1
|
Bosse AT, Hunt LR, Suarez CA, Casselman TD, Goldstein EL, Wright AC, Park H, Virgil SC, Yu JQ, Stoltz BM, Davies HML. Total synthesis of (-)-cylindrocyclophane A facilitated by C-H functionalization. Science 2024; 386:641-646. [PMID: 39509484 DOI: 10.1126/science.adp2425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 10/02/2024] [Indexed: 11/15/2024]
Abstract
(-)-Cylindrocyclophane A is a 22-membered C2-symmetric [7.7]paracyclophane that bears bis-resorcinol functionality and six stereocenters. We report a synthetic strategy for (-)-cylindrocyclophane A that uses 10 C-H functionalization reactions, resulting in a streamlined route with high enantioselectivity and efficiency (17 steps). The use of chiral dirhodium tetracarboxylate catalysis enabled the C-H functionalization of primary and secondary positions, which was complemented by palladium-catalyzed C(sp2)-C(sp2) cross-couplings, resulting in the rapid formation of the macrocyclic core and all stereocenters with high regio-, diastereo-, and enantioselectivity. The use of a late-stage palladium-catalyzed fourfold C(sp2)-H acetoxylation installed the bis-resorcinol moieties. This research exemplifies how multilaboratory collaborations can produce substantial modernizations of complex total synthesis endeavors.
Collapse
Affiliation(s)
- Aaron T Bosse
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | - Liam R Hunt
- Warren and Katherine Schlinger Laboratory of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Camila A Suarez
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
- Warren and Katherine Schlinger Laboratory of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Tyler D Casselman
- Warren and Katherine Schlinger Laboratory of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Elizabeth L Goldstein
- Warren and Katherine Schlinger Laboratory of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Austin C Wright
- Warren and Katherine Schlinger Laboratory of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Hojoon Park
- The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Scott C Virgil
- Warren and Katherine Schlinger Laboratory of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jin-Quan Yu
- The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Brian M Stoltz
- Warren and Katherine Schlinger Laboratory of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Huw M L Davies
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
2
|
Wang J, Zhao J, Yu Z, Wang S, Guo F, Yang J, Gao L, Lei X. Concise and Modular Chemoenzymatic Total Synthesis of Bisbenzylisoquinoline Alkaloids. Angew Chem Int Ed Engl 2024:e202414340. [PMID: 39305151 DOI: 10.1002/anie.202414340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Indexed: 11/03/2024]
Abstract
The bisbenzylisoquinoline alkaloids (bisBIAs) have attracted tremendous attention from the synthetic community due to their diverse and intriguing biological activities. Herein, we report the convergent and modular chemoenzymatic syntheses of eight bisBIAs bearing various substitutes and linkages in 5-7 steps. The gram-scale synthesis of various well-designed enantiopure benzylisoquinoline monomers was accomplished through an enzymatic stereoselective Pictet-Spengler reaction, followed by regioselective enzymatic methylation or chemical functionalization in a sequential one-pot process. A modified intermolecular copper-mediated Ullmann coupling enabled the concise and efficient total synthesis of five different linear bisBIAs with either head-to-tail or tail-to-tail linkage. A biomimetic oxidative phenol dimerization selectively formed the sterically hindered, electron-rich diaryl ether bond, and subsequent intramolecular Suzuki-Miyaura domino reaction or Ullmann coupling facilitated the first enantioselective total synthesis of three macrocyclic bisBIAs, including ent-isogranjine, tetrandrine and O-methylrepandine. This study highlights the great potential of chemoenzymatic strategies in the total synthesis of diverse bisBIAs and paves the way to further explore the biological functions of these natural products.
Collapse
Affiliation(s)
- Jin Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, People's Republic of China
| | - Jianxiong Zhao
- Peking-Tsinghua Center for Life Science, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, People's Republic of China
| | - Zhenyang Yu
- Department of Chemistry, National University of Singapore, Singapore, Republic of, Singapore
| | - Siyuan Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, People's Republic of China
| | - Fusheng Guo
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, People's Republic of China
| | - Jun Yang
- Peking-Tsinghua Center for Life Science, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, People's Republic of China
| | - Lei Gao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, People's Republic of China
| | - Xiaoguang Lei
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, People's Republic of China
- Peking-Tsinghua Center for Life Science, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, People's Republic of China
| |
Collapse
|
3
|
Stout CN, Renata H. Total Synthesis Facilitates In Vitro Reconstitution of the C-S Bond-Forming P450 in Griseoviridin Biosynthesis. J Am Chem Soc 2024; 146:21815-21823. [PMID: 39042396 DOI: 10.1021/jacs.4c06080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Griseoviridin is a group A streptogramin natural product from Streptomyces with broad-spectrum antibacterial activity. A hybrid polyketide-nonribosomal peptide, it comprises a 23-membered macrocycle, an embedded oxazole motif, and a macrolactone with a unique ene-thiol linkage. Recent analysis of the griseoviridin biosynthetic gene cluster implicated SgvP, a cytochrome P450 monooxygenase, in late-stage installation of the critical C-S bond. While genetic and crystallographic experiments provided indirect evidence to support this hypothesis, the exact function of SgvP has never been confirmed biochemically. Herein, we report a convergent total synthesis of pre-griseoviridin, the putative substrate of P450 SgvP and precursor to griseoviridin. Our strategy features concise and rapid assembly of two fragments joined via sequential peptide coupling and Stille macrocyclization. Access to pre-griseoviridin then enabled in vitro validation of SgvP as the C-S bond-forming P450 during griseoviridin biosynthesis, culminating in a nine-step chemoenzymatic synthesis of griseoviridin.
Collapse
Affiliation(s)
- Carter N Stout
- Department of Chemistry, BioScience Research Collaborative, Rice University, Houston, Texas 77005, United States
- Skaggs Doctoral Program in the Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Hans Renata
- Department of Chemistry, BioScience Research Collaborative, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
4
|
Chan M, Hafeman NJ, Fulton TJ, Stoltz BM. Systematic Route to Construct the 5-5-6 Tricyclic Core of Furanobutenolide-Derived Cembranoids and Norcembranoids. Org Lett 2024; 26:6320-6323. [PMID: 39046190 DOI: 10.1021/acs.orglett.4c01820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Herein, we present a highly efficient method for constructing the intricate 5-5-6 fused ring system commonly found in the polycyclic furanobutenolide-derived cembranoid and norcembranoid natural product family with remarkable diastereoselectivity, utilizing an intramolecular Diels-Alder reaction as the cornerstone. Notably, employing a propargyl ether tether as the dienophile yields significant enhancements in the transformation process compared to its propargyl ester counterpart, as demonstrated in our previous total synthesis of havellockate. This advancement holds promising implications for future investigations, offering a streamlined pathway for rapidly assembling the tricyclic core characteristic of this diverse family of natural products.
Collapse
Affiliation(s)
- Melinda Chan
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, MC 101-20, Pasadena, California 91125, United States
| | - Nicholas J Hafeman
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, MC 101-20, Pasadena, California 91125, United States
| | - Tyler J Fulton
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, MC 101-20, Pasadena, California 91125, United States
| | - Brian M Stoltz
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, MC 101-20, Pasadena, California 91125, United States
| |
Collapse
|
5
|
Tanifuji R, Oguri H. Chemo-enzymatic total synthesis: current approaches toward the integration of chemical and enzymatic transformations. Beilstein J Org Chem 2024; 20:1693-1712. [PMID: 39076288 PMCID: PMC11285072 DOI: 10.3762/bjoc.20.151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/02/2024] [Indexed: 07/31/2024] Open
Abstract
A steadily increasing number of reports have been published on chemo-enzymatic synthesis methods that integrate biosynthetic enzymatic transformations with chemical conversions. This review focuses on the total synthesis of natural products and classifies the enzymatic reactions into three categories. The total synthesis of five natural products: cotylenol, trichodimerol, chalcomoracin, tylactone, and saframycin A, as well as their analogs, is outlined with an emphasis on comparing these chemo-enzymatic syntheses with the corresponding natural biosynthetic pathways.
Collapse
Affiliation(s)
- Ryo Tanifuji
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroki Oguri
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
6
|
Fansher D, Besna JN, Fendri A, Pelletier JN. Choose Your Own Adventure: A Comprehensive Database of Reactions Catalyzed by Cytochrome P450 BM3 Variants. ACS Catal 2024; 14:5560-5592. [PMID: 38660610 PMCID: PMC11036407 DOI: 10.1021/acscatal.4c00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 04/26/2024]
Abstract
Cytochrome P450 BM3 monooxygenase is the topic of extensive research as many researchers have evolved this enzyme to generate a variety of products. However, the abundance of information on increasingly diversified variants of P450 BM3 that catalyze a broad array of chemistry is not in a format that enables easy extraction and interpretation. We present a database that categorizes variants by their catalyzed reactions and includes details about substrates to provide reaction context. This database of >1500 P450 BM3 variants is downloadable and machine-readable and includes instructions to maximize ease of gathering information. The database allows rapid identification of commonly reported substitutions, aiding researchers who are unfamiliar with the enzyme in identifying starting points for enzyme engineering. For those actively engaged in engineering P450 BM3, the database, along with this review, provides a powerful and user-friendly platform to understand, predict, and identify the attributes of P450 BM3 variants, encouraging the further engineering of this enzyme.
