1
|
Wanka V, Fottner M, Cigler M, Lang K. Genetic Code Expansion Approaches to Decipher the Ubiquitin Code. Chem Rev 2024; 124:11544-11584. [PMID: 39311880 PMCID: PMC11503651 DOI: 10.1021/acs.chemrev.4c00375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/05/2024] [Accepted: 08/19/2024] [Indexed: 10/25/2024]
Abstract
The covalent attachment of Ub (ubiquitin) to target proteins (ubiquitylation) represents one of the most versatile PTMs (post-translational modifications) in eukaryotic cells. Substrate modifications range from a single Ub moiety being attached to a target protein to complex Ub chains that can also contain Ubls (Ub-like proteins). Ubiquitylation plays pivotal roles in most aspects of eukaryotic biology, and cells dedicate an orchestrated arsenal of enzymes to install, translate, and reverse these modifications. The entirety of this complex system is coined the Ub code. Deciphering the Ub code is challenging due to the difficulty in reconstituting enzymatic machineries and generating defined Ub/Ubl-protein conjugates. This Review provides a comprehensive overview of recent advances in using GCE (genetic code expansion) techniques to study the Ub code. We highlight strategies to site-specifically ubiquitylate target proteins and discuss their advantages and disadvantages, as well as their various applications. Additionally, we review the potential of small chemical PTMs targeting Ub/Ubls and present GCE-based approaches to study this additional layer of complexity. Furthermore, we explore methods that rely on GCE to develop tools to probe interactors of the Ub system and offer insights into how future GCE-based tools could help unravel the complexity of the Ub code.
Collapse
Affiliation(s)
- Vera Wanka
- Laboratory
for Organic Chemistry (LOC), Department of Chemistry and Applied Biosciences
(D-CHAB), ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland
| | - Maximilian Fottner
- Laboratory
for Organic Chemistry (LOC), Department of Chemistry and Applied Biosciences
(D-CHAB), ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland
| | - Marko Cigler
- Department
of Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - Kathrin Lang
- Laboratory
for Organic Chemistry (LOC), Department of Chemistry and Applied Biosciences
(D-CHAB), ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland
- Department
of Chemistry, Technical University of Munich, 85748 Garching, Germany
| |
Collapse
|
2
|
Cui Y, Han D, Bai X, Shi W. Development and applications of enzymatic peptide and protein ligation. J Pept Sci 2024:e3657. [PMID: 39433441 DOI: 10.1002/psc.3657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/23/2024]
Abstract
Chemical synthesis of complex peptides and proteins continues to play increasingly important roles in industry and academia, where strategies for covalent ligation of two or more peptide fragments to produce longer peptides and proteins in convergent manners have become critical. In recent decades, efficient and site-selective ligation strategies mediated by exploiting the biocatalytic capacity of nature's diverse toolkit (i.e., enzymes) have been widely recognized as a powerful extension of existing chemical strategies. In this review, we present a chronological overview of the development of proteases, transpeptidases, transglutaminases, and ubiquitin ligases. We survey the different properties between the ligation reactions of various enzymes, including the selectivity and efficiency of the reaction, the ligation "scar" left in the product, the type of amide bond formed (natural or isopeptide), the synthetic availability of the reactants, and whether the enzymes are orthogonal to another. This review also describes how the inherent specificity of these enzymes can be exploited for peptide and protein ligation.
Collapse
Affiliation(s)
- Yan Cui
- Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Dongyang Han
- Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Xuerong Bai
- Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Weiwei Shi
- Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| |
Collapse
|
3
|
Zhao Y, Zhang T, Zhu Y, Yin J, Omer R, Hemu X, Li W, Bi X. Recent Toolboxes for Chemoselective Dual Modifications of Proteins. Chemistry 2024; 30:e202402272. [PMID: 39037007 DOI: 10.1002/chem.202402272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 07/23/2024]
Abstract
Site-selective chemical modifications of proteins have emerged as a potent technology in chemical biology, materials science, and medicine, facilitating precise manipulation of proteins with tailored functionalities for basic biology research and developing innovative therapeutics. Compared to traditional recombinant expression methods, one of the prominent advantages of chemical protein modification lies in its capacity to decorate proteins with a wide range of functional moieties, including non-genetically encoded ones, enabling the generation of novel protein conjugates with enhanced or previously unexplored properties. Among these, approaches for dual or multiple modifications of proteins are increasingly garnering attention, as it has been found that single modification of proteins is inadequate to meet current demands. Therefore, in light of the rapid developments in this field, this review provides a timely and comprehensive overview of the latest advancements in chemical and biological approaches for dual functionalization of proteins. It further discusses their advantages, limitations, and potential future directions in this relatively nascent area.
Collapse
Affiliation(s)
- Yiping Zhao
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Tianmeng Zhang
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Victoria, 3086, Australia
| | - Yujie Zhu
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Victoria, 3086, Australia
| | - Juan Yin
- Zhejiang Yangshengtang Institute of Natural Medication Co., Ltd, Hangzhou, Zhejiang, China
| | - Rida Omer
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Xinya Hemu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Wenyi Li
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Victoria, 3086, Australia
| | - Xiaobao Bi
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Tang TMS, Luk LYP. Towards controlling activity of a peptide asparaginyl ligase (PAL) by lumazine synthetase compartmentalization. Faraday Discuss 2024; 252:403-421. [PMID: 38832470 PMCID: PMC11476191 DOI: 10.1039/d4fd00002a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/16/2024] [Indexed: 06/05/2024]
Abstract
Peptide asparaginyl ligases (PALs) hold significant potential in protein bioconjugation due to their excellent kinetic properties and broad substrate compatibility. However, realizing their full potential in biocatalytic applications requires precise control of their activity. Inspired by nature, we aimed to compartmentalize a representative PAL, OaAEP1-C247A, within protein containers to create artificial organelles with substrate sorting capability. Two encapsulation approaches were explored using engineered lumazine synthases (AaLS). The initial strategy involved tagging the PAL with a super-positively charged GFP(+36) for encapsulation into the super-negatively charged AaLS-13 variant, but it resulted in undesired truncation of the enzyme. The second approach involved genetic fusion of the OaAEP1-C247A with a circularly permutated AaLS variant (cpAaLS) and its co-production with AaLS-13, which successfully enabled compartmentalization of the PAL within a patch-work protein cage. Although the caged PAL retained its activity, it was significantly reduced compared to the free enzyme (∼30-40-fold), likely caused by issues related to OaAEP1-C247A stability and folding. Nevertheless, these findings demonstrated the feasibility of the AaLS encapsulation approach and encourage further optimization in the design of peptide-ligating artificial organelles in E. coli, aiming for a more effective and stable system for protein modifications.
Collapse
Affiliation(s)
- T M Simon Tang
- School of Chemistry & Cardiff Catalysis Institute, Cardiff University, Main Building, Room 1.54, Park Place, Cardiff, CF10 3AT, UK.
| | - Louis Y P Luk
- School of Chemistry & Cardiff Catalysis Institute, Cardiff University, Main Building, Room 1.54, Park Place, Cardiff, CF10 3AT, UK.
| |
Collapse
|
5
|
Rehm FBH, Tyler TJ, Zhou Y, Huang YH, Wang CK, Lawrence N, Craik DJ, Durek T. Repurposing a plant peptide cyclase for targeted lysine acylation. Nat Chem 2024; 16:1481-1489. [PMID: 38789555 PMCID: PMC11374674 DOI: 10.1038/s41557-024-01520-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 03/25/2024] [Indexed: 05/26/2024]
Abstract
Transpeptidases are powerful tools for protein engineering but are largely restricted to acting at protein backbone termini. Alternative enzymatic approaches for internal protein labelling require bulky recognition motifs or non-proteinogenic reaction partners, potentially restricting which proteins can be modified or the types of modification that can be installed. Here we report a strategy for labelling lysine side chain ε-amines by repurposing an engineered asparaginyl ligase, which naturally catalyses peptide head-to-tail cyclization, for versatile isopeptide ligations that are compatible with peptidic substrates. We find that internal lysines with an adjacent leucine residue mimic the conventional N-terminal glycine-leucine substrate. This dipeptide motif enables efficient intra- or intermolecular ligation through internal lysine side chains, minimally leaving an asparagine C-terminally linked to the lysine side chain via an isopeptide bond. The versatility of this approach is demonstrated by the chemoenzymatic synthesis of peptides with non-native C terminus-to-side chain topology and the conjugation of chemically modified peptides to recombinant proteins.
Collapse
Affiliation(s)
- Fabian B H Rehm
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia.
| | - Tristan J Tyler
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia
| | - Yan Zhou
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia
| | - Yen-Hua Huang
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia
| | - Conan K Wang
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia
| | - Nicole Lawrence
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia.
| | - Thomas Durek
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
6
|
Chekan JR, Mydy LS, Pasquale MA, Kersten RD. Plant peptides - redefining an area of ribosomally synthesized and post-translationally modified peptides. Nat Prod Rep 2024; 41:1020-1059. [PMID: 38411572 PMCID: PMC11253845 DOI: 10.1039/d3np00042g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Indexed: 02/28/2024]
Abstract
Covering 1965 to February 2024Plants are prolific peptide chemists and are known to make thousands of different peptidic molecules. These peptides vary dramatically in their size, chemistry, and bioactivity. Despite their differences, all plant peptides to date are biosynthesized as ribosomally synthesized and post-translationally modified peptides (RiPPs). Decades of research in plant RiPP biosynthesis have extended the definition and scope of RiPPs from microbial sources, establishing paradigms and discovering new families of biosynthetic enzymes. The discovery and elucidation of plant peptide pathways is challenging due to repurposing and evolution of housekeeping genes as both precursor peptides and biosynthetic enzymes and due to the low rates of gene clustering in plants. In this review, we highlight the chemistry, biosynthesis, and function of the known RiPP classes from plants and recommend a nomenclature for the recent addition of BURP-domain-derived RiPPs termed burpitides. Burpitides are an emerging family of cyclic plant RiPPs characterized by macrocyclic crosslinks between tyrosine or tryptophan side chains and other amino acid side chains or their peptide backbone that are formed by copper-dependent BURP-domain-containing proteins termed burpitide cyclases. Finally, we review the discovery of plant RiPPs through bioactivity-guided, structure-guided, and gene-guided approaches.
Collapse
Affiliation(s)
- Jonathan R Chekan
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA.
| | - Lisa S Mydy
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA.
| | - Michael A Pasquale
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA.
| | - Roland D Kersten
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
7
|
Le T, Zhang D, Martini RM, Biswas S, van der Donk WA. Use of a head-to-tail peptide cyclase to prepare hybrid RiPPs. Chem Commun (Camb) 2024; 60:6508-6511. [PMID: 38833296 PMCID: PMC11189026 DOI: 10.1039/d3cc04919a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 04/25/2024] [Indexed: 06/06/2024]
Abstract
Cyclotides and lanthipeptides are cyclic peptide natural products with promising bioengineering potential. No peptides have been isolated that contain both structural motifs defining these two families, an N-to-C cyclised backbone and lanthionine linkages. We combined their biosynthetic machineries to produce hybrid structures that possess improved activity or stability, demonstrate how the AEP-1 plant cyclase can be utilised to complete the maturation of the sactipeptide subtilosin A, and present head-to-tail cyclisation of the glycocin sublancin. These studies show the plasticity of AEP-1 and its utilisation alongside other post-translational modifications.
