1
|
Sethi A, Agrawal N, Brezovsky J. Impact of water models on the structure and dynamics of enzyme tunnels. Comput Struct Biotechnol J 2024; 23:3946-3954. [PMID: 39582894 PMCID: PMC11584523 DOI: 10.1016/j.csbj.2024.10.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 11/26/2024] Open
Abstract
Protein hydration plays a vital role in many biological functions, and molecular dynamics simulations are frequently used to study it. However, the accuracy of these simulations is often sensitive to the water model used, a phenomenon particularly evident in intrinsically disordered proteins. Here, we investigated the extent to which the choice of water model alters the behavior of complex networks of tunnels within proteins. Tunnels are essential because they allow the exchange of substrates and products between buried enzyme active sites and the bulk solvent, directly affecting enzyme efficiency and selectivity, making the study of tunnels crucial for a holistic understanding of enzyme function at the molecular level. By performing simulations of haloalkane dehalogenase LinB and its two variants with engineered tunnels using TIP3P and OPC models, we investigated their effects on the overall tunnel topology. We also analyzed the properties of the primary tunnels, including their conformation, bottleneck dimensions, sampling efficiency, and the duration of tunnel openings. Our data demonstrate that all three proteins exhibited similar conformational behavior in both models but differed in the geometrical characteristics of their auxiliary tunnels, consistent with experimental observations. Interestingly, the results indicate that the stability of the open tunnels might be sensitive to the water model used. Because TIP3P can provide comparable data on the overall tunnel network, it is a valid choice when computational resources are limited or compatibility issues impede the use of OPC. However, OPC seems preferable for calculations requiring an accurate description of transport kinetics.
Collapse
Affiliation(s)
- Aaftaab Sethi
- Laboratory of Biomolecular Interactions and Transport, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, Poznan 61–614, Poland
| | - Nikhil Agrawal
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV, Riga 1006, Latvia
| | - Jan Brezovsky
- Laboratory of Biomolecular Interactions and Transport, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, Poznan 61–614, Poland
- International Institute of Molecular and Cell Biology in Warsaw, Ks Trojdena 4, Warsaw 02–109, Poland
| |
Collapse
|
2
|
Mengel SD, DeStefano AJ, Webber T, Semerdjiev A, Han S, Segalman RA. Salt-Screened Transition toward Bulk-Like Water Dynamics near Polymeric Zwitterions. ACS Macro Lett 2024; 13:928-934. [PMID: 38995998 DOI: 10.1021/acsmacrolett.4c00347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
The superior antifouling performance of zwitterionic materials is commonly linked to their hydration structure, in which tight surface binding of water molecules inhibits solute adsorption. However, there is comparatively little direct experimental data on the hydration water structure and dynamics around zwitterionic moieties, including the longer-range behavior of the hydration shell that modulates the approach of solutes to the polymer surface. This work experimentally probes the dynamics of the diffusing hydration water molecules around a series of zwitterion chemistries using Overhauser dynamic nuclear polarization relaxometry. Surprisingly, water dynamics measured within ∼1 nm of the zwitterions were minimally inhibited compared to those near uncharged hydrophilic or cationic side chains. Specific dissolved ions further enhance the water diffusivity near the zwitterions, rendering the hydration shell bulk water-like. These results that the hydration of a zwitterion surface is nearly indistinguishable from bulk water suggest that these surfaces are "invisible" to biological constituents in a manner tunable by the ionic environment and the chemical design of the zwitterionic surface.
Collapse
Affiliation(s)
- Shawn D Mengel
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Audra J DeStefano
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Thomas Webber
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Anton Semerdjiev
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Songi Han
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Rachel A Segalman
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
- Department of Materials, University of California, Santa Barbara, California 93106, United States
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
3
|
Robinson Brown DC, Webber TR, Casey TM, Franck J, Shell MS, Han S. Computation of Overhauser dynamic nuclear polarization processes reveals fundamental correlation between water dynamics, structure, and solvent restructuring entropy. Phys Chem Chem Phys 2024; 26:14637-14650. [PMID: 38742831 DOI: 10.1039/d4cp00030g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Hydration water dynamics, structure, and thermodynamics are crucially important to understand and predict water-mediated properties at molecular interfaces. Yet experimentally and directly quantifying water behavior locally near interfaces at the sub-nanometer scale is challenging, especially at interfaces submerged in biological solutions. Overhauser dynamic nuclear polarization (ODNP) experiments measure equilibrium hydration water dynamics within 8-15 angstroms of a nitroxide spin probe on instantaneous timescales (10 picoseconds to nanoseconds), making ODNP a powerful tool for probing local water dynamics in the vicinity of the spin probe. As with other spectroscopic techniques, concurrent computational analysis is necessary to gain access to detailed molecular level information about the dynamic, structural, and thermodynamic properties of water from experimental ODNP data. We chose a model system that can systematically tune the dynamics of water, a water-glycerol mixture with compositions ranging from 0 to 0.3 mole fraction glycerol. We demonstrate the ability of molecular dynamics (MD) simulations to compute ODNP spectroscopic quantities, and show that translational, rotational, and hydrogen bonding dynamics of hydration water align strongly with spectroscopic ODNP parameters. Moreover, MD simulations show tight correlations between the dynamic properties of water that ODNP captures and the structural and thermodynamic behavior of water. Hence, experimental ODNP readouts of varying water dynamics suggest changes in local structural and thermodynamic hydration water properties.
Collapse
Affiliation(s)
- Dennis C Robinson Brown
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA
| | - Thomas R Webber
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA
| | - Thomas M Casey
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA
| | - John Franck
- Department of Chemistry, Syracuse University, Syracuse, NY, USA
| | - M Scott Shell
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA
| | - Songi Han
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA.
| |
Collapse
|
4
|
Jaufer AM, Bouhadana A, Fanucci GE. Hydrophobic Clusters Regulate Surface Hydration Dynamics of Bacillus subtilis Lipase A. J Phys Chem B 2024; 128:3919-3928. [PMID: 38628066 DOI: 10.1021/acs.jpcb.4c00405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The surface hydration diffusivity of Bacillus subtilis Lipase A (BSLA) has been characterized by low-field Overhauser dynamic nuclear polarization (ODNP) relaxometry using a series of spin-labeled constructs. Sites for spin-label incorporation were previously designed via an atomistic computational approach that screened for surface exposure, reflective of the surface hydration comparable to other proteins studied by this method, as well as minimal impact on protein function, dynamics, and structure of BSLA by excluding any surface site that participated in greater than 30% occupancy of a hydrogen bonding network within BSLA. Experimental ODNP relaxometry coupling factor results verify the overall surface hydration behavior for these BSLA spin-labeled sites similar to other globular proteins. Here, by plotting the ODNP parameters of relative diffusive water versus the relative bound water, we introduce an effective "phase-space" analysis, which provides a facile visual comparison of the ODNP parameters of various biomolecular systems studied to date. We find notable differences when comparing BSLA to other systems, as well as when comparing different clusters on the surface of BSLA. Specifically, we find a grouping of sites that correspond to the spin-label surface location within the two main hydrophobic core clusters of the branched aliphatic amino acids isoleucine, leucine, and valine cores observed in the BSLA crystal structure. The results imply that hydrophobic clustering may dictate local surface hydration properties, perhaps through modulation of protein conformations and samplings of the unfolded states, providing insights into how the dynamics of the hydration shell is coupled to protein motion and fluctuations.
Collapse
Affiliation(s)
- Afnan M Jaufer
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
- George and Josephine Butler Polymer Research Laboratory, University of Florida, Gainesville, Florida 32611, United States
| | - Adam Bouhadana
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Gail E Fanucci
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
- George and Josephine Butler Polymer Research Laboratory, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
5
|
Mahanta DD, Brown DR, Webber T, Pezzotti S, Schwaab G, Han S, Shell MS, Havenith M. Bridging the Gap in Cryopreservation Mechanism: Unraveling the Interplay between Structure, Dynamics, and Thermodynamics in Cryoprotectant Aqueous Solutions. J Phys Chem B 2024; 128:3720-3731. [PMID: 38584393 DOI: 10.1021/acs.jpcb.4c00264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Cryoprotectants play a crucial role in preserving biological material, ensuring their viability during storage and facilitating crucial applications such as the conservation of medical compounds, tissues, and organs for transplantation. However, the precise mechanism by which cryoprotectants modulate the thermodynamic properties of water to impede the formation and growth of ice crystals, thus preventing long-term damage, remains elusive. This is evident in the use of empirically optimized recipes for mixtures that typically contain DMSO, glycerol, and various sugar constituents. Here, we use terahertz calorimetry, Overhauser nuclear polarization, and molecular dynamics simulations to show that DMSO exhibits a robust structuring effect on water around its methyl groups, reaching a maximum at a DMSO mole fraction of XDMSO = 0.33. In contrast, glycerol exerts a smaller water-structuring effect, even at higher concentrations (Scheme 1). These results potentially suggest that the wrapped water around DMSO's methyl group, which can be evicted upon ligand binding, may render DMSO a more surface-active cryoprotectant than glycerol, while glycerol may participate more as a viscogen that acts on the entire sample. These findings shed light on the molecular intricacies of cryoprotectant solvation behavior and have potentially significant implications for optimizing cryopreservation protocols.
Collapse
Affiliation(s)
- Debasish Das Mahanta
- Lehrstuhl für Physikalische Chemie II, Ruhr-Universität Bochum, Bochum 44780, Germany
- Department of Physics, Technische Universität (TU) Dortmund, Dortmund 44227, Germany
| | - Dennis Robinson Brown
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106-5080, United States
| | - Thomas Webber
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106-5080, United States
| | - Simone Pezzotti
- Lehrstuhl für Physikalische Chemie II, Ruhr-Universität Bochum, Bochum 44780, Germany
| | - Gerhard Schwaab
- Lehrstuhl für Physikalische Chemie II, Ruhr-Universität Bochum, Bochum 44780, Germany
| | - Songi Han
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106-5080, United States
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106-9510, United States
| | - M Scott Shell
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106-5080, United States
| | - Martina Havenith
- Lehrstuhl für Physikalische Chemie II, Ruhr-Universität Bochum, Bochum 44780, Germany
- Department of Physics, Technische Universität (TU) Dortmund, Dortmund 44227, Germany
| |
Collapse
|
6
|
Moon JD, Webber TR, Brown DR, Richardson PM, Casey TM, Segalman RA, Shell MS, Han S. Nanoscale water-polymer interactions tune macroscopic diffusivity of water in aqueous poly(ethylene oxide) solutions. Chem Sci 2024; 15:2495-2508. [PMID: 38362435 PMCID: PMC10866362 DOI: 10.1039/d3sc05377f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/30/2023] [Indexed: 02/17/2024] Open
Abstract
The separation and anti-fouling performance of water purification membranes is governed by both macroscopic and molecular-scale water properties near polymer surfaces. However, even for poly(ethylene oxide) (PEO) - ubiquitously used in membrane materials - there is little understanding of whether or how the molecular structure of water near PEO surfaces affects macroscopic water diffusion. Here, we probe both time-averaged bulk and local water dynamics in dilute and concentrated PEO solutions using a unique combination of experimental and simulation tools. Pulsed-Field Gradient NMR and Overhauser Dynamic Nuclear Polarization (ODNP) capture water dynamics across micrometer length scales in sub-seconds to sub-nanometers in tens of picoseconds, respectively. We find that classical models, such as the Stokes-Einstein and Mackie-Meares relations, cannot capture water diffusion across a wide range of PEO concentrations, but that free volume theory can. Our study shows that PEO concentration affects macroscopic water diffusion by enhancing the water structure and altering free volume. ODNP experiments reveal that water diffusivity near PEO is slower than in the bulk in dilute solutions, previously not recognized by macroscopic transport measurements, but the two populations converge above the polymer overlap concentration. Molecular dynamics simulations reveal that the reduction in water diffusivity occurs with enhanced tetrahedral structuring near PEO. Broadly, we find that PEO does not simply behave like a physical obstruction but directly modifies water's structural and dynamic properties. Thus, even in simple PEO solutions, molecular scale structuring and the impact of polymer interfaces is essential to capturing water diffusion, an observation with important implications for water transport through structurally complex membrane materials.
