1
|
Sinko W, Mertz B, Shimizu T, Takahashi T, Terada Y, Kimura SR. ModBind, a Rapid Simulation-Based Predictor of Ligand Binding and Off-Rates. J Chem Inf Model 2025; 65:265-274. [PMID: 39681514 PMCID: PMC11733936 DOI: 10.1021/acs.jcim.4c01805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/12/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024]
Abstract
In rational drug discovery, both free energy of binding and the binding half-life (koff) are important factors in determining the efficacy of drugs. Numerous computational methods have been developed to predict these important properties, many of which rely on molecular dynamics (MD) simulations. While binding free-energy methods (thermodynamic equilibrium predictions) have been well validated and have demonstrated the ability to drive daily synthesis decisions in a commercial drug discovery setting, the prediction of koff (kinetics predictions) has had limited validation, and predictive methods have largely not been deployed in drug discovery settings. We developed ModBind, a novel method for MD simulation-based koff predictions. ModBind demonstrated similar accuracy to current state-of-the-art free-energy prediction methods. Additionally, ModBind performs ∼100 times faster than most available MD simulation-based free-energy or koff methods, allowing for widespread use by the molecular modeling community. While most free-energy methods rely on relative free-energy changes and are primarily useful for optimization of a congeneric series, our method requires no structural similarity between ligands, making ModBind an absolute predictor of koff. ModBind is thus a tool that can be used in virtual screening of diverse ligands, making it distinct from relative free-energy methods. We also discuss conditions that enable approximate prediction of ligand efficacy using ModBind and the limitations of this approach.
Collapse
Affiliation(s)
- William Sinko
- Alivexis
Inc., 1 Broadway, 14th
Floor, Cambridge, Massachusetts 02142, United States
| | - Blake Mertz
- Alivexis
Inc., 1 Broadway, 14th
Floor, Cambridge, Massachusetts 02142, United States
| | - Takafumi Shimizu
- Alivexis
Inc., Daiichi Hibiya
Building 7F, Shimbashi 1-18-21, Minato-ku, Tokyo 105-0004, Japan
| | - Taisuke Takahashi
- Alivexis
Inc., Daiichi Hibiya
Building 7F, Shimbashi 1-18-21, Minato-ku, Tokyo 105-0004, Japan
| | - Yoh Terada
- Alivexis
Inc., Daiichi Hibiya
Building 7F, Shimbashi 1-18-21, Minato-ku, Tokyo 105-0004, Japan
| | - S. Roy Kimura
- Alivexis
Inc., Daiichi Hibiya
Building 7F, Shimbashi 1-18-21, Minato-ku, Tokyo 105-0004, Japan
| |
Collapse
|
2
|
Liu H, Zhang H, IJzerman AP, Guo D. The translational value of ligand-receptor binding kinetics in drug discovery. Br J Pharmacol 2024; 181:4117-4129. [PMID: 37705429 DOI: 10.1111/bph.16241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/27/2023] [Accepted: 09/01/2023] [Indexed: 09/15/2023] Open
Abstract
The translation of in vitro potency of a candidate drug, as determined by traditional pharmacology metrics (such as EC50/IC50 and KD/Ki values), to in vivo efficacy and safety is challenging. Residence time, which represents the duration of drug-target interaction, can be part of a more comprehensive understanding of the dynamic nature of drug-target interactions in vivo, thereby enabling better prediction of drug efficacy and safety. As a consequence, a prolonged residence time may help in achieving sustained pharmacological activity, while transient interactions with shorter residence times may be favourable for targets associated with side effects. Therefore, integration of residence time into the early stages of drug discovery and development has yielded a number of clinical candidates with promising in vivo efficacy and safety profiles. Insights from residence time research thus contribute to the translation of in vitro potency to in vivo efficacy and safety. Further research and advances in measuring and optimizing residence time will bring a much-needed addition to the drug discovery process and the development of safer and more effective drugs. In this review, we summarize recent research progress on residence time, highlighting its importance from a translational perspective.
Collapse
Affiliation(s)
- Hongli Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Haoran Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Adriaan P IJzerman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, The Netherlands
| | - Dong Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
3
|
Joaquim AR, Lopes MS, Fortes IS, de Bem Gentz C, de Matos Czeczot A, Perelló MA, Roth CD, Vainstein MH, Basso LA, Bizarro CV, Machado P, de Andrade SF. Identification of antimycobacterial 8-hydroxyquinoline derivatives as in vitro enzymatic inhibitors of Mycobacterium tuberculosis enoyl-acyl carrier protein reductase. Bioorg Chem 2024; 151:107705. [PMID: 39137600 DOI: 10.1016/j.bioorg.2024.107705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/15/2024]
Abstract
The increasing prevalence of drug-resistant Mycobacterium tuberculosis strains stimulates the discovery of new drug candidates. Among them are 8-hydroxyquinoline (8HQ) derivatives that exhibited antimicrobial properties. Unfortunately, there is a lack of data assessing possible targets for this class mainly against Mycobacterium tuberculosis enoyl-acyl carrier protein reductase (MtInhA), a validated target in this field. Thus, the main purpose of this study was to identify 8HQ derivatives that are active against M. tuberculosis and MtInhA. Initially, the screening against the microorganism of a small antimicrobial library and its new derivatives that possess some structural similarity with MtInhA inhibitors identified four 7-substituted-8HQ (series 5 - 5a, 5c, 5d and 5i) and four 5-substituted-8HQ active derivatives (series 7 - 7a, 7c, 7d and 7j). In general, the 7-substituted 8-HQs were more potent and, in the enzymatic assay, were able to inhibit MtInhA at low micromolar range. However, the 5-substituted-8-HQs that presented antimycobacterial activity were not able to inhibit MtInhA. These findings indicate the non-promiscuous nature of 8-HQ derivatives and emphasize the significance of selecting appropriate substituents to achieve in vitro enzyme inhibition. Finally, 7-substituted-8HQ series are promising new derivatives for structure-based drug design and further development.
Collapse
Affiliation(s)
- Angélica Rocha Joaquim
- Pharmaceutical Synthesis Group (PHARSG), Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90610-000, Brazil; Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90610-000, Brazil; Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS 97105-900, Brazil.
| | - Marcela Silva Lopes
- Pharmaceutical Synthesis Group (PHARSG), Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90610-000, Brazil; Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90610-000, Brazil
| | - Isadora Serraglio Fortes
- Pharmaceutical Synthesis Group (PHARSG), Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90610-000, Brazil; Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90610-000, Brazil
| | - Caroline de Bem Gentz
- Pharmaceutical Synthesis Group (PHARSG), Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90610-000, Brazil; Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90610-000, Brazil; Programa de Pós-graduação em Microbiologia Agrícola e do Ambiente, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90035-003, Brazil
| | - Alexia de Matos Czeczot
- Instituto Nacional de Ciência e Tecnologia em Tuberculose, Centro de Pesquisas em Biologia Molecular e Funcional, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS 90619-900, Brazil; Programa de Pós-Graduação em Medicina e Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS 90619-900, Brazil
| | - Marcia Alberton Perelló
- Instituto Nacional de Ciência e Tecnologia em Tuberculose, Centro de Pesquisas em Biologia Molecular e Funcional, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS 90619-900, Brazil
| | - Candida Deves Roth
- Instituto Nacional de Ciência e Tecnologia em Tuberculose, Centro de Pesquisas em Biologia Molecular e Funcional, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS 90619-900, Brazil
| | | | - Luiz Augusto Basso
- Instituto Nacional de Ciência e Tecnologia em Tuberculose, Centro de Pesquisas em Biologia Molecular e Funcional, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS 90619-900, Brazil; Programa de Pós-Graduação em Medicina e Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS 90619-900, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS 90619-900, Brazil
| | - Cristiano Valim Bizarro
- Instituto Nacional de Ciência e Tecnologia em Tuberculose, Centro de Pesquisas em Biologia Molecular e Funcional, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS 90619-900, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS 90619-900, Brazil
| | - Pablo Machado
- Instituto Nacional de Ciência e Tecnologia em Tuberculose, Centro de Pesquisas em Biologia Molecular e Funcional, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS 90619-900, Brazil; Programa de Pós-Graduação em Medicina e Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS 90619-900, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS 90619-900, Brazil.
| | - Saulo Fernandes de Andrade
- Pharmaceutical Synthesis Group (PHARSG), Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90610-000, Brazil; Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90610-000, Brazil; Programa de Pós-graduação em Microbiologia Agrícola e do Ambiente, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90035-003, Brazil.
| |
Collapse
|
4
|
Xu C, Zhang X, Zhao L, Verkhivker GM, Bai F. Accurate Characterization of Binding Kinetics and Allosteric Mechanisms for the HSP90 Chaperone Inhibitors Using AI-Augmented Integrative Biophysical Studies. JACS AU 2024; 4:1632-1645. [PMID: 38665669 PMCID: PMC11040708 DOI: 10.1021/jacsau.4c00123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/28/2024]
Abstract
The binding kinetics of drugs to their targets are gradually being recognized as a crucial indicator of the efficacy of drugs in vivo, leading to the development of various computational methods for predicting the binding kinetics in recent years. However, compared with the prediction of binding affinity, the underlying structure and dynamic determinants of binding kinetics are more complicated. Efficient and accurate methods for predicting binding kinetics are still lacking. In this study, quantitative structure-kinetics relationship (QSKR) models were developed using 132 inhibitors targeting the ATP binding domain of heat shock protein 90α (HSP90α) to predict the dissociation rate constant (koff), enabling a direct assessment of the drug-target residence time. These models demonstrated good predictive performance, where hydrophobic and hydrogen bond interactions significantly influence the koff prediction. In subsequent applications, our models were used to assist in the discovery of new inhibitors for the N-terminal domain of HSP90α (N-HSP90α), demonstrating predictive capabilities on an experimental validation set with a new scaffold. In X-ray crystallography experiments, the loop-middle conformation of apo N-HSP90α was observed for the first time (previously, the loop-middle conformation had only been observed in holo-N-HSP90α structures). Interestingly, we observed different conformations of apo N-HSP90α simultaneously in an asymmetric unit, which was also observed in a holo-N-HSP90α structure, suggesting an equilibrium of conformations between different states in solution, which could be one of the determinants affecting the binding kinetics of the ligand. Different ligands can undergo conformational selection or alter the equilibrium of conformations, inducing conformational rearrangements and resulting in different effects on binding kinetics. We then used molecular dynamics simulations to describe conformational changes of apo N-HSP90α in different conformational states. In summary, the study of the binding kinetics and molecular mechanisms of N-HSP90α provides valuable information for the development of more targeted therapeutic approaches.