Collapse
Affiliation(s)
- Tung Le
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Dongtianyu Zhang
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Rachel M Martini
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Subhanip Biswas
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Wilfred A van der Donk
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
8
|
Patel RS, Pannala NM, Das C. Reading and Writing the Ubiquitin Code Using Genetic Code Expansion. Chembiochem 2024; 25:e202400190. [PMID: 38588469 PMCID: PMC11161312 DOI: 10.1002/cbic.202400190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/10/2024]
Abstract
Deciphering ubiquitin proteoform signaling and its role in disease has been a long-standing challenge in the field. The effects of ubiquitin modifications, its relation to ubiquitin-related machineries, and its signaling output has been particularly limited by its reconstitution and means of characterization. Advances in genetic code expansion have contributed towards addressing these challenges by precision incorporation of unnatural amino acids through site selective codon suppression. This review discusses recent advances in studying the 'writers', 'readers', and 'erasers' of the ubiquitin code using genetic code expansion. Highlighting strategies towards genetically encoded protein ubiquitination, ubiquitin phosphorylation, acylation, and finally surveying ubiquitin interactions, we strive to bring attention to this unique approach towards addressing a widespread proteoform problem.
Collapse
Affiliation(s)
- Rishi S Patel
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, IN 47907, USA
| | - Nipuni M Pannala
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, IN 47907, USA
| | - Chittaranjan Das
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, IN 47907, USA
| |
Collapse
|
9
|
Tang J, Hao M, Liu J, Chen Y, Wufuer G, Zhu J, Zhang X, Zheng T, Fang M, Zhang S, Li T, Ge S, Zhang J, Xia N. Design of a recombinant asparaginyl ligase for site-specific modification using efficient recognition and nucleophile motifs. Commun Chem 2024; 7:87. [PMID: 38637620 PMCID: PMC11026461 DOI: 10.1038/s42004-024-01173-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 04/09/2024] [Indexed: 04/20/2024] Open
Abstract
Asparaginyl ligases have been extensively utilized as valuable tools for site-specific bioconjugation or surface-modification. However, the application is hindered by the laborious and poorly reproducible preparation processes, unstable activity and ambiguous substrate requirements. To address these limitations, this study employed a structure-based rational approach to obtain a high-yield and high-activity protein ligase called OaAEP1-C247A-aa55-351. It was observed that OaAEP1-C247A-aa55-351 exhibits appreciable catalytic activities across a wide pH range, and the addition of the Fe3+ metal ion effectively enhances the catalytic power. Importantly, this study provides insight into the recognition and nucleophile peptide profiles of OaAEP1-C247A-aa55-351. The ligase demonstrates a higher recognition ability for the "Asn-Ala-Leu" motif and an N-terminus "Arg-Leu" as nucleophiles, which significantly increases the reaction yield. Consequently, the catalytic activity of OaAEP1-C247A-aa55-351 with highly efficient recognition and nucleophile motif, "Asn-Ala-Leu" and "Arg-Leu" under the buffer containing Fe3+ is 70-fold and 2-fold higher than previously reported OaAEP1-C247A and the most efficient butelase-1, respectively. Thus, the designed OaAEP1-C247A-aa55-351, with its highly efficient recognition and alternative nucleophile options, holds promising potential for applications in protein engineering, chemo-enzymatic modification, and the development of drugs.
Collapse
Affiliation(s)
- Jiabao Tang
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, Xiamen University, 361102, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, 361102, Xiamen, China
- National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, 361102, Xiamen, China
- NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, Xiamen University, 361102, Xiamen, China
- Department of Laboratory Medicine, School of Public Health, Xiamen University, 361102, Xiamen, China
- Xiang An Biomedicine Laboratory, 361102, Xiamen, China
| | - Mengling Hao
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, Xiamen University, 361102, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, 361102, Xiamen, China
- National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, 361102, Xiamen, China
- NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, Xiamen University, 361102, Xiamen, China
- Department of Laboratory Medicine, School of Public Health, Xiamen University, 361102, Xiamen, China
- Xiang An Biomedicine Laboratory, 361102, Xiamen, China
| | - Junxian Liu
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, Xiamen University, 361102, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, 361102, Xiamen, China
- National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, 361102, Xiamen, China
- NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, Xiamen University, 361102, Xiamen, China
- Department of Laboratory Medicine, School of Public Health, Xiamen University, 361102, Xiamen, China
- Xiang An Biomedicine Laboratory, 361102, Xiamen, China
| | - Yaling Chen
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, Xiamen University, 361102, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, 361102, Xiamen, China
- National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, 361102, Xiamen, China
- NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, Xiamen University, 361102, Xiamen, China
- Department of Laboratory Medicine, School of Public Health, Xiamen University, 361102, Xiamen, China
- Xiang An Biomedicine Laboratory, 361102, Xiamen, China
| | - Gulimire Wufuer
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, Xiamen University, 361102, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, 361102, Xiamen, China
- National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, 361102, Xiamen, China
- NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, Xiamen University, 361102, Xiamen, China
- Department of Laboratory Medicine, School of Public Health, Xiamen University, 361102, Xiamen, China
- Xiang An Biomedicine Laboratory, 361102, Xiamen, China
| | - Jie Zhu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, 213164, Changzhou, China
| | - Xuejie Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, Xiamen University, 361102, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, 361102, Xiamen, China
- National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, 361102, Xiamen, China
- NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, Xiamen University, 361102, Xiamen, China
- Department of Laboratory Medicine, School of Public Health, Xiamen University, 361102, Xiamen, China
- Xiang An Biomedicine Laboratory, 361102, Xiamen, China
| | - Tingquan Zheng
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, Xiamen University, 361102, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, 361102, Xiamen, China
- National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, 361102, Xiamen, China
- NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, Xiamen University, 361102, Xiamen, China
- Department of Laboratory Medicine, School of Public Health, Xiamen University, 361102, Xiamen, China
- Xiang An Biomedicine Laboratory, 361102, Xiamen, China
| | - Mujin Fang
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, Xiamen University, 361102, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, 361102, Xiamen, China
- National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, 361102, Xiamen, China
- NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, Xiamen University, 361102, Xiamen, China
- Department of Laboratory Medicine, School of Public Health, Xiamen University, 361102, Xiamen, China
- Xiang An Biomedicine Laboratory, 361102, Xiamen, China
| | - Shiyin Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, Xiamen University, 361102, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, 361102, Xiamen, China
- National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, 361102, Xiamen, China
- NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, Xiamen University, 361102, Xiamen, China
- Department of Laboratory Medicine, School of Public Health, Xiamen University, 361102, Xiamen, China
- Xiang An Biomedicine Laboratory, 361102, Xiamen, China
| | - Tingdong Li
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, Xiamen University, 361102, Xiamen, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, 361102, Xiamen, China.
- National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, 361102, Xiamen, China.
- NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, Xiamen University, 361102, Xiamen, China.
- Department of Laboratory Medicine, School of Public Health, Xiamen University, 361102, Xiamen, China.
- Xiang An Biomedicine Laboratory, 361102, Xiamen, China.
| | - Shengxiang Ge
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, Xiamen University, 361102, Xiamen, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, 361102, Xiamen, China.
- National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, 361102, Xiamen, China.
- NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, Xiamen University, 361102, Xiamen, China.
- Department of Laboratory Medicine, School of Public Health, Xiamen University, 361102, Xiamen, China.
- Xiang An Biomedicine Laboratory, 361102, Xiamen, China.
| | - Jun Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, Xiamen University, 361102, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, 361102, Xiamen, China
- National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, 361102, Xiamen, China
- NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, Xiamen University, 361102, Xiamen, China
- Department of Laboratory Medicine, School of Public Health, Xiamen University, 361102, Xiamen, China
- Xiang An Biomedicine Laboratory, 361102, Xiamen, China
| | - Ningshao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, Xiamen University, 361102, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, 361102, Xiamen, China
- National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, 361102, Xiamen, China
- NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, Xiamen University, 361102, Xiamen, China
- Department of Laboratory Medicine, School of Public Health, Xiamen University, 361102, Xiamen, China
- Xiang An Biomedicine Laboratory, 361102, Xiamen, China
| |
Collapse
|
10
|
Wan XC, Zhang YN, Zhang H, Chen Y, Cui ZH, Zhu WJ, Fang GM. Asparaginyl Endopeptidase-Mediated Peptide Cyclization for Phage Display. Org Lett 2024; 26:2601-2605. [PMID: 38529932 DOI: 10.1021/acs.orglett.4c00602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
We report here an enzymatic strategy for asparaginyl endopeptidase-mediated peptide cyclization. Incorporation of chloroacetyl groups into the recognition sequence of OaAEP1 enabled intramolecular cyclization with Cys residues. Combining this strategy and phage display, we identified nanomolar macrocyclic peptide ligands targeting TEAD4. One of the bicyclic peptides binds to TEAD4 with a KD value of 139 nM, 16 times lower than its linear analogue, demonstrating the utility of this platform in discovering high-affinity macrocyclic peptide ligands.
Collapse
Affiliation(s)
- Xiao-Cui Wan
- School of Life Science, Institutes of Physical Science and Information Technology, Institute of Health Sciences, Anhui University, Hefei 230601, P.R. China
| | - Yan-Ni Zhang
- School of Life Science, Institutes of Physical Science and Information Technology, Institute of Health Sciences, Anhui University, Hefei 230601, P.R. China
| | - Hua Zhang
- School of Life Science, Institutes of Physical Science and Information Technology, Institute of Health Sciences, Anhui University, Hefei 230601, P.R. China
| | - Ying Chen
- School of Life Science, Institutes of Physical Science and Information Technology, Institute of Health Sciences, Anhui University, Hefei 230601, P.R. China
| | - Zhi-Hui Cui
- School of Life Science, Institutes of Physical Science and Information Technology, Institute of Health Sciences, Anhui University, Hefei 230601, P.R. China
| | - Wen-Jing Zhu
- School of Life Science, Institutes of Physical Science and Information Technology, Institute of Health Sciences, Anhui University, Hefei 230601, P.R. China
| | - Ge-Min Fang
- School of Life Science, Institutes of Physical Science and Information Technology, Institute of Health Sciences, Anhui University, Hefei 230601, P.R. China
| |
Collapse
|
11
|
de Veer SJ, Zhou Y, Durek T, Craik DJ, Rehm FBH. Tertiary amide bond formation by an engineered asparaginyl ligase. Chem Sci 2024; 15:5248-5255. [PMID: 38577369 PMCID: PMC10988630 DOI: 10.1039/d3sc06352f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/04/2024] [Indexed: 04/06/2024] Open
Abstract
Transpeptidases are powerful tools for site-specific protein modification, enabling the production of tailored biologics to investigate protein function and aiding the development of next-generation therapeutics and diagnostics. Although protein labelling at the N- or C-terminus is readily accomplished using a range of established transpeptidases, these reactions are generally limited to forming products that are linked by a standard (secondary) amide bond. Here we show that, unlike other widely used transpeptidases, an engineered asparaginyl ligase is able to efficiently synthesise tertiary amide bonds by accepting diverse secondary amine nucleophiles. These reactions proceed efficiently under mild conditions (near-neutral pH) and allow the optimal recognition elements for asparaginyl ligases (P1 Asn and P2'' Leu) to be preserved. Certain products, particularly proline-containing products, were found to be protected from recognition by the enzyme, allowing for straightforward sequential labelling of proteins. Additionally, incorporation of 4-azidoproline enables one-pot dual labelling directly at the ligation junction. These capabilities further expand the chemical diversity of asparaginyl ligase-catalysed reactions and provide an alternative approach for straightforward, successive modification of protein substrates.
