as well as high functional group tolerance were demonstrated. This approach can afford high yields of fully functionalized CTOCs, which provides a powerful platform for achieving versatile functionalization of precise transition metal clusters and further applications.
Collapse
Affiliation(s)
- Xing-Han Li
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Shuqi Dai
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
| | - Xiao-Yun Yan
- Department of Polymer Science, School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio, 44325-3909, United States
| | - Huanyu Lei
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
| | - Xian-You Liu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
| | - Yuchu Liu
- Department of Polymer Science, School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio, 44325-3909, United States
| | - Weiqi Zhang
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Xiaotong Xu
- School of Water and Environment, Chang'an University, Xi'an, 710018, China
| | - Jia-Fu Yin
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
| | - Yuean Wu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
| | - Feng Ye
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
| | - Qing-Yun Guo
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Department of Polymer Science, School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio, 44325-3909, United States
| | - Stephen Z D Cheng
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Department of Polymer Science, School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio, 44325-3909, United States
| |
Collapse
|
12
|
Ma X, He S, Li Q, Li Q, Chai J, Ma W, Li G, Yu H, Zhu M. Motif-to-Core Nucleation in a Decahedral Evolution Pattern. Inorg Chem 2023; 62:15680-15687. [PMID: 37688540 DOI: 10.1021/acs.inorgchem.3c02467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2023]
Abstract
The atomic precision of ultrasmall metal nanoclusters has opened the door to elucidating the structural evolution principles of metal nanomaterials at the molecular level. Here, we report a novel set of super-atomic Ag clusters, including [Ag19(TBBT)16(DPPP)4]+ (Ag19), [Ag22(DMAT)8(DPPM)4Cl8]2+ (Ag22), Ag26(SPh3,5-CF3)15(DPPF)4Cl5 (Ag26), and [Ag30(DMAT)12(DPPP)4Cl8]2+ (Ag30). The core structures of these clusters correspond to one decahedral Ag7, perpendicular bi-decahedrons, three-dimensional penta-decahedrons, and hexa-decahedrons, respectively. The Ag atoms in AgS2 blocks show a strong correlation with the decahedral cores: the five equatorial Ag atoms in the decahedral Ag7 core of Ag19 all adopt the AgS2 coordination, while the Ag atoms in AgS2 blocks of Ag22, Ag26, and Ag30 unexceptionally constitute additional decahedral structures with the core Ag atoms. Specifically, two and four core Ag atoms of Ag26 and Ag30 clusters occupy positions that highly resemble that of Ag (in AgS2 motifs) of Ag22. The strong structural correlation demonstrates the motif-to-core evolution of the surface Ag (on AgS2) to build extra-decahedral blocks. Density functional theory calculations indicate that the 2e, 4e, 6e, and 8e clusters (from Ag19 to Ag30) adopt 1S2, 1S21P2, 1S21P4, and 1S21P6 electron configurations, all of which feature excellent super-atomic characters.
Collapse
Affiliation(s)
- Xiangyu Ma
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui 230601, P. R. China
- School of Materials Science and Engineering, Institute of Physical Science and Information Technology, Anhui Key Laboratory of Information Materials and Devices, Anhui University, Hefei, Anhui 230601, P. R. China
| | - Shuping He
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui 230601, P. R. China
| | - Qingliang Li
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui 230601, P. R. China
| | - Qinzhen Li
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui 230601, P. R. China
| | - Jinsong Chai
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui 230601, P. R. China
| | - Wenxiao Ma
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui 230601, P. R. China
| | - Guang Li
- School of Materials Science and Engineering, Institute of Physical Science and Information Technology, Anhui Key Laboratory of Information Materials and Devices, Anhui University, Hefei, Anhui 230601, P. R. China
| | - Haizhu Yu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui 230601, P. R. China
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui 230601, P. R. China
| |
Collapse
|
13
|
Luo GG, Pan ZH, Han BL, Dong GL, Deng CL, Azam M, Tao YW, He J, Sun CF, Sun D. Total Structure, Electronic Structure and Catalytic Hydrogenation Activity of Metal-Deficient Chiral Polyhydride Cu 57 Nanoclusters. Angew Chem Int Ed Engl 2023; 62:e202306849. [PMID: 37469101 DOI: 10.1002/anie.202306849] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 07/21/2023]
Abstract
Accurate identifying and in-depth understanding of the defect sites in a working nanomaterial could hinge on establishing specific defect-activity relationships. Yet, atomically precise coinage-metal nanoclusters (NCs) possessing surface vacancy defects are scarce primarily owing to challenges in the synthesis and isolation of such defective NCs. Herein we report a mixed-ligand strategy to synthesizing an intrinsically chiral and metal-deficient copper hydride-rich NC [Cu57 H20 (PET)36 (TPP)4 ]+ (Cu57 H20 ). Its total structure (including hydrides) and electronic structure are well established by combined experimental and computational results. Crystal structure reveals Cu57 H20 features a cube-like Cu8 kernel embedded in a corner-missing metal-ligand shell of Cu49 (PET)36 (TPP)4 . Single Cu vacancy defect site occurs at one corner of the shell, evocative of mono-lacunary polyoxometalates. Theoretical calculations demonstrate that the above-mentioned point vacancy causes one surface hydride exposed as an interfacial capping μ3 -H- , which is accessible in chemical reaction, as proved by deuterated experiment. Moreover, Cu57 H20 shows catalytic activity in the hydrogenation of nitroarene. The success of this work opens the way for the research on well-defined chiral metal-deficient Cu and other metal NCs, including exploring their application in asymmetrical catalysis.
Collapse
Affiliation(s)
- Geng-Geng Luo
- College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, P. R. China
| | - Zhong-Hua Pan
- College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, P. R. China
| | - Bao-Liang Han
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Guang-Lei Dong
- College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, P. R. China
| | - Cheng-Long Deng
- College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, P. R. China
| | - Mohammad Azam
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Yun-Wen Tao
- Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, TX, 75275-0314, USA
| | - Jiao He
- College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, P. R. China
| | - Cun-Fa Sun
- College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, P. R. China
| | - Di Sun
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
14
|
Li Q, Tan Y, Huang B, Yang S, Chai J, Wang X, Pei Y, Zhu M. Mechanistic Study of the Hydride Migration-Induced Reversible Isomerization in Au 22(SR) 15H Isomers. J Am Chem Soc 2023. [PMID: 37438248 DOI: 10.1021/jacs.3c02768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Unraveling the evolution mechanism of metal nanoclusters is of great importance in understanding the formation and evolution of metallic condensed matters. In this work, the specific evolution process between a pair of gold nanocluster (Au NC) isomers is completely revealed by introducing hydride ligands to simplify the research system. A hydride-containing Au NC, Au22(SR)15H, was synthesized by kinetic control, and the positions of the hydrides were then confirmed by combining X-ray diffraction, neutron diffraction, and DFT calculations. Importantly, a reversible structural isomerization was found to occur on this Au22(SR)15H. By combining the crystal structures and theoretical calculations, the focus was placed on the hydride-binding site, and a [Au-H] migration mechanism of this isomerization process is clearly shown. Furthermore, this [Au-H] migration mechanism is confirmed by the subsequent capture and structural determination of theoretically predicted intermediates. This work provides insight into the dynamic behavior of hydride ligands in nanoclusters and a strategy to study the evolution mechanism of nanoclusters by taking the hydride ligand as the breakthrough point.
