1
|
Liu C, Ma H, Yuan S, Jin Y, Tian W. Living Cell-Mediated Self-Assembly: From Monomer Design and Morphology Regulation to Biomedical Applications. ACS NANO 2025; 19:2047-2069. [PMID: 39779487 DOI: 10.1021/acsnano.4c16669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
The self-assembly of molecules into highly ordered architectures is a ubiquitous and natural process, wherein molecules spontaneously organize into large structures to perform diverse functions. Drawing inspiration from the formation of natural nanostructures, cell-mediated self-assembly has been developed to create functional assemblies both inside and outside living cells. These techniques have been employed to regulate the cellular world by leveraging the dynamic intracellular and extracellular microenvironment. This review highlights the recent advances and future trends in living cell-mediated self-assembly, ranging from their cytocompatible monomer designs, synthetic strategies, and morphological control to functional applications. The assembly behaviors are also discussed based on the dimensionality of the self-assembled morphologies from zero to three dimensions. Finally, this review explores its promising potential for biomedical applications, clarifying the relationship between initial morphological regulation and the therapeutic effects of subsequent artificial assemblies. Through rationally designing molecular structures and precisely controlling assembly morphologies, living cell mediated self-assembly would provide an innovative platform for executing biological functions.
Collapse
Affiliation(s)
- Chengfei Liu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, P. R. China
| | - Haonan Ma
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, P. R. China
| | - Shengzhuo Yuan
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, P. R. China
| | - Yifan Jin
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, P. R. China
| | - Wei Tian
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, P. R. China
| |
Collapse
|
2
|
Xiong H, Du C, Ye J, Zhang H, Qin Y, Zeng F, Song R, Shi C, Guo H, Chen J, Shen H, Cui Y, Zhou Z. Therapeutic co-assemblies for synergistic NSCLC treatment through dual topoisomerase I and tubulin inhibitors. J Control Release 2025; 377:485-494. [PMID: 39592024 DOI: 10.1016/j.jconrel.2024.11.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 11/28/2024]
Abstract
Camptothecin (CPT) and podophyllotoxin (PPT) function as topoisomerase (TOP) I and tubulin inhibitors, respectively, with potent anticancer effects in a variety of cancers. Despite its promise, the clinical applicability of the combination of CPT and PPT faces challenges, including potential side effect and limited therapeutic efficacy. In this study, we designed co-assembly nanomedicines with the different weight (w/w) ratios of amphiphilic Evans blue conjugated CPT prodrug (EB-ss-CPT) and PPT molecules, denoted as ECT Nano. The co-assembly of EB-ss-CPT and PPT without other excipients has nearly 100% drug loading efficiency and high drug loading content of PPT of up to 74.29 ± 0.90 wt%. Notably, the ECT Nano (1:2) equipped with the ability to inhibit TOP I activity and tubulin polymerization, which provided a highly efficient strategy to improve synergistic efficacy and decrease side toxicity in non-small cell lung cancer mouse model. This work represents a step forward to the development of practical applications for dual TOP I and tubulin inhibitors and especially hopeful to the rational design of combination nanomedicine for therapeutic purposes.
Collapse
Affiliation(s)
- Hehe Xiong
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, School of Public Health, Shenzhen Research Institute of Xiamen University, Xiamen University, Xiamen 361102, China
| | - Chao Du
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, School of Public Health, Shenzhen Research Institute of Xiamen University, Xiamen University, Xiamen 361102, China
| | - Jinmin Ye
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, School of Public Health, Shenzhen Research Institute of Xiamen University, Xiamen University, Xiamen 361102, China
| | - Heng Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, School of Public Health, Shenzhen Research Institute of Xiamen University, Xiamen University, Xiamen 361102, China
| | - Yatong Qin
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, School of Public Health, Shenzhen Research Institute of Xiamen University, Xiamen University, Xiamen 361102, China
| | - Fantian Zeng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, School of Public Health, Shenzhen Research Institute of Xiamen University, Xiamen University, Xiamen 361102, China
| | - Ruirui Song
- Department of Radiology, Shanxi Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan 030013, China
| | - Changrong Shi
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, School of Public Health, Shenzhen Research Institute of Xiamen University, Xiamen University, Xiamen 361102, China
| | - Huifeng Guo
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, School of Public Health, Shenzhen Research Institute of Xiamen University, Xiamen University, Xiamen 361102, China
| | - Jiang Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, School of Public Health, Shenzhen Research Institute of Xiamen University, Xiamen University, Xiamen 361102, China
| | - Huaxiang Shen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, School of Public Health, Shenzhen Research Institute of Xiamen University, Xiamen University, Xiamen 361102, China
| | - Yanfen Cui
- Department of Radiology, Shanxi Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan 030013, China.
| | - Zijian Zhou
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, School of Public Health, Shenzhen Research Institute of Xiamen University, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
3
|
Jain N, Singh A, Bhatia D. DNA-amphiphilic nanostructures: synthesis, characterization and applications. NANOSCALE 2024; 17:18-52. [PMID: 39560070 DOI: 10.1039/d4nr03236e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
DNA's extraordinary potential reaches far beyond its role as a carrier of genetic information. It serves as a remarkably adaptable structural foundation for constructing intricate nanostructures with a diverse range of functionalities. This inherent programmability sets DNA apart from other biomolecules like peptides, proteins, and small molecules. By covalently attaching DNA to synthetic hydrophobic moieties, researchers create DNA amphiphiles capable of interacting with artificial lipid bilayers and cell membranes. These hybrid structures have rapidly gained prominence due to their promising potential in the medical field. This review provides a comprehensive overview of the latest advancements in the synthesis of DNA amphiphiles and their assembly into well-defined nanostructures. It explores the diverse applications of these nanostructures across various medical domains, including targeted drug delivery, innovative immunotherapies, and gene-silencing techniques. Moreover, the review delves into the current challenges and prospects of this rapidly evolving field, highlighting the potential of DNA hybrid materials to revolutionize medical treatments and diagnostics. By addressing the limitations and exploring new avenues of research, scientists aim to unlock the full potential of DNA nanotechnology for the benefit of human health.
Collapse
Affiliation(s)
- Nishkarsh Jain
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Prem Nagar, Patiala, Punjab 147004, India
| | - Ankur Singh
- Department of Biological Sciences & Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India.
| | - Dhiraj Bhatia
- Department of Biological Sciences & Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India.