Collapse
Affiliation(s)
- Chao Xu
- Shanghai
Institute for Advanced Immunochemical Studies and School of Life Science
and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Xianglei Zhang
- Shanghai
Institute for Advanced Immunochemical Studies and School of Life Science
and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Lianghao Zhao
- Shanghai
Institute for Advanced Immunochemical Studies and School of Life Science
and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Gennady M. Verkhivker
- Keck
Center for Science and Engineering, Graduate Program in Computational
and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California 92866, United States
- Department
of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California 92618, United States
| | - Fang Bai
- Shanghai
Institute for Advanced Immunochemical Studies and School of Life Science
and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
- School
of Information Science and Technology, ShanghaiTech
University, 393 Middle Huaxia Road, Shanghai 201210, China
- Shanghai
Clinical Research and Trial Center, Shanghai 201210, China
| |
Collapse
|
5
|
Chebaiki M, Delfourne E, Tamhaev R, Danoun S, Rodriguez F, Hoffmann P, Grosjean E, Goncalves F, Azéma-Despeyroux J, Pál A, Korduláková J, Preuilh N, Britton S, Constant P, Marrakchi H, Maveyraud L, Mourey L, Lherbet C. Discovery of new diaryl ether inhibitors against Mycobacterium tuberculosis targeting the minor portal of InhA. Eur J Med Chem 2023; 259:115646. [PMID: 37482022 DOI: 10.1016/j.ejmech.2023.115646] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/25/2023]
Abstract
Tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) affects 10 million people each year and the emergence of resistant TB augurs for a growing incidence. In the last 60 years, only three new drugs were approved for TB treatment, for which resistances are already emerging. Therefore, there is a crucial need for new chemotherapeutic agents capable of eradicating TB. Enzymes belonging to the type II fatty acid synthase system (FAS-II) are involved in the biosynthesis of mycolic acids, cell envelope components essential for mycobacterial survival. Among them, InhA is the primary target of isoniazid (INH), one of the most effective compounds to treat TB. INH acts as a prodrug requiring activation by the catalase-peroxidase KatG, whose mutations are the major cause for INH resistance. Herein, a new series of direct InhA inhibitors were designed based on a molecular hybridization approach. They exhibit potent inhibitory activities of InhA and, for some of them, good antitubercular activities. Moreover, they display a low toxicity on human cells. A study of the mechanism of action of the most effective molecules shows that they inhibit the biosynthesis of mycolic acids. The X-ray structures of two InhA/NAD+/inhibitor complexes have been obtained showing a binding mode of a part of the molecule in the minor portal, rarely seen in the InhA structures reported so far.
Collapse
Affiliation(s)
- Mélina Chebaiki
- Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (LSPCMIB), UMR 5068, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France; Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Evelyne Delfourne
- Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (LSPCMIB), UMR 5068, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Rasoul Tamhaev
- Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (LSPCMIB), UMR 5068, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France; Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Saïda Danoun
- Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (LSPCMIB), UMR 5068, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Frédéric Rodriguez
- Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (LSPCMIB), UMR 5068, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Pascal Hoffmann
- Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (LSPCMIB), UMR 5068, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Emeline Grosjean
- Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (LSPCMIB), UMR 5068, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Fernanda Goncalves
- Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (LSPCMIB), UMR 5068, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Joëlle Azéma-Despeyroux
- Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (LSPCMIB), UMR 5068, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Adrián Pál
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 84215, Bratislava, Slovakia
| | - Jana Korduláková
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 84215, Bratislava, Slovakia
| | - Nadège Preuilh
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Sébastien Britton
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Patricia Constant
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Hedia Marrakchi
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Laurent Maveyraud
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France.
| | - Lionel Mourey
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France.
| | - Christian Lherbet
- Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (LSPCMIB), UMR 5068, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France.
| |
Collapse
|
6
|
Davoodi S, Daryaee F, Iuliano JN, Collado JT, He Y, Pollard AC, Gil AA, Aramini JM, Tonge PJ. Evaluating the Impact of the Tyr158 p Ka on the Mechanism and Inhibition of InhA, the Enoyl-ACP Reductase from Mycobacterium tuberculosis. Biochemistry 2023; 62:1943-1952. [PMID: 37270808 PMCID: PMC10329767 DOI: 10.1021/acs.biochem.2c00606] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
InhA, the Mycobacterium tuberculosis enoyl-ACP reductase, is a target for the tuberculosis (TB) drug isoniazid (INH). InhA inhibitors that do not require KatG activation avoid the most common mechanism of INH resistance, and there are continuing efforts to fully elucidate the enzyme mechanism to drive inhibitor discovery. InhA is a member of the short-chain dehydrogenase/reductase superfamily characterized by a conserved active site Tyr, Y158 in InhA. To explore the role of Y158 in the InhA mechanism, this residue has been replaced by fluoroTyr residues that increase the acidity of Y158 up to ∼3200-fold. Replacement of Y158 with 3-fluoroTyr (3-FY) and 3,5-difluoroTyr (3,5-F2Y) has no effect on kcatapp/KMapp nor on the binding of inhibitors to the open form of the enzyme (Kiapp), whereas both kcatapp/KMapp and Kiapp are altered by seven-fold for the 2,3,5-trifluoroTyr variant (2,3,5-F3Y158 InhA). 19F NMR spectroscopy suggests that 2,3,5-F3Y158 is ionized at neutral pH indicating that neither the acidity nor ionization state of residue 158 has a major impact on catalysis or on the binding of substrate-like inhibitors. In contrast, Ki*app is decreased 6- and 35-fold for the binding of the slow-onset inhibitor PT504 to 3,5-F2Y158 and 2,3,5-F3Y158 InhA, respectively, indicating that Y158 stabilizes the closed form of the enzyme adopted by EI*. The residence time of PT504 is reduced ∼four-fold for 2,3,5-F3Y158 InhA compared to wild-type, and thus, the hydrogen bonding interaction of the inhibitor with Y158 is an important factor in the design of InhA inhibitors with increased residence times on the enzyme.
Collapse
Affiliation(s)
- Shabnam Davoodi
- Center for Advanced Study of Drug Action, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
- Department of Chemistry, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - Fereidoon Daryaee
- Center for Advanced Study of Drug Action, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
- Department of Chemistry, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - James N. Iuliano
- Center for Advanced Study of Drug Action, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
- Department of Chemistry, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - Jinnette Tolentino Collado
- Center for Advanced Study of Drug Action, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
- Department of Chemistry, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - Yongle He
- Center for Advanced Study of Drug Action, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
- Department of Chemistry, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - Alyssa C. Pollard
- Center for Advanced Study of Drug Action, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
- Department of Chemistry, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - Agnieszka A. Gil
- Department of Chemistry, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - James M. Aramini
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031, United States
| | - Peter J. Tonge
- Center for Advanced Study of Drug Action, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
- Department of Chemistry, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
- Department of Radiology, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, United States
| |
Collapse
|
7
|
Yan W, Zheng Y, Dou C, Zhang G, Arnaout T, Cheng W. The pathogenic mechanism of Mycobacterium tuberculosis: implication for new drug development. MOLECULAR BIOMEDICINE 2022; 3:48. [PMID: 36547804 PMCID: PMC9780415 DOI: 10.1186/s43556-022-00106-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 11/15/2022] [Indexed: 12/24/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), is a tenacious pathogen that has latently infected one third of the world's population. However, conventional TB treatment regimens are no longer sufficient to tackle the growing threat of drug resistance, stimulating the development of innovative anti-tuberculosis agents, with special emphasis on new protein targets. The Mtb genome encodes ~4000 predicted proteins, among which many enzymes participate in various cellular metabolisms. For example, more than 200 proteins are involved in fatty acid biosynthesis, which assists in the construction of the cell envelope, and is closely related to the pathogenesis and resistance of mycobacteria. Here we review several essential enzymes responsible for fatty acid and nucleotide biosynthesis, cellular metabolism of lipids or amino acids, energy utilization, and metal uptake. These include InhA, MmpL3, MmaA4, PcaA, CmaA1, CmaA2, isocitrate lyases (ICLs), pantothenate synthase (PS), Lysine-ε amino transferase (LAT), LeuD, IdeR, KatG, Rv1098c, and PyrG. In addition, we summarize the role of the transcriptional regulator PhoP which may regulate the expression of more than 110 genes, and the essential biosynthesis enzyme glutamine synthetase (GlnA1). All these enzymes are either validated drug targets or promising target candidates, with drugs targeting ICLs and LAT expected to solve the problem of persistent TB infection. To better understand how anti-tuberculosis drugs act on these proteins, their structures and the structure-based drug/inhibitor designs are discussed. Overall, this investigation should provide guidance and support for current and future pharmaceutical development efforts against mycobacterial pathogenesis.
Collapse
Affiliation(s)
- Weizhu Yan
- grid.412901.f0000 0004 1770 1022Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041 China
| | - Yanhui Zheng
- grid.412901.f0000 0004 1770 1022Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041 China
| | - Chao Dou
- grid.412901.f0000 0004 1770 1022Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041 China
| | - Guixiang Zhang
- grid.13291.380000 0001 0807 1581Division of Gastrointestinal Surgery, Department of General Surgery and Gastric Cancer center, West China Hospital, Sichuan University, No. 37. Guo Xue Xiang, Chengdu, 610041 China
| | - Toufic Arnaout
- Kappa Crystals Ltd., Dublin, Ireland ,MSD Dunboyne BioNX, Co. Meath, Ireland
| | - Wei Cheng
- grid.412901.f0000 0004 1770 1022Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041 China
| |
Collapse
|
8
|
Basak S, Li Y, Tao S, Daryaee F, Merino J, Gu C, Delker SL, Phan JN, Edwards TE, Walker SG, Tonge PJ. Structure-Kinetic Relationship Studies for the Development of Long Residence Time LpxC Inhibitors. J Med Chem 2022; 65:11854-11875. [PMID: 36037447 PMCID: PMC10182817 DOI: 10.1021/acs.jmedchem.2c00974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase (LpxC) is a promising drug target in Gram-negative bacteria. Previously, we described a correlation between the residence time of inhibitors on Pseudomonas aeruginosa LpxC (paLpxC) and the post-antibiotic effect (PAE) caused by the inhibitors on the growth of P. aeruginosa. Given that drugs with prolonged activity following compound removal may have advantages in dosing regimens, we have explored the structure-kinetic relationship for paLpxC inhibition by analogues of the pyridone methylsulfone PF5081090 (1) originally developed by Pfizer. Several analogues have longer residence times on paLpxC than 1 (41 min) including PT913, which has a residence time of 124 min. PT913 also has a PAE of 4 h, extending the original correlation observed between residence time and PAE. Collectively, the studies provide a platform for the rational modulation of paLpxC inhibitor residence time and the potential development of antibacterial agents that cause prolonged suppression of bacterial growth.