Collapse
Affiliation(s)
- Simon J de Veer
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland Brisbane QLD 4072 Australia
| | - Yan Zhou
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland Brisbane QLD 4072 Australia
| | - Thomas Durek
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland Brisbane QLD 4072 Australia
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland Brisbane QLD 4072 Australia
| | - Fabian B H Rehm
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland Brisbane QLD 4072 Australia
| |
Collapse
|
12
|
Zou Z, Ji Y, Schwaneberg U. Empowering Site-Specific Bioconjugations In Vitro and In Vivo: Advances in Sortase Engineering and Sortase-Mediated Ligation. Angew Chem Int Ed Engl 2024; 63:e202310910. [PMID: 38081121 DOI: 10.1002/anie.202310910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Indexed: 12/23/2023]
Abstract
Sortase-mediated ligation (SML) has emerged as a powerful and versatile methodology for site-specific protein conjugation, functionalization/labeling, immobilization, and design of biohybrid molecules and systems. However, the broader application of SML faces several challenges, such as limited activity and stability, dependence on calcium ions, and reversible reactions caused by nucleophilic side-products. Over the past decade, protein engineering campaigns and particularly directed evolution, have been extensively employed to overcome sortase limitations, thereby expanding the potential application of SML in multiple directions, including therapeutics, biorthogonal chemistry, biomaterials, and biosensors. This review provides an overview of achieved advancements in sortase engineering and highlights recent progress in utilizing SML in combination with other state-of-the-art chemical and biological methodologies. The aim is to encourage scientists to employ sortases in their conjugation experiments.
Collapse
Affiliation(s)
- Zhi Zou
- DWI - Leibniz-Institute for Interactive Materials, Forckenbeckstraβe 50, 52074, Aachen, Germany
- RWTH Aachen University, Institute of Biotechnology, Worringerweg 3, 52074, Aachen, Germany
| | - Yu Ji
- RWTH Aachen University, Institute of Biotechnology, Worringerweg 3, 52074, Aachen, Germany
| | - Ulrich Schwaneberg
- DWI - Leibniz-Institute for Interactive Materials, Forckenbeckstraβe 50, 52074, Aachen, Germany
- RWTH Aachen University, Institute of Biotechnology, Worringerweg 3, 52074, Aachen, Germany
| |
Collapse
|
13
|
Fallahee I, Hawiger D. Episomal Vectors for Stable Production of Recombinant Proteins and Engineered Antibodies. Antibodies (Basel) 2024; 13:18. [PMID: 38534208 PMCID: PMC10967652 DOI: 10.3390/antib13010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 03/28/2024] Open
Abstract
There is tremendous interest in the production of recombinant proteins, particularly bispecific antibodies and antibody-drug conjugates for research and therapeutic use. Here, we demonstrate a highly versatile plasmid system that allows the rapid generation of stable Expi293 cell pools by episomal retention of transfected DNA. By linking protein expression to puromycin resistance through an attenuated internal ribosome entry site, we achieve stable cell pools producing proteins of interest. In addition, split intein-split puromycin-mediated selection of two separate protein expression cassettes allows the stable production of bispecific antibody-like molecules or antibodies with distinct C-terminal heavy chain modifications, such as an antigen on one chain and a sortase tag on the other chain. We also use this novel expression system to generate stable Expi293 cell pools that secrete sortase A Δ59 variant Srt4M. Using these reagents, we prepared a site-specific drug-to-antibody ratio of 1 antibody-siRNA conjugate. We anticipate the simple, robust, and rapid stable protein expression systems described here being useful for a wide variety of applications.
Collapse
Affiliation(s)
| | - Daniel Hawiger
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| |
Collapse
|
14
|
Lu Z, Ge R, Zheng B, Zheng P. Enzymatic Protein Immobilization for Nanobody Array. Molecules 2024; 29:366. [PMID: 38257279 PMCID: PMC10820937 DOI: 10.3390/molecules29020366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/02/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Antibody arrays play a pivotal role in the detection and quantification of biomolecules, with their effectiveness largely dependent on efficient protein immobilization. Traditional methods often use heterobifunctional cross-linking reagents for attaching functional residues in proteins to corresponding chemical groups on the substrate surface. However, this method does not control the antibody's anchoring point and orientation, potentially leading to reduced binding efficiency and overall performance. Another method using anti-antibodies as intermediate molecules to control the orientation can be used but it demonstrates lower efficiency. Here, we demonstrate a site-specific protein immobilization strategy utilizing OaAEP1 (asparaginyl endopeptidase) for building a nanobody array. Moreover, we used a nanobody-targeting enhanced green fluorescent protein (eGFP) as the model system to validate the protein immobilization method for building a nanobody array. Finally, by rapidly enriching eGFP, this method further highlights its potential for rapid diagnostic applications. This approach, characterized by its simplicity, high efficiency, and specificity, offers an advancement in the development of surface-modified protein arrays. It promises to enhance the sensitivity and accuracy of biomolecule detection, paving the way for broader applications in various research and diagnostic fields.
Collapse
Affiliation(s)
| | | | | | - Peng Zheng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China; (Z.L.); (R.G.); (B.Z.)
| |
Collapse
|
15
|
Fallahee I, Hawiger D. EPISOMAL VECTORS FOR STABLE PRODUCTION OF RECOMBINANT PROTEINS AND ENGINEERED ANTIBODIES. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.03.574076. [PMID: 38260603 PMCID: PMC10802304 DOI: 10.1101/2024.01.03.574076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
There is tremendous interest in the production of recombinant proteins, particularly bispecific antibodies and antibody-drug conjugates for research and therapeutic use. Here, we demonstrate a highly versatile plasmid system that allows rapid generation of stable Expi293 cell pools by episomal retention of transfected DNA. By linking protein expression to puromycin resistance though an attenuated internal ribosome entry site, we achieve stable cell pools producing proteins of interest. In addition, split intein-split puromycin-mediated selection of two separate protein expression cassettes allows the stable production of bispecific antibody-like molecules or antibodies with distinct C-terminal heavy chain modifications, such as an antigen on one chain and a sortase tag on the other chain. We also use this novel expression system to generate stable Expi293 cell pools that secrete sortase A Δ59 variant Srt4M. Using these reagents, we prepared a site-specific drug-to-antibody ratio of 1 antibody-siRNA conjugate. We anticipate the simple, robust, and rapid stable protein expression systems described here being useful for a wide variety of applications.
Collapse
|
16
|
Liu Y, Lu X, Chen M, Wei Z, Peng G, Yang J, Tang C, Yu P. Advances in screening, synthesis, modification, and biomedical applications of peptides and peptide aptamers. Biofactors 2024; 50:33-57. [PMID: 37646383 DOI: 10.1002/biof.2001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/04/2023] [Indexed: 09/01/2023]
Abstract
Peptides and peptide aptamers have emerged as promising molecules for a wide range of biomedical applications due to their unique properties and versatile functionalities. The screening strategies for identifying peptides and peptide aptamers with desired properties are discussed, including high-throughput screening, display screening technology, and in silico design approaches. The synthesis methods for the efficient production of peptides and peptide aptamers, such as solid-phase peptide synthesis and biosynthesis technology, are described, along with their advantages and limitations. Moreover, various modification techniques are explored to enhance the stability, specificity, and pharmacokinetic properties of peptides and peptide aptamers. This includes chemical modifications, enzymatic modifications, biomodifications, genetic engineering modifications, and physical modifications. Furthermore, the review highlights the diverse biomedical applications of peptides and peptide aptamers, including targeted drug delivery, diagnostics, and therapeutic. This review provides valuable insights into the advancements in screening, synthesis, modification, and biomedical applications of peptides and peptide aptamers. A comprehensive understanding of these aspects will aid researchers in the development of novel peptide-based therapeutics and diagnostic tools for various biomedical challenges.
Collapse
Affiliation(s)
- Yijie Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Xiaoling Lu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Meilun Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Zheng Wei
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Guangnan Peng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Jie Yang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Chunhua Tang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Peng Yu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| |
Collapse
|
17
|
Tang TM, Mason JM. Intracellular Application of an Asparaginyl Endopeptidase for Producing Recombinant Head-to-Tail Cyclic Proteins. JACS AU 2023; 3:3290-3296. [PMID: 38155637 PMCID: PMC10751764 DOI: 10.1021/jacsau.3c00591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 12/30/2023]
Abstract
Peptide backbone cyclization is commonly observed in nature and is increasingly applied to proteins and peptides to improve thermal and chemical stability and resistance to proteolytic enzymes and enhance biological activity. However, chemical synthesis of head-to-tail cyclic peptides and proteins is challenging, is often low yielding, and employs toxic and unsustainable reagents. Plant derived asparaginyl endopeptidases such as OaAEP1 have been employed to catalyze the head-to-tail cyclization of peptides in vitro, offering a safer and more sustainable alternative to chemical methods. However, while asparaginyl endopeptidases have been used in vitro and in native and transgenic plant species, they have never been used to generate recombinant cyclic proteins in live recombinant organisms outside of plants. Using dihydrofolate reductase as a proof of concept, we show that a truncated OaAEP1 variant C247A is functional in the Escherichia coli physiological environment and can therefore be coexpressed with a substrate protein to enable concomitant in situ cyclization. The bacterial system is ideal for cyclic protein production owing to the fast growth rate, durability, ease of use, and low cost. This streamlines cyclic protein production via a biocatalytic process with fast kinetics and minimal ligation scarring, while negating the need to purify the enzyme, substrate, and reaction mixtures individually. The resulting cyclic protein was characterized in vitro, demonstrating enhanced thermal stability compared to the corresponding linear protein without impacting enzyme activity. We anticipate this convenient method for generating cyclic peptides will have broad utility in a range of biochemical and chemical applications.
Collapse
Affiliation(s)
- T. M.
Simon Tang
- Department
of Life Sciences, University of Bath, Claverton Down, Bath, North Somerset BA2
7AY, U.K.
| | - Jody M. Mason
- Department
of Life Sciences, University of Bath, Claverton Down, Bath, North Somerset BA2
7AY, U.K.
| |
Collapse
|
18
|
Zeng Y, Shi W, Liu Z, Xu H, Liu L, Hang J, Wang Y, Lu M, Zhou W, Huang W, Tang F. C-terminal modification and functionalization of proteins via a self-cleavage tag triggered by a small molecule. Nat Commun 2023; 14:7169. [PMID: 37935692 PMCID: PMC10630284 DOI: 10.1038/s41467-023-42977-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 10/24/2023] [Indexed: 11/09/2023] Open
Abstract
The precise modification or functionalization of the protein C-terminus is essential but full of challenges. Herein, a chemical approach to modify the C-terminus is developed by fusing a cysteine protease domain on the C-terminus of the protein of interest, which could achieve the non-enzymatic C-terminal functionalization by InsP6-triggered cysteine protease domain self-cleavage. This method demonstrates a highly efficient way to achieve protein C-terminal functionalization and is compatible with a wide range of amine-containing molecules and proteins. Additionally, a reversible C-terminal de-functionalization is found by incubating the C-terminal modified proteins with cysteine protease domain and InsP6, providing a tool for protein functionalization and de-functionalization. Last, various applications of protein C-terminal functionalization are provided in this work, as demonstrated by the site-specific assembly of nanobody drug conjugates, the construction of a bifunctional antibody, the C-terminal fluorescent labeling, and the C-terminal transpeptidation and glycosylation.