Collapse
Affiliation(s)
- Joshua D Moon
- Materials Department, University of California Santa Barbara California 93106 USA
- Department of Chemical Engineering, University of California Santa Barbara California 93106 USA
| | - Thomas R Webber
- Department of Chemical Engineering, University of California Santa Barbara California 93106 USA
| | - Dennis Robinson Brown
- Department of Chemical Engineering, University of California Santa Barbara California 93106 USA
| | - Peter M Richardson
- Materials Department, University of California Santa Barbara California 93106 USA
| | - Thomas M Casey
- Department of Chemistry and Biochemistry, University of California Santa Barbara California 93106 USA
| | - Rachel A Segalman
- Materials Department, University of California Santa Barbara California 93106 USA
- Department of Chemical Engineering, University of California Santa Barbara California 93106 USA
| | - M Scott Shell
- Department of Chemical Engineering, University of California Santa Barbara California 93106 USA
| | - Songi Han
- Department of Chemical Engineering, University of California Santa Barbara California 93106 USA
- Department of Chemistry and Biochemistry, University of California Santa Barbara California 93106 USA
| |
Collapse
|
7
|
Sinha I, Garde S, Cramer SM. Comparative Analysis of Protein Surface Hydrophobicity Maps Determined by Sparse Sampling INDUS and Spatial Aggregation Propensity. J Phys Chem B 2023; 127:10304-10314. [PMID: 37993107 DOI: 10.1021/acs.jpcb.3c04902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Protein surface hydrophobicity plays a central role in various biological processes such as protein folding and aggregation, as well as in the design and manufacturing of biotherapeutics. While the hydrophobicity of protein surface patches has been linked to their constituent residue hydropathies, recent research has shown that protein surface hydrophobicity is more complex and characterized by the response of water to these surfaces. In this work, we employ water density perturbations to map the surface hydrophobicity of a set of model proteins using sparse indirect umbrella sampling simulations (SSI). This technique is used to identify hydrophobic surface patches for the set of model proteins, and the results are compared to those obtained from the widely adopted spatial aggregation propensity (SAP) technique. While SAP-based calculations show agreement with SSI in some cases, there are several examples of disagreement. We identify four general classes of difference in behavior and study factors that contribute to these differences. We find that the SAP method can sometimes mask the effect of weakly nonpolar or isolated nonpolar residues that can lead to strong hydrophobic patches on the protein surface. In addition, hydrophobic patches identified by SAP can exhibit shifts in both position and strength on the SSI map. Our results demonstrate that the combination of topography and chemical context controls the hydrophobicity of a given patch above and beyond the intrinsic polarity of the residues present on the patch surface. The availability of more accurate protein hydrophobicity maps in concert with new classes of hydrophobic molecular descriptors may create significant opportunities for in silico prediction of protein behavior for a range of applications, such as protein design, biomanufacturability, and downstream bioprocessing.
Collapse
Affiliation(s)
- Imee Sinha
- Howard P. Isermann Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180, United States of America
| | - Shekhar Garde
- Howard P. Isermann Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180, United States of America
| | - Steven M Cramer
- Howard P. Isermann Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180, United States of America
| |
Collapse
|
8
|
Vural D, Shrestha UR, Petridis L, Smith JC. Water molecule ordering on the surface of an intrinsically disordered protein. Biophys J 2023; 122:4326-4335. [PMID: 37838830 PMCID: PMC10722392 DOI: 10.1016/j.bpj.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/26/2023] [Accepted: 10/10/2023] [Indexed: 10/16/2023] Open
Abstract
The dynamics and local structure of the hydration water on surfaces of folded proteins have been extensively investigated. However, our knowledge of the hydration of intrinsically disordered proteins (IDPs) is more limited. Here, we compare the local structure of water molecules hydrating a globular protein, lysozyme, and the intrinsically disordered N-terminal of c-Src kinase (SH4UD) using molecular dynamics simulation. The radial distributions from the protein surface of the first and the second hydration shells are similar for the folded protein and the IDP. However, water molecules in the first hydration shell of both the folded protein and the IDP are perturbed from the bulk. This perturbation involves a loss of tetrahedrality, which is, however, significantly more marked for the folded protein than the IDP. This difference arises from an increase in the first hydration shell of the IDP of the fraction of hydration water molecules interacting with oxygen. The water ordering is independent of the compactness of the IDP. In contrast, the lifetimes of water molecules in the first hydration shell increase with IDP compactness, indicating a significant impact of IDP configuration on water surface pocket kinetics, which here is linked to differential pocket volumes and polarities.
Collapse
Affiliation(s)
- Derya Vural
- Department of Physics, Marmara University, Istanbul, Türkiye; Oak Ridge National Laboratory, Biosciences Division, UT/ORNL Center for Molecular Biophysics, Oak Ridge, Tennessee; Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee.
| | - Utsab R Shrestha
- Oak Ridge National Laboratory, Biosciences Division, UT/ORNL Center for Molecular Biophysics, Oak Ridge, Tennessee; Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee
| | - Loukas Petridis
- Oak Ridge National Laboratory, Biosciences Division, UT/ORNL Center for Molecular Biophysics, Oak Ridge, Tennessee; Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee
| | - Jeremy C Smith
- Oak Ridge National Laboratory, Biosciences Division, UT/ORNL Center for Molecular Biophysics, Oak Ridge, Tennessee; Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee
| |
Collapse
|
9
|
Dunleavy KM, Li T, Milshteyn E, Jaufer AM, Walker SA, Fanucci GE. Charge Distribution Patterns of IA 3 Impact Conformational Expansion and Hydration Diffusivity of the Disordered Ensemble. J Phys Chem B 2023; 127:9734-9746. [PMID: 37936402 DOI: 10.1021/acs.jpcb.3c06170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
IA3 is a 68 amino acid natural peptide/protein inhibitor of yeast aspartic proteinase A (YPRA) that is intrinsically disordered in solution with induced N-terminal helicity when in the protein complex with YPRA. Based on the intrinsically disordered protein (IDP) parameters of fractional net charge (FNC), net charge density per residue (NCPR), and charge patterning (κ), the two domains of IA3 are defined to occupy different domains within conformationally based subclasses of IDPs, thus making IA3 a bimodal domain IDP. Site-directed spin labeling (SDSL) electron paramagnetic resonance (EPR) spectroscopy and low-field Overhauser dynamic nuclear polarization (ODNP) spectroscopy results show that these two domains possess different degrees of compaction and hydration diffusivity behavior. This work suggests that SDSL EPR line shapes, analyzed in terms of their local tumbling volume (VL), provide insights into the compaction of the unstructured IDP ensemble in solution and that protein sequence and net charge distribution patterns within a conformational subclass can impact bound water hydration dynamics, thus possibly offering an alternative thermodynamic property that can encode conformational binding and behavior of IDPs and liquid-liquid phase separations.
Collapse
Affiliation(s)
- Katie M Dunleavy
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Tianyan Li
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Eugene Milshteyn
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Afnan M Jaufer
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Shamon A Walker
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Gail E Fanucci
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| |
Collapse
|
10
|
Yang L, Guo S, Hou C, Jiang S, Shi L, Ma X, Zheng B, Fang Y, Ye L, He X. Low-Entropy Hydration Shells at the Spike RBD's Binding Site May Reveal the Contagiousness of SARS-CoV-2 Variants. Biomolecules 2023; 13:1628. [PMID: 38002310 PMCID: PMC10669249 DOI: 10.3390/biom13111628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/29/2023] [Accepted: 11/05/2023] [Indexed: 11/26/2023] Open
Abstract
The infectivity of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is primarily determined by the binding affinity between the receptor-binding domain (RBD) of the spike protein and the angiotensin-converting enzyme 2 (ACE2) receptor. Here, through screening off pseudo hydrophilic groups on protein surfaces, the distribution of low-entropy regions on hydration shells of the ACE2 receptor and the RBDs of multiple SARS-CoV-2 variants was demonstrated. Shape matching between the low-entropy hydration shells of multiple SARS-CoV-2 variants and the ACE2 receptor has been identified as a mechanism that drives hydrophobic attraction between the RBDs and the ACE2 receptor, which estimates the binding affinity. Low-entropy regions of the hydration shells, which play important roles in determining the binding of other viruses and their receptors, are demonstrated. The RBD-ACE2 binding is thus found to be guided by hydrophobic collapse between the shape-matched low-entropy regions of the hydration shells of the proteins. A measure of the low-entropy status of the hydration shells can be estimated by calculating genuine hydrophilic groups within the binding sites. An important indicator of the contagiousness of SARS-CoV-2 variants is the low-entropy level of its hydration shells at the spike protein binding site.
Collapse
Affiliation(s)
- Lin Yang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, China; (S.G.); (S.J.); (L.S.); (X.M.)
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Shuai Guo
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, China; (S.G.); (S.J.); (L.S.); (X.M.)
| | - Chengyu Hou
- School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin 150080, China;
| | - Shenda Jiang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, China; (S.G.); (S.J.); (L.S.); (X.M.)
| | - Liping Shi
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, China; (S.G.); (S.J.); (L.S.); (X.M.)
| | - Xiaoliang Ma
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, China; (S.G.); (S.J.); (L.S.); (X.M.)
| | - Bing Zheng
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education) and School of Chemistry and Materials Science, Heilongjiang University, Harbin 150001, China;
| | - Yi Fang
- Department of Mathematics, Nanchang University, Nanchang 330031, China;
| | - Lin Ye
- School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen 518055, China;
| | - Xiaodong He
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, China; (S.G.); (S.J.); (L.S.); (X.M.)
- Shenzhen STRONG Advanced Materials Research Institute Co., Ltd., Shenzhen 518035, China
| |
Collapse
|
11
|
Whitcomb K, Warncke K. Oligomeric and Fibrillar α-Synuclein Display Persistent Dynamics and Compressibility under Controlled Confinement. ACS Chem Neurosci 2023; 14:3905-3912. [PMID: 37861459 PMCID: PMC10623556 DOI: 10.1021/acschemneuro.3c00470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/26/2023] [Indexed: 10/21/2023] Open
Abstract
The roles of α-synuclein in neurotransmitter release in brain neurons and in the Parkinson's disease condition have challenged comprehensive description. To gain insight into molecular mechanistic properties that actuate α-synuclein function and dysfunction, the coupled protein and solvent dynamics of oligomer and fibril forms of human α-synuclein are examined in a low-temperature system that allows control of confinement and localization of a motionally sensitive electron paramagnetic resonance spin probe in the coupled solvent-protein regions. The rotational mobility of the spin probe resolves two distinct α-synuclein-associated solvent components for oligomers and fibrils, as for globular proteins, but with dramatically higher fluidities at each temperature, that are comparable to low-confinement, aqueous-cryosolvent mesophases. In contrast to the temperature-independent volumes of the solvent phases that surround globular and condensate-forming proteins, the higher-fluidity mesophase volume of α-synuclein oligomers and fibrils decreases with decreasing temperature, signaling a compression of this phase. This unique property and thermal hysteresis in the mobilities and component weights, together with previous high-resolution structural characterizations, suggest a model in which the dynamically disordered C-terminal domain of α-synuclein creates a compressible phase that maintains high fluidity under confinement. Robust dynamics and compressibility are fundamental molecular mechanical properties of α-synuclein oligomers and fibrils, which may contribute to dysfunction and inform about function.
Collapse
Affiliation(s)
- Katie
Lynn Whitcomb
- Department of Physics, Emory University, Atlanta, Georgia 30322, United States
| | - Kurt Warncke
- Department of Physics, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
12
|
Dai D, Denysenkov V, Bagryanskaya EG, Tormyshev VM, Prisner TF, Kuzhelev AA. 13C Hyperpolarization of Viscous Liquids by Transfer of Solid-Effect 1H Dynamic Nuclear Polarization at High Magnetic Field. J Phys Chem Lett 2023; 14:7059-7064. [PMID: 37526333 DOI: 10.1021/acs.jpclett.3c01732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Dynamic nuclear polarization (DNP) is routinely used as a method for increasing the sensitivity to nuclear magnetic resonance (NMR). Recently, high-field solid-effect DNP in viscous liquids on 1H nuclei was demonstrated using narrow-line polarizing agents. Here we expand the applicability of DNP in viscous media to 13C nuclei. To hyperpolarize 13C nuclei, we combined solid-effect 1H DNP with a subsequent transfer of the 1H polarization to 13C via insensitive nuclei enhanced by polarization transfer (INEPT). We demonstrate this approach using a triarylmethyl radical as a polarizing agent and glycerol-13C3 as an analyte. We achieved 13C enhancement factors of up to 45 at a magnetic field of 9.4 T and room temperature.