Collapse
Affiliation(s)
- Sneha Basak
- Center for Advanced Study of Drug Action, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, USA
- Department of Chemistry, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Yong Li
- Center for Advanced Study of Drug Action, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, USA
- Department of Chemistry, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Suyuan Tao
- Department of Chemistry, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Fereidoon Daryaee
- Center for Advanced Study of Drug Action, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, USA
- Department of Chemistry, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Jonathan Merino
- Center for Advanced Study of Drug Action, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, USA
- Department of Chemistry, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Chendi Gu
- Center for Advanced Study of Drug Action, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, USA
- Department of Chemistry, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | | | - Jenny N. Phan
- McGill University Montreal, Quebec H3A 0G4, Canada Canada
| | | | - Stephen G. Walker
- Department of Oral Biology and Pathology, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Peter J. Tonge
- Center for Advanced Study of Drug Action, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, USA
- Department of Chemistry, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, USA
- Department of Radiology, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, USA
| |
Collapse
|
9
|
Binding Thermodynamics and Dissociation Kinetics Analysis Uncover the Key Structural Motifs of Phenoxyphenol Derivatives as the Direct InhA Inhibitors and the Hotspot Residues of InhA. Int J Mol Sci 2022; 23:ijms231710102. [PMID: 36077494 PMCID: PMC9456180 DOI: 10.3390/ijms231710102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Given the current epidemic of multidrug-resistant tuberculosis, there is an urgent need to develop new drugs to combat drug-resistant tuberculosis. Direct inhibitors of the InhA target do not require activation and thus can overcome drug resistance caused by mutations in drug-activating enzymes. In this work, the binding thermodynamic and kinetic information of InhA to its direct inhibitors, phenoxyphenol derivatives, were explored through multiple computer-aided drug design (CADD) strategies. The results show that the van der Waals interactions were the main driving force for protein–ligand binding, among which hydrophobic residues such as Tyr158, Phe149, Met199 and Ile202 have high energy contribution. The AHRR pharmacophore model generated by multiple ligands demonstrated that phenoxyphenol derivatives inhibitors can form pi–pi stacking and hydrophobic interactions with InhA target. In addition, the order of residence time predicted by random acceleration molecular dynamics was consistent with the experimental values. The intermediate states of these inhibitors could form hydrogen bonds and van der Waals interactions with surrounding residues during dissociation. Overall, the binding and dissociation mechanisms at the atomic level obtained in this work can provide important theoretical guidance for the development of InhA direct inhibitors with higher activity and proper residence time.
Collapse
|
10
|
Hanwarinroj C, Phusi N, Kamsri B, Kamsri P, Punkvang A, Ketrat S, Saparpakorn P, Hannongbua S, Suttisintong K, Kittakoop P, Spencer J, Mulholland AJ, Pungpo P. Discovery of novel and potent InhA inhibitors by an in silico screening and pharmacokinetic prediction. Future Med Chem 2022; 14:717-729. [PMID: 35485258 DOI: 10.4155/fmc-2021-0348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: In silico screening approaches were performed to discover novel InhA inhibitors. Methods: Candidate InhA inhibitors were obtained from the combination of virtual screening and pharmacokinetic prediction. In addition, molecular mechanics Poisson-Boltzmann surface area, molecular mechanics Generalized Born surface area and WaterSwap methods were performed to investigate the binding interactions and binding energy of candidate compounds. Results: Four candidate compounds with suitable physicochemical, pharmacokinetic and antibacterial properties are proposed. The crucial interactions of the candidate compounds were H-bond, pi-pi and sigma-pi interactions observed in the InhA binding site. The binding affinity of these compounds was improved by hydrophobic interactions with hydrophobic side chains in the InhA pocket. Conclusion: The four newly identified InhA inhibitors reported in this study could serve as promising hit compounds against Mycobacterium tuberculosis and may be considered for further experimental studies.
Collapse
Affiliation(s)
- Chayanin Hanwarinroj
- Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Nareudon Phusi
- Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Bundit Kamsri
- Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Pharit Kamsri
- Division of Chemistry, Faculty of Science, Nakhon Phanom University, Nakhon Phanom, 48000, Thailand
| | - Auradee Punkvang
- Division of Chemistry, Faculty of Science, Nakhon Phanom University, Nakhon Phanom, 48000, Thailand
| | - Sombat Ketrat
- School of Information Science & Technology, Vidyasirimedhi Institute of Science & Technology, Rayong, 21210, Thailand
| | | | - Supa Hannongbua
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | | | - Prasat Kittakoop
- Chulabhorn Research Institute, Bangkok, 10210, Thailand
- Chulabhorn Graduate Institute, Chemical Biology Program, Chulabhorn Royal Academy, Bangkok, 10210, Thailand
- Center of Excellence on Environmental Health & Toxicology (EHT), CHE, Ministry of Education, Bangkok, 10300, Thailand
| | - James Spencer
- School of Cellular & Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, United Kingdom
| | - Adrian J Mulholland
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, United Kingdom
| | - Pornpan Pungpo
- Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| |
Collapse
|
11
|
Katiki M, Neetu N, Pratap S, Kumar P. Biochemical and structural basis for Moraxella catarrhalis enoyl-acyl carrier protein reductase (FabI) inhibition by triclosan and estradiol. Biochimie 2022; 198:8-22. [PMID: 35276316 DOI: 10.1016/j.biochi.2022.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 02/06/2022] [Accepted: 02/22/2022] [Indexed: 11/02/2022]
Abstract
The enoyl-acyl carrier protein reductase (ENR) is an established drug target and catalyzes the last reduction step of the fatty acid elongation cycle. Here, we report the crystal structures of FabI from Moraxella catarrhalis (McFabI) in the apo form, binary complex with NAD+ and ternary complex with NAD + -triclosan (TCL) determined at 2.36, 2.12 and 2.22 Å resolutions, respectively. The comparative study of these three structures revealed three different conformational states for the substrate-binding loop (SBL), including an unstructured intermediate, a structured intermediate and a closed conformation in the apo, binary and ternary complex forms, respectively; indicating the flexibility of SBL during the ligand binding. Virtual screening has suggested that estradiol cypionate may be a potential inhibitor of McFabI. Subsequently, estradiol (EST), the natural form of estradiol cypionate, was assessed for its FabI-binding and -inhibition properties. In vitro studies demonstrated that TCL and EST bind to McFabI with high affinity (KD = 0.038 ± 0.004 and 5 ± 0.06 μM respectively) and inhibit its activity (Ki = 62.93 ± 3.95 nM and 25.97 ± 1.93 μM respectively) and suppress the growth of M. catarrhalis. These findings reveal that TCL and EST inhibit the McFabI activity and thereby affect cell growth. This study suggests that estradiol may be exploited as a novel scaffold for the designing and development of more potential FabI inhibitors.
Collapse
Affiliation(s)
- Madhusudhanarao Katiki
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Neetu Neetu
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Shivendra Pratap
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Pravindra Kumar
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
| |
Collapse
|
12
|
Prasad MS, Bhole RP, Khedekar PB, Chikhale RV. Mycobacterium enoyl acyl carrier protein reductase (InhA): A key target for antitubercular drug discovery. Bioorg Chem 2021; 115:105242. [PMID: 34392175 DOI: 10.1016/j.bioorg.2021.105242] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/16/2021] [Accepted: 08/02/2021] [Indexed: 10/20/2022]
Abstract
Enoyl acyl carrier protein reductase (InhA) is a key enzyme involved in fatty acid synthesis mainly mycolic acid biosynthesis that is a part of NADH dependent acyl carrier protein reductase family. The aim of the present literature is to underline the different scaffolds or enzyme inhibitors that inhibit mycolic acid biosynthesis mainly cell wall synthesis by inhibiting enzyme InhA. Various scaffolds were identified based on the screening technologies like high throughput screening, encoded library technology, fragment-based screening. The compounds studied include indirect inhibitors (Isoniazid, Ethionamide, Prothionamide) and direct inhibitors (Triclosan/Diphenyl ethers, Pyrrolidine Carboxamides, Pyrroles, Acetamides, Thiadiazoles, Triazoles) with better efficacy against drug resistance. Out of the several scaffolds studied, pyrrolidine carboxamides were found to be the best molecules targeting InhA having good bioavailability properties and better MIC. This review provides with a detailed information, analysis, structure activity relationship and useful insight on various scaffolds as InhA inhibitors.
Collapse
Affiliation(s)
- Mayuri S Prasad
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, MS, India
| | - Ritesh P Bhole
- Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune 411018, Maharashtra, India
| | - Pramod B Khedekar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, MS, India.
| | - Rupesh V Chikhale
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom.
| |
Collapse
|
13
|
Abstract
IntroductionThe pharmacological action of a drug is linked to its affinity for a specific molecular target as quantified by in vitro equilibrium measurements. However, it is clear that for many highly effective drugs, interactions with their molecular targets do not conform to simple, equilibrium conditions in vivo and this results in a temporal discordance between pharmacokinetics and pharmacodynamics. The drug-target residence time model was developed to provide a theoretical framework with which to understand cases in which very slow dissociation of the drug-target complex in vivo results in durable PD effects even after systemic concentrations of drug have waned.Area coveredIn this article, the author provides a brief description of the drug-target residence time model and focuses on the refinements that have been made to the original model to incorporate the influences of compound rebinding in cells and pharmacokinetic properties of drug molecules.Expert opinionThere is now overwhelming evidence for the utility of the drug-target residence time model as a framework for understanding in vivo drug action. The in vitro measured residence time (τR) must be used in concert with equilibrium measures of drug-target affinity (e.g. IC50) and with in vivo measures of pharmacokinetic half-life, to afford the researcher a powerful approach to compound optimization for clinical effect. Despite the significant use and refinement of this model, continued studies are required to better understand the dynamic interplay between residence time, target pathobiology, drug distribution and drug pharmacokinetics.
Collapse
|
14
|
Venugopala KN, Chandrashekharappa S, Deb PK, Tratrat C, Pillay M, Chopra D, Al-Shar'i NA, Hourani W, Dahabiyeh LA, Borah P, Nagdeve RD, Nayak SK, Padmashali B, Morsy MA, Aldhubiab BE, Attimarad M, Nair AB, Sreeharsha N, Haroun M, Shashikanth S, Mohanlall V, Mailavaram R. Anti-tubercular activity and molecular docking studies of indolizine derivatives targeting mycobacterial InhA enzyme. J Enzyme Inhib Med Chem 2021; 36:1472-1487. [PMID: 34210233 PMCID: PMC8259857 DOI: 10.1080/14756366.2021.1919889] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
A series of 1,2,3-trisubstituted indolizines (2a-2f, 3a-3d, and 4a-4c) were screened for in vitro whole-cell anti-tubercular activity against the susceptible H37Rv and multidrug-resistant (MDR) Mycobacterium tuberculosis (MTB) strains. Compounds 2b-2d, 3a-3d, and 4a-4c were active against the H37Rv-MTB strain with minimum inhibitory concentration (MIC) ranging from 4 to 32 µg/mL, whereas the indolizines 4a-4c, with ethyl ester group at the 4-position of the benzoyl ring also exhibited anti-MDR-MTB activity (MIC = 16-64 µg/mL). In silico docking study revealed the enoyl-acyl carrier protein reductase (InhA) and anthranilate phosphoribosyltransferase as potential molecular targets for the indolizines. The X-ray diffraction analysis of the compound 4b was also carried out. Further, a safety study (in silico and in vitro) demonstrated no toxicity for these compounds. Thus, the indolizines warrant further development and may represent a novel promising class of InhA inhibitors and multi-targeting agents to combat drug-sensitive and drug-resistant MTB strains.
