1
|
Tong Y, Sun Y, Xiao Y, Zou Y, Guan J, Zhang X, Shu T. Counterexample to Luminescent Metal Nanocluster Paradigm: Reactive Au(I) Complexes from His-Au(III) Synthetic Reactions and Their Chemistry for Direct Analysis of d-Penicillamine. Anal Chem 2025. [PMID: 39951387 DOI: 10.1021/acs.analchem.4c06202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2025]
Abstract
There is a widely accepted material characterization paradigm in the success of synthesis of luminescent metal nanoclusters (NCs) in the aqueous phase: new emission, metal reduction, and ultrasmall particles (size < 3 nm). Herein, we falsified well-known fluorescent histidine (His)-directed Au NCs and a new model of metastable His-Au(I) complexes with emissive His oxidation products has been established. The redox reaction of His and Au(III) yields His oligomers with blue-green fluorescence and reducible Au(I) self-assemblies, which can form ultrasmall particles at electron bombardment. The resultant Au(I) complexes can be further reduced by d-penicillamine (DPA) via forming anisotropic Au nanoparticles with distinct local surface plasmon resonance absorption. The emerging absorption can quench the fluorescence of the His oxidation products through the inner filter effect pathway. A facile dual-model analytical approach is thus proposed to directly detect DPA fluorometrically and colorimetrically without interference from common biothiols, including cysteine and glutathione. Thus, with the help of a smartphone app, a highly sensitive and selective point-of-care testing for DPA direct detection can be realized. Our study warrants the importance of thinking twice about characterization results and supports corrective models for finding new reactions and possible applications.
Collapse
Affiliation(s)
- Yuan Tong
- School of Biomedical Engineering, Shenzhen Key Laboratory for Nano-Biosensing Technology, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Yanping Sun
- School of Biomedical Engineering, Shenzhen Key Laboratory for Nano-Biosensing Technology, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Yelan Xiao
- School of Biomedical Engineering, Shenzhen Key Laboratory for Nano-Biosensing Technology, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Yue Zou
- Lab of Protonic Ceramic Fuel Cells, School of Resource Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Jingyang Guan
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100871, China
| | - Xueji Zhang
- School of Biomedical Engineering, Shenzhen Key Laboratory for Nano-Biosensing Technology, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Tong Shu
- School of Biomedical Engineering, Shenzhen Key Laboratory for Nano-Biosensing Technology, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
2
|
Saa L, Núñez-Martínez M, Carpintero-Cueto E, Cortajarena AL. Biomolecular ligands as tools to modulate the optical and chiroptical properties of gold nanoclusters. NANOSCALE 2025; 17:3671-3687. [PMID: 39749401 DOI: 10.1039/d4nr04267k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Biomolecule-stabilized gold nanoclusters (AuNCs) have become functional nanomaterials of interest because of their unique optical properties, together with excellent biocompatibility and stability under biological conditions. In this review, we explore the recent advancements in the application of biomolecular ligands for synthesizing AuNCs. Various synthesis approaches that are employing amino acids, peptides, proteins, and DNA as biomolecular scaffolds are reviewed. Furthermore, the influence of the synthesis conditions and nature of the biomolecule on the emerging optical (absorption and photoluminescence) and chiroptical properties of AuNCs is discussed. Finally, the latest research on the applications of biomolecule-stabilized AuNCs for biosensing, bioimaging, and theranostics is presented.
Collapse
Affiliation(s)
- Laura Saa
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, 20014, Spain.
| | - Manuel Núñez-Martínez
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, 20014, Spain.
| | - Eva Carpintero-Cueto
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, 20014, Spain.
- University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Aitziber L Cortajarena
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, 20014, Spain.
- Ikerbasque. Basque Foundation for Science, Bilbao, 48009, Spain
| |
Collapse
|
3
|
Li S, Ge W, Huang X, Du H, Wang F. Synergistic Intramolecular Charge Transfer Promotes Au Nanoclusters with Enhanced NIR-II Photoluminescence. J Phys Chem Lett 2025; 16:1221-1228. [PMID: 39868473 DOI: 10.1021/acs.jpclett.4c03410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Gold nanoclusters (Au NCs) protected by molecular ligands represent a new class of second-generation near-infrared (NIR-II) luminescent materials that have been widely studied. However, the photoluminescence efficiencies of most NIR-II emitting Au NCs in aqueous solution are generally lower than 0.2%, and to fully exploit the advantages of AuNCs in the NIR-II region, improving their photoluminescence efficiency has become an urgent need. Considering the holistic nature of the core-shell structure of Au NCs, herein, we propose a synergistic intramolecular charge transfer (ICT) strategy to enhance the luminescence. The NIR-II fluorescence quantum yield of Au NCs was increased 6-fold to 5.59% by the synergistic effect of heteroatomic copper doping and ligand p-MBA deprotonation. Experimental characterization results show that the strong p-π conjugation between d10 metal and the deprotonated p-MBA enhances the charge transfer between the metal core and ligand. The synergistic ICT process strongly suppressed the nonradiative process, thereby enhancing the emission intensity. Our findings provide a facile method for understanding the integrity of the core-shell structure of Au NCs and regulating their photoluminescence properties.
Collapse
Affiliation(s)
- Shuxian Li
- School of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, P.R. China
| | - Wei Ge
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Xiaoyu Huang
- Department of Cardiology, Huadong Hospital Affiliated to Fudan University, Shanghai 200240, P.R. China
| | - Hong Du
- School of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, P.R. China
- Xinjiang Key Laboratory of Energy Storage and Photoelectrocatalytic Materials, Urumqi 830054, P.R. China
| | - Fu Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| |
Collapse
|
4
|
Huang KY, Chen YY, Wang WL, Sun WM, Lin Z, Yao Q, Chen W, Xie J, Deng HH. The Hidden Mechanism: Excited-State Proton-Electron Pair Transfer in Metal Nanocluster Emission. Angew Chem Int Ed Engl 2025; 64:e202418560. [PMID: 39479989 DOI: 10.1002/anie.202418560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 10/21/2024] [Indexed: 11/02/2024]
Abstract
Comprehending the underlying factors that govern photoluminescence (PL) in metal nanoclusters (NCs) under physiological conditions remains a highly intriguing and unresolved challenge, particularly for their biomedical applications. In this study, we evaluate the critical role of excited-state proton-coupled electron transfer in the emission of metal NCs. Our findings demonstrate that hydronium ion (H3O+) binding can trigger a nonlinear, pH-dependent excited-state concerted electron proton transfer (CEPT) reaction. This involves simultaneous electron transfer from the Au(0) core to the Au(I)-ATT (ATT denotes 6-aza-2-thiothymidine) surface and proton transfer from H3O+ to the ATT ligand in a single step, greatly promoting vibrations and rotations of the Au(I)-ATT surface, resulting in substantial PL quenching of Au10(ATT)6 NCs. Further analyses show that the unique CEPT dynamics are strongly influenced by the opposing effects of increased reorganization energy and a larger pre-exponential factor on the electron transfer rate. Moreover, the proposed excited-state CEPT process is found to be prevalent in core-shell relaxation metal NCs, such as Au25(SR)18 (SR denotes thiolate) NCs, and serves as an important factor in limiting their PL emission. By simply controlling the pKa of the ligands, the emission performance of Au25(SR)18 can be easily regulated in physiological environments.
Collapse
Affiliation(s)
- Kai-Yuan Huang
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou, 350004, China
| | - Yan-Yan Chen
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou, 350004, China
| | - Wen-Lu Wang
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou, 350004, China
| | - Wei-Ming Sun
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou, 350004, China
| | - Zhen Lin
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou, 350004, China
| | - Qiaofeng Yao
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Key Laboratory of Organic Integrated Circuits, Ministry of Education, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Wei Chen
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou, 350004, China
| | - Jianping Xie
- Department of Chemical and Biomolecular Engineering, Natinal University of Singapore, Singapore, 117585, Singapore
| | - Hao-Hua Deng
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou, 350004, China
| |
Collapse
|
5
|
Madhu M, Tsai MY, Hsieh MM, Lin EY, Tseng WB, Lu CY, Tseng WL. Thiol-linked hyaluronic acid-mediated encapsulation of RCR-stabilized gold nanoclusters for hyaluronidase sensing and cellular imaging. Carbohydr Polym 2025; 349:123038. [PMID: 39638499 DOI: 10.1016/j.carbpol.2024.123038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/05/2024] [Accepted: 11/16/2024] [Indexed: 12/07/2024]
Abstract
Encapsulating peptide-stabilized gold nanoclusters (AuNCs) with thiolated hyaluronic acid (HA-SH) and selectively adding cysteine to the peptide sequence increased their photoluminescence. We found that peptide compositions with cysteine in the middle emitted the most. RCR-stabilized AuNCs can be purified using size-exclusion chromatography to characterize their optical characteristics, chemical composition, and possible structure. Our findings show that RCR-stabilized AuNCs have a unique chemical structure, microsecond photoluminescence lifetime, good quantum yield, and near-infrared emission peak. Due to Au-S bonding and electrostatic interactions, RCR-stabilized AuNCs were encapsulated with HA-SH to create nanocomposites. HA-SH-AuNCs had a longer emission peak, greater particle size, and better photostability than RCR-stabilized AuNCs. HAase break down HA in HA-SH-AuNCs, changing their structure and size. Thus, centrifugation makes it easier to separate HA-SH-AuNCs from HAase-digested ones. Similar to earlier sensors, HA-SH-AuNCs have great sensitivity and selectivity for HAase, with a linear range of 0.5-6.0 U/mL and a detection limit of 0.39 U/mL. They were useful for urine HAase determination, with spike recovery of 103 % to 107 %. HA-SH-AuNCs further served as a platform for targeted imaging of CD44 receptor-expressing cancer cells, demonstrating bioimaging and clinical diagnostic potential.