Collapse
Affiliation(s)
- Danhua Dai
- Goethe University Frankfurt am Main, Institute of Physical and Theoretical Chemistry and Center for Biomolecular Magnetic Resonance, Max von Laue Str. 7, Frankfurt am Main 60438, Germany
| | - Vasyl Denysenkov
- Goethe University Frankfurt am Main, Institute of Physical and Theoretical Chemistry and Center for Biomolecular Magnetic Resonance, Max von Laue Str. 7, Frankfurt am Main 60438, Germany
| | - Elena G Bagryanskaya
- N. N. Vorozhtsov Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences (SB RAS), Acad. Lavrentiev Avenue 9, Novosibirsk 630090, Russia
| | - Victor M Tormyshev
- N. N. Vorozhtsov Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences (SB RAS), Acad. Lavrentiev Avenue 9, Novosibirsk 630090, Russia
| | - Thomas F Prisner
- Goethe University Frankfurt am Main, Institute of Physical and Theoretical Chemistry and Center for Biomolecular Magnetic Resonance, Max von Laue Str. 7, Frankfurt am Main 60438, Germany
| | - Andrei A Kuzhelev
- Goethe University Frankfurt am Main, Institute of Physical and Theoretical Chemistry and Center for Biomolecular Magnetic Resonance, Max von Laue Str. 7, Frankfurt am Main 60438, Germany
| |
Collapse
|
13
|
Hishida M, Kaneko A, Yamamura Y, Saito K. Contrasting Changes in Strongly and Weakly Bound Hydration Water of a Protein upon Denaturation. J Phys Chem B 2023; 127:6296-6305. [PMID: 37417885 PMCID: PMC10364084 DOI: 10.1021/acs.jpcb.3c02970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/21/2023] [Indexed: 07/08/2023]
Abstract
Water is considered integral for the stabilization and function of proteins, which has recently attracted significant attention. However, the microscopic aspects of water ranging up to the second hydration shell, including strongly and weakly bound water at the sub-nanometer scale, are not yet well understood. Here, we combined terahertz spectroscopy, thermal measurements, and infrared spectroscopy to clarify how the strongly and weakly bound hydration water changes upon protein denaturation. With denaturation, that is, the exposure of hydrophobic groups in water and entanglement of hydrophilic groups, the number of strongly bound hydration water decreased, while the number of weakly bound hydration water increased. Even though the constraint of water due to hydrophobic hydration is weak, it extends to the second hydration shell as it is caused by the strengthening of hydrogen bonds between water molecules, which is likely the key microscopic mechanism for the destabilization of the native state due to hydration.
Collapse
Affiliation(s)
- Mafumi Hishida
- Department
of Chemistry, Faculty of Science, Tokyo
University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan
| | - Ayumi Kaneko
- Department
of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Yasuhisa Yamamura
- Department
of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Kazuya Saito
- Department
of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| |
Collapse
|
14
|
Yang L, Guo S, Liao C, Hou C, Jiang S, Li J, Ma X, Shi L, Ye L, He X. Spatial Layouts of Low-Entropy Hydration Shells Guide Protein Binding. GLOBAL CHALLENGES (HOBOKEN, NJ) 2023; 7:2300022. [PMID: 37483413 PMCID: PMC10362119 DOI: 10.1002/gch2.202300022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/29/2023] [Indexed: 07/25/2023]
Abstract
Protein-protein binding enables orderly biological self-organization and is therefore considered a miracle of nature. Protein‒protein binding is driven by electrostatic forces, hydrogen bonding, van der Waals force, and hydrophobic interactions. Among these physical forces, only hydrophobic interactions can be considered long-range intermolecular attractions between proteins due to the electrostatic shielding of surrounding water molecules. Low-entropy hydration shells around proteins drive hydrophobic attraction among them that essentially coordinate protein‒protein binding. Here, an innovative method is developed for identifying low-entropy regions of hydration shells of proteins by screening off pseudohydrophilic groups on protein surfaces and revealing that large low-entropy regions of the hydration shells typically cover the binding sites of individual proteins. According to an analysis of determined protein complex structures, shape matching between a large low-entropy hydration shell region of a protein and that of its partner at the binding sites is revealed as a universal law. Protein‒protein binding is thus found to be mainly guided by hydrophobic collapse between the shape-matched low-entropy hydration shells that is verified by bioinformatics analyses of hundreds of structures of protein complexes, which cover four test systems. A simple algorithm is proposed to accurately predict protein binding sites.
Collapse
Affiliation(s)
- Lin Yang
- National Key Laboratory of Science and Technology on Advanced Composites in Special EnvironmentsCenter for Composite Materials and StructuresHarbin Institute of TechnologyHarbin150080P. R. China
- School of AerospaceMechanical and Mechatronic EngineeringThe University of SydneyNSW2006Australia
| | - Shuai Guo
- National Key Laboratory of Science and Technology on Advanced Composites in Special EnvironmentsCenter for Composite Materials and StructuresHarbin Institute of TechnologyHarbin150080P. R. China
| | - Chenchen Liao
- School of Electronics and Information EngineeringHarbin Institute of TechnologyHarbin150080P. R. China
| | - Chengyu Hou
- School of Electronics and Information EngineeringHarbin Institute of TechnologyHarbin150080P. R. China
| | - Shenda Jiang
- National Key Laboratory of Science and Technology on Advanced Composites in Special EnvironmentsCenter for Composite Materials and StructuresHarbin Institute of TechnologyHarbin150080P. R. China
| | - Jiacheng Li
- National Key Laboratory of Science and Technology on Advanced Composites in Special EnvironmentsCenter for Composite Materials and StructuresHarbin Institute of TechnologyHarbin150080P. R. China
| | - Xiaoliang Ma
- National Key Laboratory of Science and Technology on Advanced Composites in Special EnvironmentsCenter for Composite Materials and StructuresHarbin Institute of TechnologyHarbin150080P. R. China
| | - Liping Shi
- National Key Laboratory of Science and Technology on Advanced Composites in Special EnvironmentsCenter for Composite Materials and StructuresHarbin Institute of TechnologyHarbin150080P. R. China
| | - Lin Ye
- School of System Design and Intelligent ManufacturingSouthern University of Science and TechnologyShenzhen518055P. R. China
| | - Xiaodong He
- National Key Laboratory of Science and Technology on Advanced Composites in Special EnvironmentsCenter for Composite Materials and StructuresHarbin Institute of TechnologyHarbin150080P. R. China
- Shenzhen STRONG Advanced Materials Research Institute Co., LtdShenzhen518035P. R. China
| |
Collapse
|
15
|
DeStefano A, Nguyen M, Fredrickson GH, Han S, Segalman RA. Design of Soft Material Surfaces with Rationally Tuned Water Diffusivity. ACS CENTRAL SCIENCE 2023; 9:1019-1024. [PMID: 37252353 PMCID: PMC10214527 DOI: 10.1021/acscentsci.3c00208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Indexed: 05/31/2023]
Abstract
Water structure and dynamics can be key modulators of adsorption, separations, and reactions at soft material interfaces, but systematically tuning water environments in an aqueous, accessible, and functionalizable material platform has been elusive. This work leverages variations in excluded volume to control and measure water diffusivity as a function of position within polymeric micelles using Overhauser dynamic nuclear polarization spectroscopy. Specifically, a versatile materials platform consisting of sequence-defined polypeptoids simultaneously offers a route to controlling the functional group position and a unique opportunity to generate a water diffusivity gradient extending away from the polymer micelle core. These results demonstrate an avenue not only to rationally design the chemical and structural properties of polymer surfaces but also to design and tune the local water dynamics that, in turn, can adjust the local activity for solutes.
Collapse
Affiliation(s)
- Audra
J. DeStefano
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - My Nguyen
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Glenn H. Fredrickson
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
- Materials
Research Laboratory, University of California, Santa Barbara, California 93106, United States
- Department
of Materials, University of California, Santa Barbara, California 93106, United States
| | - Songi Han
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
- Department
of Chemistry and Biochemistry, University
of California, Santa Barbara, California 93106, United States
| | - Rachel A. Segalman
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
- Materials
Research Laboratory, University of California, Santa Barbara, California 93106, United States
- Department
of Materials, University of California, Santa Barbara, California 93106, United States
- Department
of Chemistry and Biochemistry, University
of California, Santa Barbara, California 93106, United States
| |
Collapse
|
16
|
Robinson Brown DC, Webber TR, Jiao S, Rivera Mirabal DM, Han S, Shell MS. Relationships between Molecular Structural Order Parameters and Equilibrium Water Dynamics in Aqueous Mixtures. J Phys Chem B 2023; 127:4577-4594. [PMID: 37171393 DOI: 10.1021/acs.jpcb.3c00826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Water's unique thermophysical properties and how it mediates aqueous interactions between solutes have long been interpreted in terms of its collective molecular structure. The seminal work of Errington and Debenedetti [Nature 2001, 409, 318-321] revealed a striking hierarchy of relationships among the thermodynamic, dynamic, and structural properties of water, motivating many efforts to understand (1) what measures of water structure are connected to different experimentally accessible macroscopic responses and (2) how many such structural metrics are adequate to describe the collective structural behavior of water. Diffusivity constitutes a particularly interesting experimentally accessible equilibrium property to investigate such relationships because advanced NMR techniques allow the measurement of bulk and local water dynamics in nanometer proximity to molecules and interfaces, suggesting the enticing possibility of measuring local diffusivities that report on water structure. Here, we apply statistical learning methods to discover persistent structure-dynamic correlations across a variety of simulated aqueous mixtures, from alcohol-water to polypeptoid-water systems. We investigate a variety of molecular water structure metrics and find that an unsupervised statistical learning algorithm (namely, sequential feature selection) identifies only two or three independent structural metrics that are sufficient to predict water self-diffusivity accurately. Surprisingly, the translational diffusivity of water across all mixed systems studied here is strongly correlated with a measure of tetrahedral order given by water's triplet angle distribution. We also identify a separate small number of structural metrics that well predict an important thermodynamic property, the excess chemical potential of an idealized methane-sized hydrophobe in water. Ultimately, we offer a Bayesian method of inferring water structure by using only structure-dynamics linear regression models with experimental Overhauser dynamic nuclear polarization (ODNP) measurements of water self-diffusivity. This study thus quantifies the relationships among several distinct structural order parameters in water and, through statistical learning, reveals the potential to leverage molecular structure to predict fundamental thermophysical properties. In turn, these findings suggest a framework for solving the inverse problem of inferring water's molecular structure using experimental measurements such as ODNP studies that probe local water properties.
Collapse
Affiliation(s)
| | - Thomas R Webber
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Sally Jiao
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Daniela M Rivera Mirabal
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Songi Han
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - M Scott Shell
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
17
|
Kuzhelev AA, Denysenkov V, Ahmad IM, Rogozhnikova OY, Trukhin DV, Bagryanskaya EG, Tormyshev VM, Sigurdsson ST, Prisner TF. Solid-Effect Dynamic Nuclear Polarization in Viscous Liquids at 9.4 T Using Narrow-Line Polarizing Agents. J Am Chem Soc 2023; 145:10268-10274. [PMID: 37104685 DOI: 10.1021/jacs.3c01358] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Dynamic nuclear polarization (DNP) is a hyperpolarization method that is widely used for increasing the sensitivity of nuclear magnetic resonance (NMR) experiments. DNP is efficient in solid-state and liquid-state NMR, but its implementation in the intermediate state, namely, viscous media, is still less explored. Here, we show that a 1H DNP enhancement of over 50 can be obtained in viscous liquids at a magnetic field of 9.4 T and a temperature of 315 K. This was accomplished by using narrow-line polarizing agents in glycerol, both the water-soluble α,γ-bisdiphenylen-β-phenylallyl (BDPA) and triarylmethyl radicals, and a microwave/RF double-resonance probehead. We observed DNP enhancements with a field profile indicative of the solid effect and investigated the influence of microwave power, temperature, and concentration on the 1H NMR results. To demonstrate potential applications of this new DNP approach for chemistry and biology, we show hyperpolarized 1H NMR spectra of tripeptides, triglycine, and glypromate, in glycerol-d8.