Collapse
Affiliation(s)
- Yue Zeng
- State Key Laboratory of Drug Research, Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No.555 Zuchongzhi Rd, Pudong, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Wei Shi
- State Key Laboratory of Drug Research, Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No.555 Zuchongzhi Rd, Pudong, Shanghai, 201203, China
| | - Zhi Liu
- State Key Laboratory of Drug Research, Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No.555 Zuchongzhi Rd, Pudong, Shanghai, 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, No. 138 Xianlin Rd, Nanjing, 210023, China
| | - Hao Xu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, No. 138 Xianlin Rd, Nanjing, 210023, China
| | - Liya Liu
- State Key Laboratory of Drug Research, Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No.555 Zuchongzhi Rd, Pudong, Shanghai, 201203, China
| | - Jiaying Hang
- State Key Laboratory of Drug Research, Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No.555 Zuchongzhi Rd, Pudong, Shanghai, 201203, China
| | - Yongqin Wang
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou, 310024, China
| | - Mengru Lu
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou, 310024, China
| | - Wei Zhou
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou, 310024, China
| | - Wei Huang
- State Key Laboratory of Drug Research, Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No.555 Zuchongzhi Rd, Pudong, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, No. 138 Xianlin Rd, Nanjing, 210023, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou, 310024, China
| | - Feng Tang
- State Key Laboratory of Drug Research, Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No.555 Zuchongzhi Rd, Pudong, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China.
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou, 310024, China.
| |
Collapse
|
19
|
Alexander AK, Elshahawi SI. Promiscuous Enzymes for Residue-Specific Peptide and Protein Late-Stage Functionalization. Chembiochem 2023; 24:e202300372. [PMID: 37338668 PMCID: PMC10496146 DOI: 10.1002/cbic.202300372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 06/21/2023]
Abstract
The late-stage functionalization of peptides and proteins holds significant promise for drug discovery and facilitates bioorthogonal chemistry. This selective functionalization leads to innovative advances in in vitro and in vivo biological research. However, it is a challenging endeavor to selectively target a certain amino acid or position in the presence of other residues containing reactive groups. Biocatalysis has emerged as a powerful tool for selective, efficient, and economical modifications of molecules. Enzymes that have the ability to modify multiple complex substrates or selectively install nonnative handles have wide applications. Herein, we highlight enzymes with broad substrate tolerance that have been demonstrated to modify a specific amino acid residue in simple or complex peptides and/or proteins at late-stage. The different substrates accepted by these enzymes are mentioned together with the reported downstream bioorthogonal reactions that have benefited from the enzymatic selective modifications.
Collapse
Affiliation(s)
- Ashley K Alexander
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Rinker Health Science Campus, Irvine, CA 92618, USA
| | - Sherif I Elshahawi
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Rinker Health Science Campus, Irvine, CA 92618, USA
| |
Collapse
|
20
|
Abstract
A variant originated from Oldenlandia affinis asparaginyl ligase, OaAEP1-C247A, has emerged as an ideal tool for protein labeling. However, its preparation was laborious and time-consuming. It is recombinantly produced as a zymogen, requiring acid activation and four chromatographic steps; despite these extensive steps, the catalytically active enzyme exhibited only moderate purity. Here, we report a novel preparation protocol, in which the cap and catalytically active core domains are produced as separate entities. The active enzyme can be obtained in two chromatographic steps, immobilized metal affinity chromatography (IMAC) and size exclusion chromatography (SEC), with no acid activation required, thereby shortening the purification procedure from at least 2 days to less than 6 h. In addition to the original C247A mutation which enhanced reaction with various amino nucleophiles, an extra D29E mutation was introduced to prevent self-cleavage, which led to noticeable improvements in homogeneity and activity of the enzyme. Indeed, the resulting "split AEP" (i.e., core domain of OaAEP1-D29E/C247A) exhibited improved catalytic efficiency constant (kcat/KM) that was found to be ∼3-fold higher than that of the original acid-activated counterpart (OaAEP1-C247A). Furthermore, we described a protein labeling protocol that couples the enzymatic reaction with an irreversible chemical transformation, thereby enabling high conversion of labeled protein with a lowered amount of reagent. Precisely, an alternative Asn-Cys-Leu (NCL) recognition sequence was used for substrate recognition. As the byproduct contains an N-terminal cysteine, it can be transformed into an inert 1,2 aminothiol motif by reacting with formylphenyl boronic acid (FPBA). Finally, the opportunities and challenges associated with the use of asparaginyl ligase are discussed.
Collapse
Affiliation(s)
- Muge Ma
- School of Chemistry, Cardiff University, Park Place, Cardiff, United Kingdom
| | - Simon T M Tang
- School of Chemistry, Cardiff University, Park Place, Cardiff, United Kingdom
| | - Matthew T Dickerson
- School of Chemistry, Cardiff University, Park Place, Cardiff, United Kingdom
| | - Louis Y P Luk
- School of Chemistry, Cardiff University, Park Place, Cardiff, United Kingdom.
| |
Collapse
|
21
|
Singh AK, Krężel A. Calcium-assisted sortase A cleavage of SUMOylated metallothionein constructs leads to high-yield production of human MT3. Microb Cell Fact 2023; 22:125. [PMID: 37434134 DOI: 10.1186/s12934-023-02134-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/24/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND Mammalian metallothioneins (MTs) are small (6-7 kDa), intracellular, cysteine-rich, metal-binding proteins involved, inter alia, in the homeostasis of zinc and copper, detoxification of heavy metals, antioxidation against reactive oxygen species, and protection against DNA damage. The high cysteine content (~ 30%) in MTs makes them toxic to bacterial cells during protein production, resulting in low yield. To address this issue, we present for the first time a combinatorial approach using the small ubiquitin-like modifier (SUMO) and/or sortase as fusion tags for high-level expression of human MT3 in E. coli and its purification by three different strategies. RESULTS Three different plasmids were generated using SUMO, sortase A pentamutant (eSrtA), and sortase recognition motif (LPETG) as removable fusion tags for high-level expression and purification of human MT3 from the bacterial system. In the first strategy, SUMOylated MT3 was expressed and purified using Ulp1-mediated cleavage. In the second strategy, SUMOylated MT3 with a sortase recognition motif at the N-terminus of MT3 was expressed and purified using sortase-mediated cleavage. In the final strategy, the fusion protein His6-SUMO-eSrtA-LPETG-MT3 was expressed and purified by one-step sortase-mediated inducible on-bead autocleavage. Using these three strategies the apo-MT3 was purified in a yield of 11.5, 11, and 10.8 mg/L, respectively, which is the highest yield achieved for MT expression and purification to date. No effect of MT3 on Ni2+-containing resin was observed. CONCLUSION The SUMO/sortase-based strategy used as the production system for MT3 resulted in a very high expression level and protein production yield. The apo-MT3 purified by this strategy contained an additional glycine residue and had similar metal binding properties as WT-MT3. This SUMO-sortase fusion system is a simple, robust, and inexpensive one-step purification approach for various MTs as well as other toxic proteins with very high yield via immobilized metal affinity chromatography (IMAC).
Collapse
Affiliation(s)
- Avinash Kumar Singh
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383, Wrocław, Poland
| | - Artur Krężel
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383, Wrocław, Poland.
| |
Collapse
|
22
|
Debon A, Siirola E, Snajdrova R. Enzymatic Bioconjugation: A Perspective from the Pharmaceutical Industry. JACS AU 2023; 3:1267-1283. [PMID: 37234110 PMCID: PMC10207132 DOI: 10.1021/jacsau.2c00617] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 05/27/2023]
Abstract
Enzymes have firmly established themselves as bespoke catalysts for small molecule transformations in the pharmaceutical industry, from early research and development stages to large-scale production. In principle, their exquisite selectivity and rate acceleration can also be leveraged for modifying macromolecules to form bioconjugates. However, available catalysts face stiff competition from other bioorthogonal chemistries. In this Perspective, we seek to illuminate applications of enzymatic bioconjugation in the face of an expanding palette of new drug modalities. With these applications, we wish to highlight some examples of current successes and pitfalls of using enzymes for bioconjugation along the pipeline and try to illustrate opportunities for further development.
Collapse
Affiliation(s)
- Aaron Debon
- Global
Discovery Chemistry, Novartis Institute
for Biomedical Research, Basel 4108, Switzerland
| | - Elina Siirola
- Global
Discovery Chemistry, Novartis Institute
for Biomedical Research, Basel 4108, Switzerland
| | - Radka Snajdrova
- Global
Discovery Chemistry, Novartis Institute
for Biomedical Research, Basel 4108, Switzerland
| |
Collapse
|
23
|
Kaur V, Garg S, Rakshit S. Polyprotein synthesis: a journey from the traditional pre-translational method to modern post-translational approaches for single-molecule force spectroscopy. Chem Commun (Camb) 2023. [PMID: 37183922 DOI: 10.1039/d3cc01756g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Polyproteins, an array of protein units of similar or differential functions in tandem, have been extensively utilized by organisms, unicellular or multicellular, as concentrators of the myriad of molecular activities. Most eukaryotic proteins, two-thirds in unicellular organisms, and more than 80% in metazoans, are polyproteins. Although the use of polyproteins continues to evolve in nature, our understanding of the structure-function-property of polyproteins is still limited. Cumbersome recombinant strategies and the lack of convenient in vitro synthetic routes of polyproteins have been rate-determining factors in the progress. However, in this review we have discussed the revolutionary journey of polyprotein synthesis with a major focus on surface-based structure-function-property studies, especially using force spectroscopy at the single-molecule level.
Collapse
Affiliation(s)
- Veerpal Kaur
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, 140306, Punjab, India.
| | - Surbhi Garg
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, 140306, Punjab, India.
| | - Sabyasachi Rakshit
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, 140306, Punjab, India.
- Centre for Protein Science Design and Engineering, Indian Institute of Science Education and Research Mohali, 140306, Punjab, India
| |
Collapse
|
24
|
Hemu X, Chan NY, Liew HT, Hu S, Zhang X, Serra A, Lescar J, Liu CF, Tam JP. Substrate-binding glycine residues are major determinants for hydrolase and ligase activity of plant legumains. THE NEW PHYTOLOGIST 2023; 238:1534-1545. [PMID: 36843268 DOI: 10.1111/nph.18841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Peptide asparaginyl ligases (PALs) are useful tools for precision modifications of proteins and live-cell surfaces by ligating peptides after Asn/Asp (Asx). They share high sequence and structural similarity to plant legumains that are generally known as asparaginyl endopeptidases (AEPs), thus making it challenging to identify PALs from AEPs. In this study, we investigate 875 plant species from algae to seed plants with available sequence data in public databases to identify new PALs. We conducted evolutionary trace analysis on 1500 plant legumains, including eight known PALs, to identify key residues that could differentiate ligases and proteases, followed by recombinant expression and functional validation of 16 novel legumains. Previously, we showed that the substrate-binding sequences flanking the catalytic site can strongly influence the enzymatic direction of a legumain and which we named as ligase-activity determinants (LADs). Here, we show that two conserved substrate-binding Gly residues of LADs are critical, but negative determinants for ligase activity. Our results suggest that specific glycine residues are molecular determinants to identify PALs and AEPs as two different legumain subfamilies, accounting for c. 1% and 88%, respectively.