Collapse
Affiliation(s)
- Manivannan Madhu
- Department of Chemistry, National Sun Yat-Sen University, No. 70 Lienhai Rd., Kaohsiung 80424, Taiwan
| | - Meng-Yuan Tsai
- Department of Chemistry, National Sun Yat-Sen University, No. 70 Lienhai Rd., Kaohsiung 80424, Taiwan
| | - Ming-Mu Hsieh
- Department of Chemistry, National Kaohsiung Normal University, No.62, Shenjhong Rd., Yanchao District, Kaohsiung City 82446, Taiwan
| | - En-Yu Lin
- Department of Chemistry, National Sun Yat-Sen University, No. 70 Lienhai Rd., Kaohsiung 80424, Taiwan
| | - Wei-Bin Tseng
- Department of Chemistry, National Sun Yat-Sen University, No. 70 Lienhai Rd., Kaohsiung 80424, Taiwan; Department of Environmental Engineering, Da-Yeh University, No.168, University Road, Dacun, Changhua 515006, Taiwan
| | - Chi-Yu Lu
- School of Pharmacy, Kaohsiung Medical University, No. 100, Shiquan 1st Road, Sanmin District, Kaohsiung 80708, Taiwan
| | - Wei-Lung Tseng
- Department of Chemistry, National Sun Yat-Sen University, No. 70 Lienhai Rd., Kaohsiung 80424, Taiwan; School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, No.100, Shiquan 1st Rd., 80708 Kaohsiung, Taiwan.
| |
Collapse
|
6
|
Cheng Z, Wang T, Luo M, Wu S, Hua S, Li Y, Yang Y, Zou L, Wei J, Li P. A new luminescent nickel nanocluster with solvent and ion induced emission enhancement toward heavy metal analysis. Biosens Bioelectron 2024; 264:116660. [PMID: 39142230 DOI: 10.1016/j.bios.2024.116660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/20/2024] [Accepted: 08/08/2024] [Indexed: 08/16/2024]
Abstract
Expanding the family of fluorescent metal clusters beyond gold, silver, and copper has always been an issue for researchers to solve. In this study, a novel type of cysteine-capped nickel nanoclusters (Cys-Ni NCs) with bright turquoise emission was developed. The as-synthesized Ni NCs showed aggregation-induced emission enhancement (AIEE) properties across Cd2+ and various polar organic solvents. Concurrently, solvents with different viscosities were used to explore the principle of solvent-induced AIEE of Cys-Ni NCs, revealing a positive correlation between fluorescence intensity and solution viscosity. In addition, the concentration of Cd2+ that induced the AIEE effect was reduced by nearly two orders of magnitude in highly viscous solvents, indicating the possibility of Cys-Ni NCs as a promising nanomaterial platform for Cd2+ sensing analysis. Moreover, we propose a novel fluorescent sensing method for rapid detection of Cu2+ based on the carboxyl group of Cys-Ni NCs coupling with Cu2+. Further, validation of Cu2+ detecting methodologies in environmental water samples with the accuracy up to 93.94% underscores their potential as robust and efficient sensing platforms. This study expands the repertoire of fluorescent metal nanoclusters for highly sensitive and selective sensing of hazardous ions and paves the way for further exploration and wide applications in Cu2+ detection in biological and medicine fields.
Collapse
Affiliation(s)
- Zehua Cheng
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China; School of Pharmaceutical Sciences, Liaoning University, Shenyang, Liaoning 110036, China
| | - Ting Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Mai Luo
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Sijia Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Shiyao Hua
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Yuqing Li
- Institute of Functional Nano & Soft Materials Laboratory (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| | - Yu Yang
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Liang Zou
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Jinchao Wei
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China.
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China.
| |
Collapse
|
7
|
Tiwari V, Bhattacharyya A, Karmakar T. A molecular dynamics study on the ion-mediated self-assembly of monolayer-protected nanoclusters. NANOSCALE 2024; 16:15141-15147. [PMID: 39081010 DOI: 10.1039/d4nr02427c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
We studied the effects of metal and molecular cations on the aggregation of atomically precise monolayer-protected nanoclusters (MPCs) in an explicit solvent using atomistic molecular dynamics simulations. While divalent cations such as Zn2+ and Cd2+ promote aggregation by forming ligand-cation-ligand bridges between the MPCs, molecular cations such as tetraethylammonium and cholinium inhibit their aggregation by getting adsorbed into the MPC's ligand shell and reducing the ligand's motion. Here, we studied the aggregation of Au25(SR)18 nanoclusters with two types of ligands, para-mercaptobenzoic acid and D-penicillamine, as prototypical examples.
Collapse
Affiliation(s)
- Vikas Tiwari
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India.
| | - Anushna Bhattacharyya
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India.
| | - Tarak Karmakar
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
8
|
Qiao L, Fu Z, Li B, Liu Z, Cai L, Pan Y, Ran X, He Y, Wu W, Chi Z, Liu R, Guo L. Heteroatom Doping Promoted Ultrabright and Ultrastable Photoluminescence of Water-Soluble Au/Ag Nanoclusters for Visual and Efficient Drug Delivery to Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:34510-34523. [PMID: 38946393 DOI: 10.1021/acsami.4c04303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Photoluminescence (PL) metal nanoclusters (NCs) have attracted extensive attention due to their excellent physicochemical properties, good biocompatibility, and broad application prospects. However, developing water-soluble PL metal NCs with a high quantum yield (QY) and high stability for visual drug delivery remains a great challenge. Herein, we have synthesized ultrabright l-Arg-ATT-Au/Ag NCs (Au/Ag NCs) with a PL QY as high as 73% and excellent photostability by heteroatom doping and surface rigidization in aqueous solution. The as-prepared Au/Ag NCs can maintain a high QY of over 61% in a wide pH range and various ionic environments as well as a respectable resistance to photobleaching. The results from structure characterization and steady-state and time-resolved spectroscopic analysis reveal that Ag doping into Au NCs not only effectively modifies the electronic structure and photostability but also significantly regulates the interfacial dynamics of the excited states and enhances the PL QY of Au/Ag NCs. Studies in vitro indicate Au/Ag NCs have a high loading capacity and pH-triggered release ability of doxorubicin (DOX) that can be visualized from the quenching and recovery of PL intensity and lifetime. Imaging-guided experiments in cancer cells show that DOX of Au/Ag NCs-DOX agents can be efficiently delivered and released in the nucleus with preferential accumulation in the nucleolus, facilitating deep insight into the drug action sites and pharmacological mechanisms. Moreover, the evaluation of anticancer activity in vivo reveals an outstanding suppression rate of 90.2% for mice tumors. These findings demonstrate Au/Ag NCs to be a superior platform for bioimaging and visual drug delivery in biomedical applications.
Collapse
Affiliation(s)
- Lulu Qiao
- Academy for Advanced Interdisciplinary Studies, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Physics and Electronics, Henan University, Kaifeng 475004, China
| | - Zhijie Fu
- School of Physics and Electronics, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Henan University, Kaifeng 475004, China
| | - Bingbing Li
- Academy for Advanced Interdisciplinary Studies, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Physics and Electronics, Henan University, Kaifeng 475004, China
| | - Zhanpeng Liu
- Academy for Advanced Interdisciplinary Studies, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Physics and Electronics, Henan University, Kaifeng 475004, China
| | - Lin Cai
- School of Physics and Electronics, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Henan University, Kaifeng 475004, China
| | - Yatao Pan
- Academy for Advanced Interdisciplinary Studies, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Physics and Electronics, Henan University, Kaifeng 475004, China
| | - Xia Ran
- Academy for Advanced Interdisciplinary Studies, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Physics and Electronics, Henan University, Kaifeng 475004, China
| | - Yulu He
- School of Physics and Electronics, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Henan University, Kaifeng 475004, China
| | - Wenqiang Wu
- Academy for Advanced Interdisciplinary Studies, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Physics and Electronics, Henan University, Kaifeng 475004, China
| | - Zhen Chi
- School of Physics and Electronics, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Henan University, Kaifeng 475004, China
| | - Renming Liu
- School of Physics and Electronics, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Henan University, Kaifeng 475004, China
| | - Lijun Guo
- Academy for Advanced Interdisciplinary Studies, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Physics and Electronics, Henan University, Kaifeng 475004, China
- School of Physics and Electronics, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Henan University, Kaifeng 475004, China
| |
Collapse
|
9
|
Qi L, Xiao Y, Fu X, Yang H, Fang L, Xu R, Ping J, Han D, Jiang Y, Fang X. Monodispersed and Monofunctionalized DNA-Caged Au Nano-Clusters with Enhanced Optical Properties for STED Imaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400238. [PMID: 38385800 DOI: 10.1002/smll.202400238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Indexed: 02/23/2024]
Abstract
The performance of Stimulated Emission Depletion (STED) microscopy depends critically on the fluorescent probe. Ultrasmall Au nanoclusters (Au NCs) exhibit large Stokes shift, and good stimulated emission response, which are potentially useful for STED imaging. However, Au NCs are polydispersed in size, sensitive to the surrounding environment, and difficult to control surface functional group stoichiometry, which results in reduced density and high heterogeneity in the labeling of biological structures. Here, this limitation is overcome by developing a method to encapsulate ultrasmall Au NCs with DNA cages, which yielded monodispersed, and monofunctionalized Au NCs that are long-term stable. Moreover, the DNA-caging also greatly improved the fluorescence quantum yield and photostability of Au NCs. In STED imaging, the DNA-caged Au NCs yielded ≈40 nm spatial resolution and are able to resolve microtubule line shapes with good labeling density and homogeneity. In contrast, without caging, the Au NCs-DNA conjugates only achieved ≈55 nm resolution and yielded spotted, poorly resolved microtubule structures, due to the presence of aggregates. Overall, a method is developed to achieve precise surface functionalization and greatly improve the monodispersity, stability, as well as optical properties of Au NCs, providing a promising class of fluorescent probes for STED imaging.
Collapse
Affiliation(s)
- Liqing Qi
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences Hangzhou, Hanghzou, 310022, China
| | - Yating Xiao
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences Hangzhou, Hanghzou, 310022, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310024, China
| | - Xiaoyi Fu
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences Hangzhou, Hanghzou, 310022, China
| | - Hongwei Yang
- Institute of Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Le Fang
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences Hangzhou, Hanghzou, 310022, China
| | - Rui Xu
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiantao Ping
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Da Han
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences Hangzhou, Hanghzou, 310022, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310024, China
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yifei Jiang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences Hangzhou, Hanghzou, 310022, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310024, China
| | - Xiaohong Fang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences Hangzhou, Hanghzou, 310022, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310024, China
- Institute of Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
10
|
Madhu M, Tseng WB, Chou YS, Krishna Kumar AS, Lu CY, Chang PL, Tseng WL. Peptide-Directed Synthesis of Aggregation-Induced Emission Enhancement-Active Gold Nanoclusters for Single- and Two-Photon Imaging of Lysosome and Expressed α vβ 3 Integrin Receptors. Anal Chem 2024; 96:9007-9015. [PMID: 38778775 PMCID: PMC11154667 DOI: 10.1021/acs.analchem.4c00321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
This study explores the synthesis and characterization of aggregation-induced emission enhancement (AIEE)-active gold nanoclusters (AuNCs), focusing on their near-infrared luminescence properties and potential applications in biological imaging. These AIEE-active AuNCs were synthesized via the NaBH4-mediated reduction of HAuCl4 in the presence of peptides. We systematically investigated the influence of the peptide sequence on the optical features of the AuNCs, highlighting the role of glutamic acid in enhancing their quantum yield (QY). Among the synthesized peptide-stabilized AuNCs, EECEE-stabilized AuNCs exhibited the maximum QY and a pronounced AIEE effect at pH 5.0, making them suitable for the luminescence imaging of intracellular lysosomes. The AIEE characteristic of the EECEE-stabilized AuNCs was demonstrated through examinations using transmission electron microscopy, dynamic light scattering, zeta potential analysis, and single-particle imaging. The formation of the EECEE-stabilized AuNCs was confirmed by size-exclusion chromatography and mass spectrometry. Spectroscopic and electrochemical examinations uncover the formation process of EECEE-stabilized AuNCs, comprising EECEE-mediated reduction, NaBH4-induced nucleation, complex aggregation, and subsequent cluster growth. Furthermore, we demonstrated the utility of these AuNCs as luminescent probes for intracellular lysosomal imaging, leveraging their pH-responsive AIEE behavior. Additionally, cyclic arginylglycylaspartic acid (RGD)-modified AIEE dots, derived from cyclic RGD-linked peptide-induced aggregation of EECEE-stabilized AuNCs, were developed for single- and two-photon luminescence imaging of αvβ3 integrin receptor-positive cancer cells.
