1
|
Park S, Hwang JY, Shin J, Kim Y. N-Heterocyclic Carbene-Derived Carbon Disulfide Radical Ligands for Palladium Diradicals. J Am Chem Soc 2024. [PMID: 39353058 DOI: 10.1021/jacs.4c11082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
N-heterocyclic carbenes (NHCs) are recognized for their ability to stabilize various main group radicals; however, NHC-derived, sulfur-based radicals remain rare. In this study, we successfully synthesized and characterized a series of palladium diradical complexes that featured new sulfur-based radical ligands from NHC-carbon disulfide adducts. Spectroscopic and computational characterizations of the palladium complexes confirmed the open-shell singlet ground state, which resulted from the antiferromagnetic coupling of two unpaired electrons on each ligand. Proton nuclear magnetic resonance relaxometry was used to experimentally confirm the presence of these unpaired electrons. Moreover, the redox behavior of the complexes was localized on the ligand center, confirming the redox activity of the ligands. The discovery of this sulfur-based, redox-active radical ligand underscores the versatility and significance of NHC-derived radicals, thereby expanding the repertoire of radical ligands and opening new avenues for advanced material and catalytic systems.
Collapse
Affiliation(s)
- Subin Park
- Department of Chemistry, Pusan National University, Busan 46241, Republic of Korea
- Institute for Future Earth, Pusan National University, Busan 46241, Republic of Korea
| | - Jeong-Yoon Hwang
- Department of Chemistry, Pusan National University, Busan 46241, Republic of Korea
- Institute for Future Earth, Pusan National University, Busan 46241, Republic of Korea
| | - Jeongcheol Shin
- Department of Chemistry, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Youngsuk Kim
- Department of Chemistry, Pusan National University, Busan 46241, Republic of Korea
- Institute for Future Earth, Pusan National University, Busan 46241, Republic of Korea
- Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
2
|
Song Y, Song H, Choi Y, Seo J, Lee E. Synthesis of sterically congested unsymmetrical 1,2-dicarbonyl radicals through a stepwise approach. Chem Commun (Camb) 2024; 60:8043-8046. [PMID: 38989550 DOI: 10.1039/d4cc02092h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
A simplified and stepwise synthetic method for producing sterically congested unsymmetrical 1,2-dicarbonyl radicals was successfully demonstrated including detailed characterization of each radical cation. Using this approach, an aryl- and N-heterocyclic carbene-substituted 1,2-dicarbonyl radical in its neutral form is generated, revealing the stabilizing role of N-heterocyclic carbenes.
Collapse
Affiliation(s)
- Yuna Song
- Department of Chemistry, Seoul National University (SNU), Seoul, 08826, Republic of Korea.
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Hayoung Song
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Yunseop Choi
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jongcheol Seo
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Eunsung Lee
- Department of Chemistry, Seoul National University (SNU), Seoul, 08826, Republic of Korea.
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| |
Collapse
|
3
|
Mao X, Qiu S, Guo R, Dai Y, Zhang J, Kong L, Xie Z. Cyclic (Alkyl)(Amino)Carbene-Iminoboryl Compounds with Three Formal Oxidation States. J Am Chem Soc 2024; 146:10917-10924. [PMID: 38587904 DOI: 10.1021/jacs.4c01934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
BN/CC isosterism is an effective strategy to build hybrid functional molecules with unique properties. In contrast to the alkynyl iminium salts derived from cyclic (alkyl)(amino)carbenes (CAACs) that feature only one reversible reduction wave, the isoelectronic cationic CAAC-iminoboryl adducts could be singly and doubly reduced smoothly. Both the resultant neutral radical and anionic azaborataallenes bear NBC-mixed allenic structures. The former radical has a high spin-density of 0.55e at CCAAC carbon, yet exhibits formal boron-centered radical reactivity. The latter azaborataallenes feature the nucleophilic CCAAC center and polar N(δ-)═B(δ+)═C(δ-) unit, and readily undergo nucleophilic substitution, isocyanide insertion, dipolar addition and cycloaddition reactions etc. The N-substituents have been shown to have a significant influence on the solid-state structure, thermal stability, and reactivity of azaborataallenes. This work showcases the allenic BN-unsaturated species as versatile building blocks in organic synthesis.
Collapse
Affiliation(s)
- Xiaofeng Mao
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, China
| | - Shuang Qiu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Rui Guo
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yuyang Dai
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Jie Zhang
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, China
| | - Lingbing Kong
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Zuowei Xie
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, China
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
4
|
Morales A, Gonçalves C, Sournia-Saquet A, Vendier L, Lledós A, Baslé O, Bontemps S. Single electron reduction of NHC-CO 2-borane compounds. Chem Sci 2024; 15:3165-3173. [PMID: 38425525 PMCID: PMC10901481 DOI: 10.1039/d3sc06325a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/18/2024] [Indexed: 03/02/2024] Open
Abstract
The carbon dioxide radical anion [CO2˙-] is a highly reactive species of fundamental and synthetic interest. However, the direct one-electron reduction of CO2 to generate [CO2˙-] occurs at very negative reduction potentials, which is often a limiting factor for applications. Here, we show that NHC-CO2-BR3 species - generated from the Frustrated Lewis Pair (FLP)-type activation of CO2 by N-heterocyclic carbenes (NHCs) and boranes (BR3) - undergo single electron reduction at a less negative potential than free CO2. A net gain of more than one volt was notably measured with a CAAC-CO2-B(C6F5)3 adduct, which was chemically reduced to afford [CAAC-CO2-B(C6F5)3˙-]. This room temperature stable radical anion was characterized by EPR spectroscopy and by single-crystal X-ray diffraction analysis. Of particular interest, DFT calculations showed that, thanks to the electron withdrawing properties of the Lewis acid, significant unpaired spin density is localised on the carbon atom of the CO2 moiety. Finally, these species were shown to exhibit analogous reactivity to the carbon dioxide radical anion [CO2˙-] toward DMPO. This work demonstrates the advantage provided by FLP systems in the generation and stabilization of [CO2˙-]-like species.
Collapse
Affiliation(s)
- Agustín Morales
- LCC-CNRS, Université de Toulouse, CNRS, 205 route de Narbonne 31077 Toulouse Cedex 04 France
- Departament de Química, Universitat Autonoma de Barcelona 08193 Cerdanyola del Valles Catalonia Spain
| | - Caroline Gonçalves
- LCC-CNRS, Université de Toulouse, CNRS, 205 route de Narbonne 31077 Toulouse Cedex 04 France
| | - Alix Sournia-Saquet
- LCC-CNRS, Université de Toulouse, CNRS, 205 route de Narbonne 31077 Toulouse Cedex 04 France
| | - Laure Vendier
- LCC-CNRS, Université de Toulouse, CNRS, 205 route de Narbonne 31077 Toulouse Cedex 04 France
| | - Agustí Lledós
- Departament de Química, Universitat Autonoma de Barcelona 08193 Cerdanyola del Valles Catalonia Spain
| | - Olivier Baslé
- LCC-CNRS, Université de Toulouse, CNRS, 205 route de Narbonne 31077 Toulouse Cedex 04 France
| | - Sébastien Bontemps
- LCC-CNRS, Université de Toulouse, CNRS, 205 route de Narbonne 31077 Toulouse Cedex 04 France
| |
Collapse
|
5
|
Nayak MK, Elvers BJ, Mehta S, Krummenacher I, Mondal A, Braunschweig H, Schulzke C, Ravat P, Jana A. Bis-[cyclic(alkyl)(amino)carbene]-derived diradicals. Chem Commun (Camb) 2024; 60:1739-1742. [PMID: 38240479 DOI: 10.1039/d3cc05779h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Crystalline polymeric structures of trans-1,4-cyclohexylene bridged N-tethered bis-CAACs in the form of their LiOTf adducts were synthesized and isolated. These were further used as building blocks for the synthesis of crystalline (amino)(carboxy)-based diradicals. The triplet diradical character of these compounds was unambiguously confirmed by the presence of a half-field signal in their EPR spectra. Theoretical calculations show that the singlet state is marginally more stable than the triplet state.