Collapse
Affiliation(s)
- Andrei A Kuzhelev
- Institute of Physical and Theoretical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt am Main, Max von Laue Straße 7, 60438 Frankfurt am Main, Germany
| | - Vasyl Denysenkov
- Institute of Physical and Theoretical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt am Main, Max von Laue Straße 7, 60438 Frankfurt am Main, Germany
| | - Iram M Ahmad
- Department of Chemistry, Science Institute, University of Iceland, Dunhaga 3, 107 Reykjavik, Iceland
| | - Olga Yu Rogozhnikova
- N. N. Vorozhtsov Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences (SB RAS), Acad. Lavrentiev Avenue 9, 630090 Novosibirsk, Russia
| | - Dmitry V Trukhin
- N. N. Vorozhtsov Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences (SB RAS), Acad. Lavrentiev Avenue 9, 630090 Novosibirsk, Russia
| | - Elena G Bagryanskaya
- N. N. Vorozhtsov Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences (SB RAS), Acad. Lavrentiev Avenue 9, 630090 Novosibirsk, Russia
| | - Victor M Tormyshev
- N. N. Vorozhtsov Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences (SB RAS), Acad. Lavrentiev Avenue 9, 630090 Novosibirsk, Russia
| | - Snorri Th Sigurdsson
- Department of Chemistry, Science Institute, University of Iceland, Dunhaga 3, 107 Reykjavik, Iceland
| | - Thomas F Prisner
- Institute of Physical and Theoretical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt am Main, Max von Laue Straße 7, 60438 Frankfurt am Main, Germany
| |
Collapse
|
18
|
Shin S, Willard AP. Quantifying the Molecular Polarization Response of Liquid Water Interfaces at Heterogeneously Charged Surfaces. J Chem Theory Comput 2023; 19:1843-1852. [PMID: 36866865 DOI: 10.1021/acs.jctc.2c01256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
The hydration shells of proteins mediate interactions, such as small molecule binding, that are vital to their biological function or in some cases their dysfunction. However, even when the structure of a protein is known, the properties of its hydration environment cannot be easily predicted due to the complex interplay between protein surface heterogeneity and the collective structure of water's hydrogen bonding network. This manuscript presents a theoretical study of the influence of surface charge heterogeneity on the polarization response of the liquid water interface. We focus our attention on classical point charge models of water, where the polarization response is limited to molecular reorientation. We introduce a new computational method for analyzing simulation data that is capable of quantifying water's collective polarization response and determining the effective surface charge distribution of hydrated surfaces over atomistic length scales. To illustrate the utility of this method, we present the results of molecular dynamics simulations of liquid water in contact with a heterogeneous model surface and the CheY protein.
Collapse
Affiliation(s)
- Sucheol Shin
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Adam P Willard
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
19
|
Lazaric A, Pattni V, Fuegner K, Ben-Naim A, Heyden M. Solvation free energy arithmetic for small organic molecules. J Comput Chem 2023; 44:1263-1277. [PMID: 36866644 DOI: 10.1002/jcc.27081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 11/21/2022] [Accepted: 12/29/2022] [Indexed: 03/04/2023]
Abstract
Solvent-mediated interactions contribute to ligand binding affinities in computational drug design and provide a challenge for theoretical predictions. In this study, we analyze the solvation free energy of benzene derivatives in water to guide the development of predictive models for solvation free energies and solvent-mediated interactions. We use a spatially resolved analysis of local solvation free energy contributions and define solvation free energy arithmetic, which enable us to construct additive models to describe the solvation of complex compounds. The substituents analyzed in this study are carboxyl and nitro-groups due to their similar sterical requirements but distinct interactions with water. We find that nonadditive solvation free energy contributions are primarily attributed to electrostatics, which are qualitatively reproduced with computationally efficient continuum models. This suggests a promising route for the development of efficient and accurate models for the solvation of complex molecules with varying substitution patterns using solvation arithmetic.
Collapse
Affiliation(s)
- Aleksandar Lazaric
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
| | - Viren Pattni
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
| | - Kaprao Fuegner
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
| | - Arieh Ben-Naim
- Department of Physical Chemistry, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Matthias Heyden
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
20
|
Li W, Whitcomb KL, Warncke K. Confinement dependence of protein-associated solvent dynamics around different classes of proteins, from the EPR spin probe perspective. Phys Chem Chem Phys 2022; 24:23919-23928. [PMID: 36165617 PMCID: PMC10371532 DOI: 10.1039/d2cp03047k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Protein function is modulated by coupled solvent fluctuations, subject to the degree of confinement from the surroundings. To identify universal features of the external confinement effect, the temperature dependence of the dynamics of protein-associated solvent over 200-265 K for proteins representative of different classes and sizes is characterized by using the rotational correlation time (detection bandwidth, 10-10-10-7 s) of the electron paramagnetic resonance (EPR, X-band) spin probe, TEMPOL, which is restricted to regions vicinal to protein in frozen aqueous solution. Weak (protein surrounded by aqueous-dimethylsulfoxide cryosolvent mesodomain) and strong (no added crysolvent) conditions of ice boundary confinement are imposed. The panel of soluble proteins represents large and small oligomeric (ethanolamine ammonia-lyase, 488 kDa; streptavidin, 52.8 kDa) and monomeric (myoglobin, 16.7 kDa) globular proteins, an intrinsically disordered protein (IDP, β-casein, 24.0 kDa), an unstructured peptide (protamine, 4.38 kDa) and a small peptide with partial backbone order (amyloid-β residues 1-16, 1.96 kDa). Expanded and condensate structures of β-casein and protamine are resolved by the spin probe under weak and strong confinement, respectively. At each confinement condition, the soluble globular proteins display common T-dependences of rotational correlation times and normalized weights, for two mobility components, protein-associated domain, PAD, and surrounding mesodomain. Strong confinement induces a detectable PAD component and emulation of globular protein T-dependence by the amyloid-β peptide. Confinement uniformly impacts soluble globular protein PAD dynamics, and is therefore a generic control parameter for modulation of soluble globular protein function.
Collapse
Affiliation(s)
- Wei Li
- Department of Physics, Emory University, Atlanta, Georgia, 30322.
| | | | - Kurt Warncke
- Department of Physics, Emory University, Atlanta, Georgia, 30322.
| |
Collapse
|
21
|
Nishida K, Anada T, Tanaka M. Roles of interfacial water states on advanced biomedical material design. Adv Drug Deliv Rev 2022; 186:114310. [PMID: 35487283 DOI: 10.1016/j.addr.2022.114310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/12/2022] [Accepted: 04/21/2022] [Indexed: 12/15/2022]
Abstract
When biomedical materials come into contact with body fluids, the first reaction that occurs on the material surface is hydration; proteins are then adsorbed and denatured on the hydrated material surface. The amount and degree of denaturation of adsorbed proteins affect subsequent cell behavior, including cell adhesion, migration, proliferation, and differentiation. Biomolecules are important for understanding the interactions and biological reactions of biomedical materials to elucidate the role of hydration in biomedical materials and their interaction partners. Analysis of the water states of hydrated materials is complicated and remains controversial; however, knowledge about interfacial water is useful for the design and development of advanced biomaterials. Herein, we summarize recent findings on the hydration of synthetic polymers, supramolecular materials, inorganic materials, proteins, and lipid membranes. Furthermore, we present recent advances in our understanding of the classification of interfacial water and advanced polymer biomaterials, based on the intermediate water concept.
Collapse
Affiliation(s)
- Kei Nishida
- Institute for Materials Chemistry and Engineering Kyushu university, 744 Motooka, Nishi-ku Fukuoka 819-0395, Japan; Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Japan(1)
| | - Takahisa Anada
- Institute for Materials Chemistry and Engineering Kyushu university, 744 Motooka, Nishi-ku Fukuoka 819-0395, Japan
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering Kyushu university, 744 Motooka, Nishi-ku Fukuoka 819-0395, Japan.
| |
Collapse
|
22
|
Lee G, Kageyama Y, Takeda S. Site-Selective Spin-Probe with a Photocleavable Macrocyclic Linker for Measuring the Dynamics of Water Surrounding a Liposomal Assembly. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Gyeorye Lee
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita-10 Nishi-8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Yoshiyuki Kageyama
- Faculty of Science, Hokkaido University, Kita-10 Nishi-8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Sadamu Takeda
- Faculty of Science, Hokkaido University, Kita-10 Nishi-8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| |
Collapse
|
23
|
Li W, Nforneh B, Whitcomb KL, Warncke K. Resolution and characterization of confinement- and temperature-dependent dynamics in solvent phases that surround proteins in frozen aqueous solution by using spin-probe EPR spectroscopy. Methods Enzymol 2022; 666:25-57. [PMID: 35465922 DOI: 10.1016/bs.mie.2022.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Spin probe electron paramagnetic resonance spectroscopy is applied to characterize the dynamics of concentric hydration and mesophase solvent domains that surround proteins within the ice boundary in frozen aqueous solutions. The solvent dynamics are tuned by variation of temperature (190-265K) and by the degree of ice boundary confinement, which is modulated by the volume of added cryosolvent (0-~50Å separation distance from protein surface). Goals are to: (1) characterize the protein-coupled solvent dynamics on correlation time scales of ~10-10<τ<10-7s, and spatial scales from protein surface to periphery of the surrounding solution, from the perspective of a free, small-molecule (~7Å diameter) probe, and (2) reveal properties of the solvent-protein coupling that can be correlated with protein functions, that are measureable under the same conditions. Rotational mobility of the nitroxide spin probe, TEMPOL, resolves and tracks two solvent components, the protein-associated domain (PAD; akin to hydration layer) and surrounding mesodomain, through their distinct temperature- and confinement-dependent values of τ and normalized weight. Detailed protocols are described for simulation of two-component nitroxide EPR spectra, which are categorized by line shape regime and guided by a library of template spectra and simulation parameters derived from two model soluble globular proteins. The order-disorder transition in the PAD, which is a universal feature of protein-coupled solvent dynamics, provides a well-defined, tunable property for elucidating mechanism in solvent-protein-function dynamical coupling. The low-temperature mesodomain system and EPR spin probe method are generally applicable to reveal solvent contributions to a broad range of macromolecule-mediated biological processes.
Collapse
Affiliation(s)
- Wei Li
- Department of Physics, Emory University, Atlanta, GA, United States
| | - Benjamen Nforneh
- Department of Physics, Emory University, Atlanta, GA, United States
| | - Katie L Whitcomb
- Department of Physics, Emory University, Atlanta, GA, United States
| | - Kurt Warncke
- Department of Physics, Emory University, Atlanta, GA, United States.
| |
Collapse
|
24
|
Jiao S, Rivera Mirabal DM, DeStefano AJ, Segalman RA, Han S, Shell MS. Sequence Modulates Polypeptoid Hydration Water Structure and Dynamics. Biomacromolecules 2022; 23:1745-1756. [PMID: 35274944 DOI: 10.1021/acs.biomac.1c01687] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We use molecular dynamics simulations to investigate the effect of polypeptoid sequence on the structure and dynamics of its hydration waters. Polypeptoids provide an excellent platform to study small-molecule hydration in disordered polymers, as they can be precisely synthesized with a variety of sidechain chemistries. We examine water behavior near a set of peptoid oligomers in which the number and placement of nonpolar versus polar sidechains are systematically varied. To do this, we leverage a new computational workflow enabling accurate sampling of polypeptoid conformations. We find that the hydration waters are less dense, are more tetrahedral, and have slower dynamics compared to bulk water. The magnitude of these shifts increases with the number of nonpolar groups. We also find that shifts in the water structure and dynamics are strongly correlated, suggesting that experimental insight into the dynamics of hydration water obtained by Overhauser dynamic nuclear polarization (ODNP) also contains information about water structural properties. We then demonstrate the ability of ODNP to probe site-specific dynamics of hydration water near these model peptoid systems.
Collapse
Affiliation(s)
- Sally Jiao
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Daniela M Rivera Mirabal
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States.,Department of Chemical Engineering, University of Puerto Rico, Mayagüez, Puerto Rico 00681, United States
| | - Audra J DeStefano
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Rachel A Segalman
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States.,Department of Materials, University of California, Santa Barbara, California 93106, United States
| | - Songi Han
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States.,Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - M Scott Shell
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
25
|
Norton-Baker B, Rocha MA, Granger-Jones J, Fishman DA, Martin RW. Human γS-Crystallin Resists Unfolding Despite Extensive Chemical Modification from Exposure to Ionizing Radiation. J Phys Chem B 2022; 126:679-690. [PMID: 35021623 PMCID: PMC9977691 DOI: 10.1021/acs.jpcb.1c08157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ionizing radiation has dramatic effects on living organisms, causing damage to proteins, DNA, and other cellular components. γ radiation produces reactive oxygen species (ROS) that damage biological macromolecules. Protein modification due to interactions with hydroxyl radical is one of the most common deleterious effects of radiation. The human eye lens is particularly vulnerable to the effects of ionizing radiation, as it is metabolically inactive and its proteins are not recycled after early development. Therefore, radiation damage accumulates and eventually can lead to cataract formation. Here we explore the impact of γ radiation on a long-lived structural protein. We exposed the human eye lens protein γS-crystallin (HγS) to high doses of γ radiation and investigated the chemical and structural effects. HγS accumulated many post-translational modifications (PTMs), appearing to gain significant oxidative damage. Biochemical assays suggested that cysteines were affected, with the concentration of free thiol reduced with increasing γ radiation exposure. SDS-PAGE analysis showed that irradiated samples form protein-protein cross-links, including nondisulfide covalent bonds. Tandem mass spectrometry on proteolytic digests of irradiated samples revealed that lysine, methionine, tryptophan, leucine, and cysteine were oxidized. Despite these chemical modifications, HγS remained folded past 10.8 kGy of γ irradiation as evidenced by circular dichroism and intrinsic tryptophan fluorescence spectroscopy.