| |
Collapse
|
4
|
Li D, Huang S, Ge J, Zhuang Z, Zheng L, Jiang L, Chen Y, Chu C, Zhang Y, Pan J, Cheng B, Huang JD, Lin H, Han W, Liu G. Molecular Design of Phthalocyanine-Based Drug Coassembly with Tailored Function. J Am Chem Soc 2024; 146:33461-33474. [PMID: 39576203 DOI: 10.1021/jacs.4c10070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Coassemblies with tailored functions, such as drug loading, tissue targeting and releasing, therapeutic and/or imaging purposes, and so on, have been widely studied and applied in biomedicine. De novo design of these coassemblies hinges on an integrated approach involving synergy between various design strategies, ranging from structure screening of combinations of "phthalocyanine-chemotherapeutic drug" molecules for molecular scaffolds, exploration of related fabrication principles to verification of intended activity of specific designs. Here, we propose an integrated approach combining computation and experiments to design from scratch coassembled nanoparticles. This nanocoassembly, termed NanoPC here, consists of phthalocyanine-based scaffolds hosting chemotherapeutic drugs, aimed at hypersensitive chemotherapy guided by photoimaging for targeting tumors. Our design starts from the selection of phthalocyanine derivatives that are not aggregation-prone, followed by computational screening of coassembled molecules covering various categories of chemotherapy drugs. To facilitate an efficient and accurate assessment of coassembly capabilities, we utilize small systems as surrogates to enable free-energy calculations at all-atom levels facilitated with enhanced sampling and statistical mechanics for efficient and accurate evaluation of coassembly ability. The final top NanoPC candidate, comprised of phthalocyanine PcL and cytarabine (CYT), can greatly increase the fluorescence intensity ratio of tumor/liver by 21.5 times and achieve higher antitumor efficiency in a pH-dependent manner. Therefore, the designing approach proposed here has a potential pattern, which can provide ideas and references for the design and development of coassembled nanodrugs with tailored functions and applications in biomedicine.
Collapse
Affiliation(s)
- Dong Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Siyong Huang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Jianlin Ge
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Ziqi Zhuang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Longyi Zheng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Lai Jiang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yulun Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Chengchao Chu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yang Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Jie Pan
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Bingwei Cheng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Jian-Dong Huang
- State Key Laboratory of Photocatalysis on Energy and Environment, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Huirong Lin
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Wei Han
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
- Department of Chemistry, Faculty of Science, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Gang Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| |
Collapse
|
5
|
Lu X, Zhu Y, Deng X, Kong F, Xi C, Luo Q, Zhu X. Development of a Supermolecular Radionuclide-Drug Conjugate System for Integrated Radiotheranostics for Non-small Cell Lung Cancer. J Med Chem 2024; 67:11152-11167. [PMID: 38896797 DOI: 10.1021/acs.jmedchem.4c00673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Radionuclide-drug conjugates (RDCs) designed from small molecule or nanoplatform shows complementary characteristics. We constructed a new RDC system with integrated merits of small molecule and nanoplatform-based RDCs. Erlotinib was labeled with 131I to construct the bulk of RDC (131I-ER). Floxuridine was mixed with 131I-ER to develop a hydrogen bond-driving supermolecular RDC system (131I-ER-Fu NPs). The carrier-free 131I-ER-Fu NPs supermolecule not only demonstrated integrated merits of small molecule and nanoplatform-based RDC, including clear structure definition, stable quality control, prolonged circulation lifetime, enhanced tumor specificity and retention, and rapidly nontarget clearance, but also exhibited low biological toxicity and stronger antitumor effects. In vivo imaging also revealed its application for tumor localization of nonsmall cell lung cancer (NSCLC) and screening of patients suitable for epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) therapy. We considered that 131I-ER-Fu NPs showed potentials as an integrated platform for the radiotheranostics of NSCLC.
Collapse
Affiliation(s)
- Xinmiao Lu
- Department of Nuclear Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200235, China
| | - Yunyun Zhu
- Department of Nuclear Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200235, China
| | - Xiaohui Deng
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fei Kong
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chuang Xi
- Department of Nuclear Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200235, China
| | - Quanyong Luo
- Department of Nuclear Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200235, China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
6
|
Wang Y, Yang L, Yan C, Du Y, Li T, Yang W, Lei L, He B, Gao H, Peppas NA, Cao J. Supramolecular artificial Nano-AUTACs enable tumor-specific metabolism protein degradation for synergistic immunotherapy. SCIENCE ADVANCES 2024; 10:eadn8079. [PMID: 38905336 PMCID: PMC11192078 DOI: 10.1126/sciadv.adn8079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 05/16/2024] [Indexed: 06/23/2024]
Abstract
Autophagy-targeting chimera (AUTAC) has emerged as a powerful modality that can selectively degrade tumor-related pathogenic proteins, but its low bioavailability and nonspecific distribution significantly restrict their therapeutic efficacy. Inspired by the guanine structure of AUTAC molecules, we here report supramolecular artificial Nano-AUTACs (GM NPs) engineered by AUTAC molecule GN [an indoleamine 2,3-dioxygenase (IDO) degrader] and nucleoside analog methotrexate (MTX) through supramolecular interactions for tumor-specific protein degradation. Their nanostructures allow for precise localization and delivery into cancer cells, where the intracellular acidic environment can disrupt the supramolecular interactions to release MTX for eradicating tumor cells, modulating tumor-associated macrophages, activating dendritic cells, and inducing autophagy. Specifically, the induced autophagy facilitates the released GN for degrading immunosuppressive IDO to further enhance effector T cell activity and inhibit tumor growth and metastasis. This study offers a unique strategy for building a nanoplatform to advance the field of AUTAC in tumor immunotherapy.
Collapse
Affiliation(s)
- Yazhen Wang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China
| | - Lianyi Yang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China
| | - Chenxing Yan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| | - Yufan Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| | - Tinghua Li
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China
| | - Wenqing Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| | - Lei Lei
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| | - Nicholas A. Peppas
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jun Cao
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
7
|
Geng WC, Jiang ZT, Chen SL, Guo DS. Supramolecular interaction in the action of drug delivery systems. Chem Sci 2024; 15:7811-7823. [PMID: 38817563 PMCID: PMC11134347 DOI: 10.1039/d3sc04585d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 04/27/2024] [Indexed: 06/01/2024] Open
Abstract
Complex diseases and diverse clinical needs necessitate drug delivery systems (DDSs), yet the current performance of DDSs is far from ideal. Supramolecular interactions play a pivotal role in various aspects of drug delivery, encompassing biocompatibility, drug loading, stability, crossing biological barriers, targeting, and controlled release. Nevertheless, despite having some understanding of the role of supramolecular interactions in drug delivery, their incorporation is frequently overlooked in the design and development of DDSs. This perspective provides a brief analysis of the involved supramolecular interactions in the action of drug delivery, with a primary emphasis on the DDSs employed in the clinic, mainly liposomes and polymers, and recognized phenomena in research, such as the protein corona. The supramolecular interactions implicated in various aspects of drug delivery systems, including biocompatibility, drug loading, stability, spatiotemporal distribution, and controlled release, were individually analyzed and discussed. This perspective aims to trigger a comprehensive and systematic consideration of supramolecular interactions in the further development of DDSs. Supramolecular interactions embody the true essence of the interplay between the majority of DDSs and biological systems.