Collapse
Affiliation(s)
- Mithilesh Kumar Nayak
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad-500107, India.
| | - Benedict J Elvers
- Institut für Biochemie, Universität Greifswald, Felix-Hausdorff-Straße 4, D-17489, Greifswald, Germany.
| | - Sakshi Mehta
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, 560012, India.
| | - Ivo Krummenacher
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Abhishake Mondal
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, 560012, India.
| | - Holger Braunschweig
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Carola Schulzke
- Institut für Biochemie, Universität Greifswald, Felix-Hausdorff-Straße 4, D-17489, Greifswald, Germany.
| | - Prince Ravat
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Anukul Jana
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad-500107, India.
| |
Collapse
|
6
|
Nayak MK, Elvers BJ, Mandal D, Das A, Ramakrishnan R, Mote KR, Schulzke C, Yildiz CB, Jana A. Reduction of 2- H-substituted pyrrolinium cations: the carbon-carbon single bond in air stable 2,2'-bipyrrolidines as a two-electron-source. Chem Commun (Camb) 2023; 59:6698-6701. [PMID: 37183853 DOI: 10.1039/d3cc00891f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Reduction of 2-H-substituted pyrrolinium cations via initially formed secondary radicals results in either dimerisation or H-abstracted products, while the outcome depends on the N-substituents. The resultant central carbon-carbon single bond in the dimerised 2,2'-bipyrrolidine derivatives can be oxidised chemically and electrochemically. The notably air and moisture-stable dimers were subsequently utilised as a source of two electrons in various chemical transformations.
Collapse
Affiliation(s)
- Mithilesh Kumar Nayak
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad-500046, Telangana, India.
| | - Benedict J Elvers
- Institut für Biochemie, Universität Greifswald, Felix-Hausdorff-Straße 4, Greifswald D-17489, Germany.
| | - Debdeep Mandal
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad-500046, Telangana, India.
| | - Ayan Das
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad-500046, Telangana, India.
| | - Raghunathan Ramakrishnan
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad-500046, Telangana, India.
| | - Kaustubh R Mote
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad-500046, Telangana, India.
| | - Carola Schulzke
- Institut für Biochemie, Universität Greifswald, Felix-Hausdorff-Straße 4, Greifswald D-17489, Germany.
| | - Cem Burak Yildiz
- Department of Aromatic and Medicinal Plants, Aksaray University, Aksaray-68100, Türkiye.
| | - Anukul Jana
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad-500046, Telangana, India.
| |
Collapse
|
7
|
Lv Y, Lai J, Pu W, Wang J, Han W, Wang A, Zhang M, Wang X. Metal-Free Highly Regioselective 1,4-Sulfonyliodination of 1,3-Enynes. J Org Chem 2023; 88:2034-2045. [PMID: 36749192 DOI: 10.1021/acs.joc.2c02257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Herein, a novel, practical, and green synthetic method using readily available 1,3-enynes with sulfonyl hydrazides and I2 through tert-butyl hydroperoxide (TBHP)-mediated 1,4-sulfonyliodination has been developed for synthesizing various tetrasubstituted allenyl iodides under metal-free conditions. Notably, the proposed method exhibits a broad substrate scope, operational simplicity, tolerance to air, high functional-group tolerance, satisfactory yields, and excellent regioselectivity as well as involves the use of cost-effective reagents such as green oxidants.
Collapse
Affiliation(s)
- Yunhe Lv
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, P. R. China
| | - Junrong Lai
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, P. R. China
| | - Weiya Pu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, P. R. China
| | - Jin Wang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, P. R. China
| | - Wanru Han
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, P. R. China
| | - Axue Wang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, P. R. China
| | - Mengyue Zhang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, P. R. China
| | - Xue Wang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, P. R. China
| |
Collapse
|
8
|
Li X, Wang YL, Chen C, Han YF. Luminescent Crystalline Carbon- and Nitrogen-Centered Organic Radicals Based on N-Heterocyclic Carbene-Triphenylamine Hybrids. Chemistry 2023; 29:e202203242. [PMID: 36331436 DOI: 10.1002/chem.202203242] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/06/2022]
Abstract
Developing luminescent radicals with tunable emission is a challenging task due to the limitation of alternative skeletons. Herein, a series of carbene-triphenylamine hybrids were prepared by the direct C2-arylation of N-heterocyclic carbenes with 4-bromo-N,N-bis(4-methoxyphenyl)aniline. These hybrids showed multiple redox-active properties and could be converted to carbon-centered luminescent radicals with blue-to-cyan emissions (λmax : 436-486 nm) or nitrogen-centered luminescent radicals with orange emissions (λmax : 590-623 nm) through chemical reduction or oxidation, respectively. The radical species were characterized by electron paramagnetic resonance spectroscopy, ultraviolet-visible spectroscopy, and single-crystal X-ray diffractometry analysis. Notably, the corresponding nitrogen-centered radicals exhibited good stability in atmospheric air, and their thermal decomposition temperatures were determined to be above 200 °C. In addition, spectral and theoretical calculations indicate that all radicals exhibit anti-Kasha emissions.
Collapse
Affiliation(s)
- Xin Li
- Key Laboratory of Synthetic and, Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Yi-Lin Wang
- Key Laboratory of Synthetic and, Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Can Chen
- Key Laboratory of Synthetic and, Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Ying-Feng Han
- Key Laboratory of Synthetic and, Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| |
Collapse
|
9
|
Peltier JL, Serrato MR, Thery V, Pecaut J, Tomás-Mendivil E, Bertrand G, Jazzar R, Martin D. An air-stable radical with a redox-chameleonic amide. Chem Commun (Camb) 2023; 59:595-598. [PMID: 36524847 DOI: 10.1039/d2cc05404c] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An air-stable (amino)(amido)radical was synthesized by reacting a cyclic (alkyl)(amino)carbene with carbazoyl chloride, followed by one-electron reduction. We show that an adjacent radical center weakens the amide bond. It enables the amino group to act as a strong acceptor under steric contraint, thus enhancing the stabilizing capto-dative effect.
Collapse
Affiliation(s)
- Jesse L Peltier
- UCSD-CNRS Joint Research Chemistry Laboratory (IRL 3555), Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093-0358, USA
| | - Melinda R Serrato
- UCSD-CNRS Joint Research Chemistry Laboratory (IRL 3555), Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093-0358, USA
| | - Valentin Thery
- University Grenoble Alpes, CNRS, DCM, Grenoble 38000, France.
| | - Jacques Pecaut
- University Grenoble Alpes, CEA, CNRS, INAC-SyMMES, UMR 5819, Grenoble 38000, France
| | | | - Guy Bertrand
- UCSD-CNRS Joint Research Chemistry Laboratory (IRL 3555), Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093-0358, USA
| | - Rodolphe Jazzar
- UCSD-CNRS Joint Research Chemistry Laboratory (IRL 3555), Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093-0358, USA
| | - David Martin
- University Grenoble Alpes, CNRS, DCM, Grenoble 38000, France.
| |
Collapse
|
10
|
Nayak MK, Sarkar P, Elvers BJ, Mehta S, Zhang F, Chrysochos N, Krummenacher I, Vijayakanth T, Narayanan RS, Dolai R, Roy B, Malik V, Rawat H, Mondal A, Boomishankar R, Pati SK, Braunschweig H, Schulzke C, Ravat P, Jana A. A bis-NHC-CAAC dimer derived dicationic diradical. Chem Sci 2022; 13:12533-12539. [PMID: 36382295 PMCID: PMC9629079 DOI: 10.1039/d2sc03937k] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/21/2022] [Indexed: 08/11/2023] Open
Abstract
The isolation of carbon-centered diradicals is always challenging due to synthetic difficulties and their limited stability. Herein we report the synthesis of a trans-1,4-cyclohexylene bridged bis-NHC-CAAC dimer derived thermally stable dicationic diradical. The diradical character of this compound was confirmed by EPR spectroscopy. The variable temperature EPR study suggests the singlet state to be marginally more stable than the triplet state (2J = -5.5 cm-1 (ΔE ST = 0.065 kJ mol-1)). The presence of the trans-1,4-cyclohexylene bridge is instrumental for the successful isolation of this dicationic diradical. Notably, in the case of ethylene or propylene bridged bis-NHC-CAAC dimers, the corresponding dicationic diradicals are transient and rearrange to hydrogen abstracted products.