Collapse
Affiliation(s)
- Brenna Norton-Baker
- These authors contributed equally.,Department of Chemistry, University of California, Irvine, CA 92697-2025, USA
| | - Megan A. Rocha
- These authors contributed equally.,Department of Chemistry, University of California, Irvine, CA 92697-2025, USA
| | | | - Dmitry A. Fishman
- Department of Chemistry, University of California, Irvine, CA 92697-2025, USA
| | - Rachel W. Martin
- Department of Chemistry, University of California, Irvine, CA 92697-2025, USA,Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900, USA
| |
Collapse
|
26
|
Moon H, Collanton RP, Monroe JI, Casey TM, Shell MS, Han S, Scott SL. Evidence for Entropically Controlled Interfacial Hydration in Mesoporous Organosilicas. J Am Chem Soc 2022; 144:1766-1777. [PMID: 35041412 DOI: 10.1021/jacs.1c11342] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
At aqueous interfaces, the distribution and dynamics of adsorbates are modulated by the behavior of interfacial water. Hydration of a hydrophobic surface can store entropy via the ordering of interfacial water, which contributes to the Gibbs energy of solute binding. However, there is little experimental evidence for the existence of such entropic reservoirs, and virtually no precedent for their rational design in systems involving extended interfaces. In this study, two series of mesoporous silicas were modified in distinct ways: (1) progressively deeper thermal dehydroxylation, via condensation of surface silanols, and (2) increasing incorporation of nonpolar organic linkers into the silica framework. Both approaches result in decreasing average surface polarity, manifested in a blue-shift in the fluorescence of an adsorbed dye. For the inorganic silicas, hydrogen-bonding of water becomes less extensive as the number of surface silanols decreases. Overhauser dynamic nuclear polarization (ODNP) relaxometry indicates enhanced surface water diffusivity, reflecting a loss of enthalpic hydration. In contrast, organosilicas show a monotonic decrease in surface water diffusivity with decreasing polarity, reflecting enhanced hydrophobic hydration. Molecular dynamics simulations predict increased tetrahedrality of interfacial water for the organosilicas, implying increased ordering near the nm-size organic domains (relative to inorganic silicas, which necessarily lack such domains). These findings validate the prediction that hydrophobic hydration at interfaces is controlled by the microscopic length scale of the hydrophobic regions. They further suggest that the hydration thermodynamics of structurally heterogeneous silica surfaces can be tuned to promote adsorption, which in turn tunes the selectivity in catalytic reactions.
Collapse
Affiliation(s)
- Hyunjin Moon
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106-5080, United States
| | - Ryan P Collanton
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106-5080, United States
| | - Jacob I Monroe
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106-5080, United States
| | - Thomas M Casey
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106-9510, United States
| | - M Scott Shell
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106-5080, United States
| | - Songi Han
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106-5080, United States.,Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106-9510, United States
| | - Susannah L Scott
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106-5080, United States.,Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106-9510, United States
| |
Collapse
|
27
|
Asamoto DK, Kozachenko IA, López-Peña I, Kim JE. Bimolecular quenching of tryptophan fluorescence in a membrane protein: Evolution of local solvation and environment during folding into a bilayer. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 260:119919. [PMID: 34004426 DOI: 10.1016/j.saa.2021.119919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/29/2021] [Accepted: 05/02/2021] [Indexed: 06/12/2023]
Abstract
Fluorescence spectroscopy, including Stern-Volmer quenching, is a valuable tool for the study of protein dynamics. Changes in protein solvation during the folding reaction of a membrane protein, Outer membrane protein A (OmpA), into lipid bilayers was probed with bimolecular fluorescence quenching with acrylamide quencher. Six single-tryptophan OmpA mutants (W7, W15, W57, W102, W129, and W143) allowed for site-specific investigations at varying locations within the transmembrane β-barrel domain. A sphere-of-action quenching model that combines both static and dynamic components gave rise to Stern-Volmer quenching constants, KD, for OmpA denatured in 8.0 M urea, aggregated in 0.5 M urea, adsorbed onto small unilamellar vesicles (SUVs), and folded in SUVs (t = 6 hrs). The average KD values were KDdenatured(6.4M-1)>KDaggregated5.9M-1>KDadsorbed(1.9M-1)>KDfolded(0.6M-1). With knowledge of the fluorescence lifetimes in the absence of quencher, the bimolecular quenching constants, kq, were derived; the evolution of kq (and therefore KD)during the folding reaction into SUVs (t = 0 hr to t = 6 hrs) revealed desolvation timescales, τdesolv of 41-46 min (W7, W15, W57, W102), 27 min (W129), and 15 min (W143). The evolution of λmax during folding revealed fast and slow components, τenvironmentfast and τenvironmentslow of 7-13 min and 25-84 min, respectively, for all mutants. For the five lipid- facing mutants (W7, W15, W57, W129, and W143), the general trend was τenvironmentfast7-13min<τdesolv15-46min≤τenvironmentslow(25-84min). These results suggest that there is an initial fast step in which there is a large change in polarity to a hydrophobic environment, followed by a slower desolvation process during evolution within the hydrophobic environment. These results complement previous mechanisms of concerted folding and provide insights into site-specific changes in solvation during formation of native β-barrel structure.
Collapse
Affiliation(s)
- DeeAnn K Asamoto
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, United States
| | - Ivan A Kozachenko
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, United States
| | - Ignacio López-Peña
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, United States
| | - Judy E Kim
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, United States.
| |
Collapse
|
28
|
DeStefano A, Segalman RA, Davidson EC. Where Biology and Traditional Polymers Meet: The Potential of Associating Sequence-Defined Polymers for Materials Science. JACS AU 2021; 1:1556-1571. [PMID: 34723259 PMCID: PMC8549048 DOI: 10.1021/jacsau.1c00297] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Indexed: 05/08/2023]
Abstract
Polymers with precisely defined monomeric sequences present an exquisite tool for controlling material properties by harnessing both the robustness of synthetic polymers and the ability to tailor the inter- and intramolecular interactions so crucial to many biological materials. While polymer scientists traditionally synthesized and studied the physics of long molecules best described by their statistical nature, many biological polymers derive their highly tailored functions from precisely controlled sequences. Therefore, significant effort has been applied toward developing new methods of synthesizing, characterizing, and understanding the physics of non-natural sequence-defined polymers. This perspective considers the synergistic advantages that can be achieved via tailoring both precise sequence control and attributes of traditional polymers in a single system. Here, we focus on the potential of sequence-defined polymers in highly associating systems, with a focus on the unique properties, such as enhanced proton conductivity, that can be attained by incorporating sequence. In particular, we examine these materials as key model systems for studying previously unresolvable questions in polymer physics including the role of chain shape near interfaces and how to tailor compatibilization between dissimilar polymer blocks. Finally, we discuss the critical challenges-in particular, truly scalable synthetic approaches, characterization and modeling tools, and robust control and understanding of assembly pathways-that must be overcome for sequence-defined polymers to attain their potential and achieve ubiquity.
Collapse
Affiliation(s)
- Audra
J. DeStefano
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Rachel A. Segalman
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
- Department
of Materials, University of California, Santa Barbara, California 93106, United States
| | - Emily C. Davidson
- Department
of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
29
|
Adams E, Pezzotti S, Ahlers J, Rüttermann M, Levin M, Goldenzweig A, Peleg Y, Fleishman SJ, Sagi I, Havenith M. Local Mutations Can Serve as a Game Changer for Global Protein Solvent Interaction. JACS AU 2021; 1:1076-1085. [PMID: 34337607 PMCID: PMC8317155 DOI: 10.1021/jacsau.1c00155] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Indexed: 05/15/2023]
Abstract
Although it is well-known that limited local mutations of enzymes, such as matrix metalloproteinases (MMPs), may change enzyme activity by orders of magnitude as well as its stability, the completely rational design of proteins is still challenging. These local changes alter the electrostatic potential and thus local electrostatic fields, which impacts the dynamics of water molecules close the protein surface. Here we show by a combined computational design, experimental, and molecular dynamics (MD) study that local mutations have not only a local but also a global effect on the solvent: In the specific case of the matrix metalloprotease MMP14, we found that the nature of local mutations, coupled with surface morphology, have the ability to influence large patches of the water hydrogen-bonding network at the protein surface, which is correlated with stability. The solvent contribution can be experimentally probed via terahertz (THz) spectroscopy, thus opening the door to the exciting perspective of rational protein design in which a systematic tuning of hydration water properties allows manipulation of protein stability and enzymatic activity.
Collapse
Affiliation(s)
- Ellen
M. Adams
- Lehrstuhl
für Physkalische Chemie II, Ruhr
Universität Bochum, 44801 Bochum, Germany
| | - Simone Pezzotti
- Lehrstuhl
für Physkalische Chemie II, Ruhr
Universität Bochum, 44801 Bochum, Germany
| | - Jonas Ahlers
- Lehrstuhl
für Physkalische Chemie II, Ruhr
Universität Bochum, 44801 Bochum, Germany
| | - Maximilian Rüttermann
- Lehrstuhl
für Physkalische Chemie II, Ruhr
Universität Bochum, 44801 Bochum, Germany
| | - Maxim Levin
- Department
of Biological Regulation, Weizmann Institute
of Science, Rehovot 7610001, Israel
| | - Adi Goldenzweig
- Department
of Biomolecular Sciences, Weizmann Institute
of Science, Rehovot 7610001, Israel
| | - Yoav Peleg
- Structural
Proteomics Unit, Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sarel J. Fleishman
- Department
of Biomolecular Sciences, Weizmann Institute
of Science, Rehovot 7610001, Israel
| | - Irit Sagi
- Department
of Biological Regulation, Weizmann Institute
of Science, Rehovot 7610001, Israel
| | - Martina Havenith
- Lehrstuhl
für Physkalische Chemie II, Ruhr
Universität Bochum, 44801 Bochum, Germany
| |
Collapse
|
30
|
Camino JD, Gracia P, Cremades N. The role of water in the primary nucleation of protein amyloid aggregation. Biophys Chem 2021; 269:106520. [PMID: 33341693 DOI: 10.1016/j.bpc.2020.106520] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/26/2020] [Accepted: 11/30/2020] [Indexed: 12/18/2022]
Abstract
The understanding of the complex conformational landscape of amyloid aggregation and its modulation by relevant physicochemical and cellular factors is a prerequisite for elucidating some of the molecular basis of pathology in amyloid related diseases, and for developing and evaluating effective disease-specific therapeutics to reduce or eliminate the underlying sources of toxicity in these diseases. Interactions of proteins with solvating water have been long considered to be fundamental in mediating their function and folding; however, the relevance of water in the process of protein amyloid aggregation has been largely overlooked. Here, we provide a perspective on the role water plays in triggering primary amyloid nucleation of intrinsically disordered proteins (IDPs) based on recent experimental evidences. The initiation of amyloid aggregation likely results from the synergistic effect between both protein intermolecular interactions and the properties of the water hydration layer of the protein surface. While the self-assembly of both hydrophobic and hydrophilic IDPs would be thermodynamically favoured due to large water entropy contributions, large desolvation energy barriers are expected, particularly for the nucleation of hydrophilic IDPs. Under highly hydrating conditions, primary nucleation is slow, being facilitated by the presence of nucleation-active surfaces (heterogeneous nucleation). Under conditions of poor water activity, such as those found in the interior of protein droplets generated by liquid-liquid phase separation, however, the desolvation energy barrier is significantly reduced, and nucleation can occur very rapidly in the bulk of the solution (homogeneous nucleation), giving rise to structurally distinct amyloid polymorphs. Water, therefore, plays a key role in modulating the transition free energy of amyloid nucleation, thus governing the initiation of the process, and dictating the type of preferred primary nucleation and the type of amyloid polymorph generated, which could vary depending on the particular microenvironment that the protein molecules encounter in the cell.