Collapse
Affiliation(s)
- Qinzhen Li
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| | - Yesen Tan
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| | - Baoyu Huang
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of MOE, Xiangtan University, Xiangtan, Hunan 411105, China
- Hunan Provincial Key Laboratory of Environmental Catalysis & Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China
| | - Sha Yang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| | - Jinsong Chai
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| | - Xiaoping Wang
- Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Yong Pei
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of MOE, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| |
Collapse
|
15
|
Gupta RK, Li L, Wang Z, Han BL, Feng L, Gao ZY, Tung CH, Sun D. Regulating the assembly and expansion of the silver cluster from the Ag 37 to Ag 46 nanowheel driven by heteroanions. Chem Sci 2023; 14:1138-1144. [PMID: 36756341 PMCID: PMC9891368 DOI: 10.1039/d2sc06436g] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/26/2022] [Indexed: 12/27/2022] Open
Abstract
Precise control over the shape and size of metal nanoclusters through anion template-driven self-assembly is one of the key scientific goals in the nanocluster community, however, it is still not understood comprehensively. In this work, we report the controllable synthesis and atomically precise structures of silver nanowheels Ag37 and Ag46, using homo (Cl- ions) and heteroanion (Cl- and CrO4 2- ions) template strategies, along with macrocyclic p-phenyl-thiacalix[4]arene and small iPrS- ligands. Structural analyses revealed that in Ag37, Cl- ions serve as both local and global templates, whereas CrO4 2- ions function as local and Cl- ions as global templates in Ag46, resulting in a pentagonal nanowheel (Ag37) and a hexagonal (Ag46) nanowheel. The larger ionic size and more negative charges of CrO4 2- ions than Cl- ions offer more coordination sites for the silver atoms and are believed to be the key factors that drive the nanowheel core to expand significantly. Also, by taking advantage of the deep cavity of thiacalix[4]arene with an extended phenyl group, Ag46 has been used as a host material for dye adsorption depending on the charge and size of organic dyes. The successful use of heteroanions to control the expansion of well-defined silver nanowheels fills the knowledge gap in understanding the directing role of heteroanions in dictating the shape and size of nanoclusters at the atomic level.
Collapse
Affiliation(s)
- Rakesh Kumar Gupta
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University Ji'nan 250100 China
| | - Li Li
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University Ji'nan 250100 China
| | - Zhi Wang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University Ji'nan 250100 China
| | - Bao-Liang Han
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University Ji'nan 250100 China
| | - Lei Feng
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University Ji'nan 250100 China
| | - Zhi-Yong Gao
- School of Chemistry and Chemical Engineering, Henan Normal UniversityXinxiang453007China
| | - Chen-Ho Tung
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University Ji'nan 250100 China
| | - Di Sun
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University Ji'nan 250100 China
| |
Collapse
|
16
|
Zha J, Meng X, Fan W, You Q, Xia N, Gu W, Zhao Y, Hu L, Li J, Deng H, Wang H, Yan N, Wu Z. Surface Site-Specific Replacement for Catalysis Selectivity Switching. ACS APPLIED MATERIALS & INTERFACES 2023; 15:3985-3992. [PMID: 36622953 DOI: 10.1021/acsami.2c18553] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Surface atom replacement in materials without other composition/structure changes is challenging but is important for fundamental scientific research and for practical applications. In particular, for nanoparticles including nanoclusters, surface metal site-specific replacement with atomic precision has not yet been achieved. In this study, we for the first time achieved surface site-specific antigalvanic replacement with the remaining composition/structure and surface replacement-dependent selectivity in the electrocatalytic reduction of CO2. Density functional theory (DFT) calculations describe the catalysis selectivity switch induced by replacing Ag with Cu and explain why Cu replacement facilitates C2 production. Also, CO2 electroreduction to C2 on well-defined metal nanoclusters is first reported in this study.
Collapse
Affiliation(s)
- Jun Zha
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China
- University of Science and Technology of China, Hefei 230026, PR China
- Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China
| | - Xiangfu Meng
- University of Science and Technology of China, Hefei 230026, PR China
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China
| | - Wentao Fan
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China
- University of Science and Technology of China, Hefei 230026, PR China
- Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China
| | - Qing You
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China
- Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China
| | - Nan Xia
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China
- Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China
| | - Wanmiao Gu
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China
- Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China
| | - Yan Zhao
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China
- Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China
| | - Lin Hu
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China
| | - Jin Li
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University,Beijing 100084, PR China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, PR China
| | - Hui Wang
- University of Science and Technology of China, Hefei 230026, PR China
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China
| | - Nan Yan
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China
- Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China
| | - Zhikun Wu
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China
- Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China
| |
Collapse
|
17
|
Wu X, Weng S, Lv Y, He S, Yu H. DFT Insights into the Variety in the Coordination Modes of the Equatorial Halides in [Au 13 Ag 12 (PR 3 ) 10 X 8 ] + (X=Cl/Br) Clusters. Chemphyschem 2023; 24:e202200526. [PMID: 36173928 DOI: 10.1002/cphc.202200526] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/29/2022] [Indexed: 01/19/2023]
Abstract
The bonding character within metal nanoclusters represents an intriguing topic, shedding light on the inherent driving force for the packing preference in nanomaterials. Herein, density functional theory (DFT) calculations were conducted to investigate the correlation of the series of isomeric [Au13 Ag12 (PR3 )10 X8 ]+ (X=Cl/Br) clusters, which are mainly differentiated by the coordination mode of the equatorial halides (μ2 -, μ3 - and μ4 -) in the rod-like, bi-icosahedral framework. The theoretical simulation corroborates the variety in the configuration of the Au13 Ag12 clusters and elucidates the fast isomerization kinetics among the different configurations. The easy tautomerization and the variety in chloride binding modes correspond to a fluxionality character of the equatorial halides and are verified by the potential energy curve analysis. The structural flexibility of the central Au3 Ag10 block is the main driving force, while the relatively stronger Ag-X bonding interaction (compared to that of Au-X), and a sufficient number of halides are also requisite for the associating Ag-X tautomerizations.
Collapse
Affiliation(s)
- Xiaohang Wu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Shiyin Weng
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Ying Lv
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Shuping He
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Haizhu Yu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, P. R. China.,Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui, 230601, P. R. China
| |
Collapse
|
18
|
Luo XM, Li YK, Dong XY, Zang SQ. Platonic and Archimedean solids in discrete metal-containing clusters. Chem Soc Rev 2023; 52:383-444. [PMID: 36533405 DOI: 10.1039/d2cs00582d] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Metal-containing clusters have attracted increasing attention over the past 2-3 decades. This intense interest can be attributed to the fact that these discrete metal aggregates, whose atomically precise structures are resolved by single-crystal X-ray diffraction (SCXRD), often possess intriguing geometrical features (high symmetry, aesthetically pleasing shapes and architectures) and fascinating physical properties, providing invaluable opportunities for the intersection of different disciplines including chemistry, physics, mathematical geometry and materials science. In this review, we attempt to reinterpret and connect these fascinating clusters from the perspective of Platonic and Archimedean solid characteristics, focusing on highly symmetrical and complex metal-containing (metal = Al, Ti, V, Mo, W, U, Mn, Fe, Co, Ni, Pd, Pt, Cu, Ag, Au, lanthanoids (Ln), and actinoids) high-nuclearity clusters, including metal-oxo/hydroxide/chalcogenide clusters and metal clusters (with metal-metal binding) protected by surface organic ligands, such as thiolate, phosphine, alkynyl, carbonyl and nitrogen/oxygen donor ligands. Furthermore, we present the symmetrical beauty of metal cluster structures and the geometrical similarity of different types of clusters and provide a large number of examples to show how to accurately describe the metal clusters from the perspective of highly symmetrical polyhedra. Finally, knowledge and further insights into the design and synthesis of unknown metal clusters are put forward by summarizing these "star" molecules.