Collapse
Affiliation(s)
- Manivannan Madhu
- Department
of Chemistry, National Sun Yat-sen University, No. 70 Lienhai Rd., Kaohsiung 80424, Taiwan
| | - Wei-Bin Tseng
- Department
of Chemistry, National Sun Yat-sen University, No. 70 Lienhai Rd., Kaohsiung 80424, Taiwan
- Department
of Environmental Engineering, Da-Yeh University. No. 168, University Road, Dacun, Changhua 515006, Taiwan
| | - Yi-Shiuan Chou
- Department
of Chemistry, National Sun Yat-sen University, No. 70 Lienhai Rd., Kaohsiung 80424, Taiwan
| | - A. Santhana Krishna Kumar
- Department
of Chemistry, National Sun Yat-sen University, No. 70 Lienhai Rd., Kaohsiung 80424, Taiwan
- Faculty
of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow City, Poland
| | - Chi-Yu Lu
- School
of Pharmacy, Kaohsiung Medical University, No. 100, Shiquan first Road, Sanmin
District, Kaohsiung 80708, Taiwan
| | - Po-Ling Chang
- Department
of Chemistry, National Sun Yat-sen University, No. 70 Lienhai Rd., Kaohsiung 80424, Taiwan
| | - Wei-Lung Tseng
- Department
of Chemistry, National Sun Yat-sen University, No. 70 Lienhai Rd., Kaohsiung 80424, Taiwan
- School
of Pharmacy, College of Pharmacy, Kaohsiung
Medical University, No.
100, Shiquan first Rd., 80708 Kaohsiung, Taiwan
| |
Collapse
|
11
|
Nakum R, Ghosh AK, Ranjan Jali B, Sahoo SK. Fluorescent ovalbumin-functionalized gold nanocluster as a highly sensitive and selective sensor for relay detection of salicylaldehyde, Hg(II) and folic acid. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 313:124143. [PMID: 38471309 DOI: 10.1016/j.saa.2024.124143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 03/14/2024]
Abstract
A sensitive and selective relay-based scheme for the detection of salicylaldehyde, Hg2+, and folic acid (FA) has been demonstrated using fluorescent ovalbumin functionalized gold nanoclusters (OVA-AuNCs, λem = 655 nm) in this article. The OVA-AuNCs were conjugated to salicylaldehyde via an imine linkage to form Salic_OVA-AuNCs conjugate. The molecular docking study reveals that multiple functional groups and amino acid residues are involved in the interaction between salicylaldehyde and the OVA-AuNCs. The coupling of salicylaldehyde with OVA-AuNCs results in fluorescence quenching at 655 nm and concomitant formation of an emission band at 500 nm, which have leveraged to detect salicylaldehyde down to 2.02 µM. Following that, the Salic_OVA-AuNCs has been used for the detection of Hg2+ and FA. Several processes, such as internal charge transfer (ICT), photoinduced electron transfer (PET) and metallophilic interactions, are involved between the Salic_OVA-AuNCs nanoprobe and the analytes, which allowed to detect Hg2+ and FA down to 0.13 nM and 0.11 nM, respectively. The Salic_OVA-AuNCs nanoprobe has an additional naked-eye utility when applied to paper-strip sensing strategy for Hg2+ and FA detection.
Collapse
Affiliation(s)
- Rajanee Nakum
- Department of Chemistry, Sardar Vallabhbhai National Institute Technology, Surat 395007, Gujarat, India
| | - Arup K Ghosh
- Department of Chemistry, Sardar Vallabhbhai National Institute Technology, Surat 395007, Gujarat, India
| | - Bigyan Ranjan Jali
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha, India
| | - Suban K Sahoo
- Department of Chemistry, Sardar Vallabhbhai National Institute Technology, Surat 395007, Gujarat, India.
| |
Collapse
|
12
|
Elishav O, Blumer O, Vanderlick TK, Hirshberg B. The effect of ligands on the size distribution of copper nanoclusters: Insights from molecular dynamics simulations. J Chem Phys 2024; 160:164301. [PMID: 38647299 DOI: 10.1063/5.0202432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/07/2024] [Indexed: 04/25/2024] Open
Abstract
Controlling the size distribution in the nucleation of copper particles is crucial for achieving nanocrystals with desired physical and chemical properties. However, their synthesis involves a complex system of solvents, ligands, and copper precursors with intertwining effects on the size of the nanoclusters. We combine molecular dynamics simulations and density functional theory calculations to provide insights into the nucleation mechanism in the presence of a triphenyl phosphite ligand. We identify the crucial role of the strength of the metal-phosphine interaction in inhibiting the cluster's growth. We demonstrate computationally several practical routes to fine-tune the interaction strength by modifying the side groups of the additive. Our work provides molecular insights into the complex nucleation process of protected copper nanocrystals, which can assist in controlling their size distribution and, eventually, their morphology.
Collapse
Affiliation(s)
- Oren Elishav
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, USA
- School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ofir Blumer
- School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
| | - T Kyle Vanderlick
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, USA
| | - Barak Hirshberg
- School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
- The Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 6997801, Israel
- The Ratner Center for Single Molecule Science, Tel Aviv University, Tel Aviv 6997801, Israel
- The Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
13
|
Shen H, Xu J, Fu Z, Wei X, Kang X, Shi W, Zhu M. Photoluminescence Quenching of Hydrophobic Ag 29 Nanoclusters Caused by Molecular Decoupling during Aqueous Phase Transfer and EmissionRecovery through Supramolecular Recoupling. Angew Chem Int Ed Engl 2024; 63:e202317995. [PMID: 38191987 DOI: 10.1002/anie.202317995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/10/2024]
Abstract
Exploiting emissive hydrophobic nanoclusters for hydrophilic applications remains a challenge because of photoluminescence (PL) quenching during phase transfer. In addition, the mechanism underlying PL quenching remains unclear. In this study, the PL-quenching mechanism was examined by analyzing the atomically precise structures and optical properties of a surface-engineered Ag29 nanocluster with an all-around-carboxyl-functionalized surface. Specifically, phase-transfer-triggered PL quenching was justified as molecular decoupling, which directed an unfixed cluster surface and weakened the radiative transition. Furthermore, emission recovery of the quenched nanoclusters was accomplished by using a supramolecular recoupling approach through the glutathione-addition-induced aggregation of cluster molecules, wherein the restriction of intracluster motion and intercluster rotation strengthened the radiative transition of the clusters. The results of this work offer a new perspective on structure-emission correlations for atomically precise nanoclusters and hopefully provide insight into the fabrication of highly emissive cluster-based nanomaterials for downstream hydrophilic applications.
Collapse
Affiliation(s)
- Honglei Shen
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Jiawei Xu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Ziwei Fu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Xiao Wei
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Xi Kang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Wenxiong Shi
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Anhui University, Hefei, Anhui, 230601, P. R. China
| |
Collapse
|
14
|
Havenridge S, Aikens CM. Understanding the Ligand-Dependent Photoluminescent Mechanism in Small Alkynyl-Protected Gold Nanoclusters. J Phys Chem A 2023; 127:9932-9943. [PMID: 37966050 DOI: 10.1021/acs.jpca.3c04644] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Alkynyl-protected gold clusters have recently gained attention because they are more structurally versatile than their thiolate-protected counterparts. Despite their flexibility, however, a higher photoluminescent quantum yield (PLQY) has been observed experimentally compared to that of organically soluble thiolate-protected clusters. Previous experiments have shown that changing the organic ligand, or R group, in these clusters does not affect the geometric or electronic properties of the core, leading to a similar absorption profile. This article serves as a follow-up to those experiments in which the geometric, optical, and photoluminescent (PL) properties of Au22(ETP)18 are pieced together to find the photoluminescence mechanism. These properties are then compared between Au22(C≡CR)18 clusters where the ligand is changed from R = ETP to PA and ET (ETP = 3-ethynylthiophene, PA = phenylacetylene, and ET = 3-ethynyltoluene). As the theoretical results do not reproduce the same absorption profile among the different ligands as in the experiment, this article also presents a supplementary benchmark of the geometric and optical properties among the three ligands for different levels of theory. The calculations show that the photoluminescence mechanism with the ETP ligand results in ligand-to-metal-to-metal charge transfer (LMMCT), while PA and ET are likely a result of core-dominated fluorescence. The changes are the result of the Au(I) ring atoms as well as how the aromatic groups are connected to the cluster. Additionally, dispersion, solvent, and polarization functions are all important to creating an accurate chemical environment, but the most useful tool in these calculations is the use of a long-range-corrected exchange-correlation functional.
Collapse
Affiliation(s)
- Shana Havenridge
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66502, United States
| | - Christine M Aikens
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66502, United States
| |
Collapse
|
15
|
Santhoshkumar S, Madhu M, Tseng WB, Tseng WL. Gold nanocluster-based fluorescent sensors for in vitro and in vivo ratiometric imaging of biomolecules. Phys Chem Chem Phys 2023; 25:21787-21801. [PMID: 37577965 DOI: 10.1039/d3cp02714g] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Gold nanoclusters (AuNCs) are promising nanomaterials for ratiometric fluorescent probes due to their tunable fluorescence wavelengths dependent on size and structure, as well as their biocompatibility and resistance to photobleaching. By incorporating an additional fluorescence spectral peak, dual-emission AuNC-based fluorescent probes have been developed to enhance the signal output reproducibility. These probes can be fabricated by integrating various luminescent nanomaterials with AuNCs. This review focuses on the preparation methods and applications of ratiometric fluorescent probes derived from AuNCs and other fluorescent nanomaterials or fluorescent dyes for both in vitro and in vivo bioimaging of target analytes. Additionally, the review delves into the sensing mechanisms of AuNC-based ratiometric probes, their synthetic strategies, and the challenges encountered when using AuNCs for ratiometric bioimaging. Moreover, we explore the application of protein-stabilized AuNCs and thiolate-capped AuNC-based ratiometric fluorescent probes for biosensing and bioimaging. Two primary methods for assembling AuNCs and fluorophores into ratiometric fluorescent probes are discussed: triggered assembly and self-assembly. Finally, we address the challenges and issues associated with ratiometric bioimaging using AuNCs and propose future directions for further advancing AuNCs as ratiometric imaging agents.
Collapse
Affiliation(s)
- S Santhoshkumar
- Department of Chemistry, National Sun Yat-sen University, No. 70, Lien-hai Road, Gushan District, Kaohsiung 80424, Taiwan.
| | - Manivannan Madhu
- Department of Chemistry, National Sun Yat-sen University, No. 70, Lien-hai Road, Gushan District, Kaohsiung 80424, Taiwan.
| | - Wei-Bin Tseng
- Department of Chemistry, National Sun Yat-sen University, No. 70, Lien-hai Road, Gushan District, Kaohsiung 80424, Taiwan.
- Department of Environmental Engineering, Da-Yeh University, No. 168, University Rd., Dacun, Changhua 515006, Taiwan.
| | - Wei-Lung Tseng
- Department of Chemistry, National Sun Yat-sen University, No. 70, Lien-hai Road, Gushan District, Kaohsiung 80424, Taiwan.