Collapse
Affiliation(s)
- Xinya Hemu
- School of Biological Sciences, Synzymes and Natural Products Center (SYNC), Nanyang Technological University, 60 Nanyang Drive, Singapore City, 637551, Singapore
| | - Ning-Yu Chan
- School of Biological Sciences, Synzymes and Natural Products Center (SYNC), Nanyang Technological University, 60 Nanyang Drive, Singapore City, 637551, Singapore
| | - Heng Tai Liew
- School of Biological Sciences, Synzymes and Natural Products Center (SYNC), Nanyang Technological University, 60 Nanyang Drive, Singapore City, 637551, Singapore
| | - Side Hu
- NTU Institute of Structural Biology, Nanyang Technological University, 59 Nanyang Drive, Singapore City, 637921, Singapore
| | - Xiaohong Zhang
- School of Biological Sciences, Synzymes and Natural Products Center (SYNC), Nanyang Technological University, 60 Nanyang Drive, Singapore City, 637551, Singapore
| | - Aida Serra
- School of Biological Sciences, Synzymes and Natural Products Center (SYNC), Nanyang Technological University, 60 Nanyang Drive, Singapore City, 637551, Singapore
- Neuroscience Area, +Pec Proteomics Research Group (+PPRG), Faculty of Medicine, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRB Lleida), University of Lleida, Av. Rovira Roure, 80, Lleida, 25198, Spain
| | - Julien Lescar
- NTU Institute of Structural Biology, Nanyang Technological University, 59 Nanyang Drive, Singapore City, 637921, Singapore
| | - Chuan-Fa Liu
- School of Biological Sciences, Synzymes and Natural Products Center (SYNC), Nanyang Technological University, 60 Nanyang Drive, Singapore City, 637551, Singapore
| | - James P Tam
- School of Biological Sciences, Synzymes and Natural Products Center (SYNC), Nanyang Technological University, 60 Nanyang Drive, Singapore City, 637551, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, 59 Nanyang Drive, Singapore City, 637921, Singapore
| |
Collapse
|
25
|
Obeng EM, Fulcher AJ, Wagstaff KM. Harnessing sortase A transpeptidation for advanced targeted therapeutics and vaccine engineering. Biotechnol Adv 2023; 64:108108. [PMID: 36740026 DOI: 10.1016/j.biotechadv.2023.108108] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
The engineering of potent prophylactic and therapeutic complexes has always required careful protein modification techniques with seamless capabilities. In this light, methods that favor unobstructed multivalent targeting and correct antigen presentations remain essential and very demanding. Sortase A (SrtA) transpeptidation has exhibited these attributes in various settings over the years. However, its applications for engineering avidity-inspired therapeutics and potent vaccines have yet to be significantly noticed, especially in this era where active targeting and multivalent nanomedications are in great demand. This review briefly presents the SrtA enzyme and its associated transpeptidation activity and describes interesting sortase-mediated protein engineering and chemistry approaches for achieving multivalent therapeutic and antigenic responses. The review further highlights advanced applications in targeted delivery systems, multivalent therapeutics, adoptive cellular therapy, and vaccine engineering. These innovations show the potential of sortase-mediated techniques in facilitating the development of simple plug-and-play nanomedicine technologies against recalcitrant diseases and pandemics such as cancer and viral infections.
Collapse
Affiliation(s)
- Eugene M Obeng
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia.
| | - Alex J Fulcher
- Monash Micro Imaging, Monash University, Clayton, VIC 3800, Australia
| | - Kylie M Wagstaff
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
26
|
Azatian SB, Canny MD, Latham MP. Three segment ligation of a 104 kDa multi-domain protein by SrtA and OaAEP1. JOURNAL OF BIOMOLECULAR NMR 2023; 77:25-37. [PMID: 36539644 PMCID: PMC10149453 DOI: 10.1007/s10858-022-00409-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/28/2022] [Indexed: 05/03/2023]
Abstract
NMR spectroscopy is an excellent tool for studying protein structure and dynamics which provides a deeper understanding of biological function. As the size of the biomolecule of interest increases, it can become advantageous to dilute the number of observed signals in the NMR spectrum to decrease spectral overlap and increase resolution. One way to limit the number of resonances in the NMR data is by selectively labeling a smaller domain within the larger macromolecule, a process called segmental isotopic labeling. Many examples of segmental isotopic labeling have been described where two segments of a protein are ligated together by chemical or enzymatic means, but there are far fewer descriptions of a three or more segment ligation reaction. Herein, we describe an enzymatic segmental labeling scheme that combines the widely used Sortase A and more recently described OaAEP1 for a two site ligation strategy. In preparation to study proposed long-range allostery in the 104 kDa DNA damage repair protein Rad50, we ligated side-chain methyl group labeled Zn Hook domain between two long segments of otherwise unlabeled P.furiosus Rad50. Enzymatic activity data demonstrated that the scars resulting from the ligation reactions did not affect Rad50 function within the Mre11-Rad50 DNA double strand break repair complex. Finally, methyl-based NMR spectroscopy confirmed the formation of the full-length ligated protein. Our strategy highlights the strengths of OaAEP1 for segmental labeling, namely faster reaction times and a smaller recognition sequence, and provides a straightforward template for using these two enzymes in multisite segmental labeling reactions.
Collapse
Affiliation(s)
- Stephan B Azatian
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Marella D Canny
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Michael P Latham
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
27
|
Abstract
The ability to manipulate the chemical composition of proteins and peptides has been central to the development of improved polypeptide-based therapeutics and has enabled researchers to address fundamental biological questions that would otherwise be out of reach. Protein ligation, in which two or more polypeptides are covalently linked, is a powerful strategy for generating semisynthetic products and for controlling polypeptide topology. However, specialized tools are required to efficiently forge a peptide bond in a chemoselective manner with fast kinetics and high yield. Fortunately, nature has addressed this challenge by evolving enzymatic mechanisms that can join polypeptides using a diverse set of chemical reactions. Here, we summarize how such nature-inspired protein ligation strategies have been repurposed as chemical biology tools that afford enhanced control over polypeptide composition.
Collapse
Affiliation(s)
- Rasmus Pihl
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Qingfei Zheng
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH, USA.
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH, USA.
| | - Yael David
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA.
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
28
|
Muhammad T, Houssen WE, Thomas L, Alexandru-Crivac CN, Gunasekera S, Jaspars M, Göransson U. Exploring the Limits of Cyanobactin Macrocyclase PatGmac: Cyclization of PawS-Derived Peptide Sunflower Trypsin Inhibitor-1 and Cyclotide Kalata B1. JOURNAL OF NATURAL PRODUCTS 2023; 86:566-573. [PMID: 36917740 PMCID: PMC10043927 DOI: 10.1021/acs.jnatprod.2c01158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Indexed: 06/18/2023]
Abstract
The subtilisin-like macrocyclase PatGmac is produced by the marine cyanobacterium Prochloron didemni. This enzyme is involved in the last step of the biosynthesis of patellamides, a cyanobactin type of ribosomally expressed and post-translationally modified cyclic peptides. PatGmac recognizes, cleaves, and cyclizes precursor peptides after a specific recognition motif comprised of a C-terminal tail with the sequence motif -AYDG. The result is the native macrocyclic patellamide, which has eight amino acid residues. Macrocyclase activity can be exploited by incorporating that motif in other short linear peptide precursors, which then are formed into head-to-tail cyclized peptides. Here, we explore the possibility of using PatGmac in the cyclization of peptides larger than the patellamides, namely, the PawS-derived peptide sunflower trypsin inhibitor-1 (SFTI-1) and the cyclotide kalata B1. These peptides fall under two distinct families of disulfide constrained macrocyclic plant peptides. They are both implicated as scaffolds for drug design due to their structures and unusual stability. We show that PatGmac can be used to efficiently cyclize the 14 amino acid residue long SFTI-1, but less so the 29 amino acid residue long kalata B1.
Collapse
Affiliation(s)
- Taj Muhammad
- Pharmacognosy,
Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Centre, Box 591, SE-75124 Uppsala, Sweden
| | - Wael E Houssen
- Department
of Chemistry, Marine Biodiscovery Centre, University of Aberdeen, Aberdeen AB24 3UE, Scotland, U.K.
- Institute
of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, Scotland, U.K.
| | - Louise Thomas
- Department
of Chemistry, Marine Biodiscovery Centre, University of Aberdeen, Aberdeen AB24 3UE, Scotland, U.K.
- Institute
of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, Scotland, U.K.
| | - Cristina-Nicoleta Alexandru-Crivac
- Department
of Chemistry, Marine Biodiscovery Centre, University of Aberdeen, Aberdeen AB24 3UE, Scotland, U.K.
- Institute
of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, Scotland, U.K.
| | - Sunithi Gunasekera
- Pharmacognosy,
Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Centre, Box 591, SE-75124 Uppsala, Sweden
| | - Marcel Jaspars
- Department
of Chemistry, Marine Biodiscovery Centre, University of Aberdeen, Aberdeen AB24 3UE, Scotland, U.K.
| | - Ulf Göransson
- Pharmacognosy,
Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Centre, Box 591, SE-75124 Uppsala, Sweden
| |
Collapse
|
29
|
Jackson MA, Xie J, Nguyen LTT, Wang X, Yap K, Harvey PJ, Gilding EK, Craik DJ. Plant-based production of an orally active cyclotide for the treatment of multiple sclerosis. Transgenic Res 2023; 32:121-133. [PMID: 36930229 PMCID: PMC10102037 DOI: 10.1007/s11248-023-00341-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 02/24/2023] [Indexed: 03/18/2023]
Abstract
Multiple sclerosis (MS) is a debilitating disease that requires prolonged treatment with often severe side effects. One experimental MS therapeutic currently under development is a single amino acid mutant of a plant peptide termed kalata B1, of the cyclotide family. Like all cyclotides, the therapeutic candidate [T20K]kB1 is highly stable as it contains a cyclic backbone that is cross-linked by three disulfide bonds in a knot-like structure. This stability is much sought after for peptide drugs, which despite exquisite selectivity for their targets, are prone to rapid degradation in human serum. In preliminary investigations, it was found that [T20K]kB1 retains oral activity in experimental autoimmune encephalomyelitis, a model of MS in mice, thus opening up opportunities for oral dosing of the peptide. Although [T20K]kB1 can be synthetically produced, a recombinant production system provides advantages, specifically for reduced scale-up costs and reductions in chemical waste. In this study, we demonstrate the capacity of the Australian native Nicotiana benthamiana plant to produce a structurally identical [T20K]kB1 to that of the synthetic peptide. By optimizing the co-expressed cyclizing enzyme, precursor peptide arrangements, and transgene regulatory regions, we demonstrate a [T20K]kB1 yield in crude peptide extracts of ~ 0.3 mg/g dry mass) in whole plants and close to 1.0 mg/g dry mass in isolated infiltrated leaves. With large-scale plant production facilities coming on-line across the world, the sustainable and cost-effective production of cyclotide-based therapeutics is now within reach.
Collapse
Affiliation(s)
- Mark A Jackson
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jing Xie
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Linh T T Nguyen
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Xiaohan Wang
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Kuok Yap
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Peta J Harvey
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Edward K Gilding
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
30
|
Chaudhary S, Ali Z, Tehseen M, Haney EF, Pantoja-Angles A, Alshehri S, Wang T, Clancy GJ, Ayach M, Hauser C, Hong PY, Hamdan SM, Hancock REW, Mahfouz M. Efficient in planta production of amidated antimicrobial peptides that are active against drug-resistant ESKAPE pathogens. Nat Commun 2023; 14:1464. [PMID: 36928189 PMCID: PMC10020429 DOI: 10.1038/s41467-023-37003-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
Antimicrobial peptides (AMPs) are promising next-generation antibiotics that can be used to combat drug-resistant pathogens. However, the high cost involved in AMP synthesis and their short plasma half-life render their clinical translation a challenge. To address these shortcomings, we report efficient production of bioactive amidated AMPs by transient expression of glycine-extended AMPs in Nicotiana benthamiana line expressing the mammalian enzyme peptidylglycine α-amidating mono-oxygenase (PAM). Cationic AMPs accumulate to substantial levels in PAM transgenic plants compare to nontransgenic N. benthamiana. Moreover, AMPs purified from plants exhibit robust killing activity against six highly virulent and antibiotic resistant ESKAPE pathogens, prevent their biofilm formation, analogous to their synthetic counterparts and synergize with antibiotics. We also perform a base case techno-economic analysis of our platform, demonstrating the potential economic advantages and scalability for industrial use. Taken together, our experimental data and techno-economic analysis demonstrate the potential use of plant chassis for large-scale production of clinical-grade AMPs.