Collapse
Affiliation(s)
- Xi-Ming Luo
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Ya-Ke Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Xi-Yan Dong
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China. .,College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China
| | - Shuang-Quan Zang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
19
|
Xia XY, Xia YH, Fang JJ, Liu Z, Xie YP, Lu X. Silver alkynyl coordination chains and clusters assembled with sulfonates. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
20
|
Liu X, Yang H, Chen Y, Yang Y, Porcar L, Radulescu A, Guldin S, Jin R, Stellacci F, Luo Z. Quantifying the Solution Structure of Metal Nanoclusters Using Small‐Angle Neutron Scattering. Angew Chem Int Ed Engl 2022; 61:e202209751. [DOI: 10.1002/anie.202209751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Xindi Liu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials Department of Biomedical Engineering Southern University of Science and Technology Shenzhen 518055, Guangdong China
| | - Huayan Yang
- School of Biomedical Engineering Health Science Center Shenzhen University Shenzhen 518060, Guangdong China
| | - Yuxiang Chen
- Department of Chemistry Carnegie Mellon University Pittsburgh PA 15213 USA
| | - Ye Yang
- Department of Chemical Engineering University College London London WC1E 7JE UK
| | - Lionel Porcar
- Institut Laue-Langevin BP 156 38042 Grenoble CEDEX 9 France
| | - Aurel Radulescu
- Jülich Center for Neutron Science JCNS at Heinz Maier-Leibnitz Zentrum Forschungszentrum Jülich GmbH 85747 Garching Germany
| | - Stefan Guldin
- Department of Chemical Engineering University College London London WC1E 7JE UK
| | - Rongchao Jin
- Department of Chemistry Carnegie Mellon University Pittsburgh PA 15213 USA
| | - Francesco Stellacci
- Institute of Materials École Polytechnique Fédérale de Lausanne 1015 Lausanne Switzerland
| | - Zhi Luo
- Guangdong Provincial Key Laboratory of Advanced Biomaterials Department of Biomedical Engineering Southern University of Science and Technology Shenzhen 518055, Guangdong China
| |
Collapse
|
21
|
Zhu XZ, Jia T, Guan ZJ, Zhang Q, Yang Y. Elongation of a Trigonal-Prismatic Copper Cluster by Diphosphine Ligands with Longer Spacers. Inorg Chem 2022; 61:15144-15151. [DOI: 10.1021/acs.inorgchem.2c02306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiao-Zhao Zhu
- School of Chemistry and Materials Science, Jiangsu Normal University, Jiangsu 221008, China
| | - Tao Jia
- School of Chemistry and Materials Science, Jiangsu Normal University, Jiangsu 221008, China
| | - Zong-Jie Guan
- College of Chemistry and Chemical Engineering, Hunan University, Hunan 410012, China
| | - Qian Zhang
- School of Chemistry and Materials Science, Jiangsu Normal University, Jiangsu 221008, China
| | - Yang Yang
- School of Chemistry and Materials Science, Jiangsu Normal University, Jiangsu 221008, China
| |
Collapse
|
22
|
Liu X, Yang H, Chen Y, Yang Y, Porcar L, Radulescu A, Guldin S, Jin R, Stellacci F, Luo Z. Quantifying the Solution Structure of Metal Nanoclusters Using Small‐Angle Neutron Scattering. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xindi Liu
- Southern University of Science and Technology department of biomedical engineering CHINA
| | - Huayang Yang
- Shenzhen University department of medicine CHINA
| | - Yuxiang Chen
- Carnegie Mellon University department of chemistry UNITED STATES
| | - Ye Yang
- University College London department of chemical engineering UNITED KINGDOM
| | - Lionel Porcar
- Institut Laue-Langevin large scale structure group FRANCE
| | - Aurel Radulescu
- Forschungszentrum Jülich GmbH Jülich Centre for Neutron Science: Forschungszentrum Julich GmbH Julich Centre for Neutron Science Jülich Centre for Neutron Science (JCNS) CHINA
| | - Stefan Guldin
- University College London department of chemical engineering UNITED KINGDOM
| | - Rongchao Jin
- Carnegie Mellon University department of chemistry UNITED STATES
| | - Francesco Stellacci
- EPFL: Ecole Polytechnique Federale de Lausanne Supramolecular NanoMaterials and Interfaces Laboratory SWITZERLAND
| | - Zhi Luo
- SUSTech: Southern University of Science and Technology Biomedical Engineering Xueyuan Avenue 1088HCI J392 Shenzhen CHINA
| |
Collapse
|
23
|
Yao Q, Zhang Q, Xie J. Atom-Precision Engineering Chemistry of Noble Metal Nanoparticles. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04827] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Qiaofeng Yao
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Qingbo Zhang
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
| | - Jianping Xie
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| |
Collapse
|
24
|
Biswas S, Das AK, Reber AC, Biswas S, Bhandary S, Kamble VB, Khanna SN, Mandal S. The New Ag-S Cluster [Ag 50S 13(S tBu) 20][CF 3COO] 4 with a Unique hcp Ag 14 Kernel and Ag 36 Keplerian-Shell-Based Structural Architecture and Its Photoresponsivity. NANO LETTERS 2022; 22:3721-3727. [PMID: 35499472 DOI: 10.1021/acs.nanolett.2c00609] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In metal nanoclusters (NCs), the kernel geometry and the nature of the surface protecting ligands are very crucial for their structural stability and properties. The synthesis and structural elucidation of Ag NCs is challenging because the zerovalent oxidation state of Ag is very reactive and prone to oxidization. Here, we report the NC [Ag50S13(StBu)20][CF3COO]4 with a hexagonal close-packed (hcp) cagelike Ag14 kernel. A truncated cubic shell and an octahedral shell encapsulate the hcp-layered kernel via an interstitial S2- anionic shell to form an Ag36 Keplerian outer shell of the NC. A theoretical study indicates the stability of this NC in its 4+ charge state and the charge distribution between the kernel and Keplerian shell. The unprecedented electronic structure facilitates its application toward sustainable photoresponse properties. The new insights into this novel Ag NC kernel and Keplerian shell structure may pave the way to understanding the unique structure and developing electronic structure-based applications.
Collapse
Affiliation(s)
- Sourav Biswas
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Kerala 695551, India
| | - Anish Kumar Das
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Kerala 695551, India
| | - Arthur C Reber
- Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23220, United States
| | - Soumya Biswas
- School of Physics, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Kerala 695551, India
| | - Subhrajyoti Bhandary
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Kerala 695551, India
| | - Vinayak B Kamble
- School of Physics, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Kerala 695551, India
| | - Shiv N Khanna
- Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23220, United States
| | - Sukhendu Mandal
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Kerala 695551, India
| |
Collapse
|
25
|
Adnan RH, Madridejos JML, Alotabi AS, Metha GF, Andersson GG. A Review of State of the Art in Phosphine Ligated Gold Clusters and Application in Catalysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105692. [PMID: 35332703 PMCID: PMC9130904 DOI: 10.1002/advs.202105692] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/23/2022] [Indexed: 05/28/2023]
Abstract
Atomically precise gold clusters are highly desirable due to their well-defined structure which allows the study of structure-property relationships. In addition, they have potential in technological applications such as nanoscale catalysis. The structural, chemical, electronic, and optical properties of ligated gold clusters are strongly defined by the metal-ligand interaction and type of ligands. This critical feature renders gold-phosphine clusters unique and distinct from other ligand-protected gold clusters. The use of multidentate phosphines enables preparation of varying core sizes and exotic structures beyond regular polyhedrons. Weak gold-phosphorous (Au-P) bonding is advantageous for ligand exchange and removal for specific applications, such as catalysis, without agglomeration. The aim of this review is to provide a unified view of gold-phosphine clusters and to present an in-depth discussion on recent advances and key developments for these clusters. This review features the unique chemistry, structural, electronic, and optical properties of gold-phosphine clusters. Advanced characterization techniques, including synchrotron-based spectroscopy, have unraveled substantial effects of Au-P interaction on the composition-, structure-, and size-dependent properties. State-of-the-art theoretical calculations that reveal insights into experimental findings are also discussed. Finally, a discussion of the application of gold-phosphine clusters in catalysis is presented.