Collapse
Affiliation(s)
| | - Pallavi Sarkar
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore-560064 India
| | - Benedict J Elvers
- Institut für Biochemie, Universität Greifswald Felix-Hausdorff-Straße 4 D-17489, Greifswald Germany
| | - Sakshi Mehta
- Solid State and Structural Chemistry Unit, Indian Institute of Science Bangalore 560012 India
| | - Fangyuan Zhang
- Institute of Organic Chemistry, University of Würzburg Am Hubland 97074 Würzburg Germany
| | - Nicolas Chrysochos
- Tata Institute of Fundamental Research Hyderabad Gopanpally Hyderabad-500107 India
| | - Ivo Krummenacher
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Thangavel Vijayakanth
- Department of Chemistry, Indian Institute of Science Education and Research Pune Dr Homi Bhabha Road Pune 411008 India
| | | | - Ramapada Dolai
- Tata Institute of Fundamental Research Hyderabad Gopanpally Hyderabad-500107 India
| | - Biswarup Roy
- Tata Institute of Fundamental Research Hyderabad Gopanpally Hyderabad-500107 India
| | - Vishal Malik
- Tata Institute of Fundamental Research Hyderabad Gopanpally Hyderabad-500107 India
| | - Hemant Rawat
- Tata Institute of Fundamental Research Hyderabad Gopanpally Hyderabad-500107 India
| | - Abhishake Mondal
- Solid State and Structural Chemistry Unit, Indian Institute of Science Bangalore 560012 India
| | - Ramamoorthy Boomishankar
- Department of Chemistry, Indian Institute of Science Education and Research Pune Dr Homi Bhabha Road Pune 411008 India
| | - Swapan K Pati
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore-560064 India
| | - Holger Braunschweig
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Carola Schulzke
- Institut für Biochemie, Universität Greifswald Felix-Hausdorff-Straße 4 D-17489, Greifswald Germany
| | - Prince Ravat
- Institute of Organic Chemistry, University of Würzburg Am Hubland 97074 Würzburg Germany
| | - Anukul Jana
- Tata Institute of Fundamental Research Hyderabad Gopanpally Hyderabad-500107 India
| |
Collapse
|
11
|
Li X, Wang YL, Chen C, Ren YY, Han YF. A platform for blue-luminescent carbon-centered radicals. Nat Commun 2022; 13:5367. [PMID: 36100595 PMCID: PMC9470563 DOI: 10.1038/s41467-022-33130-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 09/02/2022] [Indexed: 11/26/2022] Open
Abstract
Organic radicals, which have unique doublet spin-configuration, provide an alternative method to overcome the efficiency limitation of organic light-emitting diodes (OLEDs) based on conventional fluorescent organic molecules. Further, they have made great breakthroughs in deep-red and near-infrared OLEDs. However, it is difficult to extend their fluorescence into a short-wavelength region because of the natural narrow bandgap of the organic radicals. Herein, we significantly expand the scope of luminescent radicals by showing a new platform of carbon-centered radicals derived from N-heterocyclic carbenes that produce blue to green emissions (444-529 nm). Time-dependent density functional theory calculations and experimental investigations disclose that the fluorescence originates from the high-energy excited states to the ground state, demonstrating an anti-Kasha behavior. The present work provides an efficient and modular approach toward a library of carbon-centered radicals that feature anti-Kasha's rule emission, rendering them as potential new emitters in the short-wavelength region.
Collapse
Affiliation(s)
- Xin Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, People's Republic of China
| | - Yi-Lin Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, People's Republic of China
| | - Chan Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, People's Republic of China
| | - Yan-Yan Ren
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, People's Republic of China
| | - Ying-Feng Han
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, People's Republic of China.
| |
Collapse
|
12
|
Théry V, Molton F, Sirach S, Tillet N, Pécaut J, Tomás-Mendivil E, Martin D. The curious case of a sterically crowded Stenhouse salt. Chem Sci 2022; 13:9755-9760. [PMID: 36091895 PMCID: PMC9400627 DOI: 10.1039/d2sc01895k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/27/2022] [Indexed: 11/23/2022] Open
Abstract
We report a peculiar Stenhouse salt. It does not evolve into cyclopentenones upon basification, due to the steric hindrance of its bulky stable carbene patterns. This allowed for the observation and characterization of the transient open-chain neutral derivative, which was isolated as its cyclized form. The latter features an unusually long reactive C-O bond (150 pm) and a rich electrochemistry, including oxidation into an air-persistent radical cation.
Collapse
Affiliation(s)
| | | | - Selim Sirach
- Univ. Grenoble Alpes, CNRS, DCM Grenoble 38000 France
| | - Neven Tillet
- Univ. Grenoble Alpes, CNRS, DCM Grenoble 38000 France
| | - Jacques Pécaut
- Univ. Grenoble Alpes, CEA, CNRS, INAC-SyMMES, UMR 5819 Grenoble 38000 France
| | | | - David Martin
- Univ. Grenoble Alpes, CNRS, DCM Grenoble 38000 France
| |
Collapse
|
13
|
Li Y, Bao H. Radical transformations for allene synthesis. Chem Sci 2022; 13:8491-8506. [PMID: 35974759 PMCID: PMC9337727 DOI: 10.1039/d2sc02573f] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/28/2022] [Indexed: 12/20/2022] Open
Abstract
Allenes are valuable organic molecules that feature unique physical and chemical properties. They are not only often found in natural products, but also act as versatile building blocks for the access of complex molecular targets, such as natural products, pharmaceuticals, and functional materials. Therefore, many remarkable and elegant methodologies have been established for the synthesis of allenes. Recently, more and more methods for radical synthesis of allenes have been developed, clearly emphasizing the associated great synthetic values. In this perspective, we will discuss recent important advances in the synthesis of allenes via radical intermediates by categorizing them into different types of substrates as well as distinct catalytic systems. The mechanistic studies and synthetic challenges will be highlighted.
Collapse
Affiliation(s)
- Yajun Li
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 P. R. of China
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences P. R. of China
| | - Hongli Bao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 P. R. of China
- University of Chinese Academy of Sciences Beijing 100049 P. R. of China
| |
Collapse
|
14
|
Liu Q, Zheng J, Zhang X, Ma S. Photo and copper dual catalysis for allene syntheses from propargylic derivatives via one-electron process. Nat Commun 2022; 13:3302. [PMID: 35676260 PMCID: PMC9177964 DOI: 10.1038/s41467-022-30655-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 05/06/2022] [Indexed: 11/09/2022] Open
Abstract
Different from the traditional two-electron oxidative addition-transmetalation-reductive elimination coupling strategy, visible light has been successfully integrated into transition metal-catalyzed coupling reaction of propargylic alcohol derivatives highly selectively forming allenenitriles: specifically speaking, visible light-mediated Cu-catalyzed cyanation of propargylic oxalates has been realized for the general, efficient, and exclusive syntheses of di-, tri, and tetra-substituted allenenitriles bearing various synthetically versatile functional groups. A set of mechanistic studies, including fluorescence quenching experiments, cyclic voltammetric measurements, radical trapping experiments, control experiments with different photocatalyst, and DFT calculation studies have proven that the current reaction proceeds via visible light-induced redox-neutral reductive quenching radical mechanism, which is a completely different approach as compared to the traditional transition metal-catalyzed two-electron oxidative addition processes.
Collapse
Affiliation(s)
- Qi Liu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jian Zheng
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry, Zhejiang University, Hangzhou, 310027, Zhejiang, P. R. China
| | - Xue Zhang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, P. R. China.
| | - Shengming Ma
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, P. R. China. .,Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai, 200433, P. R. China.
| |
Collapse
|
15
|
Li W, Zhou L. Synthesis of Tetrasubstituted Allenes via Visible-Light-Promoted Radical 1,3-Difunctionalization of Alkynyl Diazo Compounds. Org Lett 2022; 24:3976-3981. [PMID: 35622019 DOI: 10.1021/acs.orglett.2c01366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein, we described an unprecedented process for generating allenyl radicals through radical addition to alkynyl diazo compounds followed by a 1,2-radical shift with the loss of nitrogen. Using this protocol, radical 1,3-difunctionalization of alkynyl diazo compounds for the synthesis of tetrasubstituted allenes with RSO2X (X = SeR', SR', and I) as the radical sources was developed. The reactions were promoted by visible light without photocatalyst and any additives.
Collapse
Affiliation(s)
- Weiyu Li
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Lei Zhou
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| |
Collapse
|
16
|
Kumar Kushvaha S, Mishra A, Roesky HW, Chandra Mondal K. Recent Advances in the Domain of Cyclic (Alkyl)(Amino) Carbenes. Chem Asian J 2022; 17:e202101301. [PMID: 34989475 PMCID: PMC9307053 DOI: 10.1002/asia.202101301] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/25/2021] [Indexed: 12/03/2022]
Abstract
Isolation of cyclic (alkyl) amino carbenes (cAACs) in 2005 has been a major achievement in the field of stable carbenes due to their better electronic properties. cAACs and bicyclic(alkyl)(amino)carbene (BicAAC) in essence are the most electrophilic as well as nucleophilic carbenes are known till date. Due to their excellent electronic properties in terms of nucleophilic and electrophilic character, cAACs have been utilized in different areas of chemistry, including stabilization of low valent main group and transition metal species, activation of small molecules, and catalysis. The applications of cAACs in catalysis have opened up new avenues of research in the field of cAAC chemistry. This review summarizes the major results of cAAC chemistry published until August 2021.