Collapse
Affiliation(s)
- Wen-Chao Geng
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University Tianjin 300071 China
| | - Ze-Tao Jiang
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University Tianjin 300071 China
| | - Shi-Lin Chen
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University Tianjin 300071 China
| | - Dong-Sheng Guo
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University Tianjin 300071 China
| |
Collapse
|
8
|
Park JY, Kim J, Ha JS, Kim Y. Self-Assembled Tamoxifen-Selective Fluorescent Nanomaterials Driven by Molecular Structural Similarity. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5462-5473. [PMID: 38266190 DOI: 10.1021/acsami.3c14547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Most supramolecular systems were discovered by using a trial-and-error approach, leading to numerous synthetic efforts to obtain optimal supramolecular building blocks for selective guest encapsulation. Here, we report a simple coassembly strategy for preparing tamoxifen-selective supramolecular nanomaterials in an aqueous solution. The synthetic amphiphile molecule, 1,1,2,2-tetraphenylethylene (TPE), promotes large tamoxifen aggregate disassembly into smaller, discrete aggregates such as ribbon-like and micellar assemblies in coassembled solutions, enhancing the solubility and dispersion. The TPE moiety exhibits enhanced emission upon tamoxifen interaction, enabling the observation of the coassembled species in an aqueous solution for cell imaging. The tamoxifen-selective fluorescent micelles in the presence of a 1:1 molar ratio of TPE derivative with tamoxifen show enhanced tamoxifen absorption and anticancer effects against MCF-7 breast cancer cells. These supramolecular approaches, based on the coassembly of building blocks with molecular structural similarity, can provide a novel strategy for the efficient development of selective molecular carriers with enhanced biological activities.
Collapse
Affiliation(s)
- Jung Yeon Park
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Jehan Kim
- Pohang Accelerator Laboratory, POSTECH, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Jeong Sook Ha
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Yongju Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
- Department of Integrative Energy Engineering, Korea University, Seoul 02841, Republic of Korea
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| |
Collapse
|
9
|
Liu Y, Wang L, Zhao L, Zhang Y, Li ZT, Huang F. Multiple hydrogen bonding driven supramolecular architectures and their biomedical applications. Chem Soc Rev 2024; 53:1592-1623. [PMID: 38167687 DOI: 10.1039/d3cs00705g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Supramolecular chemistry combines the strength of molecular assembly via various molecular interactions. Hydrogen bonding facilitated self-assembly with the advantages of directionality, specificity, reversibility, and strength is a promising approach for constructing advanced supramolecules. There are still some challenges in hydrogen bonding based supramolecular polymers, such as complexity originating from tautomerism of the molecular building modules, the assembly process, and structure versatility of building blocks. In this review, examples are selected to give insights into multiple hydrogen bonding driven emerging supramolecular architectures. We focus on chiral supramolecular assemblies, multiple hydrogen bonding modules as stimuli responsive sources, interpenetrating polymer networks, multiple hydrogen bonding assisted organic frameworks, supramolecular adhesives, energy dissipators, and quantitative analysis of nano-adhesion. The applications in biomedical materials are focused with detailed examples including drug design evolution for myotonic dystrophy, molecular assembly for advanced drug delivery, an indicator displacement strategy for DNA detection, tissue engineering, and self-assembly complexes as gene delivery vectors for gene transfection. In addition, insights into the current challenges and future perspectives of this field to propel the development of multiple hydrogen bonding facilitated supramolecular materials are proposed.
Collapse
Affiliation(s)
- Yanxia Liu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China.
| | - Lulu Wang
- State Key Laboratory of Chemistry and Utilization of Carbon-based Energy Resource, Xinjiang University, Urumqi, Xinjiang 830046, China
| | - Lin Zhao
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China.
| | - Yagang Zhang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China.
| | - Zhan-Ting Li
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry (SIOC), Chinese Academy of Sciences, Shanghai 200032, China
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2205 Songhu Road, Shanghai 200438, China.
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center-Hangzhou Zhijiang Silicone Chemicals Co. Ltd. Joint Lab, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| |
Collapse
|
10
|
Wang H, Mills J, Sun B, Cui H. Therapeutic Supramolecular Polymers: Designs and Applications. Prog Polym Sci 2024; 148:101769. [PMID: 38188703 PMCID: PMC10769153 DOI: 10.1016/j.progpolymsci.2023.101769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The self-assembly of low-molecular-weight building motifs into supramolecular polymers has unlocked a new realm of materials with distinct properties and tremendous potential for advancing medical practices. Leveraging the reversible and dynamic nature of non-covalent interactions, these supramolecular polymers exhibit inherent responsiveness to their microenvironment, physiological cues, and biomolecular signals, making them uniquely suited for diverse biomedical applications. In this review, we intend to explore the principles of design, synthesis methodologies, and strategic developments that underlie the creation of supramolecular polymers as carriers for therapeutics, contributing to the treatment and prevention of a spectrum of human diseases. We delve into the principles underlying monomer design, emphasizing the pivotal role of non-covalent interactions, directionality, and reversibility. Moreover, we explore the intricate balance between thermodynamics and kinetics in supramolecular polymerization, illuminating strategies for achieving controlled sizes and distributions. Categorically, we examine their exciting biomedical applications: individual polymers as discrete carriers for therapeutics, delving into their interactions with cells, and in vivo dynamics; and supramolecular polymeric hydrogels as injectable depots, with a focus on their roles in cancer immunotherapy, sustained drug release, and regenerative medicine. As the field continues to burgeon, harnessing the unique attributes of therapeutic supramolecular polymers holds the promise of transformative impacts across the biomedical landscape.
Collapse
Affiliation(s)
- Han Wang
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jason Mills
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Boran Sun
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Materials Science and Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Center for Nanomedicine, The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
11
|
Wu S, Yan M, Liang M, Yang W, Chen J, Zhou J. Supramolecular host-guest nanosystems for overcoming cancer drug resistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:805-827. [PMID: 38263983 PMCID: PMC10804391 DOI: 10.20517/cdr.2023.77] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/31/2023] [Accepted: 11/15/2023] [Indexed: 01/25/2024]
Abstract
Cancer drug resistance has become one of the main challenges for the failure of chemotherapy, greatly limiting the selection and use of anticancer drugs and dashing the hopes of cancer patients. The emergence of supramolecular host-guest nanosystems has brought the field of supramolecular chemistry into the nanoworld, providing a potential solution to this challenge. Compared with conventional chemotherapeutic platforms, supramolecular host-guest nanosystems can reverse cancer drug resistance by increasing drug uptake, reducing drug efflux, activating drugs, and inhibiting DNA repair. Herein, we summarize the research progress of supramolecular host-guest nanosystems for overcoming cancer drug resistance and discuss the future research direction in this field. It is hoped that this review will provide more positive references for overcoming cancer drug resistance and promoting the development of supramolecular host-guest nanosystems.