Collapse
Affiliation(s)
- Rohul H. Adnan
- Department of Chemistry, Faculty of ScienceCenter for Hydrogen EnergyUniversiti Teknologi Malaysia (UTM)Johor Bahru81310Malaysia
| | | | - Abdulrahman S. Alotabi
- Flinders Institute for NanoScale Science and TechnologyFlinders UniversityAdelaideSouth Australia5042Australia
- Department of PhysicsFaculty of Science and Arts in BaljurashiAlbaha UniversityBaljurashi65655Saudi Arabia
| | - Gregory F. Metha
- Department of ChemistryUniversity of AdelaideAdelaideSouth Australia5005Australia
| | - Gunther G. Andersson
- Flinders Institute for NanoScale Science and TechnologyFlinders UniversityAdelaideSouth Australia5042Australia
| |
Collapse
|
26
|
Li H, Song F, Zhu D, Song Y, Zhou C, Ke F, Lu L, Kang X, Zhu M. Optical Activity from Anisotropic-Nanocluster-Assembled Supercrystals in Achiral Crystallographic Point Groups. J Am Chem Soc 2022; 144:4845-4852. [PMID: 35167256 DOI: 10.1021/jacs.1c12352] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Accomplishing optical activity in achiral materials has long been a challenge. Achiral nanomaterials that crystallize in achiral point groups are generally optically inactive. Herein we report the surprising observation of optical activity in several achiral point groups for supercrystals assembled from anisotropic metal nanoclusters with atomic precision. By analyzing multiple achiral nanoclusters with different molecular structures and symmetry space groups, we have identified that the molecular anisotropy of nanocluster entities and their asymmetric arrangement in point groups of supercrystals are the two key factors for the realization of optical activity in such supercrystals. We have further exploited the polarization effect of the nanocluster supercrystals as a polarization switch that can alter the polarized state of the linearly polarized light. Our findings have broadened the fundamental principles for producing nanomaterial-based optical activity and devices with polarization effects.
Collapse
Affiliation(s)
- Hao Li
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Fei Song
- Key Laboratory of Optoelectronic Information Acquisition and Manipulation of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| | - Desheng Zhu
- Key Laboratory of Optoelectronic Information Acquisition and Manipulation of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| | - Yongbo Song
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Chuanjun Zhou
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Feng Ke
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Liang Lu
- Key Laboratory of Optoelectronic Information Acquisition and Manipulation of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| | - Xi Kang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| |
Collapse
|
27
|
Yuan JW, Zhang MM, Dong XY, Zang SQ. Master key to coinage metal nanoclusters treasure chest: 38-metal clusters. NANOSCALE 2022; 14:1538-1565. [PMID: 35060593 DOI: 10.1039/d1nr07690f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Atomically precise metal nanoclusters with specific chemical compositions have become a popular research topic due to their precise structures, attractive properties, and wide range of applications in various fields. Currently, among more than 100 reported metal nanoclusters with precise formulas, 38-atom coinage metal nanoclusters stand out due to their unique structural diversities, such as face-centered cubic (FCC) and body-centered cubic (BCC) arrangements. Among them, the formation of the metal cores includes vertex-sharing, face-fusion, and FCC cubes fusion. Due to their geometrical features, 38-atom coinage metal nanoclusters exhibit attractive properties, making them an ideal model for exploring structure-property relationships. Therefore, 38-atom coinage metal nanoclusters are a universal key to the treasure trove of nanoclusters, which can open almost all fields and are of great research significance. This paper focuses on the structure of 38-atom coinage metal nanoclusters and reviews the preparation and crystallization methods, excellent properties, and practical applications. Finally, future research prospects and development opportunities are provided.
Collapse
Affiliation(s)
- Jia-Wang Yuan
- College of Chemistry and Chemical Engineering, Henan Polytechnic University Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, China.
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Miao-Miao Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xi-Yan Dong
- College of Chemistry and Chemical Engineering, Henan Polytechnic University Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, China.
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Shuang-Quan Zang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, China.
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
28
|
Kang SY, Nan ZA, Wang QM. Superatomic Orbital Splitting in Coinage Metal Nanoclusters. J Phys Chem Lett 2022; 13:291-295. [PMID: 34978829 DOI: 10.1021/acs.jpclett.1c03563] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The superatomic orbital splitting (SOS) method is developed to understand the electronic structures of coinage metal nanoclusters, in which delocalized electron counts are not magic numbers. Because the symmetry of a metal core can significantly affect the electronic structure of a nanocluster, this method takes the shape of the core into account in determining the order of group orbital levels. By taking nanoclusters as superatoms, a highly positively charged core is established by removing the ligands and staples. The superatomic orbitals split into group orbitals at different energy levels because of the nonspherical shape of the cluster core. Therefore, the electron configuration of the nonmagic-number nanocluster can be qualitatively analyzed without quantum chemical calculations, which is very important for understanding the stability of the cluster.
Collapse
Affiliation(s)
- Shao-Yu Kang
- Collaborative Innovation Center of Chemistry for Energy Materials and Department of Chemistry, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zi-Ang Nan
- Department of Chemistry, Tsinghua University, Beijing 100084, China
- Collaborative Innovation Center of Chemistry for Energy Materials and Department of Chemistry, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Quan-Ming Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
- Collaborative Innovation Center of Chemistry for Energy Materials and Department of Chemistry, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
29
|
Das AK, Mekkat R, Maity S, Nair AS, Bhandary S, Bhowal R, Patra A, Pathak B, Chopra D, Mandal S. Role of Ligand on Photophysical Properties of Nanoclusters with fcc Kernel: A Case Study of Ag 14(SC 6H 4X) 12(PPh 3) 8 (X = F, Cl, Br). Inorg Chem 2021; 60:19270-19277. [PMID: 34882397 DOI: 10.1021/acs.inorgchem.1c03083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The structure-property correlation of a series of silver nanoclusters (NCs) is essential to understand the origin of photophysical properties. Here, we report a series of face-centered cubic (fcc)-based silver NCs by varying the halogen atom in the thiolate ligand to investigate the influence of the halide atoms on the electronic structure. These are {Ag14(FBT)12(PPh3)8·(solvent)x} (NC-1), Ag14(CBT)12(PPh3)8 (NC-2), and Ag14(BBT)12(PPh3)8 (NC-3), where 4-fluorothiophenol (FBT), 4-chlorothiophenol (CBT), and 4-bromothiophenol (BBT) have been utilized as thiolate ligands, respectively. Interestingly, the optical and electrochemical bandgap values of these NCs nicely correlated with the electronic effect of the halides, which is governed by the intracluster and interclusters π-π interactions. These clusters are emissive at room temperature and the luminescence intensity increases with the lowering of temperature. The short lifetime data suggest that the emission is predominantly originating due to the interband relaxation (d → sp) of the Ag cores. Femtosecond transient absorption (TA) spectra revealed similar types of decay profiles for NC-2 and NC-3 and longer decay time for NC-2. The relaxation dominates the decay profile to the surface states and most of the excited-state energy dissipates via this process. This supports the molecular-like dynamics of these series of NCs with an fcc core. This overview shed light on an in-depth understanding of ligand's role in luminescence and transient absorption spectra.
Collapse
Affiliation(s)
- Anish Kumar Das
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala 69551, India
| | - Roopesh Mekkat
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala 69551, India
| | - Subarna Maity
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata, Kolkata, West Bengal 700032, India
| | - Akhil S Nair
- Department of Chemistry, Indian Institute of Technology, Indore, Indore, Madhya Pradesh 453552, India
| | - Subhrajyoti Bhandary
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, 462066, India
| | - Rohit Bhowal
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, 462066, India
| | - Amitava Patra
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata, Kolkata, West Bengal 700032, India
| | - Biswarup Pathak
- Department of Chemistry, Indian Institute of Technology, Indore, Indore, Madhya Pradesh 453552, India
| | - Deepak Chopra
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, 462066, India
| | - Sukhendu Mandal
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala 69551, India
| |
Collapse
|
30
|
Zhou M, Bao Y, Jin S, Wen S, Chen S, Zhu M. [Ag 71(S- tBu) 31(Dppm)](SbF 6) 2: an intermediate-sized metalloid silver nanocluster containing a building block of Ag 64. Chem Commun (Camb) 2021; 57:10383-10386. [PMID: 34542129 DOI: 10.1039/d1cc04934h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An intermediate-sized atomically precise metalloid silver nanocluster [Ag71(SR)31(Dppm)](SbF6)2 (Dppm = bis (diphenylphosphino)methane, SR = S-tBu) is reported, which comprises one building block Ag64, six SR5 pentagons, one sole SR ligand, a DppmAg2 handle, and an Ag5 lid. Structurally, a decahedron Ag23 kernel is observed in the metalloid silver nanocluster. Moreover, the Ag64 unit provides insights into the growth of large clusters such as Ag136(SR)64Cl3 and Ag141(SR)40Br12via assembly. The observed decahedron Ag23 provides a deeper understanding on Marks decahedron in larger nanoclusters, and the [Ag71(S-tBu)31(Dppm)](SbF6)2 uses Ag64 as a building block to predict the structure of larger metalloid nanoclusters.