Collapse
Affiliation(s)
- Shahid Chaudhary
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Zahir Ali
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Muhammad Tehseen
- Laboratory of DNA Replication and Recombination, Division of Biological Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Evan F Haney
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Aarón Pantoja-Angles
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Salwa Alshehri
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Biochemistry Department, Faculty of Science, University of Jeddah, Jeddah, 21577, Saudi Arabia
| | - Tiannyu Wang
- Water Desalination and Reuse Center, Division of Biological Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Gerard J Clancy
- Analytical Chemistry Core Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Maya Ayach
- Imaging & Characterization Core Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Charlotte Hauser
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Pei-Ying Hong
- Water Desalination and Reuse Center, Division of Biological Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Samir M Hamdan
- Laboratory of DNA Replication and Recombination, Division of Biological Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Robert E W Hancock
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Magdy Mahfouz
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
31
|
Xia Y, Li F, Zhang X, Balamkundu S, Tang F, Hu S, Lescar J, Tam JP, Liu CF. A Cascade Enzymatic Reaction Scheme for Irreversible Transpeptidative Protein Ligation. J Am Chem Soc 2023; 145:6838-6844. [PMID: 36924109 DOI: 10.1021/jacs.2c13628] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Enzymatic peptide ligation holds great promise in the study of protein functions and development of protein therapeutics. Owing to their high catalytic efficiency and a minimal tripeptide recognition motif, peptidyl asparaginyl ligases (PALs) are particularly useful tools for bioconjugation. However, as an inherent limitation of transpeptidases, PAL-mediated ligation is reversible, requiring a large excess of one of the ligation partners to shift the reaction equilibrium in the forward direction. Herein, we report a method to make PAL-mediated intermolecular ligation irreversible by coupling it to glutaminyl cyclase (QC)-catalyzed pyroglutamyl formation. In this method, the acyl donor substrate of PALs is designed to have glutamine at the P1' position of the Asn-P1'-P2' tripeptide PAL recognition motif. Upon ligation with an acyl acceptor substrate, the acyl donor substrate releases a leaving group in which the exposed N-terminal glutamine is cyclized by QC, quenching the Gln Nα-amine in a lactam. Using this method, PAL-mediated ligation can achieve near-quantitative yields even at an equal molar ratio between the two ligation partners. We have demonstrated this method for a wide range of applications, including protein-to-protein ligations. We anticipate that this cascade enzymatic reaction scheme will make PAL enzymes well suited for numerous new uses in biotechnology.
Collapse
Affiliation(s)
- Yiyin Xia
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Fupeng Li
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Xiaohong Zhang
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | | | - Fan Tang
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Side Hu
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Julien Lescar
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - James P Tam
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Chuan-Fa Liu
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| |
Collapse
|
32
|
Antonenko A, Singh AK, Mosna K, Krężel A. OaAEP1 Ligase-Assisted Chemoenzymatic Synthesis of Full Cysteine-Rich Metal-Binding Cyanobacterial Metallothionein SmtA. Bioconjug Chem 2023. [PMID: 36921066 PMCID: PMC10119931 DOI: 10.1021/acs.bioconjchem.3c00037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Among all approaches used for the semisynthesis of natural or chemically modified products, enzyme-assisted ligation is among the most promising and dynamically developing approaches. Applying an efficient C247A mutant of Oldenlandia affinis plant ligase OaAEP1 and solid-phase peptide synthesis chemistry, we present the chemoenzymatic synthesis of a complete sequence of the cysteine-rich and metal-binding cyanobacterial metallothionein Synechococcus metallothionein A (SmtA). Zn(II) and Cd(II) binding to the newly synthesized SmtA showed identical properties to the protein expressed in Escherichia coli. The presented approach is the first example of the use of OaAEP1 mutant for total protein synthesis of metallothionein, which occurs in mild conditions preventing cysteine thiol oxidation. The recognition motif of the applied enzyme could naturally occur in the protein structure or be synthetically or genetically incorporated in some loops or secondary structure elements. Therefore, we envision that this strategy can be used for efficiently obtaining SmtA and for a wide range of proteins and their derivatives.
Collapse
Affiliation(s)
- Anastasiia Antonenko
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, Wrocław 50-383, Poland
| | - Avinash Kumar Singh
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, Wrocław 50-383, Poland
| | - Karolina Mosna
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, Wrocław 50-383, Poland
| | - Artur Krężel
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, Wrocław 50-383, Poland
| |
Collapse
|
33
|
Dunleavy R, Chandrasekaran S, Crane BR. Enzymatic Spin-Labeling of Protein N- and C-Termini for Electron Paramagnetic Resonance Spectroscopy. Bioconjug Chem 2023:10.1021/acs.bioconjchem.3c00029. [PMID: 36921260 PMCID: PMC10502183 DOI: 10.1021/acs.bioconjchem.3c00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Electron paramagnetic resonance (EPR) spectroscopy is a powerful tool for investigating the structure and dynamics of proteins. The introduction of paramagnetic moieties at specific positions in a protein enables precise measurement of local structure and dynamics. This technique, termed site-directed spin-labeling, has traditionally been performed using cysteine-reactive radical-containing probes. However, large proteins are more likely to contain multiple cysteine residues and cysteine labeling at specific sites may be infeasible or impede function. To address this concern, we applied three peptide-ligating enzymes (sortase, asparaginyl endopeptidase, and inteins) for nitroxide labeling of N- and C-termini of select monomeric and dimeric proteins. Continuous wave and pulsed EPR (double electron electron resonance) experiments reveal specific attachment of nitroxide probes to ether N-termini (OaAEP1) or C-termini (sortase and intein) across three test proteins (CheY, CheA, and iLOV), thereby enabling a straightforward, highly specific, and general method for protein labeling. Importantly, the linker length (3, 5, and 9 residues for OaAEP1, intein, and sortase reactions, respectively) between the probe and the target protein has a large impact on the utility of distance measurements by pulsed EPR, with longer linkers leading to broader distributions. As these methods are only dependent on accessible N- and C-termini, we anticipate application to a wide range of protein targets for biomolecular EPR spectroscopy.
Collapse
Affiliation(s)
- Robert Dunleavy
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | | | - Brian R. Crane
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
34
|
Jia X, Chin YKY, Zhang AH, Crawford T, Zhu Y, Fletcher NL, Zhou Z, Hamilton BR, Stroet M, Thurecht KJ, Mobli M. Self-cyclisation as a general and efficient platform for peptide and protein macrocyclisation. Commun Chem 2023; 6:48. [PMID: 36871076 PMCID: PMC9985607 DOI: 10.1038/s42004-023-00841-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/16/2023] [Indexed: 03/06/2023] Open
Abstract
Macrocyclisation of proteins and peptides results in a remarkable increase in structural stability, making cyclic peptides and proteins of great interest in drug discovery-either directly as drug leads or as in the case of cyclised nanodiscs (cNDs), as tools for studies of trans-membrane receptors and membrane-active peptides. Various biological methods have been developed that are capable of yielding head-to-tail macrocyclised products. Recent advances in enzyme-catalysed macrocyclisation include discovery of new enzymes or design of new engineered enzymes. Here, we describe the engineering of a self-cyclising "autocyclase" protein, capable of performing a controllable unimolecular reaction for generation of cyclic biomolecules in high yield. We characterise the self-cyclisation reaction mechanism, and demonstrate how the unimolecular reaction path provides alternative avenues for addressing existing challenges in enzymatic cyclisation. We use the method to produce several notable cyclic peptides and proteins, demonstrating how autocyclases offer a simple, alternative way to access a vast diversity of macrocyclic biomolecules.
Collapse
Affiliation(s)
- Xinying Jia
- Centre for Advanced Imaging, Australian Institute for Bioengineering & Nanotechnology, The University of Queensland, St. Lucia, QLD, 4072, Australia.
| | - Yanni K-Y Chin
- Centre for Advanced Imaging, Australian Institute for Bioengineering & Nanotechnology, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Alan H Zhang
- Centre for Advanced Imaging, Australian Institute for Bioengineering & Nanotechnology, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Theo Crawford
- Centre for Advanced Imaging, Australian Institute for Bioengineering & Nanotechnology, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Yifei Zhu
- Centre for Advanced Imaging, Australian Institute for Bioengineering & Nanotechnology, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Nicholas L Fletcher
- Centre for Advanced Imaging, Australian Institute for Bioengineering & Nanotechnology, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Zihan Zhou
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Brett R Hamilton
- Centre for Advanced Imaging, Australian Institute for Bioengineering & Nanotechnology, The University of Queensland, St. Lucia, QLD, 4072, Australia.,Centre for Microscopy and Microanalysis, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Martin Stroet
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Kristofer J Thurecht
- Centre for Advanced Imaging, Australian Institute for Bioengineering & Nanotechnology, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Mehdi Mobli
- Centre for Advanced Imaging, Australian Institute for Bioengineering & Nanotechnology, The University of Queensland, St. Lucia, QLD, 4072, Australia.
| |
Collapse
|
35
|
Wang Z, Wang M, Zhao Z, Zheng P. Quantification of carboxylate-bridged di-zinc site stability in protein due ferri by single-molecule force spectroscopy. Protein Sci 2023; 32:e4583. [PMID: 36718829 PMCID: PMC9926469 DOI: 10.1002/pro.4583] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/16/2023] [Accepted: 01/27/2023] [Indexed: 02/01/2023]
Abstract
Carboxylate-bridged diiron proteins belong to a protein family involved in different physiological processes. These proteins share the conservative EXXH motif, which provides the carboxylate bridge and is critical for metal binding. Here, we choose de novo-designed single-chain due ferri protein (DFsc), a four-helical protein with two EXXH motifs as a model protein, to study the stability of the carboxylate-bridged di-metal binding site. The mechanical and kinetic properties of the di-Zn site in DFsc were obtained by atomic force microscopy-based single-molecule force spectroscopy. Zn-DFsc showed a considerable rupture force of ~200 pN, while the apo-protein is mechanically labile. In addition, multiple rupture pathways were observed with different probabilities, indicating the importance of the EXXH-based carboxylate-bridged metal site. These results demonstrate carboxylate-bridged di-metal site is mechanically stable and improve our understanding of this important type of metalloprotein.