- School of Pharmacy, Kaohsiung Medical University, No. 100, Shiquan 1st Road, Sanmin District, Kaohsiung 80708, Taiwan
| |
Collapse
|
16
|
Tan SCL, He Z, Wang G, Yu Y, Yang L. Protein-Templated Metal Nanoclusters: Molecular-like Hybrids for Biosensing, Diagnostics and Pharmaceutics. Molecules 2023; 28:5531. [PMID: 37513403 PMCID: PMC10383052 DOI: 10.3390/molecules28145531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
The use of proteins as biomolecular templates to synthesize atomically precise metal nanoclusters has been gaining traction due to their appealing properties such as photoluminescence, good colloidal- and photostability and biocompatibility. The synergistic effect of using a protein scaffold and metal nanoclusters makes it especially attractive for biomedical applications. Unlike other reviews, we focus on proteins in general as the protective ligand for various metal nanoclusters and highlight their applications in the biomedical field. We first introduce the approaches and underlined principles in synthesizing protein-templated metal nanoclusters and summarize some of the typical proteins that have been used thus far. Afterwards, we highlight the key physicochemical properties and the characterization techniques commonly used for the size, structure and optical properties of protein-templated metal nanoclusters. We feature two case studies to illustrate the importance of combining these characterization techniques to elucidate the formation process of protein-templated metal nanoclusters. Lastly, we highlight the promising applications of protein-templated metal nanoclusters in three areas-biosensing, diagnostics and therapeutics.
Collapse
Affiliation(s)
- Sherwin Chong Li Tan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Zhijian He
- Department of Materials Science and Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore
| | - Guan Wang
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Yong Yu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Le Yang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
- Department of Materials Science and Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore
| |
Collapse
|
17
|
Tiwari V, Karmakar T. Understanding Molecular Aggregation of Ligand-Protected Atomically-Precise Metal Nanoclusters. J Phys Chem Lett 2023:6686-6694. [PMID: 37463483 DOI: 10.1021/acs.jpclett.3c01770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Monolayer-protected atomically precise nanoclusters (MPCs) are an important class of molecules due to their unique structural features and diverse applications, including bioimaging, sensors, and drug carriers. Understanding the atomistic and dynamical details of their self-assembly process is crucial for designing system-specific applications. Here, we applied molecular dynamics and on-the-fly probability-based enhanced sampling simulations to study the aggregation of Au25(pMBA)18 MPCs in aqueous and methanol solutions. The MPCs interact via both hydrogen bonds and π-stacks between the aromatic ligands to form stable dimers, oligomers, and crystals. The dimerization free energy profiles reveal a pivotal role of the ligand charged state and solvent mediating the molecular aggregation. Furthermore, MPCs' ligands exhibit suppressed conformational flexibility in the solid phase due to facile intercluster hydrogen bonds and π-stacks. Our work provides unprecedented molecular-level dynamical details of the aggregation process and conformational dynamics of MPCs ligands in solution and crystalline phases.
Collapse
Affiliation(s)
- Vikas Tiwari
- Department of Chemistry, Indian Institute of Technology, Delhi, 110016 New Delhi, India
| | - Tarak Karmakar
- Department of Chemistry, Indian Institute of Technology, Delhi, 110016 New Delhi, India
| |
Collapse
|
18
|
Lei Z, Zhao P, Pei XL, Ube H, Ehara M, Shionoya M. Photoluminescence control by atomically precise surface metallization of C-centered hexagold(i) clusters using N-heterocyclic carbenes. Chem Sci 2023; 14:6207-6215. [PMID: 37325149 PMCID: PMC10266449 DOI: 10.1039/d3sc01976d] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 04/28/2023] [Indexed: 06/17/2023] Open
Abstract
The properties of metal clusters are highly dependent on their molecular surface structure. The aim of this study is to precisely metallize and rationally control the photoluminescence properties of a carbon(C)-centered hexagold(i) cluster (CAuI6) using N-heterocyclic carbene (NHC) ligands with one pyridyl, or one or two picolyl pendants and a specific number of silver(i) ions at the cluster surface. The results suggest that the photoluminescence of the clusters depends highly on both the rigidity and coverage of the surface structure. In other words, the loss of structural rigidity significantly reduces the quantum yield (QY). The QY in CH2Cl2 is 0.04 for [(C)(AuI-BIPc)6AgI3(CH3CN)3](BF4)5 (BIPc = N-isopropyl-N'-2-picolylbenzimidazolylidene), a significant decrease from 0.86 for [(C)(AuI-BIPy)6AgI2](BF4)4 (BIPy = N-isopropyl-N'-2-pyridylbenzimidazolylidene). This is due to the lower structural rigidity of the ligand BIPc because it contains a methylene linker. Increasing the number of capping AgI ions, i.e., the coverage of the surface structure, increases the phosphorescence efficiency. The QY for [(C)(AuI-BIPc2)6AgI4(CH3CN)2](BF4)6 (BIPc2 = N,N'-di(2-pyridyl)benzimidazolylidene) recovers to 0.40, 10-times that of the cluster with BIPc. Further theoretical calculations confirm the roles of AgI and NHC in the electronic structures. This study reveals the atomic-level surface structure-property relationships of heterometallic clusters.
Collapse
Affiliation(s)
- Zhen Lei
- Department of Chemistry, Graduate School of Science, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Pei Zhao
- Research Center for Computational Science, Institute for Molecular Science Myodaiji Okazaki Aichi 444-8585 Japan
| | - Xiao-Li Pei
- Department of Chemistry, Graduate School of Science, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Hitoshi Ube
- Department of Chemistry, Graduate School of Science, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Masahiro Ehara
- Research Center for Computational Science, Institute for Molecular Science Myodaiji Okazaki Aichi 444-8585 Japan
| | - Mitsuhiko Shionoya
- Department of Chemistry, Graduate School of Science, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| |
Collapse
|
19
|
Sun X, Zhang X, Li F. Aggregation emission of AuNCs induced by chitosan self-assembled multilayers and sensitive sensing for water content in ethanol. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:837-842. [PMID: 36722892 DOI: 10.1039/d2ay01876d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
AuNCs with chemical groups such as -NH2 and -COOH were synthesized using glutathione as the stabilizer and reducing agent. The aggregation emission of AuNCs in solution-induced self-assembled multilayers (SAMs) were first studied. Scanning electron microscopy and quartz crystal microbalance were used to characterize the morphology and aggregation process of AuNCs. Further AuNC SAMs were used for the solid-liquid interface sensing of water content in ethanol, and the sensitivity is obviously improved as compared with that in the pure solution phase. This aggregation emission induced by SAMs would have a good application prospect in analysis.
Collapse
Affiliation(s)
- Xiangying Sun
- College of Materials Science and Engineering, Huaqiao University, No. 668 Jimei Avenue, Jimei District, Xiamen 361021, China.
- Key Laboratory of Molecular Designing and Green Conversions, Fujian University, China
| | - Xuefeng Zhang
- College of Materials Science and Engineering, Huaqiao University, No. 668 Jimei Avenue, Jimei District, Xiamen 361021, China.
- Key Laboratory of Molecular Designing and Green Conversions, Fujian University, China
| | - Fang Li
- College of Materials Science and Engineering, Huaqiao University, No. 668 Jimei Avenue, Jimei District, Xiamen 361021, China.
- Key Laboratory of Molecular Designing and Green Conversions, Fujian University, China
| |
Collapse
|
20
|
Zhong Y, Zhang J, Li T, Xu W, Yao Q, Lu M, Bai X, Wu Z, Xie J, Zhang Y. Suppression of kernel vibrations by layer-by-layer ligand engineering boosts photoluminescence efficiency of gold nanoclusters. Nat Commun 2023; 14:658. [PMID: 36746958 PMCID: PMC9902523 DOI: 10.1038/s41467-023-36387-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 01/24/2023] [Indexed: 02/08/2023] Open
Abstract
The restriction of structural vibration has assumed great importance in attaining bright emission of luminescent metal nanoclusters (NCs), where tremendous efforts are devoted to manipulating the surface landscape yet remain challenges for modulation of the structural vibration of the metal kernel. Here, we report efficient suppression of kernel vibration achieving enhancement in emission intensity, by rigidifying the surface of metal NCs and propagating as-developed strains into the metal core. Specifically, a layer-by-layer triple-ligands surface engineering is deployed to allow the solution-phase Au NCs with strong metal core-dictated fluorescence, up to the high absolute quantum yields of 90.3 ± 3.5%. The as-rigidified surface imposed by synergistic supramolecular interactions greatly influences the low-frequency acoustic vibration of the metal kernel, resulting in a subtle change in vibration frequency but a reduction in amplitude of oscillation. This scenario therewith impedes the non-radiative relaxation of electron dynamics, rendering the Au NCs with strong emission. The presented study exemplifies the linkage between surface chemistry and core-state emission of metal NCs, and proposes a strategy for brighter emitting metal NCs by regulating their interior metal core-involved motion.
Collapse
Affiliation(s)
- Yuan Zhong
- grid.64924.3d0000 0004 1760 5735State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012 P. R. China
| | - Jiangwei Zhang
- grid.411643.50000 0004 1761 0411Innovation Center of Energy Material and Chemistry; College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021 P. R. China
| | - Tingting Li
- grid.443314.50000 0001 0225 0773College of Materials Science and Engineering, Jilin Jianzhu University, Changchun, 130012 P. R. China
| | - Wenwu Xu
- grid.203507.30000 0000 8950 5267Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo, 315211 P. R. China
| | - Qiaofeng Yao
- grid.4280.e0000 0001 2180 6431Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207 P. R. China
| | - Min Lu
- grid.64924.3d0000 0004 1760 5735State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012 P. R. China
| | - Xue Bai
- grid.64924.3d0000 0004 1760 5735State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012 P. R. China
| | - Zhennan Wu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, P. R. China.
| | - Jianping Xie
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore.
| | - Yu Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, P. R. China.
| |
Collapse
|
21
|
Zanetti-Polzi L, Charchar P, Yarovsky I, Corni S. Origins of the pH-Responsive Photoluminescence of Peptide-Functionalized Au Nanoclusters. ACS NANO 2022; 16:20129-20140. [PMID: 36300936 DOI: 10.1021/acsnano.2c04335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Ultrasmall peptide-protected gold nanoclusters are a promising class of bioresponsive material exhibiting pH-sensitive photoluminescence. We present a theoretical insight into the effect peptide-ligand environment has on pH-responsive fluorescence, with the aim of enhancing the rational design of gold nanoclusters for bioapplications. Employing a hybrid quantum/classical computational methodology, we systematically calculate deprotonation free energies of N-terminal cysteine amine groups in proximity to the inherently fluorescent core of Au25(Peptide)18 nanoclusters. We find that subtle changes in hexapeptide sequence alter the electrostatic environment and significantly shift the conventional N-terminal amine pKa expected for amino acids free-in-solution. Our findings provide an insight into how the deprotonation equilibrium of N-terminal amine and side chain carboxyl groups cooperatively respond to solution pH changes, explaining the experimentally observed, yet elusive, pH-responsive fluorescence of peptide-functionalized Au25 clusters.