Collapse
Affiliation(s)
| | - Ankush Mishra
- Department of ChemistryIndian Institute of Technology MadrasChennai600036India
| | - Herbert W. Roesky
- Institute of Inorganic ChemistryTammannstrasse 4D-37077GöttingenGermany
| | | |
Collapse
|
17
|
Ke J, Lee WCC, Wang X, Wang Y, Wen X, Zhang XP. Metalloradical Activation of In Situ-Generated α-Alkynyldiazomethanes for Asymmetric Radical Cyclopropanation of Alkenes. J Am Chem Soc 2022; 144:2368-2378. [PMID: 35099966 PMCID: PMC9032462 DOI: 10.1021/jacs.1c13154] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
α-Alkynyldiazomethanes, generated in situ from the corresponding sulfonyl hydrazones in the presence of a base, can serve as effective metalloradicophiles in Co(II)-based metalloradical catalysis (MRC) for asymmetric cyclopropanation of alkenes. With D2-symmetric chiral amidoporphyrin 2,6-DiMeO-QingPhyrin as the optimal supporting ligand, the Co(II)-based metalloradical system can efficiently activate different α-alkynyldiazomethanes at room temperature for highly asymmetric cyclopropanation of a broad range of alkenes. This catalytic radical process provides a general synthetic tool for stereoselective construction of alkynyl cyclopropanes in high yields with high both diastereoselectivity and enantioselectivity. Combined computational and experimental studies offer several lines of evidence in support of the underlying stepwise radical mechanism for the Co(II)-catalyzed olefin cyclopropanation involving a unique α-metalloradical intermediate that is associated with two resonance forms of α-Co(III)-propargyl radical and γ-Co(III)-allenyl radical. The resulting enantioenriched alkynyl cyclopropanes, as showcased with several stereospecific transformations, may serve as valuable chiral building blocks for stereoselective organic synthesis.
Collapse
Affiliation(s)
- Jing Ke
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Wan-Chen Cindy Lee
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Xiaoxu Wang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Yong Wang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Xin Wen
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - X. Peter Zhang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
18
|
Lv Y, Han W, Pu W, Xie J, Wang A, Zhang M, Wang J, Lai J. Copper-Catalyzed Regioselective 1,4-Sulfonylcyanation of 1,3-Enynes with Sulfonyl Chlorides and TMSCN. Org Chem Front 2022. [DOI: 10.1039/d2qo00486k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel and practical copper-catalyzed reaction for the 1,4-sulfonylcyanation of 1,3-enynes under mild conditions is described. This protocol provides efficient and straightforward access to a variety of 5-sulfonylpenta-2,3-dienenitrile derivatives with...
Collapse
|
19
|
Zhao J, Li X, Han YF. Air-/Heat-Stable Crystalline Carbon-Centered Radicals Derived from an Annelated N-Heterocyclic Carbene. J Am Chem Soc 2021; 143:14428-14432. [PMID: 34469133 DOI: 10.1021/jacs.1c06464] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Organic radicals are open-shell species and have been extensively applied to functional materials due to their unique physicochemical properties with unpaired electrons; however, most of them are highly reactive and short-lived. Herein, a series of stable radicals were readily accessed in two steps from a bis(imino)acenaphthene-supported N-heterocyclic carbene (IPr(BIAN)) through enhancing the delocalization of spin density. The IPr(BIAN)-based radicals 3a-c, obtained by reduction of the corresponding iminium salts 2a-c with KC8, have been spectroscopically and crystallographically (3a,c) characterized. DFT calculations indicate that increasing the electron-withdrawing properties of the para substituent on the carbene carbon atom results in the spin density evolving from the acenaphthene ring to the phenyl ring. The IPr(BIAN)-based radicals 3a-c show excellent stability: they have half-lives of 1 week in well-aerated solutions and feature a high thermal decomposition temperature up to 200 °C.
Collapse
Affiliation(s)
- Jing Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, People's Republic of China
| | - Xin Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, People's Republic of China
| | - Ying-Feng Han
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, People's Republic of China
| |
Collapse
|
20
|
Wei Y, Zhang H, Wu X, Zhu C. Alkene Difunctionalization Triggered by a Stabilized Allenyl Radical: Concomitant Installation of Two Unsaturated C−C Bonds. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yunlong Wei
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry, Chemical Engineering and Materials Science Soochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 China
| | - Hong Zhang
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry, Chemical Engineering and Materials Science Soochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 China
| | - Xinxin Wu
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry, Chemical Engineering and Materials Science Soochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 China
| | - Chen Zhu
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry, Chemical Engineering and Materials Science Soochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 China
- Key Laboratory of Synthetic Chemistry of Natural Substances Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
21
|
Wei Y, Zhang H, Wu X, Zhu C. Alkene Difunctionalization Triggered by a Stabilized Allenyl Radical: Concomitant Installation of Two Unsaturated C-C Bonds. Angew Chem Int Ed Engl 2021; 60:20215-20219. [PMID: 34151497 DOI: 10.1002/anie.202106145] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/12/2021] [Indexed: 12/18/2022]
Abstract
Radical-mediated difunctionalization of alkenes provides a promising approach to introduce one alkenyl or alkynyl group to target compounds. However, simultaneous installation of two unsaturated C-C bonds via alkene difunctionalization remains elusive, attributable to the high instability and transient lifetimes of alkenyl and alkynyl radicals. Herein, we report the photocatalytic 1,2-alkynylalkenylation and 1,2-enynylalkenylation of alkenes for the first time, triggered by the intermolecular addition of a stabilized allenyl radical to an alkene. A portfolio of strategically designed, easily accessible dual-function reagents are applied to a radical docking-migration cascade. The protocol has broad substrate scope and efficiently increases the degree of unsaturation.
Collapse
Affiliation(s)
- Yunlong Wei
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu, 215123, China
| | - Hong Zhang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu, 215123, China
| | - Xinxin Wu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu, 215123, China
| | - Chen Zhu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu, 215123, China.,Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| |
Collapse
|
22
|
Kim Y, Byeon JE, Jeong GY, Kim SS, Song H, Lee E. Highly Stable 1,2-Dicarbonyl Radical Cations Derived from N-Heterocyclic Carbenes. J Am Chem Soc 2021; 143:8527-8532. [PMID: 33974426 DOI: 10.1021/jacs.1c00707] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Stable organic radicals have been of great academic interest not only in the context of fundamental understanding of reactive intermediates but also because of their numerous applications as functional materials. Apart from the early examples of triphenylmethyl and TEMPO derivatives, reports on air- and water-stable organic radicals are scarce, and their development remains a challenge. Herein, we present the design and synthesis of a novel organic radical based on a 1,2-dicarbonyl scaffold supported by N-heterocyclic carbenes (NHCs). The presented radical cations exhibit remarkable stability toward various harsh conditions, such as the presence of reactive chemicals (reductants, oxidants, strong acids, and bases) or high temperatures, by far exceeding the stability of triphenylmethyl and TEMPO radicals. In addition, physiological conditions including aqueous buffer and blood serum are tolerated. The steric and electronic stabilization provided by the two NHC moieties enabled the successful design of the highly stable radical.
Collapse
Affiliation(s)
- Youngsuk Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jung Eun Byeon
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Gu Yoon Jeong
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Seoung Su Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Hayoung Song
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Eunsung Lee
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| |
Collapse
|
23
|
Muresan M, Subramanian H, Sibi MP, Green JR. Propargyl Radicals in Organic Synthesis. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100367] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Marcus Muresan
- Department of Chemistry and Biochemistry University of Windsor 401 Sunset Ave. Windsor Ontario N9B 3P4 Canada
| | - Hariharaputhiran Subramanian
- Department of Chemistry and Biochemistry North Dakota State University Dept 2735 PO Box 6050 Fargo North Dakota 58108-6050 USA
| | - Mukund P. Sibi
- Department of Chemistry and Biochemistry North Dakota State University Dept 2735 PO Box 6050 Fargo North Dakota 58108-6050 USA
| | - James R. Green
- Department of Chemistry and Biochemistry University of Windsor 401 Sunset Ave. Windsor Ontario N9B 3P4 Canada
| |
Collapse
|
24
|
Akulov AA, Varaksin MV, Charushin VN, Chupakhin ON. C(sp2) – H functionalization of aldimines and related compounds: advances and prospects. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr4978] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This is the first systematic review of the most relevant approaches to direct C(sp2)–H bond functionalization of azomethine derivatives. The scope of the applicability of various transformations is analyzed. The review assesses prospects of the application of this functionalization strategy in the multistep synthesis of valuable compounds for use in medicinal chemistry, materials science and related areas.
The bibliography includes 124 references.