Collapse
Affiliation(s)
- Manman Zhou
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, P. R. China; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, P. R. China.
| | - Yizheng Bao
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, P. R. China; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, P. R. China.
| | - Shan Jin
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, P. R. China; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, P. R. China.
| | - Shuaishuai Wen
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, P. R. China; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, P. R. China.
| | - Shuang Chen
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, P. R. China; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, P. R. China.
| | - Manzhou Zhu
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, P. R. China; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, P. R. China.
| |
Collapse
|
31
|
Paramio I, Torres T, de la Torre G. Self-Assembled Porphyrinoids: One-Component Nanostructured Photomedicines. ChemMedChem 2021; 16:2441-2451. [PMID: 33900022 PMCID: PMC8453889 DOI: 10.1002/cmdc.202100201] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Indexed: 01/06/2023]
Abstract
Photodynamic therapy (PDT) is becoming a promising way to treat various kinds of cancers, with few side effects. Porphyrinoids are the most relevant photosensitizers (PS) in PDT, because they present high extinction coefficients, biocompatibility, and excellent photochemical behavior. To maximize therapeutic effects, polymer-PS conjugates, and PS-loaded nanoparticles have been developed, with insights in improving tumor delivery. However, some drawbacks such as non-biodegradability, multistep fabrication, and low reagent loadings limit their clinical application. A novel strategy, noted by some authors as the "one-for-all" approach, is emerging to circumvent the use of additional delivery agents. This approach relies on the self-assembly of amphiphilic PS to fabricate nanostructures with improved transport properties. In this review we focus on different rational designs of porphyrinoid PS to achieve some of the following attributes in nanoassembly: i) selective uptake, through the incorporation of recognizable biological vectors; ii) responsiveness to stimuli; iii) combination of imaging and therapeutic functions; and iv) multimodal therapy, including photothermal or chemotherapy abilities.
Collapse
Affiliation(s)
- Irene Paramio
- Department of Organic ChemistryUniversidad Autónoma de MadridC/Francisco Tomás y Valiente 728049MadridSpain
| | - Tomás Torres
- Department of Organic ChemistryUniversidad Autónoma de MadridC/Francisco Tomás y Valiente 728049MadridSpain
- Institute for Advanced Research in Chemical Sciences (IAdChem)Universidad Autónoma de MadridC/Francisco Tomás y Valiente 728049MadridSpain
- Instituto Madrileño de Estudios Avanzados (IMDEA)-NanocienciaC/Faraday 928049MadridSpain
| | - Gema de la Torre
- Department of Organic ChemistryUniversidad Autónoma de MadridC/Francisco Tomás y Valiente 728049MadridSpain
- Institute for Advanced Research in Chemical Sciences (IAdChem)Universidad Autónoma de MadridC/Francisco Tomás y Valiente 728049MadridSpain
| |
Collapse
|
32
|
Liang XQ, Li YZ, Wang Z, Zhang SS, Liu YC, Cao ZZ, Feng L, Gao ZY, Xue QW, Tung CH, Sun D. Revealing the chirality origin and homochirality crystallization of Ag 14 nanocluster at the molecular level. Nat Commun 2021; 12:4966. [PMID: 34404784 PMCID: PMC8371133 DOI: 10.1038/s41467-021-25275-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 08/02/2021] [Indexed: 02/02/2023] Open
Abstract
Although chirality is an ever-present characteristic in biology and some artificial molecules, controlling the chirality and demystifying the chirality origin of complex assemblies remain challenging. Herein, we report two homochiral Ag14 nanoclusters with inherent chirality originated from identical rotation of six square faces on a Ag8 cube driven by intra-cluster π···π stacking interaction between pntp− (Hpntp = p-nitrothiophenol) ligands. The spontaneous resolution of the racemic (SD/rac-Ag14a) to homochiral nanoclusters (SD/L-Ag14 and SD/R-Ag14) can be realized by re-crystallizing SD/rac-Ag14a in acetonitrile, which promotes the homochiral crystallization in solid state by forming C–H···O/N hydrogen bonds with nitro oxygen atoms in pntp− or aromatic hydrogen atoms in dpph (dpph = 1,6-bis(diphenylphosphino)hexane) on Ag14 nanocluster. This work not only provides strategic guidance for the syntheses of chiral silver nanoclusters in an all-achiral environment, but also deciphers the origin of chirality at molecular level by identifying the special effects of intra- and inter-cluster supramolecular interactions. The preparation of chiral monolayer-protected metal clusters is interesting for their potential applications in a variety of fields, including catalysis. Here, the authors synthesize chiral Ag14 nanoclusters in an all-achiral environment, and decipher the origin of chirality at the molecular level; the solvent choice is key to achieve homochiral crystallization.
Collapse
Affiliation(s)
- Xiao-Qian Liang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, People's Republic of China
| | - Ying-Zhou Li
- Shandong Provincial Key Laboratory of Molecular Engineering, Qilu University of Technology (Shandong Academy of Science), Ji'nan, People's Republic of China
| | - Zhi Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, People's Republic of China
| | - Shan-Shan Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, People's Republic of China
| | - Yi-Cheng Liu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, People's Republic of China
| | - Zhao-Zhen Cao
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, People's Republic of China
| | - Lei Feng
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, People's Republic of China
| | - Zhi-Yong Gao
- School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Henan, Xinxiang, People's Republic of China
| | - Qing-Wang Xue
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, People's Republic of China
| | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, People's Republic of China
| | - Di Sun
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, People's Republic of China.
| |
Collapse
|
33
|
Yuan SF, Xu CQ, Liu WD, Zhang JX, Li J, Wang QM. Rod-Shaped Silver Supercluster Unveiling Strong Electron Coupling between Substituent Icosahedral Units. J Am Chem Soc 2021; 143:12261-12267. [PMID: 34324334 DOI: 10.1021/jacs.1c05283] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The first linear silver supercluster based on icosahedral Ag13 units has been constructed via bridging of dpa ligands: Ag61(dpa)27(SbF6)4 (Hdpa = dipyridylamine) (Ag61). Single-crystal X-ray diffraction reveals that this rod-shaped cluster consists of four vertex-sharing Ag13 icosahedra in a linear arrangement. This Ag61 cluster represents the longest one-dimensional metal nanocluster with a resolved structure. Unprecedented electron coupling develops between their constituent Ag13 units. Theoretical studies disclose that the stabilities of the two superclusters are dictated by a strong interaction between the Ag13 units as well as the ligand effect of the dpa-Ag motifs. The quantum size effect accounts for the significant enhancement of the metal-related absorptions and the red shift at the near-infrared region as the length of the cluster increases. This work sheds light on the evolution of one-dimensional materials and an understanding of the electronic communication between the constituent clusters.