Collapse
Affiliation(s)
- Laura Zanetti-Polzi
- Istituto di Nanoscienze, Consiglio Nazionale delle Ricerche CNR-NANO, 41125Modena, Italy
| | | | - Irene Yarovsky
- School of Engineering, RMIT University, Victoria3001, Australia
| | - Stefano Corni
- Istituto di Nanoscienze, Consiglio Nazionale delle Ricerche CNR-NANO, 41125Modena, Italy
- Dipartimento di Scienze Chimiche, Università di Padova, 35131Padova, Italy
| |
Collapse
|
22
|
Fluorescence “turn-off–on” approach for the detection of niflumic acid and ammonium persulfate using 2,3-dialdehyde starch-cysteine-molybdenum nanoclusters as a nanosensor. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Akbarian M, Chen SH, Kianpour M, Farjadian F, Tayebi L, Uversky VN. A review on biofilms and the currently available antibiofilm approaches: Matrix-destabilizing hydrolases and anti-bacterial peptides as promising candidates for the food industries. Int J Biol Macromol 2022; 219:1163-1179. [PMID: 36058386 DOI: 10.1016/j.ijbiomac.2022.08.192] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/12/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022]
Abstract
Biofilms are communities of microorganisms that can be harmful and/or beneficial, depending on location and cell content. Since in most cases (such as the formation of biofilms in laboratory/medicinal equipment, water pipes, high humidity-placed structures, and the food packaging machinery) these bacterial and fungal communities are troublesome, researchers in various fields are trying to find a promising strategy to destroy or slow down their formation. In general, anti-biofilm strategies are divided into the plant-based and non-plant categories, with the latter including nanoparticles, bacteriophages, enzymes, surfactants, active peptides and free fatty acids. In most cases, using a single strategy will not be sufficient to eliminate biofilm, and consequently, two or more strategies will inevitably be used to deal with this unwanted phenomenon. According to the analysis of potential biofilm inhibition strategies, the best option for the food industry would be the use of hydrolase enzymes and peptides extracted from natural sources. This article represents a systematic review of the previous efforts made in these directions.
Collapse
Affiliation(s)
- Mohsen Akbarian
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan.
| | - Shu-Hui Chen
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Maryam Kianpour
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Fatemeh Farjadian
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Lobat Tayebi
- School of Dentistry, Marquette University, Milwaukee, WI, USA
| | - Vladimir N Uversky
- Department of Molecular Medicine and Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA; Laboratory of New Methods in Biology, Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Moscow region, Russia.
| |
Collapse
|
24
|
Li Y, Lu H, Qu Z, Li M, Zheng H, Gu P, Shi J, Li J, Li Q, Wang L, Chen J, Fan C, Shen J. Phase transferring luminescent gold nanoclusters via single-stranded DNA. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1238-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
25
|
Fan Y, Yu W, Liao Y, Jiang X, Wang Z, Cheng Z. Ratiometric detection of doxycycline in pharmaceutical based on dual ligands-enhanced copper nanoclusters. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120509. [PMID: 34688060 DOI: 10.1016/j.saa.2021.120509] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
A water-soluble, stable, simple and dual ligands (bovine serum albumin and L-histidine)-enhanced copper nanoclusters (BSA-CuNCs@L-His) was synthesized by one-step wet chemical method. Interestingly, the introduction of L-His ligand could improve evidently the quantum yields (QYs, 3.47%) and stability of BSA-CuNCs due to forming the stronger interaction of L-His and Cu and producing bigger diameter CuNCs by coordination-induced aggregation. Thus, a new ratiometric fluorescent probe (RF-probe) was successfully exploited for sensitively and selectively mensurating doxycycline (DOX) because DOX could simultaneously regulate the fluorescence (FL) intensities of BSA-CuNCs@L-His at 410 and 520 nm. The FL quenching of BSA-CuNCs@L-His at 410 nm by DOX was mainly originated from the static quenching process, while DOX could bind to Trp-212 in BSA from the skeleton of BSA-CuNCs@L-His by electrostatic interaction causing the appearance of new emission peak at 520 nm. The content of DOX was monitored by the RF-probe with a linear range of 0.05-14.0 μM and a LOD (limit of detection) and LOQ (limit of quantification) of 6.4 and 21.3 nM (at 3σ/slope and 10σ/slope). Moreover, compared to the standard HPLC method, the proposed RF-probe was extended to the detection of DOX in doxycycline hydrochloride (DOXH) tablets, DOXH injections and DOXH capsules with satisfactory results.
Collapse
Affiliation(s)
- Yucong Fan
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637002, China
| | - Weihua Yu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637002, China
| | - Yunwen Liao
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637002, China; Institute of Applied Chemistry, China West Normal University, Nanchong 637002, China
| | - Xiaohui Jiang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637002, China
| | - Zhonghua Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637002, China
| | - Zhengjun Cheng
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637002, China; Institute of Applied Chemistry, China West Normal University, Nanchong 637002, China.
| |
Collapse
|
26
|
Zhang X, Qiao J, Liu W, Qi L. l-Proline-methyl ester derivative-modulated synthesis of gold nanoclusters with promoted peroxidase-mimic activity for monitoring of ofloxacin. Analyst 2022; 147:3924-3929. [DOI: 10.1039/d2an01015a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ligands greatly affect the catalytic-properties of AuNCs-nanozymes in TMB oxidation. Adding ofloxacin enhanced the POD-mimic-activity of POMe@AuNCs upon greater ROS yield. A protocol was proposed for monitoring serum ofloxacin.
Collapse
Affiliation(s)
- Xinya Zhang
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, P. R. China
| | - Juan Qiao
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Wei Liu
- School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, P. R. China
| | - Li Qi
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|
27
|
Li Y, Zhai T, Chen J, Shi J, Wang L, Shen J, Liu X. Water-Dispersible Gold Nanoclusters: Synthesis Strategies, Optical Properties, and Biological Applications. Chemistry 2021; 28:e202103736. [PMID: 34854510 DOI: 10.1002/chem.202103736] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Indexed: 12/14/2022]
Abstract
Atomically precise gold nanoclusters (AuNCs) are an emerging class of quantum-sized nanomaterials. Intrinsic discrete electronic energy levels have endowed them with fascinating electronic and optical properties. They have been widely applied in the fields of optoelectronics, photovoltaics, catalysis, biochemical sensing, bio-imaging, and therapeutics. Nevertheless, most AuNCs are synthesized in organic solvents and do not disperse in aqueous solutions; this restricts their biological applications. In this review, we focus on the recent progress in the preparation of water-dispersible AuNCs and their biological applications. We first review different methods of synthesis, including direct synthesis from hydrophilic templates and indirect phase transfer of hydrophobic AuNCs. We then discuss their photophysical properties, such as emission enhancement and fluorescence lifetimes. Next, we summarize their latest applications in the fields of biosensing, biolabeling, and bioimaging. Finally, we outline the challenges and potential for the future development of these AuNCs.
Collapse
Affiliation(s)
- Yu Li
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Tingting Zhai
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jing Chen
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, P. R. China.,Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China
| | - Jiye Shi
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, P. R. China
| | - Lihua Wang
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China.,Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesSchool of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200127, P. R. China
| | - Jianlei Shen
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xiaoguo Liu
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
28
|
Mahendranath A, Mondal B, Sugi KS, Pradeep T. Direct imaging of lattice planes in atomically precise noble metal cluster crystals using a conventional transmission electron microscope. Chem Commun (Camb) 2021; 58:1906-1909. [PMID: 34842250 DOI: 10.1039/d1cc05643c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Imaging finer structural details of atomically precise noble metal cluster crystals has been difficult with electron microscopy, owing to their extreme beam sensitivity. Here we present a simple method whereby lattice planes in single crystals of nanoclusters can be observed using a conventional transmission electron microscope, enabling further expansion of cluster research.
Collapse
Affiliation(s)
- Ananthu Mahendranath
- DST Unit of Nanoscience and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India. .,Centre of Excellence on Molecular Materials and Functions, Indian Institute of Technology Madras, Chennai, 600036, India.,Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Biswajit Mondal
- DST Unit of Nanoscience and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India. .,Centre of Excellence on Molecular Materials and Functions, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Korath Shivan Sugi
- DST Unit of Nanoscience and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India. .,Centre of Excellence on Molecular Materials and Functions, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Thalappil Pradeep
- DST Unit of Nanoscience and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India. .,Centre of Excellence on Molecular Materials and Functions, Indian Institute of Technology Madras, Chennai, 600036, India
| |
Collapse
|
29
|
Cao J, Xie M, Gao X, Zhang Z, Wang J, Zhou W, Guan W, Lu C. Charge Neutralization Strategy to Construct Salt-Tolerant and Cell-Permeable Nanoprobes: Application in Ratiometric Sensing and Imaging of Intracellular pH. Anal Chem 2021; 93:15159-15166. [PMID: 34736318 DOI: 10.1021/acs.analchem.1c03629] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Intracellular pH homeostasis is essential for the survival and function of biological cells. Negatively charged molecular probes, such as pyranine (HPTS), tend to exhibit poor salt tolerance and unsatisfactory cell permeability, limiting their widespread use in intracellular assays. Herein, we explored a charge neutralization strategy using multicharged cationic nanocarriers for an efficient and stable assembly with the pH-sensitive HPTS. Through immobilization and neutralization with poly(allylamine hydrochloride)-stabilized red-emitting gold nanoclusters (PAH-AuNCs), the resulting nanoprobes (HPTS-PAH-AuNCs) offered improved salt tolerance, satisfactory cell permeability, and dual-emission properties. The fluorescence ratio exhibited a linear response over the pH range of 3.0-9.0. Moreover, the proposed HPTS-PAH-AuNCs were successfully applied to determine and visualize lysosomal pH variations in living cells, which indicated great potential for biosensing and bioimaging applications in living systems. Benefiting from the charge neutralization strategy, various types of probes can be expected to achieve broader analytical applications.
Collapse
Affiliation(s)
- Jiating Cao
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Meiting Xie
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Xinyu Gao
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Zhuoyong Zhang
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Jianguo Wang
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Wenjuan Zhou
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Weijiang Guan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chao Lu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
30
|
Cifuentes-Rius A, Deepagan VG, Xie J, Voelcker NH. Bright Future of Gold Nanoclusters in Theranostics. ACS APPLIED MATERIALS & INTERFACES 2021; 13:49581-49588. [PMID: 34636533 DOI: 10.1021/acsami.1c14275] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Quantum-sized gold nanoclusters (AuNCs) are emerging as theranostic agents-those that combine diagnostics and therapeutic properties-given their ultrasmall size <3 nm, which makes them behave more like a molecule rather than a nanoparticle. This molecule-like behavior endows AuNCs with interesting properties including photoluminescence, catalytic activity, and paramagnetism-all without the presence of any toxic heavy metal. But despite these fundamental advances, scalable synthetic approaches to produce high-quality AuNCs with well-controlled and programmable properties for biological applications as well as methods to determine their structure-property relationships are not widely available. In this Perspective, we will discuss what is known so far about AuNCs as well as how to move forward to propel AuNCs as a theranostic agent of choice for many biomedical applications.