Collapse
Affiliation(s)
- Sha Wu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, Liaoning, China
| | - Miaomiao Yan
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, Liaoning, China
| | - Minghao Liang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, Liaoning, China
| | - Wenzhi Yang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, Liaoning, China
| | - Jingyu Chen
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, Liaoning, China
| | - Jiong Zhou
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, Liaoning, China
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, Guangdong, China
| |
Collapse
|
12
|
Zeng T, Zang W, Xiao H, Jiang Y, Lin S, Wang M, Li S, Li L, Li C, Lu C, Yang H. Carrier-Free Nanovaccine: An Innovative Strategy for Ultrahigh Melanoma Neoantigen Loading. ACS NANO 2023; 17:18114-18127. [PMID: 37695697 DOI: 10.1021/acsnano.3c04887] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
In personalized cancer immunotherapy, developing an effective neoantigen nanovaccine with high immunogenicity is a significant challenge. Traditional nanovaccine delivery systems often require nanocarriers, which can hinder the delivery of the neoantigen and cause significant toxicity. In this study, we present an innovative strategy of carrier-free nanovaccine achieved through direct self-assembly of 2'-fluorinated CpG (2'F-CpG) with melanoma neoantigen peptide (Obsl1). Molecular dynamics simulations demonstrated that the introduction of a fluorine atom into CpG increases the noncovalent interaction between 2'F-CpG and Obsl1, which enhanced the loading of Obsl1 on 2'F-CpG, resulting in the spontaneous formation of a hybrid 2'F-CpG/Obsl1 nanovaccine. This nanovaccine without extra nanocarriers showed ultrahigh Obsl1 loading up to 83.19 wt %, increasing the neoantigen peptide uptake by antigen-presenting cells (APCs). In C57BL/6 mice models, we demonstrated the long-term preventive and therapeutic effects of the prepared 2'F-CpG/Obsl1 nanovaccine against B16F10 melanoma. Immunocellular analysis revealed that the nanovaccine activated innate and adaptive immune responses to cancer cells. Hence, this study established a simple, safe, and effective preparation strategy for a carrier-free neoantigen nanovaccine, which could be adapted for the future design of personalized cancer vaccines in clinical settings.
Collapse
Affiliation(s)
- Tao Zeng
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Weijie Zang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Han Xiao
- State Key Laboratory of Structure of Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou, Fujian 350002, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yifan Jiang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Sang Lin
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Min Wang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Shiqing Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Liannishang Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Chunsen Li
- State Key Laboratory of Structure of Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou, Fujian 350002, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Chunhua Lu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| |
Collapse
|
13
|
Luo Y, Zhang L, Wang S, Wang Y, Hua J, Wen C, Zhao S, Liang H. H 2O 2 Self-Supply and Glutathione Depletion Engineering Nanoassemblies for NIR-II Photoacoustic Imaging of Tumor Tissues and Photothermal-Enhanced Gas Starvation-Primed Chemodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:38309-38322. [PMID: 37534669 DOI: 10.1021/acsami.3c07227] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
The development of tumor microenvironment (TME)-activated nanoassemblies which can produce a photoacoustic (PA) signal and enhance the H2O2 level is critical to achieve accurate diagnosis and highly efficient chemodynamic therapy (CDT). In this study, we developed nanoassemblies consisting of oxygen vacancy titanium dioxide (TiO2-x) surface-constructed copper, sulfur-doped mesoporous organosilica and glucose oxidase (TiO2-x@Cu,S-MONs@GOx, hereafter TMG). We found that highly abundant glutathione (GSH) in the TME nanoassemblies can reduce tetrasulfide bonds and Cu2+ to sulfur ions and Cu+ in the TMG nanoassemblies, respectively, causing the breakage of the tetrasulfide bond and the mesoporous structure collapse, releasing Cu+ ions and TiO2-x nanoparticles, and producing hydrogen sulfide gas, thereby achieving synergistic multimodal tumor treatment through TME-activated NIR-II PA imaging and photothermal-enhanced gas starvation-primed CDT. Therefore, the TMG nanoassemblies form a smart nanoplatform that can serve as an excellent tumor diagnosis-treatment agent by playing an important role in imaging-guided precision diagnosis of cancer and efficient targeting treatment.
Collapse
Affiliation(s)
- Yanni Luo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China
| | - Liangliang Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China
| | - Shulong Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China
| | - Yang Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China
| | - Jing Hua
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China
| | - Changchun Wen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China
| | - Shulin Zhao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
14
|
Qin Z, Li M, Cheng J, Huang Z, Ai G, Qu C, Xie Y, Li Y, Liao H, Xie J, Su Z. Self-Assembled nanoparticles Combining Berberine and Sodium Taurocholate for Enhanced Anti-Hyperuricemia Effect. Int J Nanomedicine 2023; 18:4101-4120. [PMID: 37525694 PMCID: PMC10387259 DOI: 10.2147/ijn.s409513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/19/2023] [Indexed: 08/02/2023] Open
Abstract
Propose Berberine (BBR) is extensively studied as an outstanding anti-hyperuricemia drug. However, the clinical application of BBR was limited due to its poor absorption and low bioavailability. Therefore, there is an urgent necessity to find a novel drug formulation to address the issues of BBR in clinical application. Methods Herein, we conducted the solubility, characterization experiments to verify whether BBR and sodium taurocholate (STC) self-assembled nanoparticles (STC@BBR-SANPs) could form. Furthermore, we proceeded the release experiment in vitro and in vivo to investigate the drug release effect. Finally, we explored the therapeutic effect of STC@BBR-SANPs on hyperuricemia (HUA) through morphological observation of organs and measurement of related indicators. Results The solubility, particle size, scanning electron microscopy (SEM), and stability studies showed that the stable STC@BBR-SANPs could be formed in the BBR-STC system at ratio of 1:4. Meanwhile, the tissue distribution experiments revealed that the STC@BBR-SANPs could accelerate the absorption and distribution of BBR. In addition, the pharmacology study demonstrated that both BBR and STC@BBR-SANPs exhibited favorable anti-HUA effects and nephroprotective effects, while STC@BBR-SANPs showed better therapeutic action than that of BBR. Conclusion This work indicated that STC@BBR-SANPs can be self-assembly formed, and exerts excellent uric acid-lowering effect. STC@BBR-SANPs can help to solve the problems of poor solubility and low absorption rate of BBR in clinical use, and provide a new perspective for the future development of BBR.
Collapse
Affiliation(s)
- Zehui Qin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People’s Republic of China
| | - Minhua Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People’s Republic of China
- Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan, 523808, People’s Republic of China
| | - Juanjuan Cheng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People’s Republic of China
- Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan, 523808, People’s Republic of China
| | - Ziwei Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People’s Republic of China
- Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan, 523808, People’s Republic of China
| | - Gaoxiang Ai
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People’s Republic of China
- Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan, 523808, People’s Republic of China
| | - Chang Qu
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510006, People’s Republic of China
| | - Youliang Xie
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People’s Republic of China
| | - Yucui Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People’s Republic of China
| | - Huijun Liao
- Department of Clinical Pharmacy and Pharmaceutical Services, Huazhong University of Science and Technology Union Shenzhen Hospital (the 6th affiliated Hospital of Shenzhen University), Shenzhen, People’s Republic of China
| | - Jianhui Xie
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, People’s Republic of China
| | - Ziren Su
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People’s Republic of China
- Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan, 523808, People’s Republic of China
| |
Collapse
|
15
|
Wang D, Zhang X, Zhu X. Drug-Grafted DNA for Cancer Therapy. J Phys Chem B 2023. [PMID: 37294640 DOI: 10.1021/acs.jpcb.3c01321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
With the development of solid-phase synthesis and DNA nanotechnology, DNA-based drug delivery systems have seen large advancements over the past decades. By combining various drugs (small-molecular drugs, oligonucleotides, peptides, and proteins) with DNA technology, drug-grafted DNA has demonstrated great potential as a promising platform in recent years, in which complementary properties of both components have been discovered; for instance, the synthesis of amphiphilic drug-grafted DNA has enabled the production of DNA nanomedicines for gene therapy and chemotherapy. Through the design of linkages between drug and DNA parts, stimuli-responsiveness can be instilled, which has boosted the application of drug-grafted DNA in various biomedical applications such as cancer therapy. This review discusses the progress of various drug-grafted DNA therapeutic agents, exploring the synthetic techniques and anticancer applications afforded through the combination of drug and nucleic acids.