Collapse
Affiliation(s)
- Shang-Fu Yuan
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing 100084, People's Republic of China
| | - Cong-Qiao Xu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| | - Wen-Di Liu
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing 100084, People's Republic of China
| | - Jing-Xuan Zhang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| | - Jun Li
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing 100084, People's Republic of China.,Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| | - Quan-Ming Wang
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
34
|
Yonesato K, Yamazoe S, Yokogawa D, Yamaguchi K, Suzuki K. A Molecular Hybrid of an Atomically Precise Silver Nanocluster and Polyoxometalates for H
2
Cleavage into Protons and Electrons. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106786] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Kentaro Yonesato
- Department of Applied Chemistry School of Engineering The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Seiji Yamazoe
- Department of Chemistry Graduate School of Science Tokyo Metropolitan University 1-1 Minami Osawa, Hachioji Tokyo 192-0397 Japan
- Precursory Research for Embryonic Science and Technology (PRESTO) Japan Science and Technology Agency (JST) 4-1-8 Honcho Kawaguchi Saitama 332-0012 Japan
| | - Daisuke Yokogawa
- Graduate School of Arts and Science The University of Tokyo 3-8-1 Komaba, Meguro-ku Tokyo 153-8902 Japan
| | - Kazuya Yamaguchi
- Department of Applied Chemistry School of Engineering The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Kosuke Suzuki
- Department of Applied Chemistry School of Engineering The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
- Precursory Research for Embryonic Science and Technology (PRESTO) Japan Science and Technology Agency (JST) 4-1-8 Honcho Kawaguchi Saitama 332-0012 Japan
| |
Collapse
|
35
|
Yonesato K, Yamazoe S, Yokogawa D, Yamaguchi K, Suzuki K. A Molecular Hybrid of an Atomically Precise Silver Nanocluster and Polyoxometalates for H 2 Cleavage into Protons and Electrons. Angew Chem Int Ed Engl 2021; 60:16994-16998. [PMID: 34051034 DOI: 10.1002/anie.202106786] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Indexed: 12/13/2022]
Abstract
Atomically precise silver (Ag) nanoclusters are promising materials as catalysts, photocatalysts, and sensors because of their unique structures and mixed-valence states (Ag+ /Ag0 ). However, their low stability hinders the in-depth study of their intrinsic reactivity and catalytic property accompanying their redox processes. Herein, we demonstrate that a molecular hybrid of an atomically precise {Ag27 }17+ nanocluster and polyoxometalates (POMs) can efficiently cleave H2 into protons and electrons. The Ag nanocluster accommodates electrons through the redox reaction from {Ag27 }17+ to {Ag27 }13+ , and the POM ligands play the following important roles: (i) a significant stabilization of the typically unstable Ag nanocluster to preserve its structure during the redox reaction with H2 , (ii) formation of a unique interface between the Ag nanocluster and metal oxides for efficient H2 cleavage, and (iii) storage of the generated protons on the negatively charged basic surface.
Collapse
Affiliation(s)
- Kentaro Yonesato
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Seiji Yamazoe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami Osawa, Hachioji, Tokyo, 192-0397, Japan.,Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Daisuke Yokogawa
- Graduate School of Arts and Science, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Kazuya Yamaguchi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kosuke Suzuki
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.,Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| |
Collapse
|
36
|
Dong C, Huang RW, Chen C, Chen J, Nematulloev S, Guo X, Ghosh A, Alamer B, Hedhili MN, Isimjan TT, Han Y, Mohammed OF, Bakr OM. [Cu 36H 10(PET) 24(PPh 3) 6Cl 2] Reveals Surface Vacancy Defects in Ligand-Stabilized Metal Nanoclusters. J Am Chem Soc 2021; 143:11026-11035. [PMID: 34255513 DOI: 10.1021/jacs.1c03402] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Precise identification and in-depth understanding of defects in nanomaterials can aid in rationally modulating defect-induced functionalities. However, few studies have explored vacancy defects in ligand-stabilized metal nanoclusters with well-defined structures, owing to the substantial challenge of synthesizing and isolating such defective metal nanoclusters. Herein, a novel defective copper hydride nanocluster, [Cu36H10(PET)24(PPh3)6Cl2] (Cu36; PET: phenylethanethiolate; PPh3: triphenylphosphine), is successfully synthesized at the gram scale via a simple one-pot reduction method. Structural analysis reveals that Cu36 is a distorted half cubic nanocluster, evolved from the perfect Nichol's half cube. The two surface copper vacancies in Cu36 are found to be the principal imperfections, which result in some structural adjustments, including copper atom reconstruction near the vacancies as well as ligand modifications (e.g., substitution, migration, and exfoliation). Density functional theory calculations imply that the above-mentioned defects have a considerable influence on the electronic structure and properties. The modeling suggests that the formation of defective Cu36 rather than the perfect half cube is driven by the enlargement of the energy gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital of the nanocluster. The structural evolution induced by the surface copper atom vacancies provides atomically precise insights into the defect-induced readjustment of the local structure and introduces new avenues for understanding the chemistry of defects in nanomaterials.
Collapse
Affiliation(s)
- Chunwei Dong
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Ren-Wu Huang
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Cailing Chen
- Advanced Membranes and Porous Materials Center (AMPMC), Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Jie Chen
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Saidkhodzha Nematulloev
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Xianrong Guo
- Core Laboratories, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Atanu Ghosh
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Badriah Alamer
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Mohamed Nejib Hedhili
- Core Laboratories, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Tayirjan T Isimjan
- Hydrogen Platform, Catalysis Department, SABIC-CRD at KAUST, Thuwal 23955-6900, Saudi Arabia
| | - Yu Han
- Advanced Membranes and Porous Materials Center (AMPMC), Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Omar F Mohammed
- Advanced Membranes and Porous Materials Center (AMPMC), Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Osman M Bakr
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
37
|
Bodiuzzaman M, Dar WA, Pradeep T. Cocrystals of Atomically Precise Noble Metal Nanoclusters. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2003981. [PMID: 33185007 DOI: 10.1002/smll.202003981] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/21/2020] [Indexed: 06/11/2023]
Abstract
Cocrystallization is a phenomenon involving the assembly of two or more different chemical entities in a lattice, occurring typically through supramolecular interactions. In this concept, recent advancements in the cocrystallization of atomically precise noble metal clusters and their potential future directions are presented. Different strategies to create coassemblies of thiolate-protected noble metal nanoclusters are presented first. An approach is the simultaneous synthesis, and cocrystallization of two clusters having similar structures. A unique pair of clusters found recently, namely Ag40 and Ag46 with same core but different shell are taken to illustrate this. In another category, the case of the same core is presented, namely Ag116 with different shells, as in a mixture of Ag210 and Ag211 . Next, an intercluster reaction is presented to create cocrystals through selective crystallization of the reaction products. The coexistence of competing effects, magic sizes, and magic electron shells in a coassembly of alloy nanoclusters is discussed next. Finally, an assembly strategy for nanoclusters using electrostatic interactions is described. This concept is concluded with a future perspective on the emerging possibilities of such solids. Advancements in this field will certainly help the development of novel materials with exciting properties.
Collapse
Affiliation(s)
- Mohammad Bodiuzzaman
- Department of Chemistry, DST Unit of Nanoscience and Thematic Unit of Excellence, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Wakeel Ahmed Dar
- Department of Chemistry, DST Unit of Nanoscience and Thematic Unit of Excellence, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Thalappil Pradeep
- Department of Chemistry, DST Unit of Nanoscience and Thematic Unit of Excellence, Indian Institute of Technology Madras, Chennai, 600036, India
| |
Collapse
|
38
|
Solvent-driven reversible transformation between electrically neutral thiolate protected Ag25 and Ag26 clusters. Sci China Chem 2021. [DOI: 10.1007/s11426-020-9952-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
39
|
Pillay MN, van Zyl WE, Liu CW. A construction guide for high-nuclearity (≥50 metal atoms) coinage metal clusters at the nanoscale: bridging molecular precise constructs with the bulk material phase. NANOSCALE 2020; 12:24331-24348. [PMID: 33300525 DOI: 10.1039/d0nr05632d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Synthesis remains a major strength in chemistry and materials science and relies on the formation of new molecules and diverse forms of matter. The construction and identification of large molecules poses specific challenges and has historically lain in the realm of biological (organic)-type molecules with evolved synthesis methods to support such endeavours. But with the development of analytical tools such as X-ray crystallography, new synthesis methods toward large metal-based (inorganic) molecules and clusters have come to the fore, making it possible to accurately determine the precise distribution of hundreds of atoms in large clusters. In this review, we focus on different synthesis protocols used to form new metal clusters such as templating, alloying and size-focusing strategies. A specific focus is on group 11 metals (Cu, Ag, Au) as they currently predominate large metal cluster investigations and related Au and Ag bulk surface phenomena. This review focuses on metal clusters that have very high-nuclearity, i.e. with 50 or more metal centers within the isolated cluster. This size domain, it is believed, will become increasingly important for a variety of applications as these metal clusters are positioned at the interface between the molecular and bulk phases, whilst remaining a classic nanomaterial and retaining unique nano-sized properties.