Collapse
Affiliation(s)
- Anna Cifuentes-Rius
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville Campus, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Veerasikku Gopal Deepagan
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville Campus, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Jianping Xie
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585
| | - Nicolas H Voelcker
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville Campus, 381 Royal Parade, Parkville, Victoria 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, Victoria 3168, Australia
| |
Collapse
|
31
|
Xu J, Li J, Zhong W, Wen M, Sukhorukov G, Shang L. The density of surface ligands regulates the luminescence of thiolated gold nanoclusters and their metal ion response. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.02.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
32
|
|
33
|
Wong XY, Quesada-González D, Manickam S, Muthoosamy K. Fluorescence "turn-off/turn-on" biosensing of metal ions by gold nanoclusters, folic acid and reduced graphene oxide. Anal Chim Acta 2021; 1175:338745. [PMID: 34330444 DOI: 10.1016/j.aca.2021.338745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/30/2021] [Accepted: 06/05/2021] [Indexed: 10/21/2022]
Abstract
Metal ions homeostasis plays an important role in biological processes. The ability to detect the concentration of metal ions in biological fluids is often challenged by the obvious interference or competitive binding nature of other alkaline metals ions. Common analytical techniques employed for metal ions detection are electrochemical, fluorescence and colorimetric methods. However, most reported metal ions sensors are complicated, time-consuming and involve costly procedures with limited effectiveness. Herein, a nanobiosensor for detecting sodium and potassium ions using folic acid-functionalised reduced graphene oxide-modified RNase A gold nanoclusters (FA-rGO-RNase A/AuNCs) based on fluorescence "turn-off/turn-on" is presented. Firstly, a facile and optimised protocol for the fabrication of RNase A/AuNCs is developed. The activity of RNase A protein after the formation of RNase A/AuNCs is studied. RNase A/AuNCs is then loaded onto FA-rGO, in which FA-rGO is used as a potential carrier and fluorescence quencher for RNase A/AuNCs. Finally, a fluorescence "turn-on" sensing strategy is developed using the as-synthesised FA-rGO-RNase A/AuNCs to detect sodium and potassium ions. The developed nanobiosensor revealed an excellent sensing performance and meets the sensitivity required to detect both sodium and potassium ions. To the best of our knowledge, this is the first work done on determining the RNase A protein activity in RNase A/AuNCs and exploring the potential application of RNase A/AuNCs as a metal ion sensor. This work serves as a proof-of-concept for combining the potential of drug delivery, active targeting and therapy on cancer cells, as well as biosensing of metal ions into a single platform.
Collapse
Affiliation(s)
- Xin Yi Wong
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500, Semenyih, Selangor, Malaysia
| | - Daniel Quesada-González
- Paperdrop Diagnostics, Av. de Can Domènech S/n, Eureka Building, Campus UAB, 08193, Bellaterra, Barcelona, Spain
| | - Sivakumar Manickam
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500, Semenyih, Selangor, Malaysia; Nanotechnology Research Group, Centre of Nanotechnology and Advanced Materials, University of Nottingham Malaysia, 43500, Semenyih, Selangor, Malaysia; Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam
| | - Kasturi Muthoosamy
- Nanotechnology Research Group, Centre of Nanotechnology and Advanced Materials, University of Nottingham Malaysia, 43500, Semenyih, Selangor, Malaysia.
| |
Collapse
|
34
|
Ultrasensitive molecularly imprinted fluorescence sensor for simultaneous determination of CA125 and CA15-3 in human serum and OVCAR-3 and MCF-7 cells lines using Cd and Ni nanoclusters as new emitters. Anal Bioanal Chem 2021; 413:4049-4061. [PMID: 34057557 DOI: 10.1007/s00216-021-03362-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/19/2021] [Accepted: 04/19/2021] [Indexed: 02/05/2023]
Abstract
In the clinical diagnosis of tumors, a single-marker immunoassay may lead to false results. Thus there is a need for an effective and valid method for the simultaneous measurement of multiple tumor markers. In this work, an efficient fluorescence immunosensor for the simultaneous measurement of CA125 and CA15-3 tumor markers was fabricated by utilizing the high selectivity of magnetic molecularly imprinted polymers (MMIPs) and the high sensitivity of a fluorescence (FL) method. Ni nanoclusters (Ni NCs) and noble Cd nanoclusters (Cd NCs) were introduced as efficient and economic emitters, and magnetic graphene oxide (GO-Fe3O4) was applied as a support material for surface molecularly imprinted polymers. Under the most favorable experimental conditions, the fluorescence intensity of the Cd NCs and Ni NCs gradually increased with increasing concentration of CA125 and CA15-3 antigens at a range of 0.0005-40 U mL-1, respectively, with a limit of detection (LOD) of 50 μU mL-1. The developed method had excellent properties including a broad linear range, good reproducibility, and simple operation for the clinical diagnosis of CA 125 and CA 15-3 tumor markers. This molecularly imprinted fluorescence sensor has the potential to be an effective clinical tool for the timely screening of breast cancer in human serum samples and OVCAR-3 and MCF-7 cell lines, and can be applied in clinical diagnostics.
Collapse
|
35
|
Sharma J, Kumari R, Bhargava A, Tiwari R, Mishra PK. Mitochondrial-induced Epigenetic Modifications: From Biology to Clinical Translation. Curr Pharm Des 2021; 27:159-176. [PMID: 32851956 DOI: 10.2174/1381612826666200826165735] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/27/2020] [Indexed: 11/22/2022]
Abstract
Mitochondria are maternally inherited semi-autonomous organelles that play a central role in redox balance, energy metabolism, control of integrated stress responses, and cellular homeostasis. The molecular communication between mitochondria and the nucleus is intricate and bidirectional in nature. Though mitochondrial genome encodes for several key proteins involved in oxidative phosphorylation, several regulatory factors encoded by nuclear DNA are prominent contributors to mitochondrial biogenesis and function. The loss of synergy between this reciprocal control of anterograde (nuclear to mitochondrial) and retrograde (mitochondrial to nuclear) signaling, triggers epigenomic imbalance and affects mitochondrial function and global gene expressions. Recent expansions of our knowledge on mitochondrial epigenomics have offered novel perspectives for the study of several non-communicable diseases including cancer. As mitochondria are considered beacons for pharmacological interventions, new frontiers in targeted delivery approaches could provide opportunities for effective disease management and cure through reversible epigenetic reprogramming. This review focuses on recent progress in the area of mitochondrial-nuclear cross-talk and epigenetic regulation of mitochondrial DNA methylation, mitochondrial micro RNAs, and post-translational modification of mitochondrial nucleoid-associated proteins that hold major opportunities for targeted drug delivery and clinical translation.
Collapse
Affiliation(s)
- Jahnavi Sharma
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Roshani Kumari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Arpit Bhargava
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Rajnarayan Tiwari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Pradyumna K Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| |
Collapse
|
36
|
Akanuma Y, Imaoka T, Sato H, Yamamoto K. Silver in the Center Enhances Room‐Temperature Phosphorescence of a Platinum Sub‐nanocluster by 18 Times. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012921] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yuki Akanuma
- Institute of Innovative Research Tokyo Institute of Technology 4269 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
| | - Takane Imaoka
- Institute of Innovative Research Tokyo Institute of Technology 4269 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
- JST-ERATO, Yamamoto Atom Hybrid Project Tokyo Institute of Technology 4269 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
| | - Hiroyasu Sato
- Rigaku Corporation 3-9-12, Matsubara-cho Akishima-shi 196-8666 Japan
| | - Kimihisa Yamamoto
- Institute of Innovative Research Tokyo Institute of Technology 4269 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
- JST-ERATO, Yamamoto Atom Hybrid Project Tokyo Institute of Technology 4269 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
| |
Collapse
|
37
|
Akanuma Y, Imaoka T, Sato H, Yamamoto K. Silver in the Center Enhances Room-Temperature Phosphorescence of a Platinum Sub-nanocluster by 18 Times. Angew Chem Int Ed Engl 2021; 60:4551-4554. [PMID: 33200557 DOI: 10.1002/anie.202012921] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/29/2020] [Indexed: 12/11/2022]
Abstract
There has been controversy surrounding the roles of the metal core (metal-metal interaction) and the shell (metal-ligand interaction) in photoluminescence of ligand-protected metal nanoclusters. We have discovered aggregation-induced room-temperature phosphorescence of a platinum-thiolate complex and its silver ion inclusion complex (a silver-doped platinum sub-nanocluster). The inclusion of silver ion boosted the photoluminescent quantum yield by 18 times. Photophysical measurements indicate that the rate of nonradiative decay was slower for the silver-doped platinum sub-nanocluster. DFT calculations showed that the LUMO, which had the main contribution from Ag s-orbital and Pt d-orbitals, played a critical role in suppressing the structural distortion at the excited state. This work will hopefully stimulate more research on designing strategies based on molecular orbitals of atomicity-precise luminescent multimetallic nanoclusters.
Collapse
Affiliation(s)
- Yuki Akanuma
- Institute of Innovative Research, Tokyo Institute of Technology, 4269 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| | - Takane Imaoka
- Institute of Innovative Research, Tokyo Institute of Technology, 4269 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan.,JST-ERATO, Yamamoto Atom Hybrid Project, Tokyo Institute of Technology, 4269 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| | - Hiroyasu Sato
- Rigaku Corporation, 3-9-12, Matsubara-cho, Akishima-shi, 196-8666, Japan
| | - Kimihisa Yamamoto
- Institute of Innovative Research, Tokyo Institute of Technology, 4269 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan.,JST-ERATO, Yamamoto Atom Hybrid Project, Tokyo Institute of Technology, 4269 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| |
Collapse
|
38
|
Akhuli A, Chakraborty D, Agrawal AK, Sarkar M. Probing the Interaction of Bovine Serum Albumin with Copper Nanoclusters: Realization of Binding Pathway Different from Protein Corona. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:1823-1837. [PMID: 33502208 DOI: 10.1021/acs.langmuir.0c03176] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
With an aim to understand the interaction mechanism of bovine serum albumin (BSA) with copper nanoclusters (CuNCs), three different types CuNCs having chemically different surface ligands, namely, tannic acid (TA), chitosan, and cysteine (Cys), have been fabricated, and investigations are carried out in the absence and presence of protein (BSA) at ensemble-averaged and single-molecule levels. The CuNCs, capped with different surface ligands, are consciously chosen so that the role of surface ligands in the overall protein-NCs interactions is clearly understood, but, more importantly, to find whether these CuNCs can interact with protein in a new pathway without forming the "protein corona", which otherwise has been observed in relatively larger nanoparticles when they are exposed to biological fluids. Analysis of the data obtained from fluorescence, ζ-potential, and ITC measurements has clearly indicated that the BSA protein in the presence of CuNCs does not attain the binding stoichiometry (BSA/CuNCs > 1) that is required for the formation of "protein corona". This conclusion is further substantiated by the outcome of the fluorescence correlation spectroscopy (FCS) study. Further analysis of data and thermodynamic calculations have revealed that the surface ligands of the CuNCs play an important role in the protein-NCs binding events, and they can alter the mode and thermodynamics of the process. Specifically, the data have demonstrated that the binding of BSA with TA-CuNCs and Chitosan-CuNCs follows two types of binding modes; however, the same with Cys-CuNCs goes through only one type of binding mode. Circular dichroism (CD) measurements have indicated that the basic structure of BSA remains almost unaltered in the presence of CuNCs. The outcome of the present study is expected to encourage and enable better application of NCs in biological applications.