Collapse
|
25
|
Das A, Ahmed J, Rajendran NM, Adhikari D, Mandal SK. A Bottleable Imidazole-Based Radical as a Single Electron Transfer Reagent. J Org Chem 2021; 86:1246-1252. [PMID: 33280378 DOI: 10.1021/acs.joc.0c02465] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Reduction of 1,3-bis(2,6-diisopropylphenyl)-2,4-diphenyl-1H-imidazol-3-ium chloride (1) resulted in the formation of the first structurally characterized imidazole-based radical 2. 2 was established as a single electron transfer reagent by treating it with an acceptor molecule tetracyanoethylene. Moreover, radical 2 was utilized as an organic electron donor in a number of organic transformations such as in activation of an aryl-halide bond, alkene hydrosilylation, and in catalytic reduction of CO2 to methoxyborane, all under ambient temperature and pressure.
Collapse
Affiliation(s)
- Arpan Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Jasimuddin Ahmed
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - N M Rajendran
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Debashis Adhikari
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, SAS Nagar, 140306, India
| | - Swadhin K Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| |
Collapse
|
26
|
Dong XY, Zhan TY, Jiang SP, Liu XD, Ye L, Li ZL, Gu QS, Liu XY. Copper-Catalyzed Asymmetric Coupling of Allenyl Radicals with Terminal Alkynes to Access Tetrasubstituted Allenes. Angew Chem Int Ed Engl 2020; 60:2160-2164. [PMID: 33052624 DOI: 10.1002/anie.202013022] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Indexed: 12/19/2022]
Abstract
In contrast to the wealth of asymmetric transformations for generating central chirality from alkyl radicals, the enantiocontrol over the allenyl radicals for forging axial chirality represents an uncharted domain. The challenge arises from the unique elongated linear configuration of the allenyl radicals that necessitates the stereo-differentiation of remote motifs away from the radical reaction site. We herein describe a copper-catalyzed asymmetric radical 1,4-carboalkynylation of 1,3-enynes via the coupling of allenyl radicals with terminal alkynes, providing diverse synthetically challenging tetrasubstituted chiral allenes. A chiral N,N,P-ligand is crucial for both the reaction initiation and the enantiocontrol over the highly reactive allenyl radicals. The reaction features a broad substrate scope, covering a variety of (hetero)aryl and alkyl alkynes and 1,3-enynes as well as radical precursors with excellent functional group tolerance.
Collapse
Affiliation(s)
- Xiao-Yang Dong
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Tian-Ya Zhan
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Sheng-Peng Jiang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xiao-Dong Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Liu Ye
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhong-Liang Li
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Qiang-Shuai Gu
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xin-Yuan Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
27
|
Dong X, Zhan T, Jiang S, Liu X, Ye L, Li Z, Gu Q, Liu X. Copper‐Catalyzed Asymmetric Coupling of Allenyl Radicals with Terminal Alkynes to Access Tetrasubstituted Allenes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202013022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Xiao‐Yang Dong
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Tian‐Ya Zhan
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Sheng‐Peng Jiang
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Xiao‐Dong Liu
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Liu Ye
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry Southern University of Science and Technology Shenzhen 518055 China
| | - Zhong‐Liang Li
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry Southern University of Science and Technology Shenzhen 518055 China
| | - Qiang‐Shuai Gu
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry Southern University of Science and Technology Shenzhen 518055 China
| | - Xin‐Yuan Liu
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| |
Collapse
|
28
|
Saalfrank C, Fantuzzi F, Kupfer T, Ritschel B, Hammond K, Krummenacher I, Bertermann R, Wirthensohn R, Finze M, Schmid P, Engel V, Engels B, Braunschweig H. cAAC-Stabilized 9,10-diboraanthracenes-Acenes with Open-Shell Singlet Biradical Ground States. Angew Chem Int Ed Engl 2020; 59:19338-19343. [PMID: 32662218 PMCID: PMC7589216 DOI: 10.1002/anie.202008206] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Indexed: 12/19/2022]
Abstract
Narrow HOMO-LUMO gaps and high charge-carrier mobilities make larger acenes potentially high-efficient materials for organic electronic applications. The performance of such molecules was shown to significantly increase with increasing number of fused benzene rings. Bulk quantities, however, can only be obtained reliably for acenes up to heptacene. Theoretically, (oligo)acenes and (poly)acenes are predicted to have open-shell singlet biradical and polyradical ground states, respectively, for which experimental evidence is still scarce. We have now been able to dramatically lower the HOMO-LUMO gap of acenes without the necessity of unfavorable elongation of their conjugated π system, by incorporating two boron atoms into the anthracene skeleton. Stabilizing the boron centers with cyclic (alkyl)(amino)carbenes gives neutral 9,10-diboraanthracenes, which are shown to feature disjointed, open-shell singlet biradical ground states.
Collapse
Affiliation(s)
- Christian Saalfrank
- Institut für Anorganische ChemieJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Felipe Fantuzzi
- Institut für Anorganische ChemieJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institut für Physikalische und Theoretische ChemieJulius-Maximilians-Universität WürzburgEmil-Fischer-Strasse 4297074WürzburgGermany
| | - Thomas Kupfer
- Institut für Anorganische ChemieJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Benedikt Ritschel
- Institut für Anorganische ChemieJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Kai Hammond
- Institut für Anorganische ChemieJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Ivo Krummenacher
- Institut für Anorganische ChemieJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Rüdiger Bertermann
- Institut für Anorganische ChemieJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Raphael Wirthensohn
- Institut für Anorganische ChemieJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Maik Finze
- Institut für Anorganische ChemieJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Paul Schmid
- Institut für Physikalische und Theoretische ChemieJulius-Maximilians-Universität WürzburgEmil-Fischer-Strasse 4297074WürzburgGermany
| | - Volker Engel
- Institut für Physikalische und Theoretische ChemieJulius-Maximilians-Universität WürzburgEmil-Fischer-Strasse 4297074WürzburgGermany
| | - Bernd Engels
- Institut für Physikalische und Theoretische ChemieJulius-Maximilians-Universität WürzburgEmil-Fischer-Strasse 4297074WürzburgGermany
| | - Holger Braunschweig
- Institut für Anorganische ChemieJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
29
|
Saalfrank C, Fantuzzi F, Kupfer T, Ritschel B, Hammond K, Krummenacher I, Bertermann R, Wirthensohn R, Finze M, Schmid P, Engel V, Engels B, Braunschweig H. cAAC‐stabilisierte 9,10‐Diboraanthracene – offenschalige Singulettbiradikale. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008206] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Christian Saalfrank
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institut für Nachhaltige Chemie & Katalyse mit Bor Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Felipe Fantuzzi
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institut für Nachhaltige Chemie & Katalyse mit Bor Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institut für Physikalische und Theoretische Chemie Julius-Maximilians-Universität Würzburg Emil-Fischer-Straße 42 97074 Würzburg Germany
| | - Thomas Kupfer
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institut für Nachhaltige Chemie & Katalyse mit Bor Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Benedikt Ritschel
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institut für Nachhaltige Chemie & Katalyse mit Bor Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Kai Hammond
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institut für Nachhaltige Chemie & Katalyse mit Bor Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Ivo Krummenacher
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institut für Nachhaltige Chemie & Katalyse mit Bor Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Rüdiger Bertermann
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institut für Nachhaltige Chemie & Katalyse mit Bor Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Raphael Wirthensohn
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institut für Nachhaltige Chemie & Katalyse mit Bor Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Maik Finze
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institut für Nachhaltige Chemie & Katalyse mit Bor Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Paul Schmid
- Institut für Physikalische und Theoretische Chemie Julius-Maximilians-Universität Würzburg Emil-Fischer-Straße 42 97074 Würzburg Germany
| | - Volker Engel
- Institut für Physikalische und Theoretische Chemie Julius-Maximilians-Universität Würzburg Emil-Fischer-Straße 42 97074 Würzburg Germany
| | - Bernd Engels
- Institut für Physikalische und Theoretische Chemie Julius-Maximilians-Universität Würzburg Emil-Fischer-Straße 42 97074 Würzburg Germany
| | - Holger Braunschweig
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institut für Nachhaltige Chemie & Katalyse mit Bor Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| |
Collapse
|
30
|
Back J, Kwon G, Byeon JE, Song H, Kang K, Lee E. Tunable Redox-Active Triazenyl-Carbene Platforms: A New Class of Anolytes for Non-Aqueous Organic Redox Flow Batteries. ACS APPLIED MATERIALS & INTERFACES 2020; 12:37338-37345. [PMID: 32692157 DOI: 10.1021/acsami.0c09400] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Non-aqueous all organic redox flow batteries (NORFBs) are one of the promising options for large-scale renewable energy storage systems owing to their scalability with energy and power along with the affordability. The discovery of new redox-active organic molecules (ROMs) for the anolyte/catholyte would bring them one step closer to the practical application, thus it is highly demanded. Here, we report a new class of ROMs based on cationic triazenyl systems supported by N-heterocyclic carbenes (NHCs) and demonstrate, for the first time, that the triazenyl can serve as a new redox motif for ROMs and could be significantly stabilized for the use in NORFBs by the coupling with NHCs even at radical states. A series of NHC-triazenyl ROM families were successfully synthesized via the reaction of a synthon, N-heterocyclic carbene azido cation, with various Lewis bases including NHCs. Remarkably, it is revealed that NHCs substituted on the triazenyl fragments can serve as a versatile platform for tailoring the electrochemical activity and stability of triazenyl-based compounds, introducing various ROMs exploiting triazenyl redox motif, as demonstrated in the full cell of NORFBs for an anolyte.