Collapse
Affiliation(s)
- Dali Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240 Shanghai, P. R. China
| | - Xinyue Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240 Shanghai, P. R. China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240 Shanghai, P. R. China
| |
Collapse
|
16
|
Zheng T, Cui M, Chen H, Wang J, Ye H, Zhang Q, Sun S, Feng Y, Zhang Y, Liu W, Chen R, Li Y, Dong Z. Co-assembled nanocomplexes comprising epigallocatechin gallate and berberine for enhanced antibacterial activity against multidrug resistant Staphylococcus aureus. Biomed Pharmacother 2023; 163:114856. [PMID: 37196539 DOI: 10.1016/j.biopha.2023.114856] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/27/2023] [Accepted: 05/06/2023] [Indexed: 05/19/2023] Open
Abstract
Berberine (BBR), a major alkaloid in Coptis chinensis, and (-)-epigallocatechin-3-gallate (EGCG), a major catechin in green tea, are two common phytochemicals with numerous health benefits, including antibacterial efficacy. However, the limited bioavailability restricts their application. Advancement in the co-assembly technology to form nanocomposite nanoparticles precisely controls the morphology, electrical charge, and functionalities of the nanomaterials. Here, we have reported a simple one-step method for preparing a novel nanocomposite BBR-EGCG nanoparticles (BBR-EGCG NPs). These BBR-EGCG NPs exhibit improved biocompatibility and greater antibacterial effects both in vitro and in vivo relative to free-BBR and first-line antibiotics (i.e., benzylpenicillin potassium and ciprofloxacin). Furthermore, we demonstrated a synergistic bactericidal effect for BBR when combined with EGCG. We also evaluated the antibacterial activity of BBR and the possible synergism with EGCG in MRSA-infected wounds. A potential mechanism for synergism between S. aureus and MRSA was also explored through ATP determination, the interaction between nanoparticles and bacteria, and, then, transcription analysis. Furthermore, our experiments on S. aureus and MRSA confirmed the biofilm-scavenging effect of BBR-EGCG NPs. More importantly, toxicity analysis revealed that the BBR-EGCG NPs had no toxic effects on the major organs of mice. Finally, we proposed a green method for the fabrication of BBR-EGCG combinations, which may provide an alternative approach to treating infections with MRSA without using antibiotics.
Collapse
Affiliation(s)
- Tingting Zheng
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Mengyao Cui
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Huan Chen
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Jinrui Wang
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Hanyi Ye
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Qianqian Zhang
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Shuhui Sun
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Yifan Feng
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Yinghua Zhang
- Jilin Provincial Academy of Chinese Medicine, Changchun 130012, China
| | - Wei Liu
- Jilin Provincial Academy of Chinese Medicine, Changchun 130012, China
| | - Renping Chen
- Jilin Provincial Academy of Chinese Medicine, Changchun 130012, China
| | - Ying Li
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100094, China; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Beijing 100700, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100700, China.
| | - Zhengqi Dong
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100094, China; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Beijing 100700, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100700, China.
| |
Collapse
|
17
|
Sun L, Liu Y, Yang N, Ye X, Liu Z, Wu J, Zhou M, Zhong W, Cao M, Zhang J, Mequanint K, Xing M, Liao W. Gold nanoparticles inhibit tumor growth via targeting the Warburg effect in a c-Myc-dependent way. Acta Biomater 2023; 158:583-598. [PMID: 36586500 DOI: 10.1016/j.actbio.2022.12.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022]
Abstract
Gold nanoparticles (AuNPs) are prospective tools for nano-based medicine that can directly target cellular biological processes to influence cell fate and function. Studies have revealed the essential role of AuNPs in metabolic remodeling for macrophage polarization. Nevertheless, as a hallmark of cancer cells, metabolic changes in tumor cells in response to AuNPs have not yet been reported. In the present study, polymer- and folate-conjugated AuNPs with satisfactory biocompatibility and tumor-targeting activity were synthesized to investigate their underlying roles in tumor metabolism. Tumor cells were significantly suppressed by AuNPs in vitro and in vivo, with little cytotoxicity in non-tumor cells. Subcellular localization showed that AuNPs localized in the mitochondria of tumor cells and impaired their structure and function, leading to excessive oxidative stress and mitochondrial apoptosis. Metabolic stress, with decreased glycolysis and insufficient nutrients, was also caused by AuNPs exposure in tumor cells. Mechanistically, the key enzymes (GLUT1 and HK2) for glycolysis modulation were remarkably reduced by AuNPs in a c-Myc-dependent manner. The present study demonstrated a new mechanism for AuNPs in the inhibition of tumor growth, that is, via directly targeting glycolysis and depriving energy. These findings provide new strategies for the design of nano-based medicines and anti-glycolytic therapeutics to inhibit the development of malignant tumors. STATEMENT OF SIGNIFICANCE: Gold nanoparticles (AuNPs) have acquired ever-increasing interest for applications in cancer treatment and diagnosis due to their high biosafety and facile surface modification. Recent studies have shown that AuNPs can work as active agents to directly target the cellular processes and harbor antitumor properties, while the underlying mechanisms remain largely unknown. From the present findings, the stabilized AuNPs showed direct inhibition effects on tumor growth by glycolysis inhibition and energy deprivation. These results provide new insights of AuNPs for tumor treatments, which will further contribute to the development of promising nano-based medicines and anti-glycolytic therapies.