Collapse
Affiliation(s)
- José D Camino
- Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Unit BIFI-IQFR(CSIC), Universidad de Zaragoza, Zaragoza 50018, Spain
| | - Pablo Gracia
- Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Unit BIFI-IQFR(CSIC), Universidad de Zaragoza, Zaragoza 50018, Spain
| | - Nunilo Cremades
- Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Unit BIFI-IQFR(CSIC), Universidad de Zaragoza, Zaragoza 50018, Spain.
| |
Collapse
|
31
|
Monroe JI, Jiao S, Davis RJ, Robinson Brown D, Katz LE, Shell MS. Affinity of small-molecule solutes to hydrophobic, hydrophilic, and chemically patterned interfaces in aqueous solution. Proc Natl Acad Sci U S A 2021; 118:e2020205118. [PMID: 33372161 PMCID: PMC7821046 DOI: 10.1073/pnas.2020205118] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Performance of membranes for water purification is highly influenced by the interactions of solvated species with membrane surfaces, including surface adsorption of solutes upon fouling. Current efforts toward fouling-resistant membranes often pursue surface hydrophilization, frequently motivated by macroscopic measures of hydrophilicity, because hydrophobicity is thought to increase solute-surface affinity. While this heuristic has driven diverse membrane functionalization strategies, here we build on advances in the theory of hydrophobicity to critically examine the relevance of macroscopic characterizations of solute-surface affinity. Specifically, we use molecular simulations to quantify the affinities to model hydroxyl- and methyl-functionalized surfaces of small, chemically diverse, charge-neutral solutes represented in produced water. We show that surface affinities correlate poorly with two conventional measures of solute hydrophobicity, gas-phase water solubility and oil-water partitioning. Moreover, we find that all solutes show attraction to the hydrophobic surface and most to the hydrophilic one, in contrast to macroscopically based hydrophobicity heuristics. We explain these results by decomposing affinities into direct solute interaction energies (which dominate on hydroxyl surfaces) and water restructuring penalties (which dominate on methyl surfaces). Finally, we use an inverse design algorithm to show how heterogeneous surfaces, with multiple functional groups, can be patterned to manipulate solute affinity and selectivity. These findings, importantly based on a range of solute and surface chemistries, illustrate that conventional macroscopic hydrophobicity metrics can fail to predict solute-surface affinity, and that molecular-scale surface chemical patterning significantly influences affinity-suggesting design opportunities for water purification membranes and other engineered interfaces involving aqueous solute-surface interactions.
Collapse
Affiliation(s)
- Jacob I Monroe
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106
| | - Sally Jiao
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106
| | - R Justin Davis
- Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, TX 78712
| | - Dennis Robinson Brown
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106
| | - Lynn E Katz
- Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, TX 78712
| | - M Scott Shell
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106;
| |
Collapse
|
32
|
Leitner DM, Hyeon C, Reid KM. Water-mediated biomolecular dynamics and allostery. J Chem Phys 2020; 152:240901. [DOI: 10.1063/5.0011392] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- David M. Leitner
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, USA
| | - Changbong Hyeon
- Korea Institute for Advanced Study, Seoul 02455, South Korea
| | - Korey M. Reid
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, USA
| |
Collapse
|
33
|
Park S, Barnes R, Lin Y, Jeon BJ, Najafi S, Delaney KT, Fredrickson GH, Shea JE, Hwang DS, Han S. Dehydration entropy drives liquid-liquid phase separation by molecular crowding. Commun Chem 2020; 3:83. [PMID: 36703474 PMCID: PMC9814391 DOI: 10.1038/s42004-020-0328-8] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 05/15/2020] [Indexed: 01/29/2023] Open
Abstract
Complex coacervation driven liquid-liquid phase separation (LLPS) of biopolymers has been attracting attention as a novel phase in living cells. Studies of LLPS in this context are typically of proteins harboring chemical and structural complexity, leaving unclear which properties are fundamental to complex coacervation versus protein-specific. This study focuses on the role of polyethylene glycol (PEG)-a widely used molecular crowder-in LLPS. Significantly, entropy-driven LLPS is recapitulated with charged polymers lacking hydrophobicity and sequence complexity, and its propensity dramatically enhanced by PEG. Experimental and field-theoretic simulation results are consistent with PEG driving LLPS by dehydration of polymers, and show that PEG exerts its effect without partitioning into the dense coacervate phase. It is then up to biology to impose additional variations of functional significance to the LLPS of biological systems.
Collapse
Affiliation(s)
- Sohee Park
- grid.49100.3c0000 0001 0742 4007Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Chengam-ro, Nam-gu, Pohang 37673 Republic of Korea
| | - Ryan Barnes
- grid.133342.40000 0004 1936 9676Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106 USA
| | - Yanxian Lin
- grid.133342.40000 0004 1936 9676Department of Biomolecular Science and Engineering, University of California, Santa Barbara, CA 93106 USA
| | - Byoung-jin Jeon
- grid.133342.40000 0004 1936 9676Materials Department, University of California, Santa Barbara, CA 93106 USA
| | - Saeed Najafi
- grid.133342.40000 0004 1936 9676Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106 USA ,grid.133342.40000 0004 1936 9676Materials Research Laboratory, University of California, Santa Barbara, CA 93106 USA
| | - Kris T. Delaney
- grid.133342.40000 0004 1936 9676Materials Research Laboratory, University of California, Santa Barbara, CA 93106 USA
| | - Glenn H. Fredrickson
- grid.133342.40000 0004 1936 9676Materials Department, University of California, Santa Barbara, CA 93106 USA ,grid.133342.40000 0004 1936 9676Materials Research Laboratory, University of California, Santa Barbara, CA 93106 USA ,grid.133342.40000 0004 1936 9676Department of Chemical Engineering, University of California, Santa Barbara, CA 93106 USA
| | - Joan-Emma Shea
- grid.133342.40000 0004 1936 9676Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106 USA ,grid.133342.40000 0004 1936 9676Department of Physics, University of California, Santa Barbara, CA 93106 USA
| | - Dong Soo Hwang
- grid.49100.3c0000 0001 0742 4007Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Chengam-ro, Nam-gu, Pohang 37673 Republic of Korea ,grid.49100.3c0000 0001 0742 4007Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), 77 Chengam-ro, Nam-gu, Pohang 37673 Republic of Korea
| | - Songi Han
- grid.133342.40000 0004 1936 9676Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106 USA ,grid.133342.40000 0004 1936 9676Department of Chemical Engineering, University of California, Santa Barbara, CA 93106 USA
| |
Collapse
|
34
|
Abstract
Despite the well-characterized structural symmetry of the dimeric transmembrane antibiotic gramicidin A, we show that the symmetry is broken by selective hydrogen bonding between eight waters comprising a transmembrane water wire and a specific subset of the 26 pore-lining carbonyl oxygens of the gramicidin A channel. The 17O NMR spectroscopic resolution of the carbonyl resonances from the two subunits required the use of a world record high field magnet (35.2 T; 1,500 MHz for 1H). Uniquely, this result documented the millisecond timescale stability of the water wire orientation within the gramicidin A pore that had been reported to have only subnanosecond stability. These 17O spectroscopic results portend wide applications in molecular biophysics and beyond. Water wires are critical for the functioning of many membrane proteins, as in channels that conduct water, protons, and other ions. Here, in liquid crystalline lipid bilayers under symmetric environmental conditions, the selective hydrogen bonding interactions between eight waters comprising a water wire and a subset of 26 carbonyl oxygens lining the antiparallel dimeric gramicidin A channel are characterized by 17O NMR spectroscopy at 35.2 T (or 1,500 MHz for 1H) and computational studies. While backbone 15N spectra clearly indicate structural symmetry between the two subunits, single site 17O labels of the pore-lining carbonyls report two resonances, implying a break in dimer symmetry caused by the selective interactions with the water wire. The 17O shifts document selective water hydrogen bonding with carbonyl oxygens that are stable on the millisecond timescale. Such interactions are supported by density functional theory calculations on snapshots taken from molecular dynamics simulations. Water hydrogen bonding in the pore is restricted to just three simultaneous interactions, unlike bulk water environs. The stability of the water wire orientation and its electric dipole leads to opposite charge-dipole interactions for K+ ions bound at the two ends of the pore, thereby providing a simple explanation for an ∼20-fold difference in K+ affinity between two binding sites that are ∼24 Å apart. The 17O NMR spectroscopy reported here represents a breakthrough in high field NMR technology that will have applications throughout molecular biophysics, because of the acute sensitivity of the 17O nucleus to its chemical environment.
Collapse
|
35
|
Keller TJ, Laut AJ, Sirigiri J, Maly T. High-resolution Overhauser dynamic nuclear polarization enhanced proton NMR spectroscopy at low magnetic fields. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2020; 313:106719. [PMID: 32217425 PMCID: PMC7172445 DOI: 10.1016/j.jmr.2020.106719] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/13/2020] [Accepted: 03/15/2020] [Indexed: 05/11/2023]
Abstract
Dynamic nuclear polarization (DNP) has gained large interest due to its ability to increase signal intensities in nuclear magnetic resonance (NMR) experiments by several orders of magnitude. Currently, DNP is typically used to enhance high-field, solid-state NMR experiments. However, the method is also capable of dramatically increasing the observed signal intensities in solution-state NMR spectroscopy. In this work, we demonstrate the application of Overhauser dynamic nuclear polarization (ODNP) spectroscopy at an NMR frequency of 14.5 MHz (0.35 T) to observe DNP-enhanced high-resolution NMR spectra of small molecules in solutions. Using a compact hybrid magnet with integrated shim coils to improve the magnetic field homogeneity we are able to routinely obtain proton linewidths of less than 4 Hz and enhancement factors >30. The excellent field resolution allows us to perform chemical-shift resolved ODNP experiments on ethyl crotonate to observe proton J-coupling. Furthermore, recording high-resolution ODNP-enhanced NMR spectra of ethylene glycol allows us to characterize the microwave induced sample heating in-situ, by measuring the separation of the OH and CH2 proton peaks.
Collapse
Affiliation(s)
| | | | | | - Thorsten Maly
- Bridge12 Technologies, 37 Loring Drive, Framingham, MA 01702, USA
| |
Collapse
|
36
|
Monroe J, Barry M, DeStefano A, Aydogan Gokturk P, Jiao S, Robinson-Brown D, Webber T, Crumlin EJ, Han S, Shell MS. Water Structure and Properties at Hydrophilic and Hydrophobic Surfaces. Annu Rev Chem Biomol Eng 2020; 11:523-557. [PMID: 32169001 DOI: 10.1146/annurev-chembioeng-120919-114657] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The properties of water on both molecular and macroscopic surfaces critically influence a wide range of physical behaviors, with applications spanning from membrane science to catalysis to protein engineering. Yet, our current understanding of water interfacing molecular and material surfaces is incomplete, in part because measurement of water structure and molecular-scale properties challenges even the most advanced experimental characterization techniques and computational approaches. This review highlights progress in the ongoing development of tools working to answer fundamental questions on the principles that govern the interactions between water and surfaces. One outstanding and critical question is what universal molecular signatures capture the hydrophobicity of different surfaces in an operationally meaningful way, since traditional macroscopic hydrophobicity measures like contact angles fail to capture even basic properties of molecular or extended surfaces with any heterogeneity at the nanometer length scale. Resolving this grand challenge will require close interactions between state-of-the-art experiments, simulations, and theory, spanning research groups and using agreed-upon model systems, to synthesize an integrated knowledge of solvation water structure, dynamics, and thermodynamics.