Collapse
Affiliation(s)
- Katharigatta N Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia.,Department of Biotechnology and Food Technology, Durban University of Technology, Durban, South Africa
| | | | - Pran Kishore Deb
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Philadelphia University, Amman, Jordan
| | - Christophe Tratrat
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Melendhran Pillay
- Department of Microbiology, National Health Laboratory Services, KZN Academic Complex, Inkosi Albert Luthuli Central Hospital, Durban, South Africa
| | - Deepak Chopra
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Nizar A Al-Shar'i
- Faculty of Pharmacy, Department of Medicinal Chemistry and Pharmacognosy, Jordan University of Science and Technology, Irbid, Jordan
| | - Wafa Hourani
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Philadelphia University, Amman, Jordan
| | - Lina A Dahabiyeh
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Jordan, Amman, Jordan
| | - Pobitra Borah
- Pratiksha Institute of Pharmaceutical Sciences, Guwahati, India
| | - Rahul D Nagdeve
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur, India
| | - Susanta K Nayak
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur, India
| | - Basavaraj Padmashali
- Department of Chemistry, School of Basic Science, Rani Channamma University, Belagavi, India
| | - Mohamed A Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia.,Faculty of Medicine, Department of Pharmacology, Minia University, El-Minia, Egypt
| | - Bandar E Aldhubiab
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Mahesh Attimarad
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Anroop B Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia.,Department of Pharmaceutics, Vidya Siri College of Pharmacy, Bangalore, India
| | - Michelyne Haroun
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Sheena Shashikanth
- Department of Studies in Organic Chemistry, University of Mysore, Mysore, India
| | - Viresh Mohanlall
- Department of Biotechnology and Food Technology, Durban University of Technology, Durban, South Africa
| | | |
Collapse
|
15
|
Eltschkner S, Kehrein J, Le TA, Davoodi S, Merget B, Basak S, Weinrich JD, Schiebel J, Tonge PJ, Engels B, Sotriffer C, Kisker C. A Long Residence Time Enoyl-Reductase Inhibitor Explores an Extended Binding Region with Isoenzyme-Dependent Tautomer Adaptation and Differential Substrate-Binding Loop Closure. ACS Infect Dis 2021; 7:746-758. [PMID: 33710875 DOI: 10.1021/acsinfecdis.0c00437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The enoyl-acyl carrier protein (ACP) reductase (ENR) is a key enzyme within the bacterial fatty-acid synthesis pathway. It has been demonstrated that small-molecule inhibitors carrying the diphenylether (DPE) scaffold bear a great potential for the development of highly specific and effective drugs against this enzyme class. Interestingly, different substitution patterns of the DPE scaffold have been shown to lead to varying effects on the kinetic and thermodynamic behavior toward ENRs from different organisms. Here, we investigated the effect of a 4'-pyridone substituent in the context of the slow tight-binding inhibitor SKTS1 on the inhibition of the Staphylococcus aureus enoyl-ACP-reductase saFabI and the closely related isoenzyme from Mycobacterium tuberculosis, InhA, and explored a new interaction site of DPE inhibitors within the substrate-binding pocket. Using high-resolution crystal structures of both complexes in combination with molecular dynamics (MD) simulations, kinetic measurements, and quantum mechanical (QM) calculations, we provide evidence that the 4'-pyridone substituent adopts different tautomeric forms when bound to the two ENRs. We furthermore elucidate the structural determinants leading to significant differences in the residence time of SKTS1 on both enzymes.
Collapse
Affiliation(s)
- Sandra Eltschkner
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Institute for Structural Biology, University of Würzburg, 97080 Würzburg, Germany
- Molecular Ecology and Evolution Lab, Department of Biology, Lund University, 223 62 Lund, Sweden
| | - Josef Kehrein
- Institute of Pharmacy and Food Chemistry, University of Würzburg, 97074 Würzburg, Germany
| | - Thien Anh Le
- Institute of Physical and Theoretical Chemistry, University of Würzburg, 97074 Würzburg, Germany
- Department of Experimental Physics 5 (Biophysics), University of Würzburg, 97074 Würzburg, Germany
| | - Shabnam Davoodi
- Institute for Chemical Biology and Drug Discovery, Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Benjamin Merget
- Institute of Pharmacy and Food Chemistry, University of Würzburg, 97074 Würzburg, Germany
| | - Sneha Basak
- Institute for Chemical Biology and Drug Discovery, Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Jonas D. Weinrich
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Institute for Structural Biology, University of Würzburg, 97080 Würzburg, Germany
- Department of Microbiology, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Johannes Schiebel
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Institute for Structural Biology, University of Würzburg, 97080 Würzburg, Germany
| | - Peter J. Tonge
- Institute for Chemical Biology and Drug Discovery, Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Bernd Engels
- Institute of Physical and Theoretical Chemistry, University of Würzburg, 97074 Würzburg, Germany
| | - Christoph Sotriffer
- Institute of Pharmacy and Food Chemistry, University of Würzburg, 97074 Würzburg, Germany
| | - Caroline Kisker
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Institute for Structural Biology, University of Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
16
|
Gaikwad NB, Nirmale K, Sahoo SK, Ahmad MN, Kaul G, Shukla M, Nanduri S, Das Gupta A, Chopra S, Yaddanapudi MV. Design, synthesis, in silico, and in vitro evaluation of 3-phenylpyrazole acetamide derivatives as antimycobacterial agents. Arch Pharm (Weinheim) 2020; 354:e2000349. [PMID: 33351199 DOI: 10.1002/ardp.202000349] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/12/2020] [Accepted: 11/21/2020] [Indexed: 11/12/2022]
Abstract
Mycobacterium tuberculosis (Mtb) is one of the most dangerous pathogens affecting immunocompetent and immunocompromised patients worldwide. Novel molecules, which are efficient and can reduce the duration of therapy against drug-resistant strains, are an urgent unmet need of the hour. In our current study, a series of new 2-(3-phenyl-1H-pyrazol-1-yl)acetamide and N'-benzylidene-2-(3-phenyl-1H-pyrazol-1-yl)acetohydrazide derivatives were designed, synthesized, and evaluated for their antimycobacterial potential. The biological evaluation revealed that 6b, 6m, 6l, 7a, and 7k exhibited selective and potent inhibitory activity against Mtb. Furthermore, compounds 6m and 7h were found to be nontoxic to Vero cells with CC50 of greater than 20 and 80 mg/ml, respectively, and exhibited promising selectivity indices (SI) of greater than 666 and 320, respectively. All derivatives exhibited excellent ADME (absorption, distribution, metabolism, and excretion) properties in silico. Also, all the derivatives were found compliant with Lipinski's rule of five, showing their druggability profile. Molecular docking insights of these derivatives have shown outstanding binding energies on the mycobacterial membrane protein large transporters. These results indicate that this scaffold may lead to a potential antimycobacterial drug candidate in the discovery of antitubercular agents.
Collapse
Affiliation(s)
- Nikhil B Gaikwad
- Department of Pharmaceutical Technology and Process Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Krishna Nirmale
- Department of Pharmaceutical Technology and Process Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Santosh K Sahoo
- Department of Pharmaceutical Technology and Process Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Mohammad N Ahmad
- Division of Microbiology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Grace Kaul
- Division of Microbiology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Manjulika Shukla
- Division of Microbiology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Srinivas Nanduri
- Department of Pharmaceutical Technology and Process Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Arunava Das Gupta
- Division of Microbiology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Sidharth Chopra
- Division of Microbiology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Madhavi V Yaddanapudi
- Department of Pharmaceutical Technology and Process Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| |
Collapse
|
17
|
Fernández de Luco J, Recio-Balsells AI, Ghiano DG, Bortolotti A, Belardinelli JM, Liu N, Hoffmann P, Lherbet C, Tonge PJ, Tekwani B, Morbidoni HR, Labadie GR. Exploring the chemical space of 1,2,3-triazolyl triclosan analogs for discovery of new antileishmanial chemotherapeutic agents. RSC Med Chem 2020; 12:120-128. [PMID: 34046604 DOI: 10.1039/d0md00291g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/13/2020] [Indexed: 01/02/2023] Open
Abstract
Triclosan and isoniazid are known antitubercular compounds that have proven to be also active against Leishmania parasites. On these grounds, a collection of 37 diverse 1,2,3-triazoles based on the antitubercular molecules triclosan and 5-octyl-2-phenoxyphenol (8PP) were designed in search of novel structures with leishmanicidal activity and prepared using different alkynes and azides. The 37 compounds were assayed against Leishmania donovani, the etiological agent of leishmaniasis, yielding some analogs with activity at micromolar concentrations and against M. tuberculosis H37Rv resulting in scarce active compounds with an MIC of 20 μM. To study the mechanism of action of these catechols, we analyzed the inhibition activity of the library on the M. tuberculosis enoyl-ACP reductase (ENR) InhA, obtaining poor inhibition of the enzyme. The cytotoxicity against Vero cells was also tested, resulting in none of the compounds being cytotoxic at concentrations of up to 20 μM. Derivative 5f could be considered a valuable starting point for future antileishmanial drug development. The validation of a putative leishmanial InhA orthologue as a therapeutic target needs to be further investigated.