Collapse
Affiliation(s)
- Amit Akhuli
- School of Chemical Sciences, National Institute of Science Education and Research, HBNI, Bhimpur-Padanpur, Jatni, Khorda, Bhubaneswar 752050, Odisha, India
| | - Debabrata Chakraborty
- School of Chemical Sciences, National Institute of Science Education and Research, HBNI, Bhimpur-Padanpur, Jatni, Khorda, Bhubaneswar 752050, Odisha, India
| | - Aman Kumar Agrawal
- School of Chemical Sciences, National Institute of Science Education and Research, HBNI, Bhimpur-Padanpur, Jatni, Khorda, Bhubaneswar 752050, Odisha, India
| | - Moloy Sarkar
- School of Chemical Sciences, National Institute of Science Education and Research, HBNI, Bhimpur-Padanpur, Jatni, Khorda, Bhubaneswar 752050, Odisha, India
| |
Collapse
|
39
|
Roberts P, Perry JK, Gupta RK, Karna SP, Frechette J. Confinement-Enhanced Luminescence in Protein-Gold Nanoclusters. J Phys Chem Lett 2020; 11:10278-10282. [PMID: 33216558 DOI: 10.1021/acs.jpclett.0c03054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Confinement has profound effects on protein functions. Nanoscale probes for confinement or excluded volume interactions could help us understand how these interactions influence protein functions. This work reports on the increased luminescence of BSA-gold nanoclusters when confined. Confinement of the BSA-gold nanoclusters occurred within reverse micelles (RMs), where the size of the RMs determined the degree of confinement. The confinement-enhanced luminescence is reversible, i.e., the emission returns to its original value following cyclic changes in RM size. Circular dichroism measurements show an increase in alpha-helical character of the BSA-stabilized nanoclusters with confinement, which could provide a mechanism for the increase in luminescence. The alpha-helical character of the native proteins also increases with confinement, suggesting that the protein-nanocluster might sense confinement in an analogous fashion as the proteins. When the RMs approach the size of the protein, the intensity becomes independent of alpha-helical character, suggesting a different mechanism for the luminescence increase.
Collapse
Affiliation(s)
| | - Jeneh Karima Perry
- CCDC Army Research Laboratory, Weapons and Material Research Directorate, 6300 Rodman Road, Aberdeen, Proving Ground, Maryland 21005, United States
| | - Raj K Gupta
- DoD Blast Injury Research Coordinating Office, U.S. Army Medical Research and Development Command, 504 Scott Street, Fort Detrick, Maryland 21702, United States
| | - Shashi P Karna
- CCDC Army Research Laboratory, Weapons and Material Research Directorate, 6300 Rodman Road, Aberdeen, Proving Ground, Maryland 21005, United States
| | | |
Collapse
|
40
|
Fan J, Qi L, Han H, Ding L. Array-Based Discriminative Optical Biosensors for Identifying Multiple Proteins in Aqueous Solution and Biofluids. Front Chem 2020; 8:572234. [PMID: 33330361 PMCID: PMC7673422 DOI: 10.3389/fchem.2020.572234] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 10/14/2020] [Indexed: 12/18/2022] Open
Abstract
Identification of proteins is an important issue both in medical research and in clinical practice as a large number of proteins are closely related to various diseases. Optical sensor arrays with recognition ability have been flourished to apply for distinguishing multiple chemically or structurally similar analytes and analyzing unknown or mixed samples. This review gives an overview of the recent development of array-based discriminative optical biosensors for recognizing proteins and their applications in real samples. Based on the number of sensor elements and the complexity of constructing array-based discriminative systems, these biosensors can be divided into three categories, which include multi-element-based sensor arrays, environment-sensitive sensor arrays and multi-wavelength-based single sensing systems. For each strategy, the construction of sensing platform and detection mechanism are particularly introduced. Meanwhile, the differences and connections between different strategies were discussed. An understanding of these aspects may help to facilitate the development of novel discriminative biosensors and expand their application prospects.
Collapse
Affiliation(s)
- Junmei Fan
- Department of Chemistry, Taiyuan Normal University, Jinzhong, China
| | - Lu Qi
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, China
| | - Hongfei Han
- Department of Chemistry, Taiyuan Normal University, Jinzhong, China
| | - Liping Ding
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
41
|
Zhang X, Chen M, Zhang Y, Hou Y, Wu Y, Yao M, Li L, Shi L, Liu T, Hu B, Zhao H, Li X, Shi J, Jia B, Wang F. Monoclonal-Antibody-Templated Gold Nanoclusters for HER2 Receptors Targeted Fluorescence Imaging. ACS APPLIED BIO MATERIALS 2020; 3:7061-7066. [DOI: 10.1021/acsabm.0c00905] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xin Zhang
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
- Big Data and Engineering Research Center, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, No. 56 Nanlishi Road, Beijing 100045, China
| | - Muhua Chen
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Yunwei Zhang
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Yi Hou
- College of Life Science and Technology, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing 100029, China
| | - Yue Wu
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Meinan Yao
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Liqiang Li
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Linqing Shi
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Tianyu Liu
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Biao Hu
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Huiyun Zhao
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
- Medical and Healthy Analytical Center, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Xiaoda Li
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
- Medical and Healthy Analytical Center, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Jiyun Shi
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road,
Chaoyang District, Beijing 100101, China
| | - Bing Jia
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Fan Wang
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road,
Chaoyang District, Beijing 100101, China
| |
Collapse
|
42
|
Vanzan M, Rosa M, Corni S. Atomistic insight into the aggregation of [Au 25(SR) 18] q nanoclusters. NANOSCALE ADVANCES 2020; 2:2842-2852. [PMID: 36132411 PMCID: PMC9417423 DOI: 10.1039/d0na00213e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 05/16/2020] [Indexed: 05/31/2023]
Abstract
Atomically precise nanoclusters have been proven to give solid state aggregates with intriguing optical properties. However, the mechanism that regulates this aggregation remains unclear. Here, the aggregation of two Au25 nanoclusters in solution is investigated through enhanced sampling molecular dynamics simulations. To understand how the free energy of the systems depends on the nanocluster features, calculations were performed on three nanocluster pairs which differ in charge states and substituent nature and dimension. Our results show that the choice of the ligands heavily affects the free energy profile of the systems when the structures are nearby and, in some cases, the formation of a dimeric phase is observed. This phase is particularly stable in long-chain substituted nanoclusters, where the long alkane chains can generate bundles and the gold cores are closer compared to the short-chain ligands. We found a remarkable agreement between our calculations and the literature-available solid-state structures, especially for the orientation of the interacting nanoclusters. Moreover, some of the dimeric structures are prodromal to the formation of the aurophilic intercluster bond observed in the crystal structures, meaning that the dimer can act as a precursor and can drive the whole crystallization mechanism toward the formation of stable crystal species.
Collapse
Affiliation(s)
- Mirko Vanzan
- Department of Chemical Sciences, University of Padova Via Marzolo 1 35131 Padova Italy
| | - Marta Rosa
- Department of Chemical Sciences, University of Padova Via Marzolo 1 35131 Padova Italy
| | - Stefano Corni
- Department of Chemical Sciences, University of Padova Via Marzolo 1 35131 Padova Italy
- CNR Institute of Nanoscience Center S3, via G. Campi 213/A Modena 41125 Italy
| |
Collapse
|
43
|
Kang X, Wei X, Wang S, Zhu M. Controlling the Phosphine Ligands of Pt1Ag28(S-Adm)18(PR3)4 Nanoclusters. Inorg Chem 2020; 59:8736-8743. [DOI: 10.1021/acs.inorgchem.0c00350] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xi Kang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, PR China
| | - Xiao Wei
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, PR China
| | - Shuxin Wang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, PR China
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, PR China
| |
Collapse
|
44
|
Nain A, Tseng YT, Wei SC, Periasamy AP, Huang CC, Tseng FG, Chang HT. Capping 1,3-propanedithiol to boost the antibacterial activity of protein-templated copper nanoclusters. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:121821. [PMID: 31879116 DOI: 10.1016/j.jhazmat.2019.121821] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/27/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
We have prepared copper nanoclusters (Cu NCs) in the presence of bovine serum albumin (BSA) and 1,3-propanedithiol (PDT). The PDT/BSA-Cu NCs possess great activities against different types of bacteria, including non-multidrug-resistant bacteria (Escherichia coli, Salmonella Enteritidis, Pseudomonas aeruginosa, and Staphylococcus aureus) and multidrug-resistant bacteria (methicillin-resistant S. aureus). Their minimal inhibitory concentration (MIC) values are at least 242-fold and 10-fold lower than that of the free PDT and BSA-Cu NCs, respectively. The PDT/BSA-Cu NCs are strongly bound to the bacterial membrane, in which they induce the generation of ascorbyl (Asc) and perhydroxyl (HOO) radicals that result in disruption of their membrane integrity. At a concentration of 100-fold higher than their MIC for Escherichia coli, the PDT/BSA-Cu NCs exhibit negligible cytotoxicity towards the tested mammalian cells and show insignificant hemolysis. We have further demonstrated that low-cost PDT/BSA-Cu NCs-coated carbon fiber fabrics (CFFs) are effective against antibacterial growth, showing their great potential for antifouling applications.
Collapse
Affiliation(s)
- Amit Nain
- Institute of Physics, Academia Sinica, Taipei, 11529, Taiwan; Nano Science and Technology Program, Taiwan International Graduate Program, Institute of Physics, Academia Sinica, Taipei, 11529, Taiwan; Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 30013, Taiwan; Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Yu-Ting Tseng
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Shih-Chun Wei
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | | | - Chih-Ching Huang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 20224, Taiwan; School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| | - Fan-Gang Tseng
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 30013, Taiwan; Research Center for Applied Sciences Academia Sinica, Taipei, 11529, Taiwan; Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, 30013, Taiwan.
| | - Huan-Tsung Chang
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan; Department of Chemistry, Chung Yuan Christian University, Chungli District, Taoyuan City, 32023, Taiwan.
| |
Collapse
|
45
|
Kang X, Wei X, Xiang P, Tian X, Zuo Z, Song F, Wang S, Zhu M. Rendering hydrophobic nanoclusters water-soluble and biocompatible. Chem Sci 2020; 11:4808-4816. [PMID: 34122938 PMCID: PMC8159227 DOI: 10.1039/d0sc01055c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 04/20/2020] [Indexed: 12/13/2022] Open
Abstract
Hydrophobic and hydrophilic nanoclusters embody complementary superiorities. The means to amalgamate these superiorities, i.e., the atomic precision of hydrophobic clusters and the water dissolvability of hydrophilic clusters, remains challenging. This work presents a versatile strategy to render hydrophobic nanoclusters water-soluble-the micellization of nanoclusters in the presence of solvent-conjoined Na+ cations-which overcomes the above major challenge. Specifically, although [Ag29(SSR)12(PPh3)4]3- nanoclusters are absolutely hydrophobic, they show good dissolvability in aqueous solution in the presence of solvent-conjoined Na+ cations (Na1(NMP)5 or Na3(DMF)12). Such cations act as both counterions of these nanoclusters and surface cosolvent of cluster-based micelles in the aqueous phase. A combination of DLS (dynamic light scattering) and aberration-corrected HAADF-STEM (high angle annular dark field detector scanning transmission electron microscopy) measurements unambiguously shows that the phase-transfer of hydrophobic Ag29 into water is triggered by the micellization of nanoclusters. Owing to the excellent water solubility and stability of [Ag29(SSR)12(PPh3)4]3-[Na1(NMP)5]3 + in H2O, its performance in cell staining has been evaluated. Furthermore, the general applicability of the micellization strategy has been verified. Overall, this work presents a convenient and efficient approach for the preparation of cluster-based, biocompatible nanomaterials.