Collapse
Affiliation(s)
- Jacob Monroe
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA;
| | - Mikayla Barry
- Department of Materials, University of California, Santa Barbara, California 93106, USA
| | - Audra DeStefano
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA;
| | - Pinar Aydogan Gokturk
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Sally Jiao
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA;
| | - Dennis Robinson-Brown
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA;
| | - Thomas Webber
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA;
| | - Ethan J Crumlin
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Songi Han
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA; .,Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA
| | - M Scott Shell
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA;
| |
Collapse
|
37
|
Han CT, Song J, Chan T, Pruett C, Han S. Electrostatic Environment of Proteorhodopsin Affects the pKa of Its Buried Primary Proton Acceptor. Biophys J 2020; 118:1838-1849. [PMID: 32197061 DOI: 10.1016/j.bpj.2020.02.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 01/27/2020] [Accepted: 02/27/2020] [Indexed: 01/18/2023] Open
Abstract
The protonation state of embedded charged residues in transmembrane proteins (TMPs) can control the onset of protein function. It is understood that interactions between an embedded charged residue and other charged or polar residues in the moiety would influence its pKa, but how the surrounding environment in which the TMP resides affects the pKa of these residues is unclear. Proteorhodopsin (PR), a light-responsive proton pump from marine bacteria, was used as a model to examine externally accessible factors that tune the pKa of its embedded charged residue, specifically its primary proton acceptor D97. The pKa of D97 was compared between PR reconstituted in liposomes with different net headgroup charges and equilibrated in buffer with different ion concentrations. For PR reconstituted in net positively charged compared to net negatively charged liposomes in low-salt buffer solutions, a drop of the apparent pKa from 7.6 to 5.6 was observed, whereas intrinsic pKa modeled with surface pH calculated from Gouy-Chapman predictions found an opposite trend for the pKa change, suggesting that surface pH does not account for the main changes observed in the apparent pKa. This difference in the pKa of D97 observed from PR reconstituted in oppositely charged liposome environments disappeared when the NaCl concentration was increased to 150 mM. We suggest that protein-intrinsic structural properties must play a role in adjusting the local microenvironment around D97 to affect its pKa, as corroborated with observations of changes in protein side-chain and hydration dynamics around the E-F loop of PR. Understanding the effect of externally controllable factors in tuning the pKa of TMP-embedded charged residues is important for bioengineering and biomedical applications relying on TMP systems, in which the onset of functions can be controlled by the protonation state of embedded residues.
Collapse
Affiliation(s)
- Chung-Ta Han
- Department of Chemical Engineering, University of California, Santa Barbara, California
| | - Jichao Song
- Department of Chemical Engineering, University of California, Santa Barbara, California
| | - Tristan Chan
- Department of Chemistry, University of California, Santa Barbara, California
| | - Christine Pruett
- Department of Chemical Engineering, University of California, Santa Barbara, California
| | - Songi Han
- Department of Chemical Engineering, University of California, Santa Barbara, California; Department of Chemistry, University of California, Santa Barbara, California.
| |
Collapse
|
38
|
Roy VP, Kubarych KJ. A simple lattice Monte Carlo simulation to model interfacial and crowded water rearrangements. Chem Phys 2020. [DOI: 10.1016/j.chemphys.2019.110653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
39
|
Srivastava A, Malik S, Karmakar S, Debnath A. Dynamic coupling of a hydration layer to a fluid phospholipid membrane: intermittency and multiple time-scale relaxations. Phys Chem Chem Phys 2020; 22:21158-21168. [DOI: 10.1039/d0cp02803g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Understanding the coupling of a hydration layer and a lipid membrane is crucial to gaining access to membrane dynamics and understanding its functionality towards various biological processes.
Collapse
Affiliation(s)
- Abhinav Srivastava
- Department of Chemistry
- Indian Institute of Technology Jodhpur
- Rajasthan
- India
| | - Sheeba Malik
- Department of Chemistry
- Indian Institute of Technology Jodhpur
- Rajasthan
- India
| | - Smarajit Karmakar
- Centre for Interdisciplinary Sciences
- Tata Institute of Fundamental Research
- Hyderabad 500107
- India
| | - Ananya Debnath
- Department of Chemistry
- Indian Institute of Technology Jodhpur
- Rajasthan
- India
| |
Collapse
|
40
|
Schirò G, Weik M. Role of hydration water in the onset of protein structural dynamics. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:463002. [PMID: 31382251 DOI: 10.1088/1361-648x/ab388a] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Proteins are the molecular workhorses in a living organism. Their 3D structures are animated by a multitude of equilibrium fluctuations and specific out-of-equilibrium motions that are required for proteins to be biologically active. When studied as a function of temperature, functionally relevant dynamics are observed at and above the so-called protein dynamical transition (~240 K) in hydrated, but not in dry proteins. In this review we present and discuss the main experimental and computational results that provided evidence for the dynamical transition, with a focus on the role of hydration water dynamics in sustaining functional protein dynamics. The coupling and mutual influence of hydration water dynamics and protein dynamics are discussed and the hypotheses illustrated that have been put forward to explain the physical origin of their onsets.
Collapse
Affiliation(s)
- Giorgio Schirò
- Institut de Biologie Structurale, Université Grenoble Alpes, CNRS, CEA, Grenoble, France
| | | |
Collapse
|
41
|
Abstract
The conformation of water around proteins is of paramount importance, as it determines protein interactions. Although the average water properties around the surface of proteins have been provided experimentally and computationally, protein surfaces are highly heterogeneous. Therefore, it is crucial to determine the correlations of water to the local distributions of polar and nonpolar protein surface domains to understand functions such as aggregation, mutations, and delivery. By using atomistic simulations, we investigate the orientation and dynamics of water molecules next to 4 types of protein surface domains: negatively charged, positively charged, and charge-neutral polar and nonpolar amino acids. The negatively charged amino acids orient around 98% of the neighboring water dipoles toward the protein surface, and such correlation persists up to around 16 Å from the protein surface. The positively charged amino acids orient around 94% of the nearest water dipoles against the protein surface, and the correlation persists up to around 12 Å. The charge-neutral polar and nonpolar amino acids are also orienting the water neighbors in a quantitatively weaker manner. A similar trend was observed in the residence time of the nearest water neighbors. These findings hold true for 3 technically important enzymes (PETase, cytochrome P450, and organophosphorus hydrolase). Our results demonstrate that the water-amino acid degree of correlation follows the same trend as the amino acid contribution in proteins solubility, namely, the negatively charged amino acids are the most beneficial for protein solubility, then the positively charged amino acids, and finally the charge-neutral amino acids.
Collapse
|
42
|
Tao M, Pandey NK, Barnes R, Han S, Langen R. Structure of Membrane-Bound Huntingtin Exon 1 Reveals Membrane Interaction and Aggregation Mechanisms. Structure 2019; 27:1570-1580.e4. [PMID: 31466833 DOI: 10.1016/j.str.2019.08.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/23/2019] [Accepted: 08/09/2019] [Indexed: 02/08/2023]
Abstract
Huntington's disease is caused by a polyQ expansion in the first exon of huntingtin (Httex1). Membrane interaction of huntingtin is of physiological and pathological relevance. Using electron paramagnetic resonance and Overhauser dynamic nuclear polarization, we find that the N-terminal residues 3-13 of wild-type Httex1(Q25) form a membrane-bound, amphipathic α helix. This helix is positioned in the interfacial region, where it is sensitive to membrane curvature and electrostatic interactions with head-group charges. Residues 14-22, which contain the first five residues of the polyQ region, are in a transition region that remains in the interfacial region without taking up a stable, α-helical structure. The remaining C-terminal portion is solvent exposed. The phosphomimetic S13D/S16D mutations, which are known to protect from toxicity, inhibit membrane binding and attenuate membrane-mediated aggregation of mutant Httex1(Q46) due to electrostatic repulsion. Targeting the N-terminal membrane anchor using post-translational modifications or specific binders could be a potential means to reduce aggregation and toxicity in vivo.
Collapse
Affiliation(s)
- Meixin Tao
- Department of Neuroscience and Physiology, Department of Biochemistry and Molecular Medicine, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Nitin K Pandey
- Department of Neuroscience and Physiology, Department of Biochemistry and Molecular Medicine, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Ryan Barnes
- Department of Chemistry and Biochemistry, Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Songi Han
- Department of Chemistry and Biochemistry, Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Ralf Langen
- Department of Neuroscience and Physiology, Department of Biochemistry and Molecular Medicine, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
43
|
Sheu SY, Liu YC, Zhou JK, Schlag EW, Yang DY. Surface Topography Effects of Globular Biomolecules on Hydration Water. J Phys Chem B 2019; 123:6917-6932. [PMID: 31282162 DOI: 10.1021/acs.jpcb.9b03734] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Hydration water serves as a microscopic manifestation of structural stability and functions of biomolecules. To develop bio-nanomaterials in applications, it is important to study how the surface topography and heterogeneity of biomolecules result in their diversity of the hydration dynamics and energetics. We here performed molecular dynamics simulations combined with the steered molecular dynamics and umbrella sampling to investigate the dynamics and escape process associated with the free energy change of water molecules close to a globular biomolecule, i.e., hemoglobin (Hb) and G-quadruplex DNA (GDNA). The residence time, power of long-time tail, and dipole relaxation time were found to display drastic changes within the averaged hydration shell of 3.0-5.0 Å. Compared with bulk water, in the inner hydration shell, the water dipole moment displays a slower relaxation process and is more oriented toward GDNA than toward Hb, forming a hedgehog-like structure when it surrounds GDNA. In particular, a spine water structure is observed in the GDNA narrow groove. The water isotope effect not only prolongs the dynamic time scales of libration motion in the inner hydration shell and the dipole relaxation processes in the bulk but also strengthens the DNA spine water structure. The potential of the mean force profile reflects the integrity of the hydration shell structure and enables us to obtain detailed insights into the structures formed by water, such as the caged H-bond network and the edge bridge structures; it also reveals that local hydration shell free energy (LHSFE) depends on H-bond rupture processes and ranges from 0.2 to 4.2 kcal/mol. Our results demonstrate that the surface topography of a biomolecule influences the integrity of the hydration shell structure and LHSFE. Our studies are able to identify various further applications in the areas of microfluid devices and nano-dewetting on bioinspired surfaces.
Collapse
Affiliation(s)
- Sheh-Yi Sheu
- Department of Life Sciences and Institute of Genome Sciences , National Yang-Ming University , Taipei 112 , Taiwan.,Institute of Biomedical Informatics , National Yang-Ming University , Taipei 112 , Taiwan
| | - Yu-Cheng Liu
- Institute of Biomedical Informatics , National Yang-Ming University , Taipei 112 , Taiwan
| | - Jia-Kai Zhou
- Department of Life Sciences and Institute of Genome Sciences , National Yang-Ming University , Taipei 112 , Taiwan
| | - Edward W Schlag
- Institut für Physikalische und Theoretische Chemie , TU-München , Lichtenbergstr. 4 , 85748 Garching , Germany
| | - Dah-Yen Yang
- Institute of Atomic and Molecular Sciences , Academia Sinica , Taipei 106 , Taiwan
| |
Collapse
|
44
|
Heyden M. Heterogeneity of water structure and dynamics at the protein-water interface. J Chem Phys 2019; 150:094701. [PMID: 30849897 DOI: 10.1063/1.5081739] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In this molecular dynamics simulation study, we analyze the local structural and dynamic properties of water hydrating the protein ubiquitin on a spatial grid with 1 Å resolution. This allows for insights into the spatial distribution of water number densities, molecular orientations, translations, and rotations as a function of distance from the protein surface. Water molecule orientations follow a heterogeneous distribution with preferred local orientations of water dipoles and O-H bond vectors up to 10-15 Å distances from the protein, while local variations of the water number density converge to homogeneous bulk-like values within less than 8 Å. Interestingly, we find that the long-ranged orientational structure of water does not impact either the translational or rotational dynamics of water. Instead, heterogeneous distributions of local dynamical parameters and averaged dynamical retardation factors are only found close to the protein surface and follow a distance dependence comparable to heterogeneities in the local water number density. This study shows that the formation of nanodomains of preferred water orientations far from the protein does not significantly impact dynamical processes probed as a non-local average in most experiments.
Collapse
Affiliation(s)
- Matthias Heyden
- School of Molecular Sciences and Center for Biological Physics, Arizona State University, Tempe, Arizona 85287-1604, USA
| |
Collapse
|
45
|
Dahanayake JN, Shahryari E, Roberts KM, Heikes ME, Kasireddy C, Mitchell-Koch KR. Protein Solvent Shell Structure Provides Rapid Analysis of Hydration Dynamics. J Chem Inf Model 2019; 59:2407-2422. [PMID: 30865440 DOI: 10.1021/acs.jcim.9b00009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The solvation layer surrounding a protein is clearly an intrinsic part of protein structure-dynamics-function, and our understanding of how the hydration dynamics influences protein function is emerging. We have recently reported simulations indicating a correlation between regional hydration dynamics and the structure of the solvation layer around different regions of the enzyme Candida antarctica lipase B, wherein the radial distribution function (RDF) was used to calculate the pairwise entropy, providing a link between dynamics (diffusion) and thermodynamics (excess entropy) known as Rosenfeld scaling. Regions with higher RDF values/peaks in the hydration layer (the first peak, within 6 Å of the protein surface) have faster diffusion in the hydration layer. The finding thus hinted at a handle for rapid evaluation of hydration dynamics at different regions on the protein surface in molecular dynamics simulations. Such an approach may move the analysis of hydration dynamics from a specialized venture to routine analysis, enabling an informatics approach to evaluate the role of hydration dynamics in biomolecular function. This paper first confirms that the correlation between regional diffusive dynamics and hydration layer structure (via water center of mass around protein side-chain atom RDF) is observed as a general relationship across a set of proteins. Second, it seeks to devise an approach for rapid analysis of hydration dynamics, determining the minimum amount of information and computational effort required to get a reliable value of hydration dynamics from structural data in MD simulations based on the protein-water RDF. A linear regression model using the integral of the hydration layer in the water-protein RDF was found to provide statistically equivalent apparent diffusion coefficients at the 95% confidence level for a set of 92 regions within five different proteins. In summary, RDF analysis of 10 ns of data after simulation convergence is sufficient to accurately map regions of fast and slow hydration dynamics around a protein surface. Additionally, it is anticipated that a quick look at protein-water RDFs, comparing peak heights, will be useful to provide a qualitative ranking of regions of faster and slower hydration dynamics at the protein surface for rapid analysis when investigating the role of solvent dynamics in protein function.