Collapse
Affiliation(s)
- Li Sun
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yuqing Liu
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Nanyan Yang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xiandong Ye
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zhihong Liu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jingjing Wu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Minyu Zhou
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Wen Zhong
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Meiwen Cao
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), 266580, China
| | - Junhao Zhang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Kibret Mequanint
- Department of Chemical and Biochemical Engineering, and School of Biomedical Engineering, University of Western Ontario, 1151 Richmond St., London, Ontario N6A5B9, Canada
| | - Malcolm Xing
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
18
|
Hudait N, Karmakar A, Basu A, Kar B, Bhuyan S, Chhetri K, Kundu S, Gopal Roy B, Sengupta J. Transglycosylation Reaction: Synthesis and Supramolecular Study of Carbohydrate‐Cased
C
2
‐Symmetric 20‐ and 22‐Membered Macrocyclic Dinucleosides. ChemistrySelect 2023. [DOI: 10.1002/slct.202204311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- Nandagopal Hudait
- Department of Chemistry West Bengal State University 700126 Barasat Kolkata India
| | - Arun Karmakar
- Electrochemical Process Engineering Division CSIR-CECRI 630003 Karaikudi India
| | - Arpan Basu
- Department of Chemistry West Bengal State University 700126 Barasat Kolkata, India
| | - Binoy Kar
- Department of Chemistry School of Advanced Science Vellore Institute of Technology 632014 Vellore Tamil Nadu India
| | - Samuzal Bhuyan
- Department of Chemistry Sikkim University 737102 Gangtok India
| | - Karan Chhetri
- Department of Chemistry Sikkim University 737102 Gangtok India
| | - Subrata Kundu
- Electrochemical Process Engineering Division CSIR-CECRI 630003 Karaikudi India
| | - Biswajit Gopal Roy
- Department of Chemistry Sikkim University 737102 Gangtok India
- Department of Chemistry Sikkim University 737102 Gangtok India
| | - Jhimli Sengupta
- Department of Chemistry West Bengal State University 700126 Barasat Kolkata India
- Department of Chemistry West Bengal State University 700126 Barasat Kolkata, India
- Department of Chemistry School of Advanced Science Vellore Institute of Technology 632014 Vellore Tamil Nadu India
| |
Collapse
|
19
|
Zhong YT, Cen Y, Xu L, Li SY, Cheng H. Recent Progress in Carrier-Free Nanomedicine for Tumor Phototherapy. Adv Healthc Mater 2023; 12:e2202307. [PMID: 36349844 DOI: 10.1002/adhm.202202307] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/01/2022] [Indexed: 11/10/2022]
Abstract
Safe and effective strategies are urgently needed to fight against the life-threatening diseases of various cancers. However, traditional therapeutic modalities, such as radiotherapy, chemotherapy and surgery, exhibit suboptimal efficacy for malignant tumors owing to the serious side effects, drug resistance and even relapse. Phototherapies, including photodynamic therapy (PDT) and photothermal therapy (PTT), are emerging therapeutic strategies for localized tumor inhibition, which can produce a large amount of reactive oxygen species (ROS) or elevate the temperature to initiate cell death by non-invasive irradiation. In consideration of the poor bioavailability of phototherapy agents (PTAs), lots of drug delivery systems have been developed to enhance the tumor targeted delivery. Nevertheless, the carriers of drug delivery systems inevitably bring biosafety concerns on account of their metabolism, degradation, and accumulation. Of note, carrier-free nanomedicine attracts great attention for clinical translation with synergistic antitumor effect, which is characterized by high drug loading, simplified synthetic method and good biocompatibility. In this review, the latest advances of phototherapy with various carrier-free nanomedicines are summarized, which may provide a new paradigm for the future development of nanomedicine and tumor precision therapy.
Collapse
Affiliation(s)
- Ying-Tao Zhong
- Biomaterials Research Center, School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Yi Cen
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Lin Xu
- Department of Geriatric Cardiology, General Hospital of the Southern Theatre Command, People's Liberation Army (PLA) and Guangdong Pharmaceutical University, Guangzhou, 510016, P. R. China
| | - Shi-Ying Li
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Hong Cheng
- Biomaterials Research Center, School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, 510515, P. R. China
| |
Collapse
|
20
|
Wang Z, Lu J, Yuan Z, Pi W, Huang X, Lin X, Zhang Y, Lei H, Wang P. Natural Carrier-Free Binary Small Molecule Self-Assembled Hydrogel Synergize Antibacterial Effects and Promote Wound Healing by Inhibiting Virulence Factors and Alleviating the Inflammatory Response. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205528. [PMID: 36446719 DOI: 10.1002/smll.202205528] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/16/2022] [Indexed: 06/16/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA)-infected skin wounds have caused a variety of diseases and seriously endanger global public health. Therefore, multidimensional strategies are urgently to find antibacterial dressings to combat bacterial infections. Antibacterial hydrogels are considered potential wound dressing, while their clinical translation is limited due to the unpredictable risks and high costs of carrier excipients. it is found that the natural star antibacterial and anti-inflammatory phytochemicals baicalin (BA) and sanguinarine (SAN) can directly self-assemble through non-covalent bonds such as electrostatic attraction, π-π stacking, and hydrogen bonding to form carrier-free binary small molecule hydrogel. In addition, BA-SAN gel exhibited a synergistic inhibitory effect on MRSA. And its plasticity and injectability allowed it to be applied as a wound dressing. Due to the matched physicochemical properties and synergistic therapeutic effects, BA-SAN gel can inhibit bacterial virulence factors, alleviate wound inflammation, promote wound healing, and has good biocompatibility. The current study not only provided an antibacterial hydrogel with clinical value but also opened up new prospects that carrier-free hydrogels can be designed and originated from clinically used small-molecule phytochemicals.
Collapse
Affiliation(s)
- Zhijia Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, P. R. China
| | - Jihui Lu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, P. R. China
| | - Zhihua Yuan
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, P. R. China
| | - Wenmin Pi
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, P. R. China
| | - Xuemei Huang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, P. R. China
| | - Xiaoyu Lin
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, P. R. China
| | - Yaozhi Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, P. R. China
| | - Haimin Lei
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, P. R. China
| | - Penglong Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, P. R. China
| |
Collapse
|
21
|
Liu C, Liu C, Bai Y, Wang J, Tian W. Drug Self-Delivery Systems: Molecule Design, Construction Strategy, and Biological Application. Adv Healthc Mater 2022; 12:e2202769. [PMID: 36538727 DOI: 10.1002/adhm.202202769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/29/2022] [Indexed: 02/01/2023]
Abstract
Drug self-delivery systems (DSDSs) offer new ways to create novel drug delivery systems (DDSs). In typical DSDSs, therapeutic reagents are not considered passive cargos but active delivery agents of actionable targets. As an advanced drug delivery strategy, DSDSs with positive cooperativity of both free drugs and nanocarriers exhibit the clear merits of unprecedented drug-loading capacity, minimized systemic toxicity, and flexible preparation of nanoscale deliverables for passive targeted therapy. This review highlights the recent advances and future trends in DSDSs on the basis of two differently constructed structures: covalent and noncovalent bond-based DSDSs. Specifically, various chemical and architectural designs, fabrication strategies, and responsive and functional features are comprehensively discussed for these two types of DSDSs. In addition, additional comments on the current development status of DSDSs and the potential applications of their molecular designs are presented in the corresponding discussion. Finally, the promising potential of DSDSs in biological applications is revealed and the relationship between preliminary molecular design of DSDSs and therapeutic effects of subsequent DSDSs biological applications is clarified.
Collapse
Affiliation(s)
- Chengfei Liu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Caiping Liu
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China
| | - Yang Bai
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China
| | - Jingxia Wang
- Shaanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Wei Tian
- Shaanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| |
Collapse
|
22
|
Thermodynamics driving phytochemical self-assembly morphological change and efficacy enhancement originated from single and co-decoction of traditional chinese medicine. J Nanobiotechnology 2022; 20:527. [PMID: 36510210 PMCID: PMC9743513 DOI: 10.1186/s12951-022-01734-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022] Open
Abstract
Through the self-assembled strategy to improve the clinical efficacy of the existing drugs is the focus of current research. Herbal formula granule is a kind of modern dosage form of traditional Chinese medicine (TCM) which has sprung up in recent decades. However, whether it is equivalent to the TCM decoction that has been used for thousands of years has always been a controversial issue. In this paper, taking the herb pair of Coptidis Rhizoma-Scutellariae Radix and its main component berberine-baicalin as examples, the differences and mechanisms of self-assemblies originated from the co-decoction and physical mixture were studied, respectively. Moreover, the relationship between the morphology and antibacterial effects of self-assemblies was illuminated via multi-technology. Our study revealed that the physical mixture's morphology of both the herb pair and the phytochemicals was nanofibers (NFs), while their co-decoction's morphology was nanospheres (NPs). We also found that the antibacterial activity was enhanced with the change of self-assemblies' morphology after the driving by thermal energy. This might be attributed to that NPs could influence amino acid biosynthesis and metabolism in bacteria. Current study provides a basis that co-decoction maybe beneficial to enhance activity and reasonable use of herbal formula granule in clinic.