Collapse
Affiliation(s)
- Zhiyi Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical EngineeringNanjing UniversityNanjingPeople's Republic of China
| | - Mengdie Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical EngineeringNanjing UniversityNanjingPeople's Republic of China
| | - Zhongxin Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical EngineeringNanjing UniversityNanjingPeople's Republic of China
| | - Peng Zheng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical EngineeringNanjing UniversityNanjingPeople's Republic of China
| |
Collapse
|
36
|
Miyata T, Shimamura H, Asano R, Yoshida W. Universal Design of Luciferase Fusion Proteins for Epigenetic Modifications Detection Based on Bioluminescence Resonance Energy Transfer. Anal Chem 2023; 95:3799-3805. [PMID: 36748925 DOI: 10.1021/acs.analchem.2c05066] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Global hypomethylation and promoter hypermethylation of tumor-suppressor genes are the hallmarks of cancer. We previously reported a global DNA methylation level sensing system based on dual-color bioluminescence resonance energy transfer (BRET) using methyl-CpG binding domain (MBD)-fused firefly luciferase (Fluc) and unmethyl-CpG binding domain (CXXC)-fused Oplophorus luciferase (Oluc). Moreover, BRET-based hydroxymethylation and hemi-methylation level sensing systems have been developed using hydroxymethyl-CpG and hemi-methyl-CpG binding domain-fused Fluc. These studies suggest that target epigenetic modifications can be simultaneously quantified using target-modification-binding protein-fused luciferases. In this study, we focused on the SnoopTag (SnT)/SnoopCatcher (SnC) protein ligation system to establish a universal design for fusion protein construction for any combination. SnT spontaneously forms an isopeptide bond with SnC; therefore, any kind of fusion protein would be constructed by the SnT/SnC system. To establish the proof of concept, MBD-SnT, CXXC-SnT, and SnC-Oluc were prepared and ligated MBD-SnT or CXXC-SnT to SnC-Oluc. The ligation products of MBD-SnT-SnC-Oluc and CXXC-SnT-SnC-Oluc showed luciferase activity and specific binding activity to methyl-CpG and unmethyl-CpG, respectively. The BRET signal using MBD-SnT-SnC-Oluc and CXXC-SnT-SnC-Oluc increased the amount of methyl-CpG and unmethyl-CpG in genomic DNA, respectively. There was a significant negative correlation between the BRET signals; therefore, the global DNA methylation level was quantified using the BRET signals (R2 = 0.99, and R.S.D. <3.5%). These results indicate that the SnT/SnC protein ligation system can be utilized to construct target modification-binding protein-fused luciferases in any combination that detects target modifications in genomic DNA based on BRET.
Collapse
Affiliation(s)
- Takamichi Miyata
- Graduate School of Bionics, Tokyo University of Technology, 1404-1 Katakura-machi, Hachioji, Tokyo192-0982, Japan
| | - Hazuki Shimamura
- Graduate School of Bionics, Tokyo University of Technology, 1404-1 Katakura-machi, Hachioji, Tokyo192-0982, Japan
| | - Ryutaro Asano
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo184-8588, Japan
| | - Wataru Yoshida
- Graduate School of Bionics, Tokyo University of Technology, 1404-1 Katakura-machi, Hachioji, Tokyo192-0982, Japan.,School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura-machi, Hachioji, Tokyo192-0982, Japan
| |
Collapse
|
37
|
Kobayashi M, Fujita K, Matsuda K, Wakimoto T. Streamlined Chemoenzymatic Synthesis of Cyclic Peptides by Non-ribosomal Peptide Cyclases. J Am Chem Soc 2023; 145:3270-3275. [PMID: 36638272 DOI: 10.1021/jacs.2c11082] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Macrocyclization improves the pharmaceutical properties of peptides; however, regio- and chemoselective intramolecular cyclizations remain challenging. Here we developed a streamlined chemoenzymatic approach to synthesize cyclic peptides by exploiting non-ribosomal peptide (NRP) cyclases. Linear peptides linked to the resin through a C-terminal diol ester functionality are synthesized on a solid support, to circumvent the installation of leaving groups to the peptidic substrates in the liquid phase which often triggers undesirable epimerization. Cleavage of the resin-bound peptides yielded the diol esters with sufficient purity to be readily cyclized in a head-to-tail manner by SurE, a representative penicillin-binding protein-type thioesterase (PBP-type TE). Explorations of homologous wild-type enzymes as well as rational protein engineering have broadened the scope of the enzymatic macrolactamization. This method will potentially accelerate the exploitation of NRP cyclases as biocatalysts.
Collapse
Affiliation(s)
- Masakazu Kobayashi
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo060-0812, Japan
| | - Kei Fujita
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo060-0812, Japan
| | - Kenichi Matsuda
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo060-0812, Japan.,Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Kita 12, Nishi 6, Sapporo060-0812, Japan
| | - Toshiyuki Wakimoto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo060-0812, Japan.,Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Kita 12, Nishi 6, Sapporo060-0812, Japan
| |
Collapse
|
38
|
Do T, Link AJ. Protein Engineering in Ribosomally Synthesized and Post-translationally Modified Peptides (RiPPs). Biochemistry 2023; 62:201-209. [PMID: 35006671 PMCID: PMC9454058 DOI: 10.1021/acs.biochem.1c00714] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) make up a rapidly growing superfamily of natural products. RiPPs exhibit an extraordinary range of structures, but they all begin as gene-encoded precursor peptides that are linear chains of amino acids produced by ribosomes. Given the gene-encoded nature of RiPP precursor peptides, the toolbox of protein engineering can be directly applied to these precursors. This Perspective will discuss examples of site-directed mutagenesis, noncanonical amino acid mutagenesis, and the construction and screening of combinatorial libraries as applied to RiPPs. These studies have led to important insights into the biosynthesis and bioactivity of RiPPs and the reengineering of RiPPs for entirely new functions.
Collapse
Affiliation(s)
- Truc Do
- Department of Chemical and Biological Engineering, 207 Hoyt Laboratory Princeton University, Princeton, NJ 08544 USA
| | - A. James Link
- Department of Chemical and Biological Engineering, 207 Hoyt Laboratory Princeton University, Princeton, NJ 08544 USA
- Department of Chemistry, 207 Hoyt Laboratory Princeton University, Princeton, NJ 08544 USA
- Department of Molecular Biology, 207 Hoyt Laboratory Princeton University, Princeton, NJ 08544 USA
| |
Collapse
|
39
|
Okuda A, Shimizu M, Inoue R, Urade R, Sugiyama M. Efficient Multiple Domain Ligation for Proteins Using Asparaginyl Endopeptidase by Selection of Appropriate Ligation Sites Based on Steric Hindrance. Angew Chem Int Ed Engl 2023; 62:e202214412. [PMID: 36347766 DOI: 10.1002/anie.202214412] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Indexed: 11/10/2022]
Abstract
Three domain fragments of a multi-domain protein, ER-60, were ligated in two short linker regions using asparaginyl endopeptidase not involving denaturation. To identify appropriate ligation sites, by selecting several potential ligation sites with fewer mutations around two short linker regions, their ligation efficiencies and the functions of the ligated ER-60s were examined experimentally. To evaluate the dependence of ligation efficiencies on the ligation sites computationally, steric hinderances around the sites for the ligation were calculated through molecular dynamics simulations. Utilizing the steric hindrance, a site-dependent ligation potential index was introduced as reproducing the experimental ligation efficiency. Referring to this index, the reconstruction of ER-60 was succeeded by the ligation of the three domains for the first time. In addition, the new ligation potential index well-worked for application to other domain ligations. Therefore, the index may serve as a more time-effective tool for multi-site ligations.
Collapse
Affiliation(s)
- Aya Okuda
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Sennan-gun, Osaka 590-0494, Japan
| | - Masahiro Shimizu
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Sennan-gun, Osaka 590-0494, Japan
| | - Rintaro Inoue
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Sennan-gun, Osaka 590-0494, Japan
| | - Reiko Urade
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Sennan-gun, Osaka 590-0494, Japan
| | - Masaaki Sugiyama
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Sennan-gun, Osaka 590-0494, Japan
| |
Collapse
|
40
|
Ma Q, He B, Tang G, Xie R, Zheng P. Enzymatic Protein Immobilization on Amino-Functionalized Nanoparticles. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010379. [PMID: 36615576 PMCID: PMC9822503 DOI: 10.3390/molecules28010379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023]
Abstract
The immobilization of proteins on nanoparticles has received much attention in recent years. Among different approaches, enzymatic protein immobilization shows unique advantages because of its site-specific connection. OaAEP1 is a recently engineered peptide ligase which can specifically recognize an N-terminal GL residue (NH2-Gly-Leu) and a C-terminal NGL amino acid residue (Asn-Gly-Leu-COOH) and ligates them efficiently. Herein, we report OaAEP1-mediated protein immobilization on synthetic magnetic nanoparticles. Our work showed that OaAEP1 could mediate C-terminal site-specific protein immobilization on the amino-functionalized Fe3O4 nanoparticles. Our work demonstrates a new method for site-specific protein immobilization on nanoparticles.
Collapse
|
41
|
Kobayashi M, Fujita K, Matsuda K, Wakimoto T. Chemo-Enzymatic Synthesis of Non-ribosomal Macrolactams by a Penicillin-Binding Protein-Type Thioesterase. Methods Mol Biol 2023; 2670:127-144. [PMID: 37184702 DOI: 10.1007/978-1-0716-3214-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Penicillin-binding protein-type thioesterases (PBP-type TEs) are an emerging family of non-ribosomal peptide cyclases. PBP-type TEs exhibit distinct substrate scopes from the well-exploited ribosomal peptide cyclases and traditional non-ribosomal peptide cyclases. Their unique properties, as well as their stand-alone nature, highlight PBP-type TEs as valuable candidates for development as biocatalysts for peptide macrocyclization. Here in this chapter, we describe the scheme for the chemoenzymatic synthesis of non-ribosomal macrolactam by SurE, a representative member of PBP-type TEs.
Collapse
Affiliation(s)
| | - Kei Fujita
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Kenichi Matsuda
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo, Japan.
| | - Toshiyuki Wakimoto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
42
|
Hu S, El Sahili A, Kishore S, Wong YH, Hemu X, Goh BC, Zhipei S, Wang Z, Tam JP, Liu CF, Lescar J. Structural basis for proenzyme maturation, substrate recognition, and ligation by a hyperactive peptide asparaginyl ligase. THE PLANT CELL 2022; 34:4936-4949. [PMID: 36099055 PMCID: PMC9709980 DOI: 10.1093/plcell/koac281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Peptide ligases are versatile enzymes that can be utilized for precise protein conjugation for bioengineering applications. Hyperactive peptide asparaginyl ligases (PALs), such as butelase-1, belong to a small class of enzymes from cyclotide-producing plants that can perform site-specific, rapid ligation reactions after a target peptide asparagine/aspartic acid (Asx) residue binds to the active site of the ligase. How PALs specifically recognize their polypeptide substrates has remained elusive, especially at the prime binding side of the enzyme. Here we report crystal structures that capture VyPAL2, a catalytically efficient PAL from Viola yedoensis, in an activated state, with and without a bound substrate. The bound structure shows one ligase with the N-terminal polypeptide tail from another ligase molecule trapped at its active site, revealing how Asx inserts in the enzyme's S1 pocket and why a hydrophobic residue is required at the P2' position. Besides illustrating the anchoring role played by P1 and P2' residues, these results uncover a role for the Gatekeeper residue at the surface of the S2 pocket in shifting the nonprime portion of the substrate and, as a result, the activity toward ligation or hydrolysis. These results suggest a picture for proenzyme maturation in the vacuole and will inform the rational design of peptide ligases with tailored specificities.