Collapse
Affiliation(s)
- Jisu Back
- Department of Chemistry, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Giyun Kwon
- Department of Materials Science and Engineering, Research Institute of Advanced Materials (RIAM), Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Jung Eun Byeon
- Department of Chemistry, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Hayoung Song
- Department of Chemistry, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Kisuk Kang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials (RIAM), Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
- Institute of Engineering Research, College of Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
- Center for Nanoparticle Research, Institute of Basic Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Eunsung Lee
- Department of Chemistry, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
- Division of Advanced Materials Science, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| |
Collapse
|
31
|
Abstract
Allenes (carbodicarbenes) and [3]cumulenes are linear carbon chains that can be bent when the terminal group has a strong carbene nature. This bending can be quite pronounced in allenes but not in [3]cumulenes. In this study, how N-heterocyclic or cyclic (alkyl)(amino) carbene (NHC and CAAC, respectively) terminal groups can modify the linear structure of [n]cumulenes has been analyzed. A low π acidity of the terminal carbene affects the linearity of [2n]cumulenes. Indeed, it has been found that the NHC [4]cumulene is extremely bent, contrary to classical [4]cumulenes. The predicted NHC [4]cumulene or tricarbodicarbene has two lone pairs and the π electrons are delocalized over the whole molecule. More significantly, DFT calculations have shown that this bent [4]cumulene is very stable, considerably more so than the corresponding [3]cumulene, which has been elusive to synthesize. Remarkably, calculations have shown that all the NHC [2n]cumulenes are more than 25 kcal mol-1 more stable than the [2n-1]cumulenes.
Collapse
Affiliation(s)
- José Enrique Barquera-Lozada
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito exterior, Ciudad Universitaria Coyoacán, México, D.F., 04510, Mexico
| |
Collapse
|
32
|
Kundu G, De S, Tothadi S, Das A, Koley D, Sen SS. Saturated N-Heterocyclic Carbene Based Thiele's Hydrocarbon with a Tetrafluorophenylene Linker. Chemistry 2019; 25:16533-16537. [PMID: 31609519 DOI: 10.1002/chem.201904421] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/06/2019] [Indexed: 01/24/2023]
Abstract
The synthesis of a SIPr [1,3-bis(2,6-diisopropylphenyl)-imidazolin-2-ylidene] derived Kekulé diradicaloid with a tetrafluorophenylene spacer (3) has been described. Two synthetic routes have been reported to access 3. The cleavage of C-F bond of C6 F6 by SIPr in the presence of BF3 led to double C-F activated compound with two tetrafluoro borate counter anions (2), which upon reduction by lithium metal afforded 3. Alternatively, 3 can be directly accessed in one step by reacting SIPr with C6 F6 in presence of Mg metal. Compounds 2 and 3 were well characterized spectroscopically and by single-crystal X-ray diffraction studies. Experimental and computational studies support the cumulenic closed-shell singlet state of 3 with a singlet-triplet energy gap (ΔES-T ) of 23.7 kcal mol-1 .
Collapse
Affiliation(s)
- Gargi Kundu
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India.,Academy of Scientific and Innovative Research (AcSIR), New Ghaziabad, 201002, India
| | - Sriman De
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, India
| | - Srinu Tothadi
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Abhishek Das
- Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata, 700032, India
| | - Debasis Koley
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, India
| | - Sakya S Sen
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India.,Academy of Scientific and Innovative Research (AcSIR), New Ghaziabad, 201002, India
| |
Collapse
|
33
|
Kim Y, Bielawski CW, Lee E. Oxygen atom transfer: a mild and efficient method for generating iminyl radicals. Chem Commun (Camb) 2019; 55:7061-7064. [PMID: 31143894 DOI: 10.1039/c9cc03521d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Treating iminoxyl species with oxygen acceptors such as PPh3 resulted in oxygen atom transfer and afforded the corresponding iminyl radicals. DFT and other calculations revealed that association between the oxygen atom acceptors and the iminoxyl species results in the formation of key intermediates during the reaction. Subsequent dissociation is accompanied with homolytic cleavage of the N-O bond and generates iminyl radicals with spin densities that are localized on exocyclic nitrogen atoms.
Collapse
Affiliation(s)
- Youngsuk Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea. and Center for Self-assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea
| | - Christopher W Bielawski
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea and Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea and Department of Energy Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Eunsung Lee
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea. and Center for Self-assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| |
Collapse
|
34
|
Antoni PW, Bruckhoff T, Hansmann MM. Organic Redox Systems Based on Pyridinium–Carbene Hybrids. J Am Chem Soc 2019; 141:9701-9711. [DOI: 10.1021/jacs.9b04249] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Patrick W. Antoni
- Georg-August Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Tim Bruckhoff
- Georg-August Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Max M. Hansmann
- Georg-August Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| |
Collapse
|
35
|
Sinhababu S, Kundu S, Siddiqui MM, Paesch AN, Herbst-Irmer R, Schwederski B, Saha P, Zhao L, Frenking G, Kaim W, Stalke D, Roesky HW. Synthesis of cAAC stabilized biradical of "Me 2Si" and "Me 2SiCl" monoradical from Me 2SiCl 2 - an important feedstock material. Chem Commun (Camb) 2019; 55:4534-4537. [PMID: 30924826 DOI: 10.1039/c9cc01448a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The cyclic alkyl(amino) carbene (cAAC) coordinated biradical of dimethylsilicon was isolated as (cAAC)2Me2Si (1), (cAAC = C(CH2)(CMe2)2N-2,6-i-Pr2C6H3), synthesized from the reduction of Me2SiCl2 using two equivalents of KC8 in the presence of two equivalents of cAAC. The reduction of Me2SiCl2 by one equivalent of KC8 in the presence of one equivalent of cAAC resulted in the stable dimethylsiliconchloride monoradical (cAAC)Me2SiCl (2).
Collapse
Affiliation(s)
- Soumen Sinhababu
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Affiliation(s)
- Kenichi Kato
- Department of ChemistryGraduate School of ScienceKyoto University Oiwake-cho, Kitashirakawa, Sakyo-ku Kyoto 606-8502 Japan
| | - Atsuhiro Osuka
- Department of ChemistryGraduate School of ScienceKyoto University Oiwake-cho, Kitashirakawa, Sakyo-ku Kyoto 606-8502 Japan
| |
Collapse
|
37
|
Kato K, Osuka A. Platforms for Stable Carbon‐Centered Radicals. Angew Chem Int Ed Engl 2019; 58:8978-8986. [DOI: 10.1002/anie.201900307] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Indexed: 11/12/2022]
Affiliation(s)
- Kenichi Kato
- Department of ChemistryGraduate School of ScienceKyoto University Oiwake-cho, Kitashirakawa, Sakyo-ku Kyoto 606-8502 Japan
| | - Atsuhiro Osuka
- Department of ChemistryGraduate School of ScienceKyoto University Oiwake-cho, Kitashirakawa, Sakyo-ku Kyoto 606-8502 Japan
| |
Collapse
|
38
|
Kundu S, Sinhababu S, Chandrasekhar V, Roesky HW. Stable cyclic (alkyl)(amino)carbene (cAAC) radicals with main group substituents. Chem Sci 2019; 10:4727-4741. [PMID: 31160949 PMCID: PMC6510188 DOI: 10.1039/c9sc01351b] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 04/06/2019] [Indexed: 11/21/2022] Open
Abstract
Recent attempts to isolate cyclic (alkyl)(amino)carbene stabilized radicals of p-block elements have been described here.
Isolation and characterization of stable radicals has been a long-pursued quest. While there has been some progress in this field particularly with respect to carbon, radicals involving heavier p-block elements are still considerably sparse. In this review we describe our recent successful efforts on the isolation of stable p-block element radicals particularly those involving aluminum, silicon, and phosphorus.