Collapse
Affiliation(s)
- Douglas
J. Fansher
- Chemistry
Department, Université de Montréal, Montreal, QC, Canada H2V 0B3
- PROTEO,
The Québec Network for Research on Protein Function, Engineering,
and Applications, 201
Av. du Président-Kennedy, Montréal, QC, Canada H2X 3Y7
- CGCC,
Center in Green Chemistry and Catalysis, Montreal, QC, Canada H2V 0B3
| | - Jonathan N. Besna
- PROTEO,
The Québec Network for Research on Protein Function, Engineering,
and Applications, 201
Av. du Président-Kennedy, Montréal, QC, Canada H2X 3Y7
- CGCC,
Center in Green Chemistry and Catalysis, Montreal, QC, Canada H2V 0B3
- Department
of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, Canada H3T 1J4
| | - Ali Fendri
- Chemistry
Department, Université de Montréal, Montreal, QC, Canada H2V 0B3
- PROTEO,
The Québec Network for Research on Protein Function, Engineering,
and Applications, 201
Av. du Président-Kennedy, Montréal, QC, Canada H2X 3Y7
- CGCC,
Center in Green Chemistry and Catalysis, Montreal, QC, Canada H2V 0B3
| | - Joelle N. Pelletier
- Chemistry
Department, Université de Montréal, Montreal, QC, Canada H2V 0B3
- PROTEO,
The Québec Network for Research on Protein Function, Engineering,
and Applications, 201
Av. du Président-Kennedy, Montréal, QC, Canada H2X 3Y7
- CGCC,
Center in Green Chemistry and Catalysis, Montreal, QC, Canada H2V 0B3
- Department
of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, Canada H3T 1J4
| |
Collapse
|
7
|
Bakanas I, Lusi RF, Wiesler S, Hayward Cooke J, Sarpong R. Strategic application of C-H oxidation in natural product total synthesis. Nat Rev Chem 2023; 7:783-799. [PMID: 37730908 DOI: 10.1038/s41570-023-00534-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2023] [Indexed: 09/22/2023]
Abstract
The oxidation of unactivated C-H bonds has emerged as an effective tactic in natural product synthesis and has altered how chemists approach the synthesis of complex molecules. The use of C-H oxidation methods has simplified the process of synthesis planning by expanding the choice of starting materials, limiting functional group interconversion and protecting group manipulations, and enabling late-stage diversification. In this Review, we propose classifications for C-H oxidations on the basis of their strategic purpose: type 1, which installs functionality that is used to establish the carbon skeleton of the target; type 2, which is used to construct a heterocyclic ring; and type 3, which installs peripheral functional groups. The reactions are further divided based on whether they are directed or undirected. For each classification, examples from recent literature are analysed. Finally, we provide two case studies of syntheses from our laboratory that were streamlined by the judicious use of C-H oxidation reactions.
Collapse
Affiliation(s)
- Ian Bakanas
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Robert F Lusi
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Stefan Wiesler
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Jack Hayward Cooke
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Richmond Sarpong
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
8
|
Stout CN, Renata H. Self-sufficient P450-reductase chimeras for biocatalysis. Methods Enzymol 2023; 693:51-71. [PMID: 37977738 DOI: 10.1016/bs.mie.2023.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
In recent years, cytochromes P450 have emerged as powerful, versatile biocatalysts for the site-selective functionalization of small molecules. Catalyzing an impressive range of chemical transformations, these enzymes have been widely used to effect C-H oxidation, biaryl coupling, and carbon-heteroatom bond formation, among many other reactions. However, the majority of P450s are multi-protein systems that employ secondary redox partners in key steps of the catalytic cycle, which limits their broader applicability. In response, the discovery of self-sufficient P450s, such as P450BM3 and P450RhF, has provided a template for the construction of artificial, self-sufficient P450-reductase fusions. In this chapter, we describe a procedure for the design, assembly, and application of two engineered, self-sufficient P450s of Streptomyces origin via fusion with an exogenous reductase domain. In particular, we generated artificial chimeras of P450s PtmO5 and TleB by linking them covalently with the reductase domain of P450RhF. Upon verification of their activities, both enzymes were employed in preparative-scale biocatalytic reactions. This approach can feasibly be applied to any P450 of interest, thereby laying the groundwork for the production of self-sufficient P450s for diverse chemical applications.
Collapse
Affiliation(s)
- Carter N Stout
- Skaggs Doctoral Program in the Chemical and Biological Sciences, Scripps Research, La Jolla, CA, United States
| | - Hans Renata
- Department of Chemistry, BioScience Research Collaborative, Rice University, Houston, TX, United States.
| |
Collapse
|
9
|
Wang Y, Dana S, Long H, Xu Y, Li Y, Kaplaneris N, Ackermann L. Electrochemical Late-Stage Functionalization. Chem Rev 2023; 123:11269-11335. [PMID: 37751573 PMCID: PMC10571048 DOI: 10.1021/acs.chemrev.3c00158] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Indexed: 09/28/2023]
Abstract
Late-stage functionalization (LSF) constitutes a powerful strategy for the assembly or diversification of novel molecular entities with improved physicochemical or biological activities. LSF can thus greatly accelerate the development of medicinally relevant compounds, crop protecting agents, and functional materials. Electrochemical molecular synthesis has emerged as an environmentally friendly platform for the transformation of organic compounds. Over the past decade, electrochemical late-stage functionalization (eLSF) has gained major momentum, which is summarized herein up to February 2023.
Collapse
Affiliation(s)
| | | | | | - Yang Xu
- Institut für Organische
und Biomolekulare Chemie and Wöhler Research Institute for
Sustainable Chemistry (WISCh), Georg-August-Universität, Göttingen 37077, Germany
| | - Yanjun Li
- Institut für Organische
und Biomolekulare Chemie and Wöhler Research Institute for
Sustainable Chemistry (WISCh), Georg-August-Universität, Göttingen 37077, Germany
| | - Nikolaos Kaplaneris
- Institut für Organische
und Biomolekulare Chemie and Wöhler Research Institute for
Sustainable Chemistry (WISCh), Georg-August-Universität, Göttingen 37077, Germany
| | - Lutz Ackermann
- Institut für Organische
und Biomolekulare Chemie and Wöhler Research Institute for
Sustainable Chemistry (WISCh), Georg-August-Universität, Göttingen 37077, Germany
| |
Collapse
|
10
|
Romero EO, Saucedo AT, Hernández-Meléndez JR, Yang D, Chakrabarty S, Narayan ARH. Enabling Broader Adoption of Biocatalysis in Organic Chemistry. JACS AU 2023; 3:2073-2085. [PMID: 37654599 PMCID: PMC10466347 DOI: 10.1021/jacsau.3c00263] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 09/02/2023]
Abstract
Biocatalysis is becoming an increasingly impactful method in contemporary synthetic chemistry for target molecule synthesis. The selectivity imparted by enzymes has been leveraged to complete previously intractable chemical transformations and improve synthetic routes toward complex molecules. However, the implementation of biocatalysis in mainstream organic chemistry has been gradual to this point. This is partly due to a set of historical and technological barriers that have prevented chemists from using biocatalysis as a synthetic tool with utility that parallels alternative modes of catalysis. In this Perspective, we discuss these barriers and how they have hindered the adoption of enzyme catalysts into synthetic strategies. We also summarize tools and resources that already enable organic chemists to use biocatalysts. Furthermore, we discuss ways to further lower the barriers for the adoption of biocatalysis by the broader synthetic organic chemistry community through the dissemination of resources, demystifying biocatalytic reactions, and increasing collaboration across the field.
Collapse
Affiliation(s)
- Evan O. Romero
- Life Sciences Institute & Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Anthony T. Saucedo
- Life Sciences Institute & Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - José R. Hernández-Meléndez
- Life Sciences Institute & Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Di Yang
- Life Sciences Institute & Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Suman Chakrabarty
- Life Sciences Institute & Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Alison R. H. Narayan
- Life Sciences Institute & Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
11
|
Stout CN, Wasfy NM, Chen F, Renata H. Charting the Evolution of Chemoenzymatic Strategies in the Syntheses of Complex Natural Products. J Am Chem Soc 2023; 145:18161-18181. [PMID: 37553092 PMCID: PMC11107883 DOI: 10.1021/jacs.3c03422] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Bolstered by recent advances in bioinformatics, genetics, and enzyme engineering, the field of chemoenzymatic synthesis has enjoyed a rapid increase in popularity and utility. This Perspective explores the integration of enzymes into multistep chemical syntheses, highlighting the unique potential of biocatalytic transformations to streamline the synthesis of complex natural products. In particular, we identify four primary conceptual approaches to chemoenzymatic synthesis and illustrate each with a number of landmark case studies. Future opportunities and challenges are also discussed.