Collapse
Affiliation(s)
- Julia Fernández de Luco
- Instituto de Química Rosario, UNR, CONICET Suipacha 531 S2002LRK Rosario Argentina +54 341 4370477 +54 341 4370477
| | - Alejandro I Recio-Balsells
- Instituto de Química Rosario, UNR, CONICET Suipacha 531 S2002LRK Rosario Argentina +54 341 4370477 +54 341 4370477
| | - Diego G Ghiano
- Instituto de Química Rosario, UNR, CONICET Suipacha 531 S2002LRK Rosario Argentina +54 341 4370477 +54 341 4370477
| | - Ana Bortolotti
- Laboratorio de Microbiología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Rosario Santa Fe 3100 S2002KTR Rosario Argentina
| | - Juán Manuel Belardinelli
- Laboratorio de Microbiología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Rosario Santa Fe 3100 S2002KTR Rosario Argentina
| | - Nina Liu
- Department of Chemistry, Institute of Chemical Biology & Drug Discovery, Stony Brook University Stony Brook NY 11794 USA
| | - Pascal Hoffmann
- LSPCMIB, UMR-CNRS 5068, Université Paul Sabatier-Toulouse III 118 Route de Narbonne 31062 Toulouse Cedex 9 France
| | - Christian Lherbet
- LSPCMIB, UMR-CNRS 5068, Université Paul Sabatier-Toulouse III 118 Route de Narbonne 31062 Toulouse Cedex 9 France
| | - Peter J Tonge
- Department of Chemistry, Institute of Chemical Biology & Drug Discovery, Stony Brook University Stony Brook NY 11794 USA
| | - Babu Tekwani
- National Center for Natural Products Research & Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi MS 38677 USA
| | - Héctor R Morbidoni
- Laboratorio de Microbiología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Rosario Santa Fe 3100 S2002KTR Rosario Argentina .,Consejo de Investigaciones, Universidad Nacional de Rosario Argentina
| | - Guillermo R Labadie
- Instituto de Química Rosario, UNR, CONICET Suipacha 531 S2002LRK Rosario Argentina +54 341 4370477 +54 341 4370477.,Departamento de Química Orgánica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario Suipacha 531 S2002LRK Rosario Argentina
| |
Collapse
|
18
|
Schuetz DA, Richter L, Martini R, Ecker GF. A structure-kinetic relationship study using matched molecular pair analysis. RSC Med Chem 2020; 11:1285-1294. [PMID: 34085042 PMCID: PMC8126976 DOI: 10.1039/d0md00178c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The lifetime of a binary drug–target complex is increasingly acknowledged as an important parameter for drug efficacy and safety. With a better understanding of binding kinetics and better knowledge about kinetic parameter optimization, intentionally induced prolongation of the drug–target residence time through structural changes of the ligand could become feasible. In this study we assembled datasets from 21 publications and the K4DD (Kinetic for Drug Discovery) database to conduct large scale data analysis. This resulted in 3812 small molecules annotated to 78 different targets from five protein classes (GPCRs: 273, kinases: 3238, other enzymes: 240, HSPs: 160, ion channels: 45). Performing matched molecular pair (MMP) analysis to further investigate the structure–kinetic relationship (SKR) in this data collection allowed us to identify a fundamental contribution of a ligand's polarity to its association rate, and in selected cases, also to its dissociation rate. However, we furthermore observed that the destabilization of the transition state introduced by increased polarity is often accompanied by simultaneous destabilization of the ground state resulting in an unaffected or even worsened residence time. Supported by a set of case studies, we provide concepts on how to alter ligands in ways to trigger on-rates, off-rates, or both. A large-scale study employing matched molecular pair (MMP) analysis to uncover the contribution of a compound's polarity to its association and dissociation rates.![]()
Collapse
Affiliation(s)
- Doris A Schuetz
- Department of Pharmaceutical Chemistry, University of Vienna UZA 2, Althanstrasse 14 1090 Vienna Austria
| | - Lars Richter
- Department of Pharmaceutical Chemistry, University of Vienna UZA 2, Althanstrasse 14 1090 Vienna Austria
| | - Riccardo Martini
- Department of Pharmaceutical Chemistry, University of Vienna UZA 2, Althanstrasse 14 1090 Vienna Austria
| | - Gerhard F Ecker
- Department of Pharmaceutical Chemistry, University of Vienna UZA 2, Althanstrasse 14 1090 Vienna Austria
| |
Collapse
|
19
|
Ahmad KS, Gul P, Gul MM. Efficient fungal and bacterial facilitated remediation of thiencarbazone methyl in the environment. ENVIRONMENTAL RESEARCH 2020; 188:109811. [PMID: 32592941 DOI: 10.1016/j.envres.2020.109811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/13/2020] [Accepted: 06/07/2020] [Indexed: 06/11/2023]
Abstract
Triazole herbicide, Thiencarbazone-methyl (TCM) applied on different crops for weedicidal activity is associated with an inherent toxicity towards bladder and urinary functionality. TCM has been first time explored for its biodegradative behavior utilizing microbes, previously isolated from soils. Simulated bio-transformation assemblies of five fungal strains; Aspergillus flavus (AF), Penicillium chrysogenum (PC), Aspergillus niger (AN), Aspergillus terrus (AT), Aspergillus fumigatus (AFu) and two bacterial strains: Xanthomonas citri (XC), Pseudomonassyringae (PS), were utilized. 10 mg/L TCM concentration was set up utilizing each microbe and analysed for 42 days. TCM bio-degradation was evaluated by UV-Visible spectrophotometery and gas chromatography mass spectroscopy. Aspergillus terrus (R2 = 0.86) and Penicillium chrysogenum (R2 = 0.88) exhibited highest capability to metabolize TCM while forming intermediate metabolites including; 2,4-dihydro-[1,2,4] triazol-3-one, semicarbazide and urea, methyl 4-isocyanatosulfonyl-5-methylthiophene-3-carboxylate. TCM degradation by all strains AF, AFu, AN, PC, AT, PS and XC was found to be 74, 74, 81, 95, 98, 90 and 95%, respectively after 42 days elucidating the effectiveness of all the utilized strains in degrading TCM. Current investigations can impact vital bioremediation approaches for pesticides mitigation from the ecological compartments. Furthermore, present research can be extended to the optimization of the bio-deteriorative assays to be employed on the practical scale for the successful management of environment through sustainable and cost effective ways.
Collapse
Affiliation(s)
- Khuram Shahzad Ahmad
- Department of Environmental Sciences Fatima Jinnah Women University, The Mall Rawalpindi, Pakistan.
| | - Palwasha Gul
- Department of Environmental Sciences Fatima Jinnah Women University, The Mall Rawalpindi, Pakistan
| | - Mahwash Mahar Gul
- Department of Environmental Sciences Fatima Jinnah Women University, The Mall Rawalpindi, Pakistan
| |
Collapse
|
20
|
Rana P, Ghouse SM, Akunuri R, Madhavi YV, Chopra S, Nanduri S. FabI (enoyl acyl carrier protein reductase) - A potential broad spectrum therapeutic target and its inhibitors. Eur J Med Chem 2020; 208:112757. [PMID: 32883635 DOI: 10.1016/j.ejmech.2020.112757] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/30/2020] [Accepted: 08/11/2020] [Indexed: 12/11/2022]
Abstract
Development of new anti-bacterial agents acting upon underexploited targets and thus evading known mechanisms of resistance is the need of the hour. The highly conserved and distinct bacterial fatty acid biosynthesis pathway (FAS-II), presents a validated and yet relatively underexploited target for drug discovery. FabI and its isoforms (FabL, FabK, FabV and InhA) are essential enoyl-ACP reductases present in several microorganisms. In addition, the components of the FAS-II pathway are distinct from the multi-enzyme FAS-I complex found in mammals. Thus, inhibition of FabI and its isoforms is anticipated to result in broad-spectrum antibacterial activity. Several research groups from industry and academic laboratories have devoted significant efforts to develop effective FabI-targeting antibiotics, which are currently in various stages of clinical development for the treatment of multi-drug resistant bacterial infections. This review summarizes all the natural as well as synthetic inhibitors of gram-positive and gram-negative enoyl ACP reductases (FabI). The knowledge of the reported inhibitors can aid in the development of broad-spectrum antibacterials specifically targeting FabI enzymes from S. aureus, S. epidermidis, B. anthracis, B. cereus, E. coli, P. aeruginosa, P. falciparum and M. tuberculosis.
Collapse
Affiliation(s)
- Preeti Rana
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500 037, India
| | - Shaik Mahammad Ghouse
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500 037, India
| | - Ravikumar Akunuri
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500 037, India
| | - Y V Madhavi
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500 037, India
| | - Sidharth Chopra
- Division of Microbiology, CSIR-Central Drug Research Institute, Sitapur Road, Sector 10, Janakipuram Extension, Lucknow, 226 031, Uttar Pradesh, India.
| | - Srinivas Nanduri
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500 037, India.
| |
Collapse
|
21
|
Hall R, Dixon T, Dickson A. On Calculating Free Energy Differences Using Ensembles of Transition Paths. Front Mol Biosci 2020; 7:106. [PMID: 32582764 PMCID: PMC7291376 DOI: 10.3389/fmolb.2020.00106] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/06/2020] [Indexed: 12/30/2022] Open
Abstract
The free energy of a process is the fundamental quantity that determines its spontaneity or propensity at a given temperature. In particular, the binding free energy of a drug candidate to its biomolecular target is used as an objective quantity in drug design. Recently, binding kinetics—rates of association (kon) and dissociation (koff)—have also demonstrated utility for their ability to predict efficacy and in some cases have been shown to be more predictive than the binding free energy alone. Some methods exist to calculate binding kinetics from molecular simulations, although these are typically more difficult to calculate than the binding affinity as they depend on details of the transition path ensemble. Assessing these rate constants can be difficult, due to uncertainty in the definition of the bound and unbound states, large error bars and the lack of experimental data. As an additional consistency check, rate constants from simulation can be used to calculate free energies (using the log of their ratio) which can then be compared to free energies obtained experimentally or using alchemical free energy perturbation. However, in this calculation it is not straightforward to account for common, practical details such as the finite simulation volume or the particular definition of the “bound” and “unbound” states. Here we derive a set of correction terms that can be applied to calculations of binding free energies using full reactive trajectories. We apply these correction terms to revisit the calculation of binding free energies from rate constants for a host-guest system that was part of a blind prediction challenge, where significant deviations were observed between free energies calculated with rate ratios and those calculated from alchemical perturbation. The correction terms combine to significantly decrease the error with respect to computational benchmarks, from 3.4 to 0.76 kcal/mol. Although these terms were derived with weighted ensemble simulations in mind, some of the correction terms are generally applicable to free energies calculated using physical pathways via methods such as Markov state modeling, metadynamics, milestoning, or umbrella sampling.
Collapse
Affiliation(s)
- Robert Hall
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI, United States
| | - Tom Dixon
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI, United States.,Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI, United States
| | - Alex Dickson
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI, United States.,Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
22
|
Pang K, Zhao H, Hu J. Hydrolysis of Amisulbrom in Buffer Solutions and Natural Water Samples: Kinetics and Products Identification. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 104:689-700. [PMID: 32303813 DOI: 10.1007/s00128-020-02838-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
In this study, the hydrolysis of amisulbrom in buffer solutions and natural water samples were investigated. Effects of pH and temperature were tested in buffer solutions. Amisulbrom was stable in acidic and neutral aqueous solutions at 25°C, while quickly hydrolyzed with a half-life of 4.5 days (25°C) at pH 9.0. The kinetics rate equation was determined as k = 1.0234 × 1010 exp (-61.3760/R·T) (R2 = 0.9642) for hydrolysis of amisulbrom at pH 9.0. The pH, ionic strength, and solubility were important factors influencing the hydrolysis of amisulbrom in natural water samples. Furthermore, three hydrolysis products were separated and identified in buffer solution (pH 9.0) and natural water samples. A tentative transformation mechanism of amisulbrom was proposed to rationalize the formation of HPs (hydrolysis products) based on their structural identification, DFT (density functional theory), and hydrolysis profiles. Toxicity prediction using the quantitative structure-activity relationship model revealed that the HP-I, and HP-II were more toxic than the parent amisulbrom. This investigation was the first to evaluate the behavior of amisulbrom hydrolysis in aquatic systems.