Collapse
Affiliation(s)
- Subrata Kundu
- Universität Göttingen , Institut für Anorganische Chemie , Tammannstrasse 4 , D-37077 , Göttingen , Germany .
| | - Soumen Sinhababu
- Universität Göttingen , Institut für Anorganische Chemie , Tammannstrasse 4 , D-37077 , Göttingen , Germany .
| | - Vadapalli Chandrasekhar
- Universität Göttingen , Institut für Anorganische Chemie , Tammannstrasse 4 , D-37077 , Göttingen , Germany . .,Tata Institute of Fundamental Research Hyderabad , Hyderabad 500107 , India.,Department of Chemistry , Indian Institute of Technology Kanpur , Kanpur 208016 , India .
| | - Herbert W Roesky
- Universität Göttingen , Institut für Anorganische Chemie , Tammannstrasse 4 , D-37077 , Göttingen , Germany .
| |
Collapse
|
39
|
Ye C, Li Y, Zhu X, Hu S, Yuan D, Bao H. Copper-catalyzed 1,4-alkylarylation of 1,3-enynes with masked alkyl electrophiles. Chem Sci 2019; 10:3632-3636. [PMID: 30996957 PMCID: PMC6432612 DOI: 10.1039/c8sc05689g] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/18/2019] [Indexed: 01/08/2023] Open
Abstract
Classical 1,4-dicarbofunctionalization of 1,3-enynes employs organometallic reagents as nucleophiles to initiate the reaction. We report a copper-catalyzed 1,4-alkylarylation of 1,3-enynes with alkyl diacyl peroxides as masked alkyl electrophiles and aryl boronic acids as nucleophiles, selectively affording structurally diversified tetrasubstituted allenes under mild conditions. Mechanistic studies suggest that an allenyl radical might be involved.
Collapse
Affiliation(s)
- Changqing Ye
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology , State Key Laboratory of Structural Chemistry , Center for Excellence in Molecular Synthesis , Fujian Institute of Research on the Structure of Matter , 155 Yangqiao Road West , Fuzhou , Fujian 350002 , P. R. China
- University of Chinese Academy of Sciences , No. 19(A) Yuquan Road, Shijingshan District , Beijing 100049 , P. R. China .
| | - Yajun Li
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology , State Key Laboratory of Structural Chemistry , Center for Excellence in Molecular Synthesis , Fujian Institute of Research on the Structure of Matter , 155 Yangqiao Road West , Fuzhou , Fujian 350002 , P. R. China
| | - Xiaotao Zhu
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology , State Key Laboratory of Structural Chemistry , Center for Excellence in Molecular Synthesis , Fujian Institute of Research on the Structure of Matter , 155 Yangqiao Road West , Fuzhou , Fujian 350002 , P. R. China
| | - Shengmin Hu
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology , State Key Laboratory of Structural Chemistry , Center for Excellence in Molecular Synthesis , Fujian Institute of Research on the Structure of Matter , 155 Yangqiao Road West , Fuzhou , Fujian 350002 , P. R. China
| | - Daqiang Yuan
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology , State Key Laboratory of Structural Chemistry , Center for Excellence in Molecular Synthesis , Fujian Institute of Research on the Structure of Matter , 155 Yangqiao Road West , Fuzhou , Fujian 350002 , P. R. China
| | - Hongli Bao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology , State Key Laboratory of Structural Chemistry , Center for Excellence in Molecular Synthesis , Fujian Institute of Research on the Structure of Matter , 155 Yangqiao Road West , Fuzhou , Fujian 350002 , P. R. China
- University of Chinese Academy of Sciences , No. 19(A) Yuquan Road, Shijingshan District , Beijing 100049 , P. R. China .
| |
Collapse
|
40
|
Mandal D, Sobottka S, Dolai R, Maiti A, Dhara D, Kalita P, Narayanan RS, Chandrasekhar V, Sarkar B, Jana A. Direct access to 2-aryl substituted pyrrolinium salts for carbon centre based radicals without pyrrolidine-2-ylidene alias cyclic(alkyl)(amino)carbene (CAAC) as a precursor. Chem Sci 2019; 10:4077-4081. [PMID: 31049189 PMCID: PMC6470959 DOI: 10.1039/c8sc05477k] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 02/27/2019] [Indexed: 12/20/2022] Open
Abstract
A new strategy to synthesise 2-substituted pyrrolinium salts.
The synthesis of organic radicals is challenging due to their inherent instability. In recent years, cyclic(alkyl)(amino)carbene (CAAC)-derived 2-substituted pyrrolinium salts have been used as synthons for the synthesis of isolable carbon-based radicals. Herein, we report a direct, easy and convenient method for the synthesis of 2-aryl substituted pyrrolinium salts without using CAAC as a precursor. These cations can be reduced to the corresponding radicals. The influence of the aryl substituent at the C-2 position on radical stabilization and dimerization has been investigated. Because of the large scope of our strategy (capability to modulate different substituents at all the C- and N-centres of the pyrrolinium salts), it has the merit to be an extremely effective and productive route for generating carbon-based radicals whose stability as well as reactivity can be varied.
Collapse
Affiliation(s)
- Debdeep Mandal
- Tata Institute of Fundamental Research Hyderabad , Gopanpally , Hyderabad-500107 , Telangana , India .
| | - Sebastian Sobottka
- Institut für Chemie und Biochemie, Anorganische Chemie , Freie Universität Berlin , Fabeckstraße 34-36 , 14195 , Berlin , Germany .
| | - Ramapada Dolai
- Tata Institute of Fundamental Research Hyderabad , Gopanpally , Hyderabad-500107 , Telangana , India .
| | - Avijit Maiti
- Tata Institute of Fundamental Research Hyderabad , Gopanpally , Hyderabad-500107 , Telangana , India .
| | - Debabrata Dhara
- Tata Institute of Fundamental Research Hyderabad , Gopanpally , Hyderabad-500107 , Telangana , India .
| | - Pankaj Kalita
- School of Chemical Sciences , National Institute of Science Education and Research , HBNI , Bhubaneswar-752050 , India
| | | | - Vadapalli Chandrasekhar
- Tata Institute of Fundamental Research Hyderabad , Gopanpally , Hyderabad-500107 , Telangana , India . .,Department of Chemistry , Indian Institute of Technology Kanpur , Kanpur-208016 , India .
| | - Biprajit Sarkar
- Institut für Chemie und Biochemie, Anorganische Chemie , Freie Universität Berlin , Fabeckstraße 34-36 , 14195 , Berlin , Germany .
| | - Anukul Jana
- Tata Institute of Fundamental Research Hyderabad , Gopanpally , Hyderabad-500107 , Telangana , India .
| |
Collapse
|
41
|
Schiegerl LJ, Melaimi M, Tolentino DR, Klein W, Bertrand G, Fässler TF. Silylated Ge9 Clusters as New Ligands for Cyclic (Alkyl)amino and Mesoionic Carbene Copper Complexes. Inorg Chem 2019; 58:3256-3264. [DOI: 10.1021/acs.inorgchem.8b03338] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lorenz J. Schiegerl
- Department of Chemistry, Technische Universität München (TUM), Lichtenbergstraße 4, 85748 Garching, Germany
| | - Mohand Melaimi
- UCSD−CNRS Joint Research Chemistry Laboratory (UMI 3555), University of California—San Diego, La Jolla, California 92093-0353, United States
| | - Daniel R. Tolentino
- UCSD−CNRS Joint Research Chemistry Laboratory (UMI 3555), University of California—San Diego, La Jolla, California 92093-0353, United States
| | - Wilhelm Klein
- Department of Chemistry, Technische Universität München (TUM), Lichtenbergstraße 4, 85748 Garching, Germany
| | - Guy Bertrand
- UCSD−CNRS Joint Research Chemistry Laboratory (UMI 3555), University of California—San Diego, La Jolla, California 92093-0353, United States
| | - Thomas F. Fässler
- Department of Chemistry, Technische Universität München (TUM), Lichtenbergstraße 4, 85748 Garching, Germany
| |
Collapse
|
42
|
Deissenberger A, Welz E, Drescher R, Krummenacher I, Dewhurst RD, Engels B, Braunschweig H. A New Class of Neutral Boron‐Based Diradicals Spanned by a Two‐Carbon‐Atom Bridge. Angew Chem Int Ed Engl 2019; 58:1842-1846. [DOI: 10.1002/anie.201813335] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Indexed: 11/12/2022]
Affiliation(s)
- Andrea Deissenberger
- Institute for Inorganic ChemistryJulius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Eileen Welz
- Institute for Physical and Theoretical ChemistryJulius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Regina Drescher
- Institute for Inorganic ChemistryJulius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Ivo Krummenacher
- Institute for Inorganic ChemistryJulius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Rian D. Dewhurst
- Institute for Inorganic ChemistryJulius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Bernd Engels
- Institute for Physical and Theoretical ChemistryJulius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Holger Braunschweig
- Institute for Inorganic ChemistryJulius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| |
Collapse
|
43
|
Deissenberger A, Welz E, Drescher R, Krummenacher I, Dewhurst RD, Engels B, Braunschweig H. Eine neue Strukturklasse neutraler borhaltiger Diradikale verbrückt über zwei Kohlenstoffatome. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201813335] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Andrea Deissenberger
- Institut für Anorganische ChemieJulius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
- Institut für nachhaltige Chemie & Katalyse mit BorJulius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Eileen Welz
- Institut für Physikalische und Theoretische ChemieJulius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Regina Drescher
- Institut für Anorganische ChemieJulius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
- Institut für nachhaltige Chemie & Katalyse mit BorJulius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Ivo Krummenacher
- Institut für Anorganische ChemieJulius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
- Institut für nachhaltige Chemie & Katalyse mit BorJulius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Rian D. Dewhurst
- Institut für Anorganische ChemieJulius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
- Institut für nachhaltige Chemie & Katalyse mit BorJulius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Bernd Engels
- Institut für Physikalische und Theoretische ChemieJulius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Holger Braunschweig
- Institut für Anorganische ChemieJulius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
- Institut für nachhaltige Chemie & Katalyse mit BorJulius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| |
Collapse
|
44
|
Abstract
The reactions of [W(CBr)(CO)2(Tp*)] with a range of terminal alkynes (RCCH), mediated by [Pd(PPh3)4] and CuI, afford new propargylidynes [W(C–CCR)(CO)2(Tp*)] [R = tBu, C6H4X (X = H, NH2, NO2), APh3 (A = C, Si, Ge), B(O2CCH2)2NMe].