Collapse
Affiliation(s)
- Carter N. Stout
- Skaggs Doctoral Program in the Chemical and Biological Sciences, Scripps Research, La Jolla, CA 92037, USA
| | - Nour M. Wasfy
- Department of Chemistry, BioScience Research Collaborative, Rice University, Houston, Texas, 77005, United States
| | - Fang Chen
- Department of Chemistry, BioScience Research Collaborative, Rice University, Houston, Texas, 77005, United States
| | - Hans Renata
- Department of Chemistry, BioScience Research Collaborative, Rice University, Houston, Texas, 77005, United States
| |
Collapse
|
12
|
Zheng CY, Yue JM. Allylic hydroxylation of enones useful for the functionalization of relevant drugs and natural products. Nat Commun 2023; 14:2399. [PMID: 37100800 PMCID: PMC10133259 DOI: 10.1038/s41467-023-38154-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/12/2023] [Indexed: 04/28/2023] Open
Abstract
Enones are privileged structural motifs in bioactive natural products and pharmaceuticals, but the γ-hydroxylation of enones is challenging. Here we show a mild and efficient method for the direct C(sp3)-H hydroxylation of enones via visible-light-induced hydrogen-atom transfer (HAT), which facilitates γ-hydroxylation of primary, secondary, and tertiary C-H bonds of different enones without involving metal and peroxide. The mechanism study shows that Na2-eosin Y serves as both the photocatalyst and the source of catalytic bromine radical species in the HAT-based catalytic cycle, and finally sacrifices itself completely by oxidative degradation to produce bromine radical and a major product phthalic anhydride in an environmentally friendly way. This scalable method was demonstrated by plenty of substrates (41 examples) including 10 clinical drugs and 15 natural products to be useful for the late-stage functionalization of enone-containing compounds, and, in particular, has potential application in industry for large-scale production.
Collapse
Affiliation(s)
- Cheng-Yu Zheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Jian-Min Yue
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China.
- Research Units of Discovery of New Drug Lead Molecules, Chinese Academy of Medical Sciences, Shanghai, 201203, China.
| |
Collapse
|
13
|
Hecko S, Schiefer A, Badenhorst CPS, Fink MJ, Mihovilovic MD, Bornscheuer UT, Rudroff F. Enlightening the Path to Protein Engineering: Chemoselective Turn-On Probes for High-Throughput Screening of Enzymatic Activity. Chem Rev 2023; 123:2832-2901. [PMID: 36853077 PMCID: PMC10037340 DOI: 10.1021/acs.chemrev.2c00304] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Many successful stories in enzyme engineering are based on the creation of randomized diversity in large mutant libraries, containing millions to billions of enzyme variants. Methods that enabled their evaluation with high throughput are dominated by spectroscopic techniques due to their high speed and sensitivity. A large proportion of studies relies on fluorogenic substrates that mimic the chemical properties of the target or coupled enzymatic assays with an optical read-out that assesses the desired catalytic efficiency indirectly. The most reliable hits, however, are achieved by screening for conversions of the starting material to the desired product. For this purpose, functional group assays offer a general approach to achieve a fast, optical read-out. They use the chemoselectivity, differences in electronic and steric properties of various functional groups, to reduce the number of false-positive results and the analytical noise stemming from enzymatic background activities. This review summarizes the developments and use of functional group probes for chemoselective derivatizations, with a clear focus on screening for enzymatic activity in protein engineering.
Collapse
Affiliation(s)
- Sebastian Hecko
- Institute of Applied Synthetic Chemistry, OC-163, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Astrid Schiefer
- Institute of Applied Synthetic Chemistry, OC-163, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Christoffel P S Badenhorst
- Institute of Biochemistry, Dept. of Biotechnology & Enzyme Catalysis, University of Greifswald, Felix-Hausdorff-Str. 4, 17489 Greifswald, Germany
| | - Michael J Fink
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St, Cambridge, Massachusetts 02138, United States
| | - Marko D Mihovilovic
- Institute of Applied Synthetic Chemistry, OC-163, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Uwe T Bornscheuer
- Institute of Biochemistry, Dept. of Biotechnology & Enzyme Catalysis, University of Greifswald, Felix-Hausdorff-Str. 4, 17489 Greifswald, Germany
| | - Florian Rudroff
- Institute of Applied Synthetic Chemistry, OC-163, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| |
Collapse
|
14
|
Suzuki K, Stanfield JK, Omura K, Shisaka Y, Ariyasu S, Kasai C, Aiba Y, Sugimoto H, Shoji O. A Compound I Mimic Reveals the Transient Active Species of a Cytochrome P450 Enzyme: Insight into the Stereoselectivity of P450-Catalysed Oxidations. Angew Chem Int Ed Engl 2023; 62:e202215706. [PMID: 36519803 DOI: 10.1002/anie.202215706] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/14/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Catching the structure of cytochrome P450 enzymes in flagrante is crucial for the development of P450 biocatalysts, as most structures collected are found trapped in a precatalytic conformation. At the heart of P450 catalysis lies Cpd I, a short-lived, highly reactive intermediate, whose recalcitrant nature has thwarted most attempts at capturing catalytically relevant poses of P450s. We report the crystal structure of P450BM3 mimicking the state in the precise moment preceding epoxidation, which is in perfect agreement with the experimentally observed stereoselectivity. This structure was attained by incorporation of the stable Cpd I mimic oxomolybdenum mesoporphyrin IX into P450BM3 in the presence of styrene. The orientation of styrene to the Mo-oxo species in the crystal structures sheds light onto the dynamics involved in the rotation of styrene to present its vinyl group to Cpd I. This method serves as a powerful tool for predicting and modelling the stereoselectivity of P450 reactions.
Collapse
Affiliation(s)
- Kazuto Suzuki
- Department of Chemistry, Graduate School of Science, Nagoya University Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Joshua Kyle Stanfield
- Department of Chemistry, Graduate School of Science, Nagoya University Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Keita Omura
- Department of Chemistry, Graduate School of Science, Nagoya University Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Yuma Shisaka
- Department of Chemistry, Graduate School of Science, Nagoya University Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan.,RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Shinya Ariyasu
- Department of Chemistry, Graduate School of Science, Nagoya University Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Chie Kasai
- Department of Chemistry, Graduate School of Science, Nagoya University Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Yuichiro Aiba
- Department of Chemistry, Graduate School of Science, Nagoya University Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Hiroshi Sugimoto
- RIKEN SPring-8 Centre, 1-1-1, Kouto, Sayo, Hyogo, 679-5148, Japan
| | - Osami Shoji
- Department of Chemistry, Graduate School of Science, Nagoya University Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan.,Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 5, Sanbancho, Chiyoda-ku, Tokyo, 102-0075, Japan
| |
Collapse
|
15
|
Gillam EMJ, Kramlinger VM. Opportunities for Accelerating Drug Discovery and Development by Using Engineered Drug-Metabolizing Enzymes. Drug Metab Dispos 2023; 51:392-402. [PMID: 36460479 DOI: 10.1124/dmd.121.000743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/08/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022] Open
Abstract
The study of drug metabolism is fundamental to drug discovery and development (DDD) since by mediating the clearance of most drugs, metabolic enzymes influence their bioavailability and duration of action. Biotransformation can also produce pharmacologically active or toxic products, which complicates the evaluation of the therapeutic benefit versus liability of potential drugs but also provides opportunities to explore the chemical space around a lead. The structures and relative abundance of metabolites are determined by the substrate and reaction specificity of biotransformation enzymes and their catalytic efficiency. Preclinical drug biotransformation studies are done to quantify in vitro intrinsic clearance to estimate likely in vivo pharmacokinetic parameters, to predict an appropriate dose, and to anticipate interindividual variability in response, including from drug-drug interactions. Such studies need to be done rapidly and cheaply, but native enzymes, especially in microsomes or hepatocytes, do not always produce the full complement of metabolites seen in extrahepatic tissues or preclinical test species. Furthermore, yields of metabolites are usually limiting. Engineered recombinant enzymes can make DDD more comprehensive and systematic. Additionally, as renewable, sustainable, and scalable resources, they can also be used for elegant chemoenzymatic, synthetic approaches to optimize or synthesize candidates as well as metabolites. Here, we will explore how these new tools can be used to enhance the speed and efficiency of DDD pipelines and provide a perspective on what will be possible in the future. The focus will be on cytochrome P450 enzymes to illustrate paradigms that can be extended in due course to other drug-metabolizing enzymes. SIGNIFICANCE STATEMENT: Protein engineering can generate enhanced versions of drug-metabolizing enzymes that are more stable, better suited to industrial conditions, and have altered catalytic activities, including catalyzing non-natural reactions on structurally complex lead candidates. When applied to drugs in development, libraries of engineered cytochrome P450 enzymes can accelerate the identification of active or toxic metabolites, help elucidate structure activity relationships, and, when combined with other synthetic approaches, provide access to novel structures by regio- and stereoselective functionalization of lead compounds.