Collapse
Affiliation(s)
- Jayangika N Dahanayake
- Department of Chemistry , Wichita State University , 1845 Fairmount Street , Wichita , Kansas 67260-0051 , United States
| | - Elaheh Shahryari
- Department of Chemistry , Wichita State University , 1845 Fairmount Street , Wichita , Kansas 67260-0051 , United States
| | - Kirsten M Roberts
- Department of Chemistry , Wichita State University , 1845 Fairmount Street , Wichita , Kansas 67260-0051 , United States
| | - Micah E Heikes
- Department of Chemistry , Wichita State University , 1845 Fairmount Street , Wichita , Kansas 67260-0051 , United States
| | - Chandana Kasireddy
- Department of Chemistry , Wichita State University , 1845 Fairmount Street , Wichita , Kansas 67260-0051 , United States
| | - Katie R Mitchell-Koch
- Department of Chemistry , Wichita State University , 1845 Fairmount Street , Wichita , Kansas 67260-0051 , United States
| |
Collapse
|
46
|
Capponi S, White SH, Tobias DJ, Heyden M. Structural Relaxation Processes and Collective Dynamics of Water in Biomolecular Environments. J Phys Chem B 2019; 123:480-486. [PMID: 30566356 DOI: 10.1021/acs.jpcb.8b12052] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this simulation study, we investigate the influence of biomolecular confinement on dynamical processes in water. We compare water confined in a membrane protein nanopore at room temperature to pure liquid water at low temperatures with respect to structural relaxations, intermolecular vibrations, and the propagation of collective modes. We observe distinct potential energy landscapes experienced by water molecules in the two environments, which nevertheless result in comparable hydrogen bond lifetimes and sound propagation velocities. Hence, we show that a viscoelastic argument that links slow rearrangements of the water-hydrogen bond network to ice-like collective properties applies to both, the pure liquid and biologically confined water, irrespective of differences in the microscopic structure.
Collapse
Affiliation(s)
| | | | | | - Matthias Heyden
- School of Molecular Sciences , Arizona State University , Tempe , Arizona 85287-1604 , United States
| |
Collapse
|
47
|
Bordignon E, Kucher S, Polyhach Y. EPR Techniques to Probe Insertion and Conformation of Spin-Labeled Proteins in Lipid Bilayers. Methods Mol Biol 2019; 2003:493-528. [PMID: 31218631 DOI: 10.1007/978-1-4939-9512-7_21] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Electron paramagnetic resonance (EPR) spectroscopy of spin-labeled membrane proteins is a valuable biophysical technique to study structural details and conformational transitions of proteins close to their physiological environment, for example, in liposomes, membrane bilayers, and nanodiscs. Unlike in nuclear magnetic resonance (NMR) spectroscopy, having only one or few specific side chains labeled at a time with paramagnetic probes makes the size of the object under investigation irrelevant in terms of technique sensitivity. As a drawback, extensive site-directed mutagenesis is required in order to analyze the properties of the protein under investigation. EPR can provide detailed information on side chain dynamics of large membrane proteins or protein complexes embedded in membranes with an exquisite sensitivity for flexible regions and on water accessibility profiles across the membrane bilayer. Moreover, distances between the two spin-labeled side chains in membrane proteins can be detected with high precision at cryogenic temperatures. The application of EPR to membrane proteins still presents some challenges in terms of sample preparation, sensitivity and data interpretation, thus it is difficult to give ready-to-go methodological recipes. However, new technological developments (arbitrary waveform generators) and new spin labels spectroscopically orthogonal to nitroxides increased the range of applicability from in vitro toward in-cell EPR experiments. This chapter is an updated version of the one published in the first edition of the book and describes the state of the art in the application of nitroxide-based site-directed spin labeling EPR to membrane proteins, addressing new tools such as arbitrary waveform generators and spectroscopically orthogonal labels, such as Gd(III)-based labels. We will present challenges in sample preparation and data analysis for functional and structural membrane protein studies using site-directed spin labeling techniques and give experimental details on EPR techniques providing information on side chain dynamics and water accessibility using nitroxide probes. An updated optimal Q-band DEER setup for nitroxide probes will be described, and its extension to gadolinium-containing samples will be addressed.
Collapse
Affiliation(s)
- Enrica Bordignon
- Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany.
| | - Svetlana Kucher
- Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Yevhen Polyhach
- Laboratory of Physical Chemistry, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
48
|
Chen HY, Tycko R. Temperature-Dependent Nuclear Spin Relaxation Due to Paramagnetic Dopants Below 30 K: Relevance to DNP-Enhanced Magnetic Resonance Imaging. J Phys Chem B 2018; 122:11731-11742. [PMID: 30277390 PMCID: PMC6465147 DOI: 10.1021/acs.jpcb.8b07958] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dynamic nuclear polarization (DNP) can increase nuclear magnetic resonance (NMR) signal strengths by factors of 100 or more at low temperatures. In magnetic resonance imaging (MRI), signal enhancements from DNP potentially lead to enhancements in image resolution. However, the paramagnetic dopants required for DNP also reduce nuclear spin relaxation times, producing signal losses that may cancel the signal enhancements from DNP. Here we investigate the dependence of 1H NMR relaxation times, including T1ρ and T2, under conditions of Lee-Goldburg 1H-1H decoupling and pulsed spin locking, on temperature and dopant concentration in frozen solutions that contain the trinitroxide compound DOTOPA. We find that relaxation times become longer at temperatures below 10 K, where DOTOPA electron spins become strongly polarized at equilibrium in a 9.39 T magnetic field. We show that the dependences of relaxation times on temperature and DOTOPA concentration can be reproduced qualitatively (although not quantitatively) by detailed simulations of magnetic field fluctuations due to flip-flop transitions in a system of dipole-coupled electron spin magnetic moments. These results have implications for ongoing attempts to reach submicron resolution in inductively detected MRI at very low temperatures.
Collapse
Affiliation(s)
- Hsueh-Ying Chen
- Laboratory of Chemical Physics National Institute of Diabetes and Digestive and Kidney Diseases , National Institutes of Health , Bethesda , Maryland 20892-0520 , United States
| | - Robert Tycko
- Laboratory of Chemical Physics National Institute of Diabetes and Digestive and Kidney Diseases , National Institutes of Health , Bethesda , Maryland 20892-0520 , United States
| |
Collapse
|
49
|
Franck JM, Han S. Overhauser Dynamic Nuclear Polarization for the Study of Hydration Dynamics, Explained. Methods Enzymol 2018; 615:131-175. [PMID: 30638529 DOI: 10.1016/bs.mie.2018.09.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We outline the physical properties of hydration water that are captured by Overhauser Dynamic Nuclear Polarization (ODNP) relaxometry and explore the insights that ODNP yields about the water and the surface that this water is coupled to. As ODNP relies on the pairwise cross-relaxation between the electron spin of a spin probe and a proton nuclear spin of water, it captures the dynamics of single-particle diffusion of an ensemble of water molecules moving near the spin probe. ODNP principally utilizes the same physics as other nuclear magnetic resonance (NMR) relaxometry (i.e., relaxation measurement) techniques. However, in ODNP, electron paramagnetic resonance (EPR) excites the electron spins probes and their high net polarization acts as a signal amplifier. Furthermore, it renders ODNP parameters highly sensitive to water moving at rates commensurate with the EPR frequency of the spin probe (typically 10GHz). Also, ODNP selectively enhances the NMR signal contributions of water moving within close proximity to the spin label. As a result, ODNP can capture ps-ns movements of hydration waters with high sensitivity and locality, even in samples with protein concentrations as dilute as 10 µM. To date, the utility of the ODNP technique has been demonstrated for two major applications: the characterization of the spatial variation in the properties of the hydration layer of proteins or other surfaces displaying topological diversity, and the identification of structural properties emerging from highly disordered proteins and protein domains. The former has been shown to correlate well with the properties of hydration water predicted by MD simulations and has been shown capable of evaluating the hydrophilicity or hydrophobicity of a surface. The latter has been demonstrated for studies of an interhelical loop of proteorhodopsin, the partial structure of α-synuclein embedded at the lipid membrane surface, incipient structures adopted by tau proteins en route to fibrils, and the structure and hydration profile of a transmembrane peptide. This chapter focuses on offering a mechanistic understanding of the ODNP measurement and the molecular dynamics encoded in the ODNP parameters. In particular, it clarifies how the electron-nuclear dipolar coupling encodes information about the molecular dynamics in the nuclear spin self-relaxation and, more importantly, the electron-nuclear spin cross-relaxation rates. The clarification of the molecular dynamics underlying ODNP should assist in establishing a connection to theory and computer simulation that will offer far richer interpretations of ODNP results in future studies.
Collapse
Affiliation(s)
- John M Franck
- Department of Chemistry, Syracuse University, Syracuse, NY, United States.
| | - Songi Han
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA, United States; Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA, United States
| |
Collapse
|
50
|
Überrück T, Neudert O, Kreuer KD, Blümich B, Granwehr J, Stapf S, Han S. Effect of nitroxide spin probes on the transport properties of Nafion membranes. Phys Chem Chem Phys 2018; 20:26660-26674. [PMID: 30320331 DOI: 10.1039/c8cp04607g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Nafion is the most common material used as a proton exchange membrane in fuel cells. Yet, details of the transport pathways for protons and water in the inner membrane are still under debate. Overhauser Dynamic Nuclear Polarization (ODNP) has proven to be a useful tool for probing hydration dynamics and interactions within 5-8 Å of protein and soft material surfaces. Recently it was suggested that ODNP can also be applied to analyze surface water dynamics along Nafion's inner membrane. Here we interrogate the viability of this method for Nafion by carrying out a series of measurements relying on 1H nuclear magnetic resonance (NMR) relaxometry and diffusometry experiments with and without ODNP hyperpolarization, accompanied by other complementary characterization methods including small angle X-ray scattering (SAXS), thermal gravimetric analysis (TGA) of hydration, and proton conductivity by AC impedance spectroscopy. Our comprehensive study shows that commonly used paramagnetic spin probes-here, stable nitroxide radicals-for ODNP, as well as their diamagnetic analogues, reduce the inner membrane surface hydrophilicity, depending on the location and concentration of the spin probe. This heavily reduces the hydration of Nafion, hence increases the tortuosity of the inner membrane morphology and/or increases the activiation barrier for water transport, and consequently impedes water diffusion, transport, and proton conductivity.
Collapse
Affiliation(s)
- Till Überrück
- RWTH Aachen University, Institut für Technische und Makromolekulare Chemie, Worringerweg 2, 52074 Aachen, Germany.
| | - Oliver Neudert
- Dept. Technical Physics II/Polymer Physics, University of Technology Ilmenau, 98684 Ilmenau, Germany and GMBU e.V., Erich-Neuß-Weg 5, 06120 Halle (Saale), Germany
| | - Klaus-Dieter Kreuer
- Max-Planck-Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
| | - Bernhard Blümich
- RWTH Aachen University, Institut für Technische und Makromolekulare Chemie, Worringerweg 2, 52074 Aachen, Germany.
| | - Josef Granwehr
- RWTH Aachen University, Institut für Technische und Makromolekulare Chemie, Worringerweg 2, 52074 Aachen, Germany. and Forschungszentrum Jülich, Institut für Energie- und Klimaforschung - Grundlagen der Elektrochemie (IEK-9), 52425 Jülich, Germany
| | - Siegfried Stapf
- Dept. Technical Physics II/Polymer Physics, University of Technology Ilmenau, 98684 Ilmenau, Germany
| | - Songi Han
- University of California Santa Barbara, Department of Chemistry and Biochemistry, Santa Barbara, CA 93106, USA
| |
Collapse
|