Collapse
Affiliation(s)
- Kyongjin Pang
- Lab of Pesticide Residues and Environmental Toxicology, School of Chemistry and Biological Engineering, University of Science Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, PR China
| | - Honglei Zhao
- Lab of Pesticide Residues and Environmental Toxicology, School of Chemistry and Biological Engineering, University of Science Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, PR China
| | - Jiye Hu
- Lab of Pesticide Residues and Environmental Toxicology, School of Chemistry and Biological Engineering, University of Science Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, PR China.
| |
Collapse
|
23
|
First triclosan-based macrocyclic inhibitors of InhA enzyme. Bioorg Chem 2019; 95:103498. [PMID: 31855823 DOI: 10.1016/j.bioorg.2019.103498] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/02/2019] [Accepted: 12/05/2019] [Indexed: 01/07/2023]
Abstract
Two macrocyclic derivatives based on the triclosan frame were designed and synthesized as inhibitors of Mycobacterium tuberculosis InhA enzyme. One of the two molecules M02 displayed promising inhibitory activity against InhA enzyme with an IC50 of 4.7 μM. Molecular docking studies of these two compounds were performed and confirmed that M02 was more efficient as inhibitor of InhA activity. These molecules are the first macrocyclic direct inhibitors of InhA enzyme able to bind into the substrate pocket. Furthermore, these biaryl ether compounds exhibited antitubercular activities comparable to that of triclosan against M. tuberculosis H37Rv strain.
Collapse
|
24
|
Wu G, Zhao T, Kang D, Zhang J, Song Y, Namasivayam V, Kongsted J, Pannecouque C, De Clercq E, Poongavanam V, Liu X, Zhan P. Overview of Recent Strategic Advances in Medicinal Chemistry. J Med Chem 2019; 62:9375-9414. [PMID: 31050421 DOI: 10.1021/acs.jmedchem.9b00359] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introducing novel strategies, concepts, and technologies that speed up drug discovery and the drug development cycle is of great importance both in the highly competitive pharmaceutical industry as well as in academia. This Perspective aims to present a "big-picture" overview of recent strategic innovations in medicinal chemistry and drug discovery.
Collapse
Affiliation(s)
- Gaochan Wu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| | - Tong Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| | - Jian Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| | - Yuning Song
- Department of Clinical Pharmacy , Qilu Hospital of Shandong University , 250012 Ji'nan , China
| | - Vigneshwaran Namasivayam
- Pharmaceutical Institute, Pharmaceutical Chemistry II , University of Bonn , 53121 Bonn , Germany
| | - Jacob Kongsted
- Department of Physics, Chemistry, and Pharmacy , University of Southern Denmark , DK-5230 Odense M , Denmark
| | - Christophe Pannecouque
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy , K.U. Leuven , Herestraat 49 Postbus 1043 (09.A097) , B-3000 Leuven , Belgium
| | - Erik De Clercq
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy , K.U. Leuven , Herestraat 49 Postbus 1043 (09.A097) , B-3000 Leuven , Belgium
| | - Vasanthanathan Poongavanam
- Department of Physics, Chemistry, and Pharmacy , University of Southern Denmark , DK-5230 Odense M , Denmark
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| |
Collapse
|
25
|
Potterton A, Husseini FS, Southey MWY, Bodkin MJ, Heifetz A, Coveney PV, Townsend-Nicholson A. Ensemble-Based Steered Molecular Dynamics Predicts Relative Residence Time of A 2A Receptor Binders. J Chem Theory Comput 2019; 15:3316-3330. [PMID: 30893556 DOI: 10.1021/acs.jctc.8b01270] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Drug-target residence time, the length of time for which a small molecule stays bound to its receptor target, has increasingly become a key property for optimization in drug discovery programs. However, its in silico prediction has proven difficult. Here we describe a method, using atomistic ensemble-based steered molecular dynamics (SMD), to observe the dissociation of ligands from their target G protein-coupled receptor in a time scale suitable for drug discovery. These dissociation simulations accurately, precisely, and reproducibly identify ligand-residue interactions and quantify the change in ligand energy values for both protein and water. The method has been applied to 17 ligands of the A2A adenosine receptor, all with published experimental kinetic binding data. The residues that interact with the ligand as it dissociates are known experimentally to have an effect on binding affinities and residence times. There is a good correlation ( R2 = 0.79) between the computationally calculated change in water-ligand interaction energy and experimentally determined residence time. Our results indicate that ensemble-based SMD is a rapid, novel, and accurate semi-empirical method for the determination of drug-target relative residence time.
Collapse
Affiliation(s)
- Andrew Potterton
- Institute of Structural & Molecular Biology, Research Department of Structural & Molecular Biology, Division of Biosciences , University College London , London WC1E 6BT , United Kingdom
| | - Fouad S Husseini
- Centre for Computational Science, Department of Chemistry , University College London , London WC1H 0AJ , United Kingdom
| | - Michelle W Y Southey
- Evotec (U.K.) Ltd., 114 Innovation Drive, Milton Park , Abingdon , Oxfordshire OX14 4RZ , United Kingdom
| | - Mike J Bodkin
- Evotec (U.K.) Ltd., 114 Innovation Drive, Milton Park , Abingdon , Oxfordshire OX14 4RZ , United Kingdom
| | - Alexander Heifetz
- Institute of Structural & Molecular Biology, Research Department of Structural & Molecular Biology, Division of Biosciences , University College London , London WC1E 6BT , United Kingdom.,Evotec (U.K.) Ltd., 114 Innovation Drive, Milton Park , Abingdon , Oxfordshire OX14 4RZ , United Kingdom
| | - Peter V Coveney
- Centre for Computational Science, Department of Chemistry , University College London , London WC1H 0AJ , United Kingdom.,Computational Science Laboratory, Institute for Informatics, Faculty of Science , University of Amsterdam , Amsterdam 1098XH , The Netherlands
| | - Andrea Townsend-Nicholson
- Institute of Structural & Molecular Biology, Research Department of Structural & Molecular Biology, Division of Biosciences , University College London , London WC1E 6BT , United Kingdom
| |
Collapse
|
26
|
Sykes DA, Stoddart LA, Kilpatrick LE, Hill SJ. Binding kinetics of ligands acting at GPCRs. Mol Cell Endocrinol 2019; 485:9-19. [PMID: 30738950 PMCID: PMC6406023 DOI: 10.1016/j.mce.2019.01.018] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/19/2019] [Accepted: 01/19/2019] [Indexed: 12/31/2022]
Abstract
The influence of drug-receptor binding kinetics has often been overlooked during the development of new therapeutics that target G protein-coupled receptors (GPCRs). Over the last decade there has been a growing understanding that an in-depth knowledge of binding kinetics at GPCRs is required to successfully target this class of proteins. Ligand binding to a GPCR is often not a simple single step process with ligand freely diffusing in solution. This review will discuss the experiments and equations that are commonly used to measure binding kinetics and how factors such as allosteric regulation, rebinding and ligand interaction with the plasma membrane may influence these measurements. We will then consider the molecular characteristics of a ligand and if these can be linked to association and dissociation rates.
Collapse
Affiliation(s)
- David A Sykes
- Cell Signalling and Pharmacology Research Group, Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK; Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
| | - Leigh A Stoddart
- Cell Signalling and Pharmacology Research Group, Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK; Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
| | - Laura E Kilpatrick
- Cell Signalling and Pharmacology Research Group, Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK; Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
| | - Stephen J Hill
- Cell Signalling and Pharmacology Research Group, Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK; Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK.
| |
Collapse
|
27
|
Discovery and development of novel rhodanine derivatives targeting enoyl-acyl carrier protein reductase. Bioorg Med Chem 2019; 27:1509-1516. [DOI: 10.1016/j.bmc.2019.02.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/18/2019] [Accepted: 02/20/2019] [Indexed: 12/12/2022]
|
28
|
Schuetz DA, Bernetti M, Bertazzo M, Musil D, Eggenweiler HM, Recanatini M, Masetti M, Ecker GF, Cavalli A. Predicting Residence Time and Drug Unbinding Pathway through Scaled Molecular Dynamics. J Chem Inf Model 2018; 59:535-549. [DOI: 10.1021/acs.jcim.8b00614] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Doris A. Schuetz
- Department of Pharmaceutical Chemistry, University of Vienna, UZA 2, Althanstrasse 14, 1090 Vienna, Austria
| | - Mattia Bernetti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—Università di Bologna, via Belmeloro 6, I-40126 Bologna, Italy
| | - Martina Bertazzo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—Università di Bologna, via Belmeloro 6, I-40126 Bologna, Italy
- Computational Sciences, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Djordje Musil
- Discovery Technologies, Merck KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | | | - Maurizio Recanatini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—Università di Bologna, via Belmeloro 6, I-40126 Bologna, Italy
| | - Matteo Masetti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—Università di Bologna, via Belmeloro 6, I-40126 Bologna, Italy
| | - Gerhard F. Ecker
- Department of Pharmaceutical Chemistry, University of Vienna, UZA 2, Althanstrasse 14, 1090 Vienna, Austria
| | - Andrea Cavalli
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—Università di Bologna, via Belmeloro 6, I-40126 Bologna, Italy
- Computational Sciences, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| |
Collapse
|
29
|
Swatko-Ossor M, Klimek K, Belcarz A, Kaczor AA, Pitucha M, Ginalska G. Do new N-substituted 3-amino-4-phenyl-5-oxo-pyrazolinecarboxamide derivatives exhibit antitubercular potential? Eur J Pharm Sci 2018; 121:155-165. [PMID: 29802898 DOI: 10.1016/j.ejps.2018.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 04/20/2018] [Accepted: 05/23/2018] [Indexed: 11/27/2022]
Abstract
As a continuation of previous tests concerning new N-substituted 3-amino-4-phenyl-5-oxo-pyrazolinecarboxamide derivatives (R3, R4 and R8) of notable antibacterial activity, their antitubercular potential against different mycobacterial strains was estimated. Tests performed on virulent (reference and clinical) strains of Mycobacterium bovis and Mycobacterium tuberculosis revealed the highest therapeutic potential of R8 derivative: MIC within the range 7.8-15.6 μg/ml and TI (therapeutic index) within the range 46.5-93. Moreover, the synergistic interaction was found between R3, R4 and R8 derivatives and rifampicin, one of the front-line antitubercular drugs. R8/rifampicin mixture in concentrations effective in inhibition of Mycobacterium tuberculosis strain was non-cytotoxic against GMK cells, displaying cell viability approximately 88-97% when compared to control. Molecular docking study enabled to conclude that enoyl acyl carrier protein reductase (InhA) can be considered as a potential molecular target of tested pyrazole derivatives. Although further modifications of chemical structure of the investigated pyrazole derivatives is required, in order to increase their antitubercular efficacy and therapeutic safety, these compounds, in particular R8 compound, can be promising for the treatment of human and bovine tuberculosis.