Collapse
Affiliation(s)
- Elizabeth M J Gillam
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane, Australia (E.M.J.G.) and Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee (V.M.K.)
| | - Valerie M Kramlinger
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane, Australia (E.M.J.G.) and Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee (V.M.K.)
| |
Collapse
|
16
|
Abstract
The P450 superfamily comprises some of the most powerful and versatile enzymes for the site-selective oxidation of small molecules. One of the main drawbacks for the applications of the P450s in biotechnology is that the majority of these enzymes is multicomponent in nature and requires the presence of suitable redox partners to support their functions. Nevertheless, the discovery of several self-sufficient P450s, namely those from Classes VII and VIII, has served as an inspiration for fusion approaches to generate chimeric P450 systems that are self-sufficient. In this Perspective, we highlight the domain organizations of the Class VII and Class VIII P450 systems, summarize recent case studies in the engineering of catalytically self-sufficient P450s based on these systems, and outline outstanding challenges in the field, along with several emerging technologies as potential solutions.
Collapse
Affiliation(s)
- Hans Renata
- Department of Chemistry, BioScience Research Collaborative, Rice University, Houston, TX, 77005
| |
Collapse
|
17
|
Wang M, Zhou X, Wang Z, Chen Y. Enzyme-catalyzed allylic oxidation reactions: A mini-review. Front Chem 2022; 10:950149. [PMID: 36046724 PMCID: PMC9420900 DOI: 10.3389/fchem.2022.950149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Chiral allylic oxidized products play an increasingly important role in the pharmaceutical, agrochemical, and pharmaceutical industries. Biocatalytic C–H oxyfunctionalization to synthesize allylic oxidized products has attracted great attention in recent years, with the ability to simplify synthetic approaches toward complex compounds. As a result, scientists have found some new enzymes and mutants through techniques of gene mining and enzyme-directed evolution in recent years. This review summarizes the recent developments in biocatalytic selective oxidation of olefins by different kinds of biocatalysts.
Collapse
Affiliation(s)
- Maoyao Wang
- Key Laboratory of Biocatalysis and Chiral Drug Synthesis of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Xiaojian Zhou
- Key Laboratory of Biocatalysis and Chiral Drug Synthesis of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Zhongqiang Wang
- Key Laboratory of Biocatalysis and Chiral Drug Synthesis of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Yongzheng Chen
- Key Laboratory of Biocatalysis and Chiral Drug Synthesis of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- *Correspondence: Yongzheng Chen,
| |
Collapse
|
18
|
Charlton SN, Hayes MA. Oxygenating Biocatalysts for Hydroxyl Functionalisation in Drug Discovery and Development. ChemMedChem 2022; 17:e202200115. [PMID: 35385205 PMCID: PMC9323455 DOI: 10.1002/cmdc.202200115] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/05/2022] [Indexed: 11/12/2022]
Abstract
C-H oxyfunctionalisation remains a distinct challenge for synthetic organic chemists. Oxygenases and peroxygenases (grouped here as "oxygenating biocatalysts") catalyse the oxidation of a substrate with molecular oxygen or hydrogen peroxide as oxidant. The application of oxygenating biocatalysts in organic synthesis has dramatically increased over the last decade, producing complex compounds with potential uses in the pharmaceutical industry. This review will focus on hydroxyl functionalisation using oxygenating biocatalysts as a tool for drug discovery and development. Established oxygenating biocatalysts, such as cytochrome P450s and flavin-dependent monooxygenases, have widely been adopted for this purpose, but can suffer from low activity, instability or limited substrate scope. Therefore, emerging oxygenating biocatalysts which offer an alternative will also be covered, as well as considering the ways in which these hydroxylation biotransformations can be applied in drug discovery and development, such as late-stage functionalisation (LSF) and in biocatalytic cascades.
Collapse
Affiliation(s)
- Sacha N. Charlton
- School of ChemistryUniversity of Bristol, Cantock's CloseBristolBS8 1TSUK
| | - Martin A. Hayes
- Compound Synthesis and ManagementDiscovery SciencesBiopharmaceuticals R&DAstraZenecaGothenburgSweden
| |
Collapse
|
19
|
Chen BS, Zhang D, de Souza FZR, Liu L. Recent Advances in the Synthesis of Marine-Derived Alkaloids via Enzymatic Reactions. Mar Drugs 2022; 20:md20060368. [PMID: 35736171 PMCID: PMC9229328 DOI: 10.3390/md20060368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
Alkaloids are a large and structurally diverse group of marine-derived natural products. Most marine-derived alkaloids are biologically active and show promising applications in modern (agro)chemical, pharmaceutical, and fine chemical industries. Different approaches have been established to access these marine-derived alkaloids. Among these employed methods, biotechnological approaches, namely, (chemo)enzymatic synthesis, have significant potential for playing a central role in alkaloid production on an industrial scale. In this review, we discuss research progress on marine-derived alkaloid synthesis via enzymatic reactions and note the advantages and disadvantages of their applications for industrial production, as well as green chemistry for marine natural product research.
Collapse
Affiliation(s)
- Bi-Shuang Chen
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China; (B.-S.C.); (D.Z.); (L.L.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Di Zhang
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China; (B.-S.C.); (D.Z.); (L.L.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Fayene Zeferino Ribeiro de Souza
- Centro Universitário Planalto do Distrito Federal, Universidade Virtual do Estado de São Paulo (UNIPLAN), Campus Bauru 17014-350, Brazil
- Correspondence: ; Tel.: +55-014-32452580
| | - Lan Liu
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China; (B.-S.C.); (D.Z.); (L.L.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| |
Collapse
|
20
|
Yan Y, Wu J, Hu G, Gao C, Guo L, Chen X, Liu L, Song W. Current state and future perspectives of cytochrome P450 enzymes for C–H and C=C oxygenation. Synth Syst Biotechnol 2022; 7:887-899. [PMID: 35601824 PMCID: PMC9112060 DOI: 10.1016/j.synbio.2022.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 01/11/2023] Open
Abstract
Cytochrome P450 enzymes (CYPs) catalyze a series of C–H and C=C oxygenation reactions, including hydroxylation, epoxidation, and ketonization. They are attractive biocatalysts because of their ability to selectively introduce oxygen into inert molecules under mild conditions. This review provides a comprehensive overview of the C–H and C=C oxygenation reactions catalyzed by CYPs and the various strategies for achieving higher selectivity and enzymatic activity. Furthermore, we discuss the application of C–H and C=C oxygenation catalyzed by CYPs to obtain the desired chemicals or pharmaceutical intermediates in practical production. The rapid development of protein engineering for CYPs provides excellent biocatalysts for selective C–H and C=C oxygenation reactions, thereby promoting the development of environmentally friendly and sustainable production processes.
Collapse
Affiliation(s)
- Yu Yan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Jing Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Guipeng Hu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Cong Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Liang Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Wei Song
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
- Corresponding author.
| |
Collapse
|
21
|
Fessner ND, Badenhorst CPS, Bornscheuer UT. Enzyme Kits to Facilitate the Integration of Biocatalysis into Organic Chemistry – First Aid for Synthetic Chemists. ChemCatChem 2022. [DOI: 10.1002/cctc.202200156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Nico D. Fessner
- Dept. of Biotechnology & Enzyme Catalysis Institute of Biochemistry University of Greifswald Felix-Hausdorff-Str. 4 17487 Greifswald Germany
| | - Christoffel P. S. Badenhorst
- Dept. of Biotechnology & Enzyme Catalysis Institute of Biochemistry University of Greifswald Felix-Hausdorff-Str. 4 17487 Greifswald Germany
| | - Uwe T. Bornscheuer
- Dept. of Biotechnology & Enzyme Catalysis Institute of Biochemistry University of Greifswald Felix-Hausdorff-Str. 4 17487 Greifswald Germany
| |
Collapse
|
22
|
Mupparapu N, Brewster L, Ostrom KF, Elshahawi SI. Late-Stage Chemoenzymatic Installation of Hydroxy-Bearing Allyl Moiety on the Indole Ring of Tryptophan-Containing Peptides. Chemistry 2022; 28:e202104614. [PMID: 35178791 PMCID: PMC9314954 DOI: 10.1002/chem.202104614] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Indexed: 01/08/2023]
Abstract
The late‐stage functionalization of indole‐ and tryptophan‐containing compounds with reactive moieties facilitates downstream diversification and leads to changes in their biological properties. Here, the synthesis of two hydroxy‐bearing allyl pyrophosphates is described. A chemoenzymatic method is demonstrated which uses a promiscuous indole prenyltransferase enzyme to install a dual reactive hydroxy‐bearing allyl moiety directly on the indole ring of tryptophan‐containing peptides. This is the first report of late‐stage indole modifications with this reactive group.