Collapse
Affiliation(s)
- Side Hu
- School of Biological Sciences, Nanyang Technological University, Singapore City, 637551, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore City, 636921, Singapore
| | - Abbas El Sahili
- School of Biological Sciences, Nanyang Technological University, Singapore City, 637551, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore City, 636921, Singapore
| | - Srujana Kishore
- School of Biological Sciences, Nanyang Technological University, Singapore City, 637551, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore City, 636921, Singapore
| | - Yee Hwa Wong
- School of Biological Sciences, Nanyang Technological University, Singapore City, 637551, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore City, 636921, Singapore
| | - Xinya Hemu
- School of Biological Sciences, Nanyang Technological University, Singapore City, 637551, Singapore
| | - Boon Chong Goh
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore City, 636921, Singapore
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology Centre, Singapore City, 138602, Singapore
| | - Sang Zhipei
- School of Biological Sciences, Nanyang Technological University, Singapore City, 637551, Singapore
| | - Zhen Wang
- School of Biological Sciences, Nanyang Technological University, Singapore City, 637551, Singapore
| | - James P Tam
- School of Biological Sciences, Nanyang Technological University, Singapore City, 637551, Singapore
| | - Chuan-Fa Liu
- School of Biological Sciences, Nanyang Technological University, Singapore City, 637551, Singapore
| | - Julien Lescar
- School of Biological Sciences, Nanyang Technological University, Singapore City, 637551, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore City, 636921, Singapore
| |
Collapse
|
43
|
Ding X, Wang Z, Zheng B, Shi S, Deng Y, Yu H, Zheng P. One-step asparaginyl endopeptidase ( OaAEP1)-based protein immobilization for single-molecule force spectroscopy. RSC Chem Biol 2022; 3:1276-1281. [PMID: 36320890 PMCID: PMC9533667 DOI: 10.1039/d2cb00135g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/18/2022] [Indexed: 11/22/2022] Open
Abstract
Enzymatic protein ligation has become the most powerful and widely used method for high-precision atomic force microscopy single-molecule force spectroscopy (AFM-SMFS) study of protein mechanics. However, this methodology typically requires the functionalization of the glass surface with a corresponding peptide sequence/tag for enzymatic recognition and multiple steps are needed. Thus, it is time-consuming and a high level of experience is needed for reliable results. To solve this problem, we simplified the procedure using two strategies both based on asparaginyl endopeptidase (AEP). First, we designed a heterobifunctional peptide-based crosslinker, GL-peptide-propargylglycine, which links to an N 3-functionalized surface via the click reaction. Then, the target protein with a C-terminal NGL sequence can be immobilized via the AEP-mediated ligation. Furthermore, we took advantage of the direct ligation between primary amino in a small molecule and protein with C-terminal NGL by AEP. Thus, the target protein can be immobilized on an amino-functionalized surface via AEP in one step. Both approaches were successfully applied to the AFM-SMFS study of eGFP, showing consistent single-molecule results.
Collapse
Affiliation(s)
- Xuan Ding
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University 163 Xianlin Road Nanjing Jiangsu 210023 P. R. China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University Nanjing Jiangsu 210023 P. R. China
| | - Ziyi Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing Jiangsu 210023 P. R. China
| | - Bin Zheng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing Jiangsu 210023 P. R. China
| | - Shengchao Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing Jiangsu 210023 P. R. China
| | - Yibing Deng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing Jiangsu 210023 P. R. China
| | - Hanyang Yu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University 163 Xianlin Road Nanjing Jiangsu 210023 P. R. China
| | - Peng Zheng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing Jiangsu 210023 P. R. China
| |
Collapse
|
44
|
Interdomain Linker Effect on the Mechanical Stability of Ig Domains in Titin. Int J Mol Sci 2022; 23:ijms23179836. [PMID: 36077234 PMCID: PMC9456048 DOI: 10.3390/ijms23179836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022] Open
Abstract
Titin is the largest protein in humans, composed of more than one hundred immunoglobulin (Ig) domains, and plays a critical role in muscle’s passive elasticity. Thus, the molecular design of this giant polyprotein is responsible for its mechanical function. Interestingly, most of these Ig domains are connected directly with very few interdomain residues/linker, which suggests such a design is necessary for its mechanical stability. To understand this design, we chose six representative Ig domains in titin and added nine glycine residues (9G) as an artificial interdomain linker between these Ig domains. We measured their mechanical stabilities using atomic force microscopy-based single-molecule force spectroscopy (AFM-SMFS) and compared them to the natural sequence. The AFM results showed that the linker affected the mechanical stability of Ig domains. The linker mostly reduces its mechanical stability to a moderate extent, but the opposite situation can happen. Thus, this effect is very complex and may depend on each particular domain’s property.
Collapse
|
45
|
Su X, Zhang L, Zhao L, Pan B, Chen B, Chen J, Zhai C, Li B. Efficient Protein–Protein Couplings Mediated by Small Molecules under Mild Conditions. Angew Chem Int Ed Engl 2022; 61:e202205597. [DOI: 10.1002/anie.202205597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Xun‐Cheng Su
- State Key Laboratory of Elemento-organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Ling‐Yang Zhang
- State Key Laboratory of Elemento-organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Li‐Na Zhao
- State Key Laboratory of Elemento-organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Bin‐Bin Pan
- State Key Laboratory of Elemento-organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Ben‐Guang Chen
- State Key Laboratory of Elemento-organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Jia‐Liang Chen
- State Key Laboratory of Elemento-organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Cheng‐Liang Zhai
- State Key Laboratory of Elemento-organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Bin Li
- State Key Laboratory of Elemento-organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
46
|
Lu Z, Liu Y, Deng Y, Jia B, Ding X, Zheng P, Li Z. OaAEP1-mediated PNA-protein conjugation enables erasable imaging of membrane proteins. Chem Commun (Camb) 2022; 58:8448-8451. [PMID: 35797663 DOI: 10.1039/d2cc02153f] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the use of a protein ligase to covalently ligate a protein to a peptide nucleic acid (PNA). The rapid ligation demands only an N-terminal GL dipeptide in the target protein and a C-terminal NGL tripeptide in the PNA. We demonstrate the versatility of this approach by attaching a PNA strand to three different proteins. Lastly, we show that erasable imaging of EGFR on HEK293 cell membranes is achieved with DNA origami nanostructures and toehold-mediated strand displacement.
Collapse
Affiliation(s)
- Zhangwei Lu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China. .,State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Yutong Liu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing, 210023, P. R. China.
| | - Yibing Deng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing, 210023, P. R. China.
| | - Bin Jia
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China. .,State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Xuan Ding
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China. .,State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Peng Zheng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing, 210023, P. R. China.
| | - Zhe Li
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China. .,State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| |
Collapse
|
47
|
Fottner M, Heimgärtner J, Gantz M, Mühlhofer R, Nast-Kolb T, Lang K. Site-Specific Protein Labeling and Generation of Defined Ubiquitin-Protein Conjugates Using an Asparaginyl Endopeptidase. J Am Chem Soc 2022; 144:13118-13126. [PMID: 35850488 PMCID: PMC9335880 DOI: 10.1021/jacs.2c02191] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
![]()
Asparaginyl endopeptidases
(AEPs) have recently been widely utilized
for peptide and protein modification. Labeling is however restricted
to protein termini, severely limiting flexibility and scope in creating
diverse conjugates as needed for therapeutic and diagnostic applications.
Here, we use genetic code expansion to site-specifically modify target
proteins with an isopeptide-linked glycylglycine moiety that serves
as an acceptor nucleophile in AEP-mediated transpeptidation with various
probes containing a tripeptidic recognition motif. Our approach allows
simple and flexible labeling of recombinant proteins at any internal
site and leaves a minimal, entirely peptidic footprint (NGG) in the
conjugation product. We show site-specific labeling of diverse target
proteins with various biophysical probes, including dual labeling
at an internal site and the N-terminus. Furthermore, we harness AEP-mediated
transpeptidation for generation of ubiquitin- and ubiquitin-like-modifier
conjugates bearing a native isopeptide bond and only one point mutation
in the linker region.
Collapse
Affiliation(s)
- Maximilian Fottner
- Laboratory for Organic Chemistry (LOC), Department of Chemistry and Applied Biosciences (D-CHAB), ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland
| | - Johannes Heimgärtner
- Laboratory for Organic Chemistry (LOC), Department of Chemistry and Applied Biosciences (D-CHAB), ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland
| | - Maximilian Gantz
- Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Rahel Mühlhofer
- Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Timon Nast-Kolb
- Center for Protein Assemblies (CPA) and Lehrstuhl für Biophysik (E27), Physics Department, Technical University of Munich, Ernst-Otto-Fischer-Str. 8, 85748 Garching, Germany
| | - Kathrin Lang
- Laboratory for Organic Chemistry (LOC), Department of Chemistry and Applied Biosciences (D-CHAB), ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland.,Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| |
Collapse
|
48
|
Wu WH, Guo J, Zhang L, Zhang WB, Gao W. Peptide/protein-based macrocycles: from biological synthesis to biomedical applications. RSC Chem Biol 2022; 3:815-829. [PMID: 35866174 PMCID: PMC9257627 DOI: 10.1039/d1cb00246e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 06/08/2022] [Indexed: 11/21/2022] Open
Abstract
Living organisms have evolved cyclic or multicyclic peptides and proteins with enhanced stability and high bioactivity superior to their linear counterparts for diverse purposes. Herein, we review recent progress in applying this concept to artificial peptides and proteins to exploit the functional benefits of these macrocycles. Not only have simple cyclic forms been prepared, numerous macrocycle variants, such as knots and links, have also been developed. The chemical tools and synthetic strategies are summarized for the biological synthesis of these macrocycles, demonstrating it as a powerful alternative to chemical synthesis. Its further application to therapeutic peptides/proteins has led to biomedicines with profoundly improved pharmaceutical performances. Finally, we present our perspectives on the field and its future developments.
Collapse
Affiliation(s)
- Wen-Hao Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 P. R. China
| | - Jianwen Guo
- Department of Geriatric Dentistry, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology Beijing 100081 P. R. China
- Biomedical Engineering Department, Peking University Beijing 100191 P. R. China
| | - Longshuai Zhang
- Department of Geriatric Dentistry, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology Beijing 100081 P. R. China
- Biomedical Engineering Department, Peking University Beijing 100191 P. R. China
| | - Wen-Bin Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 P. R. China
| | - Weiping Gao
- Department of Geriatric Dentistry, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology Beijing 100081 P. R. China
- Biomedical Engineering Department, Peking University Beijing 100191 P. R. China
| |
Collapse
|
49
|
Su XC, Zhang LY, Zhao LN, Pan BB, Chen BG, Chen JL, Zhai CL, Li B. Efficient Protein‐Protein Couplings Mediated by Small Molecules under Mild Conditions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Xun-Cheng Su
- Nankai University College of Chemistry Stat Key Laboratory of Elemento-organic Chemistry Weijing Road 94 300071 Tianjin CHINA
| | | | - Li-Na Zhao
- Nankai University college of chemistry CHINA
| | - Bin-Bin Pan
- Nankai University college of chemistry CHINA
| | | | | | | | - Bin Li
- Nankai University college of chemistry CHINA
| |
Collapse
|
50
|
Wang Z, Zhao Z, Li G, Zheng P. Single-Molecule Force Spectroscopy Reveals the Dynamic HgS Coordination Site in the De Novo-Designed Metalloprotein α 3DIV. J Phys Chem Lett 2022; 13:5372-5378. [PMID: 35678420 DOI: 10.1021/acs.jpclett.2c01316] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The de novo-designed metalloprotein α3DIV binds to mercury via three cysteine residues under dynamic conditions. An unusual trigonal three-coordinate HgS3 site is formed in the protein in basic solution, whereas a linear two-coordinate HgS2 site is formed in acidic solution. Furthermore, it is unknown whether the two coordinated cysteines in the HgS2 site are fixed or not, which may lead to more dynamics. However, the signal for HgS2 sites with different cysteines may be similar or may be averaged and indistinguishable. To circumvent this problem, we adopt a single-molecule approach to study one mercury site at a time. Using atomic force microscopy-based single-molecule force spectroscopy, the protein is unfolded, and the HgS site is ruptured. The results confirm the formation of HgS3 and HgS2 sites at different pH values. Moreover, it is found that any two of the three cysteines in the protein bind to mercury in the HgS2 site.
Collapse
Affiliation(s)
- Ziyi Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
| | - Zhongxing Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
| | - Guoqiang Li
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
| | - Peng Zheng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
| |
Collapse
|