Collapse
Affiliation(s)
- Marta Swatko-Ossor
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland
| | - Katarzyna Klimek
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland
| | - Anna Belcarz
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland.
| | - Agnieszka Anna Kaczor
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modelling Lab, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland; University of Eastern Finland, School of Pharmacy, Department of Pharmaceutical Chemistry, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Monika Pitucha
- Independent Radiopharmacy Unit Department of Organic Chemistry, Medical University of Lublin, Chodzki 4A, 20-093 Lublin, Poland
| | - Grazyna Ginalska
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland
| |
Collapse
|
30
|
Zhang NN, Liu ZY, Liang J, Tang YX, Qian L, Gao YM, Zhang TY, Yan M. Design, synthesis, and biological evaluation of m-amidophenol derivatives as a new class of antitubercular agents. MEDCHEMCOMM 2018; 9:1293-1304. [PMID: 30151083 PMCID: PMC6096355 DOI: 10.1039/c8md00212f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 06/06/2018] [Indexed: 01/08/2023]
Abstract
A series of m-amidophenol derivatives (6a-6l, 7a-7q, 9a, 9b, 12a-12c, 14 and 15) were designed and synthesized. Their antitubercular activities were evaluated in vitro against M. tuberculosis strains H37Ra and H37Rv and clinically isolated multidrug-resistant M. tuberculosis strains. Ten compounds displayed minimal inhibitory concentrations (MICs) against M. tuberculosis H37Ra below 2.5 μg mL-1 and 6g was the most active compound (MIC = 0.625 μg mL-1). Compounds 6g and 7a also showed potent inhibitory activity against M. tuberculosis H37Rv (MIC = 0.39 μg mL-1) and several clinically isolated multidrug-resistant M. tuberculosis strains (MIC = 0.39-3.125 μg mL-1). The compounds did not show inhibitory activity against normal Gram-positive and Gram-negative bacteria. They exhibited low cytotoxicity against HepG2 and RAW264.7 cell lines. The results demonstrated m-amidophenol as an attractive scaffold for the development of new antitubercular agents.
Collapse
Affiliation(s)
- Niu-Niu Zhang
- Institute of Drug Synthesis and Pharmaceutical Process , School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou , China .
| | - Zhi-Yong Liu
- State Key Laboratory of Respiratory Disease , Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , Guangzhou , China
| | - Jie Liang
- Institute of Drug Synthesis and Pharmaceutical Process , School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou , China .
| | - Yun-Xiang Tang
- State Key Laboratory of Respiratory Disease , Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , Guangzhou , China
- Institute of Physical Science and Information Technology , Anhui University , Hefei , China
| | - Lu Qian
- Institute of Drug Synthesis and Pharmaceutical Process , School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou , China .
| | - Ya-Min Gao
- State Key Laboratory of Respiratory Disease , Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , Guangzhou , China
- University of Chinese Academy of Sciences (UCAS) , Beijing , China
| | - Tian-Yu Zhang
- State Key Laboratory of Respiratory Disease , Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , Guangzhou , China
- University of Chinese Academy of Sciences (UCAS) , Beijing , China
| | - Ming Yan
- Institute of Drug Synthesis and Pharmaceutical Process , School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou , China .
| |
Collapse
|
31
|
Lu H, Iuliano JN, Tonge PJ. Structure-kinetic relationships that control the residence time of drug-target complexes: insights from molecular structure and dynamics. Curr Opin Chem Biol 2018; 44:101-109. [PMID: 29986213 DOI: 10.1016/j.cbpa.2018.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/04/2018] [Indexed: 12/15/2022]
Abstract
Time-dependent target occupancy is a function of both the thermodynamics and kinetics of drug-target interactions. However, while the optimization of thermodynamic affinity through approaches such as structure-based drug design is now relatively straight forward, less is understood about the molecular interactions that control the kinetics of drug complex formation and breakdown since this depends on both the ground and transition state energies on the binding reaction coordinate. In this opinion we highlight several recent examples that shed light on current approaches that are elucidating the factors that control the life-time of the drug-target complex.
Collapse
Affiliation(s)
- Hao Lu
- EMD Serono Research & Development Institute, Inc., Billerica, Massachusetts, USA
| | - James N Iuliano
- Department of Chemistry, Institute for Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, New York, USA
| | - Peter J Tonge
- Department of Chemistry, Institute for Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, New York, USA; Department of Radiology, Stony Brook University School of Medicine, Stony Brook, New York, USA
| |
Collapse
|
32
|
De Benedetti PG, Fanelli F. Computational modeling approaches to quantitative structure-binding kinetics relationships in drug discovery. Drug Discov Today 2018; 23:1396-1406. [PMID: 29574212 DOI: 10.1016/j.drudis.2018.03.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 02/22/2018] [Accepted: 03/19/2018] [Indexed: 11/22/2022]
Abstract
Simple comparative correlation analyses and quantitative structure-kinetics relationship (QSKR) models highlight the interplay of kinetic rates and binding affinity as an essential feature in drug design and discovery. The choice of the molecular series, and their structural variations, used in QSKR modeling is fundamental to understanding the mechanistic implications of ligand and/or drug-target binding and/or unbinding processes. Here, we discuss the implications of linear correlations between kinetic rates and binding affinity constants and the relevance of the computational approaches to QSKR modeling.
Collapse
Affiliation(s)
- Pier G De Benedetti
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy.
| | - Francesca Fanelli
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy; Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy
| |
Collapse
|
33
|
Xia Y, Zhou Y, Carter DS, McNeil MB, Choi W, Halladay J, Berry PW, Mao W, Hernandez V, O'Malley T, Korkegian A, Sunde B, Flint L, Woolhiser LK, Scherman MS, Gruppo V, Hastings C, Robertson GT, Ioerger TR, Sacchettini J, Tonge PJ, Lenaerts AJ, Parish T, Alley M. Discovery of a cofactor-independent inhibitor of Mycobacterium tuberculosis InhA. Life Sci Alliance 2018; 1:e201800025. [PMID: 30456352 PMCID: PMC6238539 DOI: 10.26508/lsa.201800025] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/18/2018] [Accepted: 05/22/2018] [Indexed: 12/12/2022] Open
Abstract
AN12855 is a novel cofactor-independent inhibitor of Mycobacterium tuberculosis InhA. AN12855 has potent activity against M. tuberculosis, good oral bioavailability, and comparable efficacy to isoniazid in infection models. New antitubercular agents are needed to combat the spread of multidrug- and extensively drug-resistant strains of Mycobacterium tuberculosis. The frontline antitubercular drug isoniazid (INH) targets the mycobacterial enoyl-ACP reductase, InhA. Resistance to INH is predominantly through mutations affecting the prodrug-activating enzyme KatG. Here, we report the identification of the diazaborines as a new class of direct InhA inhibitors. The lead compound, AN12855, exhibited in vitro bactericidal activity against replicating bacteria and was active against several drug-resistant clinical isolates. Biophysical and structural investigations revealed that AN12855 binds to and inhibits the substrate-binding site of InhA in a cofactor-independent manner. AN12855 showed good drug exposure after i.v. and oral delivery, with 53% oral bioavailability. Delivered orally, AN12855 exhibited dose-dependent efficacy in both an acute and chronic murine model of tuberculosis infection that was comparable with INH. Combined, AN12855 is a promising candidate for the development of new antitubercular agents.
Collapse
Affiliation(s)
- Yi Xia
- Anacor Pharmaceuticals, Palo Alto, CA, USA
| | | | | | - Matthew B McNeil
- TB Discovery Research, Infectious Disease Research Institute, Seattle, WA, USA
| | - Wai Choi
- Anacor Pharmaceuticals, Palo Alto, CA, USA
| | | | | | - Weimin Mao
- Anacor Pharmaceuticals, Palo Alto, CA, USA
| | | | - Theresa O'Malley
- TB Discovery Research, Infectious Disease Research Institute, Seattle, WA, USA
| | - Aaron Korkegian
- TB Discovery Research, Infectious Disease Research Institute, Seattle, WA, USA
| | - Bjorn Sunde
- TB Discovery Research, Infectious Disease Research Institute, Seattle, WA, USA
| | - Lindsay Flint
- TB Discovery Research, Infectious Disease Research Institute, Seattle, WA, USA
| | - Lisa K Woolhiser
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Michael S Scherman
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Veronica Gruppo
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Courtney Hastings
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Gregory T Robertson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | | | | | - Peter J Tonge
- Institute of Chemical Biology and Drug Discovery, Departments of Chemistry and Radiology, Stony Brook University, Stony Brook, NY, USA
| | - Anne J Lenaerts
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Tanya Parish
- TB Discovery Research, Infectious Disease Research Institute, Seattle, WA, USA
| | - Mrk Alley
- Anacor Pharmaceuticals, Palo Alto, CA, USA
| |
Collapse
|
34
|
Schuetz DA, Richter L, Amaral M, Grandits M, Grädler U, Musil D, Buchstaller HP, Eggenweiler HM, Frech M, Ecker GF. Ligand Desolvation Steers On-Rate and Impacts Drug Residence Time of Heat Shock Protein 90 (Hsp90) Inhibitors. J Med Chem 2018; 61:4397-4411. [DOI: 10.1021/acs.jmedchem.8b00080] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Doris A. Schuetz
- Department of Pharmaceutical Chemistry, University of Vienna, UZA 2, Althanstrasse 14, 1090 Vienna, Austria
| | - Lars Richter
- Department of Pharmaceutical Chemistry, University of Vienna, UZA 2, Althanstrasse 14, 1090 Vienna, Austria
| | - Marta Amaral
- Discovery Technologies, Merck KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany
- Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Melanie Grandits
- Department of Pharmaceutical Chemistry, University of Vienna, UZA 2, Althanstrasse 14, 1090 Vienna, Austria
| | - Ulrich Grädler
- Discovery Technologies, Merck KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Djordje Musil
- Discovery Technologies, Merck KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | | | | | - Matthias Frech
- Discovery Technologies, Merck KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Gerhard F. Ecker
- Department of Pharmaceutical Chemistry, University of Vienna, UZA 2, Althanstrasse 14, 1090 Vienna, Austria
| |
Collapse
|
35
|
Kovalishyn V, Grouleff J, Semenyuta I, Sinenko VO, Slivchuk SR, Hodyna D, Brovarets V, Blagodatny V, Poda G, Tetko IV, Metelytsia L. Rational design of isonicotinic acid hydrazide derivatives with antitubercular activity: Machine learning, molecular docking, synthesis and biological testing. Chem Biol Drug Des 2018. [PMID: 29536635 DOI: 10.1111/cbdd.13188] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The problem of designing new antitubercular drugs against multiple drug-resistant tuberculosis (MDR-TB) was addressed using advanced machine learning methods. As there are only few published measurements against MDR-TB, we collected a large literature data set and developed models against the non-resistant H37Rv strain. The predictive accuracy of these models had a coefficient of determination q2 = .7-.8 (regression models) and balanced accuracies of about 80% (classification models) with cross-validation and independent test sets. The models were applied to screen a virtual chemical library, which was designed to have MDR-TB activity. The seven most promising compounds were identified, synthesized and tested. All of them showed activity against the H37Rv strain, and three molecules demonstrated activity against the MDR-TB strain. The docking analysis indicated that the discovered molecules could bind enoyl reductase, InhA, which is required in mycobacterial cell wall development. The models are freely available online (http://ochem.eu/article/103868) and can be used to predict potential anti-TB activity of new chemicals.