Collapse
Affiliation(s)
- Nagaraju Mupparapu
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy Rinker Health Science Campus, Irvine, CA 92618, USA
| | - Lauren Brewster
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy Rinker Health Science Campus, Irvine, CA 92618, USA
| | - Katrina F Ostrom
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy Rinker Health Science Campus, Irvine, CA 92618, USA
| | - Sherif I Elshahawi
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy Rinker Health Science Campus, Irvine, CA 92618, USA
| |
Collapse
|
23
|
Evolution in heterodonor P-N, P-S and P-O chiral ligands for preparing efficient catalysts for asymmetric catalysis. From design to applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214120] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
24
|
A Promiscuous Bacterial P450: The Unparalleled Diversity of BM3 in Pharmaceutical Metabolism. Int J Mol Sci 2021; 22:ijms222111380. [PMID: 34768811 PMCID: PMC8583553 DOI: 10.3390/ijms222111380] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 11/16/2022] Open
Abstract
CYP102A1 (BM3) is a catalytically self-sufficient flavocytochrome fusion protein isolated from Bacillus megaterium, which displays similar metabolic capabilities to many drug-metabolizing human P450 isoforms. BM3's high catalytic efficiency, ease of production and malleable active site makes the enzyme a desirable tool in the production of small molecule metabolites, especially for compounds that exhibit drug-like chemical properties. The engineering of select key residues within the BM3 active site vastly expands the catalytic repertoire, generating variants which can perform a range of modifications. This provides an attractive alternative route to the production of valuable compounds that are often laborious to synthesize via traditional organic means. Extensive studies have been conducted with the aim of engineering BM3 to expand metabolite production towards a comprehensive range of drug-like compounds, with many key examples found both in the literature and in the wider industrial bioproduction setting of desirable oxy-metabolite production by both wild-type BM3 and related variants. This review covers the past and current research on the engineering of BM3 to produce drug metabolites and highlights its crucial role in the future of biosynthetic pharmaceutical production.
Collapse
|
25
|
Ebensperger P, Jessen-Trefzer C. Artificial metalloenzymes in a nutshell: the quartet for efficient catalysis. Biol Chem 2021; 403:403-412. [PMID: 34653321 DOI: 10.1515/hsz-2021-0329] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/05/2021] [Indexed: 12/22/2022]
Abstract
Artificial metalloenzymes combine the inherent reactivity of transition metal catalysis with the sophisticated reaction control of natural enzymes. By providing new opportunities in bioorthogonal chemistry and biocatalysis, artificial metalloenzymes have the potential to overcome certain limitations in both drug discovery and green chemistry or related research fields. Ongoing advances in organometallic catalysis, directed evolution, and bioinformatics are enabling the design of increasingly powerful systems that outperform conventional catalysis in a growing number of cases. Therefore, this review article collects challenges and opportunities in designing artificial metalloenzymes described in recent review articles. This will provide an equitable insight for those new to and interested in the field.
Collapse
Affiliation(s)
- Paul Ebensperger
- Institute of Organic Chemistry, University of Freiburg, Albertstrasse 21, D-79104Freiburg i. Br., Germany
| | - Claudia Jessen-Trefzer
- Institute of Organic Chemistry, University of Freiburg, Albertstrasse 21, D-79104Freiburg i. Br., Germany
| |
Collapse
|
26
|
Ren X, Fasan R. Engineered and Artificial Metalloenzymes for Selective C-H Functionalization. CURRENT OPINION IN GREEN AND SUSTAINABLE CHEMISTRY 2021; 31:100494. [PMID: 34395950 PMCID: PMC8357270 DOI: 10.1016/j.cogsc.2021.100494] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The direct functionalization of C-H bonds constitutes a powerful strategy to construct and diversify organic molecules. However, controlling the chemo- and site-selectivity of this transformation in particularly complex molecular settings represents a significant challenge. Metalloenzymes are ideal platforms for achieving catalyst-controlled selective C-H bond functionalization as their reactivities can be tuned by protein engineering and/or redesign of their cofactor environment. In this review, we highlight recent progress in the development of engineered and artificial metalloenzymes for C-H functionalization, with a focus on biocatalytic strategies for selective C-H oxyfunctionalization and halogenation as well as C-H amination and C-H carbene insertion via abiological nitrene and carbene transfer chemistries. Engineered heme- and non-heme iron dependent enzymes have emerged as promising scaffolds for executing these transformations with high chemo-, regio- and stereocontrol as well as tunable selectivity. These emerging systems and methodologies have expanded the toolbox of sustainable strategies for organic synthesis and created new opportunities for the generation of chiral building blocks, the late-stage C-H functionalization of complex molecules, and the total synthesis of natural products.
Collapse
Affiliation(s)
- Xinkun Ren
- Department of Chemistry, University of Rochester, Hutchison Hall, 120 Trustee Rd, Rochester NY 14627, USA
| | - Rudi Fasan
- Department of Chemistry, University of Rochester, Hutchison Hall, 120 Trustee Rd, Rochester NY 14627, USA
| |
Collapse
|
27
|
Grogan G. Hemoprotein Catalyzed Oxygenations: P450s, UPOs, and Progress toward Scalable Reactions. JACS AU 2021; 1:1312-1329. [PMID: 34604841 PMCID: PMC8479775 DOI: 10.1021/jacsau.1c00251] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Indexed: 05/15/2023]
Abstract
The selective oxygenation of nonactivated carbon atoms is an ongoing synthetic challenge, and biocatalysts, particularly hemoprotein oxygenases, continue to be investigated for their potential, given both their sustainable chemistry credentials and also their superior selectivity. However, issues of stability, activity, and complex reaction requirements often render these biocatalytic oxygenations problematic with respect to scalable industrial processes. A continuing focus on Cytochromes P450 (P450s), which require a reduced nicotinamide cofactor and redox protein partners for electron transport, has now led to better catalysts and processes with a greater understanding of process requirements and limitations for both in vitro and whole-cell systems. However, the discovery and development of unspecific peroxygenases (UPOs) has also recently provided valuable complementary technology to P450-catalyzed reactions. UPOs need only hydrogen peroxide to effect oxygenations but are hampered by their sensitivity to peroxide and also by limited selectivity. In this Perspective, we survey recent developments in the engineering of proteins, cells, and processes for oxygenations by these two groups of hemoproteins and evaluate their potential and relative merits for scalable reactions.
Collapse
|
28
|
Cigan E, Eggbauer B, Schrittwieser JH, Kroutil W. The role of biocatalysis in the asymmetric synthesis of alkaloids - an update. RSC Adv 2021; 11:28223-28270. [PMID: 35480754 PMCID: PMC9038100 DOI: 10.1039/d1ra04181a] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 07/30/2021] [Indexed: 12/19/2022] Open
Abstract
Alkaloids are a group of natural products with interesting pharmacological properties and a long history of medicinal application. Their complex molecular structures have fascinated chemists for decades, and their total synthesis still poses a considerable challenge. In a previous review, we have illustrated how biocatalysis can make valuable contributions to the asymmetric synthesis of alkaloids. The chemo-enzymatic strategies discussed therein have been further explored and improved in recent years, and advances in amine biocatalysis have vastly expanded the opportunities for incorporating enzymes into synthetic routes towards these important natural products. The present review summarises modern developments in chemo-enzymatic alkaloid synthesis since 2013, in which the biocatalytic transformations continue to take an increasingly 'central' role.
Collapse
Affiliation(s)
- Emmanuel Cigan
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, BioHealth Heinrichstrasse 28/II 8010 Graz Austria
| | - Bettina Eggbauer
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, BioHealth Heinrichstrasse 28/II 8010 Graz Austria
| | - Joerg H Schrittwieser
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, BioHealth Heinrichstrasse 28/II 8010 Graz Austria
| | - Wolfgang Kroutil
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, BioHealth Heinrichstrasse 28/II 8010 Graz Austria
| |
Collapse
|
29
|
Romero E, Jones BS, Hogg BN, Rué Casamajo A, Hayes MA, Flitsch SL, Turner NJ, Schnepel C. Enzymkatalysierte späte Modifizierungen: Besser spät als nie. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 133:16962-16993. [PMID: 38505660 PMCID: PMC10946893 DOI: 10.1002/ange.202014931] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/15/2021] [Indexed: 03/21/2024]
Abstract
AbstractDie Enzymkatalyse gewinnt zunehmend an Bedeutung in der Synthesechemie. Die durch Bioinformatik und Enzym‐Engineering stetig wachsende Zahl von Biokatalysatoren eröffnet eine große Vielfalt selektiver Reaktionen. Insbesondere für späte Funktionalisierungsreaktionen ist die Biokatalyse ein geeignetes Werkzeug, das oftmals der konventionellen De‐novo‐Synthese überlegen ist. Enzyme haben sich als nützlich erwiesen, um funktionelle Gruppen direkt in komplexe Molekülgerüste einzuführen sowie für die rasche Diversifizierung von Substanzbibliotheken. Biokatalytische Oxyfunktionalisierungen, Halogenierungen, Methylierungen, Reduktionen und Amidierungen sind von besonderem Interesse, da diese Strukturmotive häufig in Pharmazeutika vertreten sind. Dieser Aufsatz gibt einen Überblick über die Stärken und Schwächen der enzymkatalysierten späten Modifizierungen durch native und optimierte Enzyme in der Synthesechemie. Ebenso werden wichtige Beispiele in der Wirkstoffentwicklung hervorgehoben.