Collapse
|
23
|
Poly lactide-co-glycolide encapsulated nano-curcumin promoting antagonistic interactions between HSP 90 and XRCC1 proteins to prevent cypermethrin-induced toxicity: An in silico predicted in vitro and in vivo approach. Colloids Surf B Biointerfaces 2022; 220:112905. [DOI: 10.1016/j.colsurfb.2022.112905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/11/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022]
|
24
|
|
25
|
Zheng J, Song X, Yang Z, Yin C, Luo W, Yin C, Ni Y, Wang Y, Zhang Y. Self-assembly hydrogels of therapeutic agents for local drug delivery. J Control Release 2022; 350:898-921. [PMID: 36089171 DOI: 10.1016/j.jconrel.2022.09.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 10/14/2022]
Abstract
Advanced drug delivery systems are of vital importance to enhance therapeutic efficacy. Among various recently developed formulations, self-assembling hydrogels composed of therapeutic agents have shown promising potential for local drug delivery owing to their excellent biocompatibility, high drug-loading efficiency, low systemic toxicity, and sustained drug release behavior. In particular, therapeutic agents self-assembling hydrogels with well-defined nanostructures are beneficial for direct delivery to the target site via injection, not only improving drug availability, but also extending their retention time and promoting cellular uptake. In brief, the self-assembly approach offers better opportunities to improve the precision of pharmaceutical treatment and achieve superior treatment efficacies. In this review, we intend to cover the recent developments in therapeutic agent self-assembling hydrogels. First, the molecular structures, self-assembly mechanisms, and application of self-assembling hydrogels are systematically outlined. Then, we summarize the various self-assembly strategies, including the single therapeutic agent, metal-coordination, enzyme-instruction, and co-assembly of multiple therapeutic agents. Finally, the potential challenges and future perspectives are discussed. We hope that this review will provide useful insights into the design and preparation of therapeutic agent self-assembling hydrogels.
Collapse
Affiliation(s)
- Jun Zheng
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Xianwen Song
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Zhaoyu Yang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Chao Yin
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Weikang Luo
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Chunyang Yin
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Yaqiong Ni
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Yang Wang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Yi Zhang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| |
Collapse
|
26
|
Carrier-free supramolecular nanomedicines assembled by small-molecule therapeutics for cancer treatment. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
27
|
Zhao B, Chen S, Hong Y, Jia L, Zhou Y, He X, Wang Y, Tian Z, Yang Z, Gao D. Research Progress of Conjugated Nanomedicine for Cancer Treatment. Pharmaceutics 2022; 14:1522. [PMID: 35890416 PMCID: PMC9315807 DOI: 10.3390/pharmaceutics14071522] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 12/05/2022] Open
Abstract
The conventional cancer therapeutic modalities include surgery, chemotherapy and radiotherapy. Although immunotherapy and targeted therapy are also widely used in cancer treatment, chemotherapy remains the cornerstone of tumor treatment. With the rapid development of nanotechnology, nanomedicine is believed to be an emerging field to further improve the efficacy of chemotherapy. Until now, there are more than 17 kinds of nanomedicine for cancer therapy approved globally. Thereinto, conjugated nanomedicine, as an important type of nanomedicine, can not only possess the targeted delivery of chemotherapeutics with great precision but also achieve controlled drug release to avoid adverse effects. Meanwhile, conjugated nanomedicine provides the platform for combining several different therapeutic approaches (chemotherapy, photothermal therapy, photodynamic therapy, thermodynamic therapy, immunotherapy, etc.) with the purpose of achieving synergistic effects during cancer treatment. Therefore, this review focuses on conjugated nanomedicine and its various applications in synergistic chemotherapy. Additionally, the further perspectives and challenges of the conjugated nanomedicine are also addressed, which clarifies the design direction of a new generation of conjugated nanomedicine and facilitates the translation of them from the bench to the bedside.
Collapse
Affiliation(s)
- Bin Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (B.Z.); (S.C.); (L.J.); (Y.Z.); (X.H.); (Y.W.); (Z.T.)
- Department of Epidemiology, Shaanxi Provincial Cancer Hospital, Xi’an 710061, China
| | - Sa Chen
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (B.Z.); (S.C.); (L.J.); (Y.Z.); (X.H.); (Y.W.); (Z.T.)
- Shaanxi Provincial Centre for Disease Control and Prevention, Xi’an 710054, China
| | - Ye Hong
- Center of Digestive Endoscopy, Shaanxi Provincial Cancer Hospital, Xi’an 710061, China;
| | - Liangliang Jia
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (B.Z.); (S.C.); (L.J.); (Y.Z.); (X.H.); (Y.W.); (Z.T.)
| | - Ying Zhou
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (B.Z.); (S.C.); (L.J.); (Y.Z.); (X.H.); (Y.W.); (Z.T.)
| | - Xinyu He
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (B.Z.); (S.C.); (L.J.); (Y.Z.); (X.H.); (Y.W.); (Z.T.)
| | - Ying Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (B.Z.); (S.C.); (L.J.); (Y.Z.); (X.H.); (Y.W.); (Z.T.)
| | - Zhongmin Tian
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (B.Z.); (S.C.); (L.J.); (Y.Z.); (X.H.); (Y.W.); (Z.T.)
| | - Zhe Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (B.Z.); (S.C.); (L.J.); (Y.Z.); (X.H.); (Y.W.); (Z.T.)
- Research Institute of Xi’an Jiaotong University, Hangzhou 311200, China
| | - Di Gao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (B.Z.); (S.C.); (L.J.); (Y.Z.); (X.H.); (Y.W.); (Z.T.)
| |
Collapse
|
28
|
Wong S, Cao C, Lessio M, Stenzel MH. Sugar-induced self-assembly of curcumin-based polydopamine nanocapsules with high loading capacity for dual drug delivery. NANOSCALE 2022; 14:9448-9458. [PMID: 35735130 DOI: 10.1039/d2nr01795d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Many drug delivery carriers reported in the literature require multistep assembly or often have very low drug loading capacities. Here, we present a simple sugar-based strategy that feeds the increased interest in high-loading nanomedicine. The driving force of the supramolecular nanocapsule formation is the interaction between curcumin (CCM) and the monosaccharide fructose. Drug and sugar are simply mixed in an aqueous solution in an open vessel, followed by coating the nanocapsules with polydopamine (PDA) to maintain structural integrity. We show that nanocapsules can still be obtained when other drugs are added, producing dual-drug nanoparticles with sizes of around 150-200 nm and drug loading contents of around 90% depending on the thickness of the PDA shell. This concept is widely applicable for a broad variety of drugs, as long as the drug has similar polarities to CCM. The key to success is the interaction of CCM and the second drug as shown in computational studies. The drug was able to be released from the nanocapsule at a release rate that could be fine-tuned by adjusting the thickness of the PDA layer.