Collapse
Affiliation(s)
- Vasyl Kovalishyn
- Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Science of Ukraine, Kyiv, Ukraine
| | - Julie Grouleff
- Drug Discovery Program, MaRS Centre, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Ivan Semenyuta
- Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Science of Ukraine, Kyiv, Ukraine
| | - Vitaliy O Sinenko
- Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Science of Ukraine, Kyiv, Ukraine
| | - Sergiy R Slivchuk
- Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Science of Ukraine, Kyiv, Ukraine
| | - Diana Hodyna
- Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Science of Ukraine, Kyiv, Ukraine
| | - Volodymyr Brovarets
- Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Science of Ukraine, Kyiv, Ukraine
| | | | - Gennady Poda
- Drug Discovery Program, MaRS Centre, Ontario Institute for Cancer Research, Toronto, ON, Canada.,Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Igor V Tetko
- Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany.,BIGCHEM GmbH, Neuherberg, Germany
| | - Larysa Metelytsia
- Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Science of Ukraine, Kyiv, Ukraine
| |
Collapse
|
36
|
Vosátka R, Krátký M, Vinšová J. Triclosan and its derivatives as antimycobacterial active agents. Eur J Pharm Sci 2018; 114:318-331. [DOI: 10.1016/j.ejps.2017.12.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/06/2017] [Accepted: 12/17/2017] [Indexed: 12/16/2022]
|
37
|
Mienda BS, Salihu R, Adamu A, Idris S. Genome-scale metabolic models as platforms for identification of novel genes as antimicrobial drug targets. Future Microbiol 2018; 13:455-467. [PMID: 29469596 DOI: 10.2217/fmb-2017-0195] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The growing number of multidrug-resistant pathogenic bacteria is becoming a world leading challenge for the scientific community and for public health. However, advances in high-throughput technologies and whole-genome sequencing of bacterial pathogens make the construction of bacterial genome-scale metabolic models (GEMs) increasingly realistic. The use of GEMs as an alternative platforms will expedite identification of novel unconditionally essential genes and enzymes of target organisms with existing and forthcoming GEMs. This approach will follow the existing protocol for construction of high-quality GEMs, which could ultimately reduce the time, cost and labor-intensive processes involved in identification of novel antimicrobial drug targets in drug discovery pipelines. We discuss the current impact of existing GEMs of selected multidrug-resistant pathogenic bacteria for identification of novel antimicrobial drug targets and the challenges of closing the gap between genome-scale metabolic modeling and conventional experimental trial-and-error approaches in drug discovery pipelines.
Collapse
Affiliation(s)
- Bashir Sajo Mienda
- Department of Microbiology & Biotechnology, Faculty of Science, Federal University Dutse, PMB 7156 Ibrahim Aliyu Bypass, Dutse, Jigawa State, Nigeria
| | - Rabiu Salihu
- Department of Microbiology & Biotechnology, Faculty of Science, Federal University Dutse, PMB 7156 Ibrahim Aliyu Bypass, Dutse, Jigawa State, Nigeria
| | - Aliyu Adamu
- Department of Biotechnology and Medical Engineering, Faculty of Biosciences & Medical Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| | - Shehu Idris
- Department of Microbiology, Faculty of Science, Kaduna State University, Tafawa Balewa Way, PMB 2339 Kaduna State, Nigeria
| |
Collapse
|
38
|
An overview on crystal structures of InhA protein: Apo-form, in complex with its natural ligands and inhibitors. Eur J Med Chem 2018; 146:318-343. [PMID: 29407960 DOI: 10.1016/j.ejmech.2018.01.047] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 01/02/2018] [Accepted: 01/15/2018] [Indexed: 11/23/2022]
Abstract
The enoyl-ACP reductase InhA from the mycobacterial fatty acid biosynthesis pathway has become a target of interest for the development of new anti-tubercular drugs. This protein has been identified as essential for the survival of Mycobacterium tuberculosis, the causative agent of tuberculosis, and as the main target of two pro-drugs: isoniazid, the frontline anti-tubercular drug, and ethionamide, a second-line medicine. Since most cases of resistance to isoniazid and ethionamide result from mutations in the mycobacterial activating enzyme (KatG for isoniazid and EthA for ethionamide), research of direct InhA inhibitors, avoiding the activation step, has emerged as a promising strategy for combating tuberculosis. Thereby, InhA is drawing much attention and its three-dimensional structure has been particularly studied. A better understanding of key sites of interactions responsible for InhA inhibition arises thus as an essential tool for the rational design of new potent inhibitors. In this paper, we propose an overview of the 80 available crystal structures of wild-type and mutant InhA, in its apo form, in complex with its cofactor, with an analogue of its natural ligands (C16 fatty acid and/or NADH) or with inhibitors. We will first discuss structural and mechanistic aspects in order to highlight key features of the protein before delivering thorough inventory of structures of InhA in the presence of synthetic ligands to underline the key interactions implicated in high affinity inhibition.
Collapse
|
39
|
Abstract
The development of therapies for the treatment of neurological cancer faces a number of major challenges including the synthesis of small molecule agents that can penetrate the blood-brain barrier (BBB). Given the likelihood that in many cases drug exposure will be lower in the CNS than in systemic circulation, it follows that strategies should be employed that can sustain target engagement at low drug concentration. Time dependent target occupancy is a function of both the drug and target concentration as well as the thermodynamic and kinetic parameters that describe the binding reaction coordinate, and sustained target occupancy can be achieved through structural modifications that increase target (re)binding and/or that decrease the rate of drug dissociation. The discovery and deployment of compounds with optimized kinetic effects requires information on the structure-kinetic relationships that modulate the kinetics of binding, and the molecular factors that control the translation of drug-target kinetics to time-dependent drug activity in the disease state. This Review first introduces the potential benefits of drug-target kinetics, such as the ability to delineate both thermodynamic and kinetic selectivity, and then describes factors, such as target vulnerability, that impact the utility of kinetic selectivity. The Review concludes with a description of a mechanistic PK/PD model that integrates drug-target kinetics into predictions of drug activity.
Collapse
Affiliation(s)
- Peter J. Tonge
- Institute for Chemical Biology & Drug Discovery, Departments of Chemistry and Radiology, Stony Brook University, Stony Brook, New York 11794-3400, United States
| |
Collapse
|
40
|
Lotz SD, Dickson A. Unbiased Molecular Dynamics of 11 min Timescale Drug Unbinding Reveals Transition State Stabilizing Interactions. J Am Chem Soc 2018; 140:618-628. [DOI: 10.1021/jacs.7b08572] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Samuel D Lotz
- Michigan State University, East Lansing, Michigan 48823, United States
| | - Alex Dickson
- Michigan State University, East Lansing, Michigan 48823, United States
| |
Collapse
|
41
|
Protein conformational flexibility modulates kinetics and thermodynamics of drug binding. Nat Commun 2017; 8:2276. [PMID: 29273709 PMCID: PMC5741624 DOI: 10.1038/s41467-017-02258-w] [Citation(s) in RCA: 174] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 11/16/2017] [Indexed: 12/15/2022] Open
Abstract
Structure-based drug design has often been restricted by the rather static picture of protein-ligand complexes presented by crystal structures, despite the widely accepted importance of protein flexibility in biomolecular recognition. Here we report a detailed experimental and computational study of the drug target, human heat shock protein 90, to explore the contribution of protein dynamics to the binding thermodynamics and kinetics of drug-like compounds. We observe that their binding properties depend on whether the protein has a loop or a helical conformation in the binding site of the ligand-bound state. Compounds bound to the helical conformation display slow association and dissociation rates, high-affinity and high cellular efficacy, and predominantly entropically driven binding. An important entropic contribution comes from the greater flexibility of the helical relative to the loop conformation in the ligand-bound state. This unusual mechanism suggests increasing target flexibility in the bound state by ligand design as a new strategy for drug discovery.
Collapse
|
42
|
Gebre ST, Cameron SA, Li L, Babu YS, Schramm VL. Intracellular rebinding of transition-state analogues provides extended in vivo inhibition lifetimes on human purine nucleoside phosphorylase. J Biol Chem 2017; 292:15907-15915. [PMID: 28794158 DOI: 10.1074/jbc.m117.801779] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/07/2017] [Indexed: 01/16/2023] Open
Abstract
Purine nucleoside phosphorylase (PNP) is part of the human purine salvage pathway. Its deficiency triggers apoptosis of activated T-cells, making it a target for T-cell proliferative disorders. Transition-state analogues of PNP bind with picomolar (pm) dissociation constants. Tight-binding PNP inhibitors show exceptionally long lifetimes on the target enzyme. We solve the mechanism of the target residence time by comparing functional off-rates in vitro and in vivo We report in vitro PNP-inhibitor dissociation rates (t½) from 3 to 31 min for seven Immucillins with dissociation constants of 115 to 6 pm Treatment of human erythrocytes with DADMe-Immucillin-H (DADMe-ImmH, 22 pm) causes complete inhibition of PNP. Loss of [14C]DADMe-ImmH from erythrocytes during multiple washes is slow and biphasic, resulting from inhibitor release and rebinding to PNP catalytic sites. The slow phase gave a t½ of 84 h. Loss of [14C]DADMe-ImmH from erythrocytes in the presence of excess unlabeled DADMe-ImmH increased to a t½ of 1.6 h by preventing rebinding. Thus, in human erythrocytes, rebinding of DADMe-ImmH is 50-fold more likely than diffusional loss of the inhibitor from the erythrocyte. Humans treated with a single oral dose of DADMe-ImmH in phase 1 clinical trials exhibit regain of PNP activity with a t½ of 59 days, corresponding to the erythropoiesis rate in humans. Thus, the PNP catalytic site recapture of DADMe-ImmH is highly favored in vivo We conclude that transition-state analogues with picomolar dissociation constants exhibit long lifetimes on their targets in vivo because the probability of the target enzyme recapturing inhibitor molecules is greater than diffusional loss to the extracellular space.
Collapse
Affiliation(s)
- Sara T Gebre
- From the Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461 and
| | - Scott A Cameron
- From the Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461 and
| | - Lei Li
- From the Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461 and
| | - Y S Babu
- BioCryst Pharmaceuticals, Inc., Birmingham, Alabama 35244
| | - Vern L Schramm
- From the Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461 and
| |
Collapse
|