Collapse
Affiliation(s)
- Elvira Romero
- Compound Synthesis and ManagementDiscovery Sciences, BioPharmaceuticals R&DAstraZenecaGötheborgSchweden
| | - Bethan S. Jones
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNVereinigtes Königreich
| | - Bethany N. Hogg
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNVereinigtes Königreich
| | - Arnau Rué Casamajo
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNVereinigtes Königreich
| | - Martin A. Hayes
- Compound Synthesis and ManagementDiscovery Sciences, BioPharmaceuticals R&DAstraZenecaGötheborgSchweden
| | - Sabine L. Flitsch
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNVereinigtes Königreich
| | - Nicholas J. Turner
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNVereinigtes Königreich
| | - Christian Schnepel
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNVereinigtes Königreich
| |
Collapse
|
30
|
Romero E, Jones BS, Hogg BN, Rué Casamajo A, Hayes MA, Flitsch SL, Turner NJ, Schnepel C. Enzymatic Late-Stage Modifications: Better Late Than Never. Angew Chem Int Ed Engl 2021; 60:16824-16855. [PMID: 33453143 PMCID: PMC8359417 DOI: 10.1002/anie.202014931] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/15/2021] [Indexed: 12/16/2022]
Abstract
Enzyme catalysis is gaining increasing importance in synthetic chemistry. Nowadays, the growing number of biocatalysts accessible by means of bioinformatics and enzyme engineering opens up an immense variety of selective reactions. Biocatalysis especially provides excellent opportunities for late-stage modification often superior to conventional de novo synthesis. Enzymes have proven to be useful for direct introduction of functional groups into complex scaffolds, as well as for rapid diversification of compound libraries. Particularly important and highly topical are enzyme-catalysed oxyfunctionalisations, halogenations, methylations, reductions, and amide bond formations due to the high prevalence of these motifs in pharmaceuticals. This Review gives an overview of the strengths and limitations of enzymatic late-stage modifications using native and engineered enzymes in synthesis while focusing on important examples in drug development.
Collapse
Affiliation(s)
- Elvira Romero
- Compound Synthesis and ManagementDiscovery Sciences, BioPharmaceuticals R&DAstraZenecaGothenburgSweden
| | - Bethan S. Jones
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNUnited Kingdom
| | - Bethany N. Hogg
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNUnited Kingdom
| | - Arnau Rué Casamajo
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNUnited Kingdom
| | - Martin A. Hayes
- Compound Synthesis and ManagementDiscovery Sciences, BioPharmaceuticals R&DAstraZenecaGothenburgSweden
| | - Sabine L. Flitsch
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNUnited Kingdom
| | - Nicholas J. Turner
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNUnited Kingdom
| | - Christian Schnepel
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNUnited Kingdom
| |
Collapse
|
31
|
Late-stage C–H functionalization offers new opportunities in drug discovery. Nat Rev Chem 2021; 5:522-545. [PMID: 37117588 DOI: 10.1038/s41570-021-00300-6] [Citation(s) in RCA: 291] [Impact Index Per Article: 97.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2021] [Indexed: 12/24/2022]
Abstract
Over the past decade, the landscape of molecular synthesis has gained major impetus by the introduction of late-stage functionalization (LSF) methodologies. C-H functionalization approaches, particularly, set the stage for new retrosynthetic disconnections, while leading to improvements in resource economy. A variety of innovative techniques have been successfully applied to the C-H diversification of pharmaceuticals, and these key developments have enabled medicinal chemists to integrate LSF strategies in their drug discovery programmes. This Review highlights the significant advances achieved in the late-stage C-H functionalization of drugs and drug-like compounds, and showcases how the implementation of these modern strategies allows increased efficiency in the drug discovery process. Representative examples are examined and classified by mechanistic patterns involving directed or innate C-H functionalization, as well as emerging reaction manifolds, such as electrosynthesis and biocatalysis, among others. Structurally complex bioactive entities beyond small molecules are also covered, including diversification in the new modalities sphere. The challenges and limitations of current LSF methods are critically assessed, and avenues for future improvements of this rapidly expanding field are discussed. We, hereby, aim to provide a toolbox for chemists in academia as well as industrial practitioners, and introduce guiding principles for the application of LSF strategies to access new molecules of interest.
Collapse
|
32
|
Rogge T, Kaplaneris N, Chatani N, Kim J, Chang S, Punji B, Schafer LL, Musaev DG, Wencel-Delord J, Roberts CA, Sarpong R, Wilson ZE, Brimble MA, Johansson MJ, Ackermann L. C–H activation. ACTA ACUST UNITED AC 2021. [DOI: 10.1038/s43586-021-00041-2] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
33
|
Alwaseem H, Giovani S, Crotti M, Welle K, Jordan CT, Ghaemmaghami S, Fasan R. Comprehensive Structure-Activity Profiling of Micheliolide and its Targeted Proteome in Leukemia Cells via Probe-Guided Late-Stage C-H Functionalization. ACS CENTRAL SCIENCE 2021; 7:841-857. [PMID: 34079900 PMCID: PMC8161485 DOI: 10.1021/acscentsci.0c01624] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Indexed: 05/03/2023]
Abstract
The plant-derived sesquiterpene lactone micheliolide was recently found to possess promising antileukemic activity, including the ability to target and kill leukemia stem cells. Efforts toward improving the biological activity of micheliolide and investigating its mechanism of action have been hindered by the paucity of preexisting functional groups amenable for late-stage derivatization of this molecule. Here, we report the implementation of a probe-based P450 fingerprinting strategy to rapidly evolve engineered P450 catalysts useful for the regio- and stereoselective hydroxylation of micheliolide at two previously inaccessible aliphatic positions in this complex natural product. Via P450-mediated chemoenzymatic synthesis, a broad panel of novel micheliolide analogs could thus be obtained to gain structure-activity insights into the effect of C2, C4, and C14 substitutions on the antileukemic activity of micheliolide, ultimately leading to the discovery of "micheliologs" with improved potency against acute myelogenic leukemia cells. These late-stage C-H functionalization routes could be further leveraged to generate a panel of affinity probes for conducting a comprehensive analysis of the protein targeting profile of micheliolide in leukemia cells via chemical proteomics analyses. These studies introduce new micheliolide-based antileukemic agents and shed new light onto the biomolecular targets and mechanism of action of micheliolide in leukemia cells. More broadly, this work showcases the value of the present P450-mediated C-H functionalization strategy for streamlining the late-stage diversification and elucidation of the biomolecular targets of a complex bioactive molecule.
Collapse
Affiliation(s)
- Hanan Alwaseem
- Department
of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Simone Giovani
- Department
of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Michele Crotti
- Department
of Chemistry, University of Rochester, Rochester, New York 14627, United States
- Dipartimento
di Chimica, Materiali e Ingegneria Chimica “G. Natta”, Politecnico di Milano, 20133 Milan, Italy
| | - Kevin Welle
- Mass
Spectrometry Resource Laboratory, University
of Rochester Medical School, Rochester, New York 14627, United States
| | - Craig T. Jordan
- Department
of Hematology, School of Medicine, University
of Colorado, Aurora, Colorado 80045, United
States
| | - Sina Ghaemmaghami
- Mass
Spectrometry Resource Laboratory, University
of Rochester Medical School, Rochester, New York 14627, United States
- Department
of Biology, University of Rochester, Rochester, New York 14627, United States
| | - Rudi Fasan
- Department
of Chemistry, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
34
|
Pàmies O, Margalef J, Cañellas S, James J, Judge E, Guiry PJ, Moberg C, Bäckvall JE, Pfaltz A, Pericàs MA, Diéguez M. Recent Advances in Enantioselective Pd-Catalyzed Allylic Substitution: From Design to Applications. Chem Rev 2021; 121:4373-4505. [PMID: 33739109 PMCID: PMC8576828 DOI: 10.1021/acs.chemrev.0c00736] [Citation(s) in RCA: 221] [Impact Index Per Article: 73.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Indexed: 12/30/2022]
Abstract
This Review compiles the evolution, mechanistic understanding, and more recent advances in enantioselective Pd-catalyzed allylic substitution and decarboxylative and oxidative allylic substitutions. For each reaction, the catalytic data, as well as examples of their application to the synthesis of more complex molecules, are collected. Sections in which we discuss key mechanistic aspects for high selectivity and a comparison with other metals (with advantages and disadvantages) are also included. For Pd-catalyzed asymmetric allylic substitution, the catalytic data are grouped according to the type of nucleophile employed. Because of the prominent position of the use of stabilized carbon nucleophiles and heteronucleophiles, many chiral ligands have been developed. To better compare the results, they are presented grouped by ligand types. Pd-catalyzed asymmetric decarboxylative reactions are mainly promoted by PHOX or Trost ligands, which justifies organizing this section in chronological order. For asymmetric oxidative allylic substitution the results are grouped according to the type of nucleophile used.