Collapse
Affiliation(s)
- Michael N Pillay
- School of Chemistry and Physics, University of KwaZulu Natal, Westville Campus, Durban 4000, South Africa.
| | | | | |
Collapse
|
40
|
Li Y, Higaki T, Du X, Jin R. Chirality and Surface Bonding Correlation in Atomically Precise Metal Nanoclusters. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1905488. [PMID: 32181554 DOI: 10.1002/adma.201905488] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/16/2019] [Indexed: 05/24/2023]
Abstract
Chirality is ubiquitous in nature and occurs at all length scales. The development of applications for chiral nanostructures is rising rapidly. With the recent achievements of atomically precise nanochemistry, total structures of ligand-protected Au and other metal nanoclusters (NCs) are successfully obtained, and the origins of chirality are discovered to be associated with different parts of the cluster, including the surface ligands (e.g., swirl patterns), the organic-inorganic interface (e.g., helical stripes), and the kernel. Herein, a unified picture of metal-ligand surface bonding-induced chirality for the nanoclusters is proposed. The different bonding modes of M-X (where M = metal and X = the binding atom of ligand) lead to different surface structures on nanoclusters, which in turn give rise to various characteristic features of chirality. A comparison of Au-thiolate NCs with Au-phosphine ones further reveals the important roles of surface bonding. Compared to the Au-thiolate NCs, the Ag/Cu/Cd-thiolate systems exhibit different coordination modes between the metal and the thiolate. Other than thiolate and phosphine ligands, alkynyls are also briefly discussed. Several methods of obtaining chiroptically active nanoclusters are introduced, such as enantioseparation by high-performance liquid chromatography and enantioselective synthesis. Future perspectives on chiral NCs are also proposed.
Collapse
Affiliation(s)
- Yingwei Li
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Tatsuya Higaki
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Xiangsha Du
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Rongchao Jin
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| |
Collapse
|
41
|
Li S, Yan Z, Li X, Kong Y, Li H, Gao G, Zheng Y, Zang S. Stepwise Achievement of Circularly Polarized Luminescence on Atomically Precise Silver Clusters. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000738. [PMID: 32775159 PMCID: PMC7404152 DOI: 10.1002/advs.202000738] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/19/2020] [Indexed: 05/15/2023]
Abstract
The weakly coordinated anionic nitrate ligands in a centrosymmetric Ag20 cluster are replaced in a stepwise manner by chiral amino acids and two achiral luminescent sulfonic-group-containing ligands while nearly maintaining the original silver(I) cage structure. This surface engineering enables the atomically precise Ag20 clusters to exhibit the high-efficiency synergetic effects of chirality and fluorescence, producing rare circularly polarized luminescence among the metal clusters with a large dissymmetry factor of (|glum|) ≈ 5 × 10-3. This rational approach using joint functional ligands further opens a new avenue to diverse multifunctional metal clusters for promising applications.
Collapse
Affiliation(s)
- Si Li
- Green Catalysis Centerand College of ChemistryZhengzhou UniversityZhengzhou450001China
| | - Zhi‐Ping Yan
- State Key Laboratory of Coordination ChemistrySchool of Chemistry and Chemical EngineeringNanjing UniversityNanjing210023China
| | - Xin‐Lei Li
- Green Catalysis Centerand College of ChemistryZhengzhou UniversityZhengzhou450001China
| | - Yu‐Jin Kong
- Green Catalysis Centerand College of ChemistryZhengzhou UniversityZhengzhou450001China
| | - Hai‐Yang Li
- Green Catalysis Centerand College of ChemistryZhengzhou UniversityZhengzhou450001China
| | - Guang‐Gang Gao
- School of Materials Science and EngineeringUniversity of JinanJinan250022China
| | - You‐Xuan Zheng
- State Key Laboratory of Coordination ChemistrySchool of Chemistry and Chemical EngineeringNanjing UniversityNanjing210023China
| | - Shuang‐Quan Zang
- Green Catalysis Centerand College of ChemistryZhengzhou UniversityZhengzhou450001China
| |
Collapse
|
42
|
Ma X, Bai Y, Song Y, Li Q, Lv Y, Zhang H, Yu H, Zhu M. Rhombicuboctahedral Ag
100
: Four‐Layered Octahedral Silver Nanocluster Adopting the Russian Nesting Doll Model. Angew Chem Int Ed Engl 2020; 59:17234-17238. [DOI: 10.1002/anie.202006447] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Indexed: 12/27/2022]
Affiliation(s)
- Xiangyu Ma
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education Anhui University Hefei Anhui 230601 P. R. China
| | - Yuyuan Bai
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education Anhui University Hefei Anhui 230601 P. R. China
| | - Yongbo Song
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education Anhui University Hefei Anhui 230601 P. R. China
| | - Qinzhen Li
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education Anhui University Hefei Anhui 230601 P. R. China
- Institute of Physical Science and Information Technology Anhui University Hefei Anhui 230601 P. R. China
| | - Ying Lv
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education Anhui University Hefei Anhui 230601 P. R. China
| | - Hui Zhang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education Anhui University Hefei Anhui 230601 P. R. China
| | - Haizhu Yu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education Anhui University Hefei Anhui 230601 P. R. China
- Institute of Physical Science and Information Technology Anhui University Hefei Anhui 230601 P. R. China
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education Anhui University Hefei Anhui 230601 P. R. China
- Institute of Physical Science and Information Technology Anhui University Hefei Anhui 230601 P. R. China
| |
Collapse
|
43
|
Ma X, Bai Y, Song Y, Li Q, Lv Y, Zhang H, Yu H, Zhu M. Rhombicuboctahedral Ag
100
: Four‐Layered Octahedral Silver Nanocluster Adopting the Russian Nesting Doll Model. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Xiangyu Ma
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education Anhui University Hefei Anhui 230601 P. R. China
| | - Yuyuan Bai
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education Anhui University Hefei Anhui 230601 P. R. China
| | - Yongbo Song
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education Anhui University Hefei Anhui 230601 P. R. China
| | - Qinzhen Li
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education Anhui University Hefei Anhui 230601 P. R. China
- Institute of Physical Science and Information Technology Anhui University Hefei Anhui 230601 P. R. China
| | - Ying Lv
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education Anhui University Hefei Anhui 230601 P. R. China
| | - Hui Zhang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education Anhui University Hefei Anhui 230601 P. R. China
| | - Haizhu Yu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education Anhui University Hefei Anhui 230601 P. R. China
- Institute of Physical Science and Information Technology Anhui University Hefei Anhui 230601 P. R. China
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education Anhui University Hefei Anhui 230601 P. R. China
- Institute of Physical Science and Information Technology Anhui University Hefei Anhui 230601 P. R. China
| |
Collapse
|
44
|
Gao MY, Wang K, Sun Y, Li D, Song BQ, Andaloussi YH, Zaworotko MJ, Zhang J, Zhang L. Tetrahedral Geometry Induction of Stable Ag-Ti Nanoclusters by Flexible Trifurcate TiL 3 Metalloligand. J Am Chem Soc 2020; 142:12784-12790. [PMID: 32579354 DOI: 10.1021/jacs.0c05199] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A series of increasingly large silver nanoclusters with a varied combination of Archimedean and/or Platonic solid arrangements was constructed using a flexible trifurcate TiL3 (L = Salicylic acid or 5-fluorosalicylic acid) metalloligand: Ag4@Ag4@Ti4 (PTC-85), Ag12@Ti4 (PTC-86), Ag4@Ag6@Ag12@Ti4 (PTC-87), Ag6@Ag24@Ag12@Ti4 (PTC-88), and Ag12@Ag24@Ti4 (PTC-89). The silver nanoclusters are each capped by four TiL3 moieties, thereby forming {Ti4} supertetrahedra with average edge lengths ranging from ∼8.12 Å to ∼17.37 Å. Such {Ti4} moieties further induce the tetrahedral geometry of the encapsulated silver nanoclusters. These atomically precise metallic clusters were found to be ultrastable with respect to air for several months, and to water for more than 3 days, due to the stabilizing effects of the TiL3 metalloligand. Moreover, the obtained clusters exhibit nonlinear optical (NLO) effects in optical limiting tests and also temperature-dependent photoluminescent properties. This work provides an interesting metalloligand method not only to induce the spatial growth of metallic clusters to achieve highly symmetric structures, but also to enhance their stability which is crucial for future application.