Collapse
Affiliation(s)
- Xi Kang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University Hefei 230601 P. R. China
| | - Xiao Wei
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University Hefei 230601 P. R. China
| | - Pan Xiang
- School of Life Sciences, Anhui University Hefei 230601 P. R. China
| | - Xiaohe Tian
- School of Life Sciences, Anhui University Hefei 230601 P. R. China
| | - Zewen Zuo
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University Nanjing 210093 P. R. China
- Atomic Manufacture Institute Nanjing 211805 P. R. China
| | - Fengqi Song
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University Nanjing 210093 P. R. China
- Atomic Manufacture Institute Nanjing 211805 P. R. China
| | - Shuxin Wang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University Hefei 230601 P. R. China
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University Hefei 230601 P. R. China
| |
Collapse
|
46
|
Kang X, Jin S, Xiong L, Wei X, Zhou M, Qin C, Pei Y, Wang S, Zhu M. Nanocluster growth via "graft-onto": effects on geometric structures and optical properties. Chem Sci 2019; 11:1691-1697. [PMID: 32206290 PMCID: PMC7069245 DOI: 10.1039/c9sc05700e] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 12/26/2019] [Indexed: 11/21/2022] Open
Abstract
The concept of “graft-onto” has been exploited to facilitate nanocluster growth from Pt1Ag28 to Pt1Ag31.
Atomically precise engineering on the nanocluster surface remains highly desirable for the fundamental understanding of how surface structures of a nanocluster contribute to its overall properties. In this paper, the concept of “graft-onto” has been exploited to facilitate nanocluster growth on surface structures. Specifically, the Ag2(DPPM)Cl2 complex is used for re-constructing the surface structure of Pt1Ag28(SR)18(PPh3)4 (Pt1Ag28, SR = 1-adamantanethiolate) and producing a size-growth nanocluster – Pt1Ag31(SR)16(DPPM)3Cl3 (Pt1Ag31). The grafting effect of Ag2(DPPM)Cl2 induces both direct changes on the surface structure (e.g., size growth, structural transformation, and surface rotation) and indirect changes on the kernel structure (from a fcc configuration to an icosahedral configuration). Remarkable differences have been observed by comparing optical properties between Pt1Ag28 and Pt1Ag31. Significantly, Pt1Ag31 exhibits high photo-luminescent intensity with a quantum yield of 29.3%, which is six times that of the Pt1Ag28. Overall, this work presents a new approach (i.e., graft-onto) for the precise dictation of nanocluster surface structures at the atomic level.
Collapse
Affiliation(s)
- Xi Kang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials , Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials , Anhui University , Hefei , Anhui 230601 , P. R. China . ; .,Key Laboratory of Structure and Functional Regulation of Hybrid Materials , Anhui University , Ministry of Education , Hefei , 230601 , P. R. China
| | - Shan Jin
- Institutes of Physical Science and Information Technology , Anhui University , Hefei , Anhui 230601 , P. R. China
| | - Lin Xiong
- Department of Chemistry , Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education , Xiangtan University , Xiangtan , Hunan 411105 , China
| | - Xiao Wei
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials , Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials , Anhui University , Hefei , Anhui 230601 , P. R. China . ; .,Key Laboratory of Structure and Functional Regulation of Hybrid Materials , Anhui University , Ministry of Education , Hefei , 230601 , P. R. China
| | - Manman Zhou
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials , Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials , Anhui University , Hefei , Anhui 230601 , P. R. China . ; .,Key Laboratory of Structure and Functional Regulation of Hybrid Materials , Anhui University , Ministry of Education , Hefei , 230601 , P. R. China
| | - Chenwanli Qin
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials , Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials , Anhui University , Hefei , Anhui 230601 , P. R. China . ; .,Key Laboratory of Structure and Functional Regulation of Hybrid Materials , Anhui University , Ministry of Education , Hefei , 230601 , P. R. China
| | - Yong Pei
- Department of Chemistry , Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education , Xiangtan University , Xiangtan , Hunan 411105 , China
| | - Shuxin Wang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials , Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials , Anhui University , Hefei , Anhui 230601 , P. R. China . ; .,Key Laboratory of Structure and Functional Regulation of Hybrid Materials , Anhui University , Ministry of Education , Hefei , 230601 , P. R. China
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials , Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials , Anhui University , Hefei , Anhui 230601 , P. R. China . ; .,Institutes of Physical Science and Information Technology , Anhui University , Hefei , Anhui 230601 , P. R. China.,Key Laboratory of Structure and Functional Regulation of Hybrid Materials , Anhui University , Ministry of Education , Hefei , 230601 , P. R. China
| |
Collapse
|
47
|
Perić M, Sanader Maršić Ž, Russier-Antoine I, Fakhouri H, Bertorelle F, Brevet PF, le Guével X, Antoine R, Bonačić-Koutecký V. Ligand shell size effects on one- and two-photon excitation fluorescence of zwitterion functionalized gold nanoclusters. Phys Chem Chem Phys 2019; 21:23916-23921. [PMID: 31657396 DOI: 10.1039/c9cp05262c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Gold nanoclusters (Au NCs) are an emerging class of luminescent nanomaterials but still suffer from moderate photoluminescence quantum yields. Recent efforts have focused on tailoring their emission properties. Introducing zwitterionic ligands to cap the metallic kernel is an efficient approach to enhance their one-photon excitation fluorescence intensity. In this work, we extend this concept to the nonlinear optical regime, i.e., two-photon excitation fluorescence. For a proper comparison between theory and experiment, both ligand and solvent effects should be considered. The effects of ligand shell size and of aqueous solvent on the optical properties of zwitterion functionalized gold nanoclusters have been studied by performing quantum mechanics/molecular mechanics (QM/MM) simulations.
Collapse
Affiliation(s)
- Martina Perić
- Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM) at Interdisciplinary Center for Advanced Sciences and Technology (ICAST), University of Split, Poljička cesta 35, 21000 Split, Croatia
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Xu S, Li W, Zhao X, Wu T, Cui Y, Fan X, Wang W, Luo X. Ultrahighly Efficient and Stable Fluorescent Gold Nanoclusters Coated with Screened Peptides of Unique Sequences for Effective Protein and Serum Discrimination. Anal Chem 2019; 91:13947-13952. [DOI: 10.1021/acs.analchem.9b03463] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Shenghao Xu
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Wentao Li
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Xuan Zhao
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Tong Wu
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Yanyun Cui
- School of Science, Beijing Technology and Business University, Beijing 100048, P. R. China
| | - Xinyue Fan
- Purdue University, 610 Purdue Mall, West Lafayette, Indiana 47907, United States
| | - Wei Wang
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Xiliang Luo
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| |
Collapse
|
49
|
Kang X, Abroshan H, Wang S, Zhu M. Free Valence Electron Centralization Strategy for Preparing Ultrastable Nanoclusters and Their Catalytic Application. Inorg Chem 2019; 58:11000-11009. [PMID: 31386346 DOI: 10.1021/acs.inorgchem.9b01545] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Metal nanoclusters have attracted extensive interests owing to their atomically precise structures as well as intriguing properties. However, silver nanoclusters are not as stable as their gold counterparts, impeding the practical applications of Ag nanoclusters. In this work, a strategy of free valence electron centralization was exploited to render parent Ag nanoclusters highly stable. The stability of Ag29(SSR)12(PPh3)4 (SSR: benzene-1,3-dithiol) was controllably enhanced by stepwisely alloying the Ag29 nanocluster to Ag17Cu12(SSR)12(PPh3)4 and Au1Ag16Cu12(SSR)12(PPh3)4. Specifically, the trimetallic Au1Ag16Cu12 is ultrastable even at 175 °C, which is close to the nanocluster decomposition temperature. The structures of Ag17Cu12 and Au1Ag16Cu12 nanoclusters are determined by single-crystal X-ray diffraction. Furthermore, a combination of X-ray photoelectron spectroscopy measurements and density functional theory calculations demonstrates that the enhanced stability is induced by the centralization of the free valence electrons to the interior of the nanocluster. More importantly, the Au1Ag16Cu12 enables the multicomponent A3 coupling reaction at high temperatures, which remarkably shortens the catalytic reaction time from ∼5 h to 3 min. Overall, this work presents a strategy for enhancing the thermal stability of nanoclusters via centralizing the free valence electrons to the nanocluster kernels.
Collapse
Affiliation(s)
- Xi Kang
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials , Anhui University , Hefei 230601 , Anhui , China
| | - Hadi Abroshan
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering , Stanford University , 443 Via Ortega , Stanford 94305 , California , United States
| | - Shuxin Wang
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials , Anhui University , Hefei 230601 , Anhui , China
| | - Manzhou Zhu
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials , Anhui University , Hefei 230601 , Anhui , China
| |
Collapse
|
50
|
Kang X, Huang L, Liu W, Xiong L, Pei Y, Sun Z, Wang S, Wei S, Zhu M. Reversible nanocluster structure transformation between face-centered cubic and icosahedral isomers. Chem Sci 2019; 10:8685-8693. [PMID: 31803443 PMCID: PMC6849490 DOI: 10.1039/c9sc02667c] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 08/03/2019] [Indexed: 12/14/2022] Open
Abstract
The reversible transformation between a FCC and icosahedral configuration has been achieved at the atomic level, based on Pt1Ag28 nanocluster isomers.
Structural transformations between isomers of nanoclusters provide a platform to tune their properties and understand the fundamental science due to their intimate structure–property correlation. Herein, we demonstrate a reversible transformation between the face-centered cubic (FCC) and icosahedral isomers of Pt1Ag28 nanoclusters accomplished in the ligand-exchange processes. Ligand-exchange of 1-adamantanethiolate protected Pt1Ag28 by cyclohexanethiolate could transform the FCC kernel to the icosahedral isomer. Interestingly, the icosahedral Pt1Ag28 could be reversibly transformed to the FCC configuration when the cyclohexanethiolate ligand is replaced again by 1-adamantanethiolate. A combination of UV-vis absorption, mass spectrometry, photo-luminescence and X-ray absorption fine structure unambiguously identifies that the FCC-to-icosahedral structure transformation of Pt1Ag28 involves two distinct stages: (i) ligand-exchange induced outmost motif transformation and (ii) abrupt innermost kernel transformation. As a result of this structural transformation, the emission wavelength of Pt1Ag28 red-shifts from 672 to 720 nm, and the HOMO–LUMO energy gap reduces from 1.86 to 1.74 eV. This work presents the first example of nanocluster isomers with inter-switching configurations, and will provide new insights into manipulating the properties of nanoclusters through controllably tuning their structures.
Collapse
Affiliation(s)
- Xi Kang
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials , Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials , Anhui University , Hefei , Anhui 230601 , China . ;
| | - Li Huang
- National Synchrotron Radiation Laboratory , University of Science and Technology of China , Hefei , Anhui 230029 , China .
| | - Wei Liu
- National Synchrotron Radiation Laboratory , University of Science and Technology of China , Hefei , Anhui 230029 , China .
| | - Lin Xiong
- Department of Chemistry , Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education , Xiangtan University , Xiangtan , Hunan 411105 , China
| | - Yong Pei
- Department of Chemistry , Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education , Xiangtan University , Xiangtan , Hunan 411105 , China
| | - Zhihu Sun
- National Synchrotron Radiation Laboratory , University of Science and Technology of China , Hefei , Anhui 230029 , China .
| | - Shuxin Wang
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials , Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials , Anhui University , Hefei , Anhui 230601 , China . ;
| | - Shiqiang Wei
- National Synchrotron Radiation Laboratory , University of Science and Technology of China , Hefei , Anhui 230029 , China .
| | - Manzhou Zhu
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials , Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials , Anhui University , Hefei , Anhui 230601 , China . ;
| |
Collapse
|