Collapse
Affiliation(s)
- Oscar Pàmies
- Universitat
Rovira i Virgili, Departament de
Química Física i Inorgànica, C/Marcel·lí Domingo, 1, 43007 Tarragona, Spain
| | - Jèssica Margalef
- Universitat
Rovira i Virgili, Departament de
Química Física i Inorgànica, C/Marcel·lí Domingo, 1, 43007 Tarragona, Spain
| | - Santiago Cañellas
- Discovery
Sciences, Janssen Research and Development, Janssen-Cilag, S.A. Jarama 75A, 45007, Toledo, Spain
| | - Jinju James
- Centre
for Synthesis and Chemical Biology, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Eric Judge
- Centre
for Synthesis and Chemical Biology, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Patrick J. Guiry
- Centre
for Synthesis and Chemical Biology, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Christina Moberg
- KTH
Royal Institute of Technology, Department of Chemistry, Organic Chemistry, SE 100 44 Stockholm, Sweden
| | - Jan-E. Bäckvall
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE 106 91 Stockholm, Sweden
| | - Andreas Pfaltz
- Department
of Chemistry, University of Basel. St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Miquel A. Pericàs
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
- Departament
de Química Inorgànica i Orgànica, Universitat de Barcelona. 08028 Barcelona, Spain
| | - Montserrat Diéguez
- Universitat
Rovira i Virgili, Departament de
Química Física i Inorgànica, C/Marcel·lí Domingo, 1, 43007 Tarragona, Spain
| |
Collapse
|
35
|
David F, Davis AM, Gossing M, Hayes MA, Romero E, Scott LH, Wigglesworth MJ. A Perspective on Synthetic Biology in Drug Discovery and Development-Current Impact and Future Opportunities. SLAS DISCOVERY 2021; 26:581-603. [PMID: 33834873 DOI: 10.1177/24725552211000669] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The global impact of synthetic biology has been accelerating, because of the plummeting cost of DNA synthesis, advances in genetic engineering, growing understanding of genome organization, and explosion in data science. However, much of the discipline's application in the pharmaceutical industry remains enigmatic. In this review, we highlight recent examples of the impact of synthetic biology on target validation, assay development, hit finding, lead optimization, and chemical synthesis, through to the development of cellular therapeutics. We also highlight the availability of tools and technologies driving the discipline. Synthetic biology is certainly impacting all stages of drug discovery and development, and the recognition of the discipline's contribution can further enhance the opportunities for the drug discovery and development value chain.
Collapse
Affiliation(s)
- Florian David
- Department of Biology and Biological Engineering, Division of Systems and Synthetic Biology, Chalmers University of Technology, Gothenburg, Sweden
| | - Andrew M Davis
- Discovery Sciences, Biopharmaceutical R&D, AstraZeneca, Cambridge, UK
| | - Michael Gossing
- Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Martin A Hayes
- Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Elvira Romero
- Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Louis H Scott
- Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | | |
Collapse
|
36
|
Stout CN, Renata H. Reinvigorating the Chiral Pool: Chemoenzymatic Approaches to Complex Peptides and Terpenoids. Acc Chem Res 2021; 54:1143-1156. [PMID: 33543931 DOI: 10.1021/acs.accounts.0c00823] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Biocatalytic transformations that leverage the selectivity and efficiency of enzymes represent powerful tools for the construction of complex natural products. Enabled by innovations in genome mining, bioinformatics, and enzyme engineering, synthetic chemists are now more than ever able to develop and employ enzymes to solve outstanding chemical problems, one of which is the reliable and facile generation of stereochemistry within natural product scaffolds. In recognition of this unmet need, our group has sought to advance novel chemoenzymatic strategies to both expand and reinvigorate the chiral pool. Broadly defined, the chiral pool comprises cheap, enantiopure feedstock chemicals that serve as popular foundations for asymmetric total synthesis. Among these building blocks, amino acids and enantiopure terpenes, whose core structures can be mapped onto several classes of structurally and pharmaceutically intriguing natural products, are of particular interest to the synthetic community.In this Account, we summarize recent efforts from our group in leveraging biocatalytic transformations to expand the chiral pool, as well as efforts toward the efficient application of these transformations in natural products total synthesis, the ultimate testing ground for any novel methodology. First, we describe several examples of enzymatic generation of noncanonical amino acids as means to simplify the synthesis of peptide natural products. By extracting amino acid hydroxylases from native biosynthetic pathways, we obtain efficient access to hydroxylated variants of proline, lysine, arginine, and their derivatives. The newly installed hydroxyl moiety then becomes a chemical handle that can facilitate additional complexity generation, thereby expanding the pool of amino acid-derived building blocks available for peptide synthesis. Next, we present our efforts in enzymatic C-H oxidations of diverse terpene scaffolds, in which traditional chemistry can be combined with strategic applications of biocatalysis to selectively and efficiently derivatize several commercial terpenoid skeletons. The synergistic logic of this approach enables a small handful of synthetic intermediates to provide access to a plethora of terpenoid natural product families. Taken together, these findings demonstrate the advantages of applying enzymes in total synthesis in conjunction with established methodologies, as well as toward the expansion of the chiral pool to enable facile incorporation of stereochemistry during synthetic campaigns.
Collapse
Affiliation(s)
- Carter N. Stout
- Department of Chemistry, Scripps Research, 110 Scripps Way, Jupiter, Florida 33458, United States
| | - Hans Renata
- Department of Chemistry, Scripps Research, 110 Scripps Way, Jupiter, Florida 33458, United States
| |
Collapse
|
37
|
Rana S, Biswas JP, Paul S, Paik A, Maiti D. Organic synthesis with the most abundant transition metal–iron: from rust to multitasking catalysts. Chem Soc Rev 2021; 50:243-472. [DOI: 10.1039/d0cs00688b] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The promising aspects of iron in synthetic chemistry are being explored for three-four decades as a green and eco-friendly alternative to late transition metals. This present review unveils these rich iron-chemistry towards different transformations.
Collapse
Affiliation(s)
- Sujoy Rana
- Department of Chemistry
- University of North Bengal
- Darjeeling
- India
| | | | - Sabarni Paul
- Department of Chemistry
- University of North Bengal
- Darjeeling
- India
| | - Aniruddha Paik
- Department of Chemistry
- University of North Bengal
- Darjeeling
- India
| | - Debabrata Maiti
- Department of Chemistry
- IIT Bombay
- Mumbai-400076
- India
- Tokyo Tech World Research Hub Initiative (WRHI)
| |
Collapse
|
38
|
Chakrabarty S, Wang Y, Perkins JC, Narayan ARH. Scalable biocatalytic C-H oxyfunctionalization reactions. Chem Soc Rev 2020; 49:8137-8155. [PMID: 32701110 PMCID: PMC8177087 DOI: 10.1039/d0cs00440e] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Catalytic C-H oxyfunctionalization reactions have garnered significant attention in recent years with their ability to streamline synthetic routes toward complex molecules. Consequently, there have been significant strides in the design and development of catalysts that enable diversification through C-H functionalization reactions. Enzymatic C-H oxygenation reactions are often complementary to small molecule based synthetic approaches, providing a powerful tool when deployable on preparative-scale. This review highlights key advances in scalable biocatalytic C-H oxyfunctionalization reactions developed within the past decade.
Collapse
Affiliation(s)
- Suman Chakrabarty
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | | | |
Collapse
|
39
|
Dunham NP, Arnold FH. Nature's Machinery, Repurposed: Expanding the Repertoire of Iron-Dependent Oxygenases. ACS Catal 2020; 10:12239-12255. [PMID: 33282461 PMCID: PMC7710332 DOI: 10.1021/acscatal.0c03606] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Iron is an especially important redox-active cofactor in biology because of its ability to mediate reactions with atmospheric O2. Iron-dependent oxygenases exploit this earth-abundant transition metal for the insertion of oxygen atoms into organic compounds. Throughout the astounding diversity of transformations catalyzed by these enzymes, the protein framework directs reactive intermediates toward the precise formation of products, which, in many cases, necessitates the cleavage of strong C-H bonds. In recent years, members of several iron-dependent oxygenase families have been engineered for new-to-nature transformations that offer advantages over conventional synthetic methods. In this Perspective, we first explore what is known about the reactivity of heme-dependent cytochrome P450 oxygenases and nonheme iron-dependent oxygenases bearing the 2-His-1-carboxylate facial triad by reviewing mechanistic studies with an emphasis on how the protein scaffold maximizes the catalytic potential of the iron-heme and iron cofactors. We then review how these cofactors have been repurposed for abiological transformations by engineering the protein frameworks of these enzymes. Finally, we discuss contemporary challenges associated with engineering these platforms and comment on their roles in biocatalysis moving forward.
Collapse
Affiliation(s)
- Noah P. Dunham
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, MC 210-41, Pasadena, California 91125, United States
| | - Frances H. Arnold
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, MC 210-41, Pasadena, California 91125, United States
| |
Collapse
|
40
|
Junk L, Kazmaier U. The Allylic Alkylation of Ketone Enolates. ChemistryOpen 2020; 9:929-952. [PMID: 32953384 PMCID: PMC7482671 DOI: 10.1002/open.202000175] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/03/2020] [Indexed: 01/14/2023] Open
Abstract
The palladium-catalyzed allylic alkylation of non-stabilized ketone enolates was thought for a long time to be not as efficient as the analogous reactions of stabilized enolates, e. g. of malonates and β-ketoesters. The field has experienced a rapid development during the last two decades, with a range of new, highly efficient protocols evolved. In this review, the early developments as well as current methods and applications of palladium-catalyzed ketone enolate allylations will be discussed.