Collapse
Affiliation(s)
- Mei-Yan Gao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.,Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| | - Kai Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Yayong Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Dejing Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Bai-Qiao Song
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| | - Yassin H Andaloussi
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| | - Michael J Zaworotko
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Lei Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| |
Collapse
|
45
|
Yonesato K, Ito H, Yokogawa D, Yamaguchi K, Suzuki K. An Ultrastable, Small {Ag
7
}
5+
Nanocluster within a Triangular Hollow Polyoxometalate Framework. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008402] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Kentaro Yonesato
- Department of Applied Chemistry School of Engineering The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Hiroyasu Ito
- Department of Applied Chemistry School of Engineering The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Daisuke Yokogawa
- Graduate School of Arts and Science The University of Tokyo 3-8-1 Komaba, Meguro-ku Tokyo 153-8902 Japan
| | - Kazuya Yamaguchi
- Department of Applied Chemistry School of Engineering The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Kosuke Suzuki
- Department of Applied Chemistry School of Engineering The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
- Precursory Research for Embryonic Science and Technology (PRESTO) Japan Science and Technology Agency (JST) 4-1-8 Honcho Kawaguchi Saitama 332-0012 Japan
| |
Collapse
|
46
|
Yonesato K, Ito H, Yokogawa D, Yamaguchi K, Suzuki K. An Ultrastable, Small {Ag
7
}
5+
Nanocluster within a Triangular Hollow Polyoxometalate Framework. Angew Chem Int Ed Engl 2020; 59:16361-16365. [DOI: 10.1002/anie.202008402] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Kentaro Yonesato
- Department of Applied Chemistry School of Engineering The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Hiroyasu Ito
- Department of Applied Chemistry School of Engineering The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Daisuke Yokogawa
- Graduate School of Arts and Science The University of Tokyo 3-8-1 Komaba, Meguro-ku Tokyo 153-8902 Japan
| | - Kazuya Yamaguchi
- Department of Applied Chemistry School of Engineering The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Kosuke Suzuki
- Department of Applied Chemistry School of Engineering The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
- Precursory Research for Embryonic Science and Technology (PRESTO) Japan Science and Technology Agency (JST) 4-1-8 Honcho Kawaguchi Saitama 332-0012 Japan
| |
Collapse
|
47
|
Li J, Li H, Yu H, Chai J, Li Q, Song Y, Zhang Z, Zhu M. A novel geometric structure of a nanocluster with an irregular kernel: Ag 30Cu 14(TPP) 4(SR) 28. Dalton Trans 2020; 49:7684-7687. [PMID: 32510094 DOI: 10.1039/d0dt01142h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Here, we report a bi-ligand protected bimetallic nanocluster Ag30Cu14(TPP)4(SR)28. It is composed of an Ag27 kernel and Ag3Cu14(TPP)4(SR)28 shell. Typically, the metal atoms are arranged irregularly. Both the core and shell exhibit the characteristics of C2-symmetry.
Collapse
Affiliation(s)
- Jiale Li
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials. Anhui University, Hefei, Anhui 230601, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Liu X, Saranya G, Huang X, Cheng X, Wang R, Chen M, Zhang C, Li T, Zhu Y. Ag
2
Au
50
(PET)
36
Nanocluster: Dimeric Assembly of Au
25
(PET)
18
Enabled by Silver Atoms. Angew Chem Int Ed Engl 2020; 59:13941-13946. [DOI: 10.1002/anie.202005087] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/11/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Xu Liu
- School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| | | | - Xinyu Huang
- School of Physics Nanjing University Nanjing 210093 China
| | - Xinglian Cheng
- School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| | - Rui Wang
- School of Physics Nanjing University Nanjing 210093 China
| | - Mingyang Chen
- Center for Green Innovation School of Materials Science and Engineering University of Science and Technology Beijing Beijing 100083 China
- Beijing Computational Science Research Center Beijing 100193 China
| | - Chunfeng Zhang
- School of Physics Nanjing University Nanjing 210093 China
| | - Tao Li
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 China
| | - Yan Zhu
- School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| |
Collapse
|
49
|
Liu X, Saranya G, Huang X, Cheng X, Wang R, Chen M, Zhang C, Li T, Zhu Y. Ag
2
Au
50
(PET)
36
Nanocluster: Dimeric Assembly of Au
25
(PET)
18
Enabled by Silver Atoms. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xu Liu
- School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| | | | - Xinyu Huang
- School of Physics Nanjing University Nanjing 210093 China
| | - Xinglian Cheng
- School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| | - Rui Wang
- School of Physics Nanjing University Nanjing 210093 China
| | - Mingyang Chen
- Center for Green Innovation School of Materials Science and Engineering University of Science and Technology Beijing Beijing 100083 China
- Beijing Computational Science Research Center Beijing 100193 China
| | - Chunfeng Zhang
- School of Physics Nanjing University Nanjing 210093 China
| | - Tao Li
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 China
| | - Yan Zhu
- School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| |
Collapse
|
50
|
Shi JF, Chen ZJ, Zhang LJ, Zhou K, Ji JY, Bi YF. A one-dimensional infinite silver alkynyl assembly [Ag 8(C[triple bond, length as m-dash]C t Bu) 5(CF 3COO) 3(CH 3CN)] n : synthesis, crystal structure and properties. RSC Adv 2020; 10:16045-16049. [PMID: 35493660 PMCID: PMC9052916 DOI: 10.1039/d0ra01703e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 04/07/2020] [Indexed: 12/17/2022] Open
Abstract
A high-yield silver alkynyl assembly [Ag8(C[triple bond, length as m-dash]C t Bu)5(CF3COO)3(CH3CN)] n (1) constructed from [AgC[triple bond, length as m-dash]C t Bu] n ligand, CF3COOAg and CH3CN auxiliary ligands with a one-dimensional infinite chain structure has been obtained in one pot. Compound 1 has been well-defined and characterized. The photocurrent properties and the temperature-sensitive luminescent properties of 1 have been investigated.
Collapse
Affiliation(s)
- Ju-Feng Shi
- School of Chemistry and Materials Science, Liaoning Shihua University Fushun Liaoning 113001 China
| | - Zhi-Jin Chen
- School of Chemistry and Materials Science, Liaoning Shihua University Fushun Liaoning 113001 China
| | - Liu-Jie Zhang
- School of Chemistry and Materials Science, Liaoning Shihua University Fushun Liaoning 113001 China
| | - Kun Zhou
- School of Chemistry and Materials Science, Liaoning Shihua University Fushun Liaoning 113001 China
| | - Jiu-Yu Ji
- School of Chemistry and Materials Science, Liaoning Shihua University Fushun Liaoning 113001 China
| | - Yan-Feng Bi
- School of Chemistry and Materials Science, Liaoning Shihua University Fushun Liaoning 113001 China
| |
Collapse
|