Collapse
Affiliation(s)
- Anthony F. Hill
- Research School of Chemistry
- The Australian National University
- Canberra
- Australia
| | - Richard A. Manzano
- Research School of Chemistry
- The Australian National University
- Canberra
- Australia
| |
Collapse
|
45
|
Tóth K, Höfner G, Wanner KT. Synthesis and biological evaluation of novel N-substituted nipecotic acid derivatives with a trans-alkene spacer as potent GABA uptake inhibitors. Bioorg Med Chem 2018; 26:5944-5961. [DOI: 10.1016/j.bmc.2018.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/31/2018] [Accepted: 11/02/2018] [Indexed: 12/13/2022]
|
46
|
Kim Y, Lee E. Stable Organic Radicals Derived from N‐Heterocyclic Carbenes. Chemistry 2018; 24:19110-19121. [PMID: 30058298 DOI: 10.1002/chem.201801560] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/23/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Youngsuk Kim
- Center for Self-assembly and ComplexityInstitute for Basic Science (IBS) Pohang 37673 Republic of Korea
- Department of ChemistryPohang University of Science and Technology Pohang 37673 Republic of Korea
| | - Eunsung Lee
- Center for Self-assembly and ComplexityInstitute for Basic Science (IBS) Pohang 37673 Republic of Korea
- Department of ChemistryPohang University of Science and Technology Pohang 37673 Republic of Korea
- Division of Advanced Materials SciencePohang University of Science and Technology Pohang 37673 Republic of Korea
| |
Collapse
|
47
|
Rottschäfer D, Busch J, Neumann B, Stammler HG, van Gastel M, Kishi R, Nakano M, Ghadwal RS. Diradical Character Enhancement by Spacing: N-Heterocyclic Carbene Analogues of Müller's Hydrocarbon. Chemistry 2018; 24:16537-16542. [DOI: 10.1002/chem.201804524] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Dennis Rottschäfer
- Anorganische Molekülchemie und Katalyse; Lehrstuhl für Anorganische Chemie und Strukturchemie; Centrum für Molekulare Materialien; Fakultät für Chemie; Universität Bielefeld; Universitätsstrasse 25 33615 Bielefeld Germany
| | - Jasmin Busch
- Anorganische Molekülchemie und Katalyse; Lehrstuhl für Anorganische Chemie und Strukturchemie; Centrum für Molekulare Materialien; Fakultät für Chemie; Universität Bielefeld; Universitätsstrasse 25 33615 Bielefeld Germany
| | - Beate Neumann
- Anorganische Molekülchemie und Katalyse; Lehrstuhl für Anorganische Chemie und Strukturchemie; Centrum für Molekulare Materialien; Fakultät für Chemie; Universität Bielefeld; Universitätsstrasse 25 33615 Bielefeld Germany
| | - Hans-Georg Stammler
- Anorganische Molekülchemie und Katalyse; Lehrstuhl für Anorganische Chemie und Strukturchemie; Centrum für Molekulare Materialien; Fakultät für Chemie; Universität Bielefeld; Universitätsstrasse 25 33615 Bielefeld Germany
| | - Maurice van Gastel
- Max-Planck-Institut für Kohlenforschung; Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| | - Ryohei Kishi
- Department of Materials Engineering Science; Graduate School of Engineering Science; Osaka University; Toyonaka Osaka 560-8531 Japan
| | - Masayoshi Nakano
- Department of Materials Engineering Science; Graduate School of Engineering Science; Osaka University; Toyonaka Osaka 560-8531 Japan
- Institute for Molecular Science; 38 Nishigo-Naka Myodaiji, Okazaki 444-8585 Japan
| | - Rajendra S. Ghadwal
- Anorganische Molekülchemie und Katalyse; Lehrstuhl für Anorganische Chemie und Strukturchemie; Centrum für Molekulare Materialien; Fakultät für Chemie; Universität Bielefeld; Universitätsstrasse 25 33615 Bielefeld Germany
| |
Collapse
|
48
|
Antoni PW, Hansmann MM. Pyrylenes: A New Class of Tunable, Redox-Switchable, Photoexcitable Pyrylium–Carbene Hybrids with Three Stable Redox-States. J Am Chem Soc 2018; 140:14823-14835. [DOI: 10.1021/jacs.8b08545] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Patrick W. Antoni
- Georg-August Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Max M. Hansmann
- Georg-August Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| |
Collapse
|
49
|
Welz E, Böhnke J, Dewhurst RD, Braunschweig H, Engels B. Unravelling the Dramatic Electrostructural Differences Between N-Heterocyclic Carbene- and Cyclic (Alkyl)(amino)carbene-Stabilized Low-Valent Main Group Species. J Am Chem Soc 2018; 140:12580-12591. [DOI: 10.1021/jacs.8b07644] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Eileen Welz
- Institute for Physical and Theoretical Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Julian Böhnke
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Rian D. Dewhurst
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Holger Braunschweig
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Bernd Engels
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
50
|
Mandal D, Dolai R, Kalita P, Narayanan RS, Kumar R, Sobottka S, Sarkar B, Rajaraman G, Chandrasekhar V, Jana A. "Abnormal" Addition of NHC to a Conjugate Acid of CAAC: Formation of N-Alkyl-Substituted CAAC. Chemistry 2018; 24:12722-12727. [PMID: 29797625 DOI: 10.1002/chem.201802587] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Indexed: 01/16/2023]
Abstract
The addition reactions of N-heterocyclic carbenes (NHCs) are mostly known to occur through the carbenic centre (C2), which leads to a "normal" adduct. Herein, we report the "abnormal" addition of NHCDip 1 (1,3-(2,6-iPr2 C6 H3 )-imidazole-2-ylidene) to a conjugate acid of cyclic (alkyl)(amino)carbene 2 (CAACiPr =1-iPr-3,3,5,5-Me4 -pyrrolinium triflate). Mechanistic study revealed that this reaction proceeded through the in situ formation of 1,3-(2,6-iPr2 C6 H3 )-imidazolium cation 4 and N-iPr-substituted CAAC 5 followed by the oxidative addition of compound 5 across the C4-H bond (alias backbone C-H) of compound 4. The in situ formation of compound 5 was also proven by the oxidative addition of it to the N-H group of iPrNH2 . DFT calculations also supported the mechanistic findings. A different methodology for the in situ generation of compound 5 by using TMPLi is also described.
Collapse
Affiliation(s)
- Debdeep Mandal
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad-, 500107, Telangana, India
| | - Ramapada Dolai
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad-, 500107, Telangana, India
| | - Pankaj Kalita
- School of Chemical Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar-, 752050, India
| | | | - Ravi Kumar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-, 400076, India
| | - Sebastian Sobottka
- Institut für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin, Fabeckstraße 34-36, 14195, Berlin, Germany
| | - Biprajit Sarkar
- Institut für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin, Fabeckstraße 34-36, 14195, Berlin, Germany
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-, 400076, India
| | - Vadapalli Chandrasekhar
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad-, 500107, Telangana, India.,Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-, 208016, India
| | - Anukul Jana
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad-, 500107, Telangana, India
| |
Collapse
|