Collapse
Affiliation(s)
- Lukas Junk
- Organic Chemistry ISaarland UniversityCampus C4.266123SaarbrückenGermany
| | - Uli Kazmaier
- Organic Chemistry ISaarland UniversityCampus C4.266123SaarbrückenGermany
| |
Collapse
|
41
|
Ariyasu S, Stanfield JK, Aiba Y, Shoji O. Expanding the applicability of cytochrome P450s and other haemoproteins. Curr Opin Chem Biol 2020; 59:155-163. [PMID: 32781431 DOI: 10.1016/j.cbpa.2020.06.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/15/2020] [Accepted: 06/22/2020] [Indexed: 12/20/2022]
Abstract
Cytochrome P450BM3 has long been regarded as a promising candidate for use as a biocatalyst, owing to its excellent efficiency for the hydroxylation of unactivated C-H bonds. However, because of its high substrate specificity, its possible applications have been severely limited. Consequently, various approaches have been proposed to overcome the enzyme's natural limitations, thereby expanding its substrate scope to encompass non-native substrates, evoking chemoselectivity, regioselectivity and stereoselectivity and enabling previously inaccessible chemical conversions. Herein, these approaches will be classified into three categories: (1) mutagenesis including directed evolution, (2) haem substitution with artificial cofactors and (3) use of substrate mimics, 'decoy molecules'. Herein, we highlight the representative work that has been conducted in above three categories for discussion of the future outlook of P450BM3 in green chemistry.
Collapse
Affiliation(s)
- Shinya Ariyasu
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Joshua Kyle Stanfield
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Yuichiro Aiba
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Osami Shoji
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan; JST-CREST, Japan.
| |
Collapse
|
42
|
Abstract
Nowadays, biocatalysts have received much more attention in chemistry regarding their potential to enable high efficiency, high yield, and eco-friendly processes for a myriad of applications. Nature’s vast repository of catalysts has inspired synthetic chemists. Furthermore, the revolutionary technologies in bioengineering have provided the fast discovery and evolution of enzymes that empower chemical synthesis. This article attempts to deliver a comprehensive overview of the last two decades of investigation into enzymatic reactions and highlights the effective performance progress of bio-enzymes exploited in organic synthesis. Based on the types of enzymatic reactions and enzyme commission (E.C.) numbers, the enzymes discussed in the article are classified into oxidoreductases, transferases, hydrolases, and lyases. These applications should provide us with some insight into enzyme design strategies and molecular mechanisms.
Collapse
|
43
|
Leone L, Chino M, Nastri F, Maglio O, Pavone V, Lombardi A. Mimochrome, a metalloporphyrin‐based catalytic Swiss knife†. Biotechnol Appl Biochem 2020; 67:495-515. [DOI: 10.1002/bab.1985] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/09/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Linda Leone
- Department of Chemical Sciences University of Napoli “Federico II” Napoli Italy
| | - Marco Chino
- Department of Chemical Sciences University of Napoli “Federico II” Napoli Italy
| | - Flavia Nastri
- Department of Chemical Sciences University of Napoli “Federico II” Napoli Italy
| | - Ornella Maglio
- Department of Chemical Sciences University of Napoli “Federico II” Napoli Italy
- IBB ‐ National Research Council Napoli Italy
| | - Vincenzo Pavone
- Department of Chemical Sciences University of Napoli “Federico II” Napoli Italy
| | - Angela Lombardi
- Department of Chemical Sciences University of Napoli “Federico II” Napoli Italy
| |
Collapse
|
44
|
Kanda Y, Ishihara Y, Wilde NC, Baran PS. Two-Phase Total Synthesis of Taxanes: Tactics and Strategies. J Org Chem 2020; 85:10293-10320. [DOI: 10.1021/acs.joc.0c01287] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yuzuru Kanda
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Yoshihiro Ishihara
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Nathan C. Wilde
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Phil S. Baran
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
45
|
Duquette DC, Cusumano AQ, Lefoulon L, Moore JT, Stoltz BM. Probing Trends in Enantioinduction via Substrate Design: Palladium-Catalyzed Decarboxylative Allylic Alkylation of α-Enaminones. Org Lett 2020; 22:4966-4969. [PMID: 32543857 DOI: 10.1021/acs.orglett.0c01441] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, we report the palladium-catalyzed decarboxylative asymmetric allylic alkylation of α-enaminones. In addition to serving as valuable synthetic building blocks, we exploit the α-enaminone scaffold and its derivatives as probes to highlight structural and electronic factors that govern enantioselectivity in this asymmetric alkylation reaction. Utilizing the (S)-t-BuPHOX ligand in a variety of nonpolar solvents, the alkylated products are obtained in up to 99% yield and 99% enantiomeric excess.
Collapse
Affiliation(s)
- Douglas C Duquette
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Alexander Q Cusumano
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Louise Lefoulon
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Jared T Moore
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Brian M Stoltz
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
46
|
Exploring the Biocatalytic Potential of Fe/α‐Ketoglutarate‐Dependent Halogenases. Chemistry 2020; 26:7336-7345. [DOI: 10.1002/chem.201905752] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Indexed: 12/18/2022]
|
47
|
Sun W, Xue H, Liu H, Lv B, Yu Y, Wang Y, Huang M, Li C. Controlling Chemo- and Regioselectivity of a Plant P450 in Yeast Cell toward Rare Licorice Triterpenoid Biosynthesis. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00128] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wentao Sun
- Institute for Synthetic Biosystem/Department of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P.R. China
| | - Haijie Xue
- Institute for Synthetic Biosystem/Department of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P.R. China
| | - Hu Liu
- Institute for Synthetic Biosystem/Department of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P.R. China
| | - Bo Lv
- Institute for Synthetic Biosystem/Department of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P.R. China
| | - Yang Yu
- Institute for Synthetic Biosystem/Department of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P.R. China
| | - Ying Wang
- Institute for Synthetic Biosystem/Department of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P.R. China
| | - Meilan Huang
- School of Chemistry and Chemical Engineering, Queen’s University Belfast, Stranmillis Road, Belfast BT9 5AG, Northern Ireland United Kingdom
| | - Chun Li
- Institute for Synthetic Biosystem/Department of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P.R. China
- Key Lab of Industrial Biocatalysis Ministry of Education, Department of Chemical Engineering, Tsinghua University, Haidian District, Beijing 100084, P.R. China
| |
Collapse
|
48
|
Xie L, Chen K, Cui H, Wan N, Cui B, Han W, Chen Y. Characterization of a Self-Sufficient Cytochrome P450 Monooxygenase from Deinococcus apachensis for Enantioselective Benzylic Hydroxylation. Chembiochem 2020; 21:1820-1825. [PMID: 32012422 DOI: 10.1002/cbic.201900691] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/29/2020] [Indexed: 12/22/2022]
Abstract
A self-sufficient cytochrome P450 monooxygenase from Deinococcus apachensis (P450DA) was identified and successfully overexpressed in Escherichia coli BL21(DE3). P450DA would be a member of the CYP102D subfamily and assigned as CYP102D2 according to the phylogenetic tree and sequence alignment. Purification and characterization of the recombinant P450DA indicated both NADH and NADPH could be used by P450DA as a reducing cofactor. The recombinant E. coli (P450DA) strain was functionally active, showing excellent enantioselectivity for benzylic hydroxylation of methyl 2-phenylacetate. Further substrate scope studies revealed that P450DA is able to catalyze benzylic hydroxylation of a variety of compounds, affording the corresponding chiral benzylic alcohols in 86-99 % ee and 130-1020 total turnover numbers.
Collapse
Affiliation(s)
- Lingzhi Xie
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
| | - Ke Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
| | - Haibo Cui
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
| | - Nanwei Wan
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
| | - Baodong Cui
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
| | - Wenyong Han
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
| | - Yongzheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
| |
Collapse
|
49
|
Li J, Li F, King-Smith E, Renata H. Merging chemoenzymatic and radical-based retrosynthetic logic for rapid and modular synthesis of oxidized meroterpenoids. Nat Chem 2020; 12:173-179. [PMID: 31959962 PMCID: PMC7250629 DOI: 10.1038/s41557-019-0407-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 12/06/2019] [Indexed: 11/09/2022]
Abstract
Meroterpenoids are natural products of hybrid biosynthetic origins-derived from both terpenoid and polyketide pathways-with a wealth of biological activities. Given their therapeutic potential, a general strategy to access these natural products in a concise and divergent fashion is highly desirable. Here, we report a modular synthesis of a suite of oxidized meroterpenoids using a hybrid synthetic strategy that is designed to harness the power of both biocatalytic and radical-based retrosynthetic logic. This strategy enables direct introduction of key hydroxyl groups and rapid construction of key bonds and stereocentres, facilitating the development of a concise route (7-12 steps from commercial materials) to eight oxidized meroterpenoids from two common molecular scaffolds. This work lays the foundation for rapid access to a wide range of oxidized meroterpenoids through the use of similar hybrid strategy that combines two synthetic approaches.
Collapse
Affiliation(s)
- Jian Li
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, USA
| | - Fuzhuo Li
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, USA
| | - Emma King-Smith
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, USA
| | - Hans Renata
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, USA.
| |
Collapse
|
50
|
|