Collapse
Affiliation(s)
- Sandy Wong
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Cheng Cao
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Martina Lessio
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Martina H Stenzel
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
29
|
Fu Y, He G, Liu Z, Wang J, Li M, Zhang Z, Bao Q, Wen J, Zhu X, Zhang C, Zhang W. DNA Base Pairing-Inspired Supramolecular Nanodrug Camouflaged by Cancer-Cell Membrane for Osteosarcoma Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202337. [PMID: 35780479 DOI: 10.1002/smll.202202337] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Osteosarcoma (OS) is one of the most common bone malignant tumors which mainly develops in adolescents. Although neoadjuvant chemotherapy has improved the prognosis of patients, numerous chemotherapeutic challenges still limit their use. Here, inspired by the Watson-Crick base pairing in nucleic acids, hydrophobic (methotrexate) and hydrophilic (floxuridine) chemo-drugs are mixed and self-assembled into M:F nanoparticles (M:F NPs) through molecular recognition. Then, the obtained NPs are co-extruded with membranes derived from OS cells to form cancer-cell membrane-coated NPs (CCNPs). With protected membranes at the outer layer, CCNPs are highly stable in both physiological and weak acid tumor conditions and possess homologous tumor targeted capability. Furthermore, the proteomic analysis first identifies over 400 proteins reserved in CCNPs, most of them participating in tumor cell targeting and adhesion processes. In vitro studies reveal that CCNPs significantly inhibit the PI3K/AKT/mTOR pathway, which promotes cell apoptosis and cell cycle arrest. More importantly, cell membrane camouflage significantly prolongs the circulation half-life of CCNPs, elevates the drug accumulation at tumor sites, and promotes anti-tumor efficacy in vivo. As a convenient and effective strategy to construct a biomimetic NP with high drug loading ratio, the CCNPs provide new potentials for precise and synergistic antitumor treatment.
Collapse
Affiliation(s)
- Yucheng Fu
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Guoyu He
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Zhuochao Liu
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Jun Wang
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Meng Li
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Zhusheng Zhang
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Qiyuan Bao
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Junxiang Wen
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Chuan Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Weibin Zhang
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| |
Collapse
|
30
|
Chen S, Wu Y, Lortie F, Bernard J, Binder WH, Zhu J. Hydrogen-Bonds Mediated Nanomedicine: Design, Synthesis and Applications. Macromol Rapid Commun 2022; 43:e2200168. [PMID: 35609317 DOI: 10.1002/marc.202200168] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/30/2022] [Indexed: 11/08/2022]
Abstract
Among the various challenges in medicine, diagnosis, complete cure and healing of cancers remain difficult given the heterogeneity and complexity of such disease. Differing from conventional platforms with often unsatisfactory theranostic capabilities, the contribution of supramolecular interactions, such as hydrogen-bonds (H-bonds), to cancer nanotheranostics opens new perspectives for the design of biomedical materials, exhibiting remarkable properties and easier processability. Thanks to their dynamic characteristics, a feature generally observed for non-covalent interactions, H-bonding (macro)molecules can be used as supramolecular motifs for yielding drug- and diagnostic carriers that possess attractive features, arising from the combination of assembled nanoplatforms and the responsiveness of H-bonds. Thus H-bonded nanomedicine provides a rich toolbox that is useful to fulfill biomedical needs with unique advantages in early-stage diagnosis and therapy, demonstrating the promising potential in clinical translations and applications. We here summarize the design and synthetic routes towards H-bonded nanomedicines, focus on the growing understanding of the structure-function relationship for efficient cancer treatment. We propose a guidance for designing new H-bonded intelligent theranostic agents, to inspire more successful explorations of cancer nanotheranostics and finally to promote potential clinical translations. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Senbin Chen
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Yanggui Wu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Frédéric Lortie
- Univ Lyon, CNRS, UMR 5223, Ingénierie des Matériaux Polymères, Université Claude Bernard Lyon1, INSA Lyon, Université Jean Monnet, Villeurbanne Cedex, F-69621, France
| | - Julien Bernard
- Univ Lyon, CNRS, UMR 5223, Ingénierie des Matériaux Polymères, Université Claude Bernard Lyon1, INSA Lyon, Université Jean Monnet, Villeurbanne Cedex, F-69621, France
| | - Wolfgang H Binder
- Chair of Macromolecular Chemistry, Faculty of Natural Science II (Chemistry, Physics and Mathematics), Martin Luther University Halle-Wittenberg, von-Danckelmann-Platz 4, Halle (Saale), D-06120, Germany
| | - Jintao Zhu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| |
Collapse
|
31
|
Wang H, Monroe M, Leslie F, Flexner C, Cui H. Supramolecular nanomedicines through rational design of self-assembling prodrugs. Trends Pharmacol Sci 2022; 43:510-521. [PMID: 35459589 DOI: 10.1016/j.tips.2022.03.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 03/08/2022] [Accepted: 03/15/2022] [Indexed: 01/23/2023]
Abstract
Advancements in the development of nanomaterials have led to the creation of a plethora of functional constructs as drug delivery vehicles to address many dire medical needs. The emerging prodrug strategy provides an alternative solution to create nanomedicines of extreme simplicity by directly using the therapeutic agents as molecular building blocks. This Review outlines different prodrug-based drug delivery systems, highlights the advantages of the prodrug strategy for therapeutic delivery, and demonstrates how combinations of different functionalities - such as stimuli responsiveness, targeting propensity, and multidrug conjugation - can be incorporated into designed prodrug delivery systems. Furthermore, we discuss the opportunities and challenges facing this rapidly growing field.
Collapse
Affiliation(s)
- Han Wang
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Maya Monroe
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Faith Leslie
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Charles Flexner
- Divisions of Clinical Pharmacology and Infectious Diseases, Johns Hopkins University School of Medicine and Bloomberg School of Public Health, Baltimore, MD 21287, USA
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA; Center of Nanomedicine, The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
32
|
Wang J, Huang X, Li H, Yan D, Huang W. Two Zn(II) coordination polymers with anticancer drug norcantharidin as ligands for cancer chemotherapy. Dalton Trans 2022; 51:5624-5634. [PMID: 35319055 DOI: 10.1039/d2dt00300g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Here two Zn(II) coordination polymers [Zn20(DMCA)12]O12 (DMCA = demethylcantharic acid, DMCA-Zn1) and [Zn(DMCA)](H2O)2 (DMCA-Zn2) are synthesized from a broad-spectrum anticancer drug norcantharidin (NCTD) and Zn(NO3)2·6H2O under solvothermal conditions. By mechanical grinding with a biocompatible polymeric surfactant F127, ultrasonic treatment and filtration, DMCA-Zn1 and DMCA-Zn2 can be transformed into stable nanoparticles (DMCA-Zn1 NPs and DMCA-Zn2 NPs) suspended in water with average diameters of around 190 nm and 162 nm for drug delivery. The in vitro evaluation indicates that DMCA-Zn1 NPs and DMCA-Zn2 NPs can enter into HepG2 and Hep3B cancer cells via endocytosis and inhibit their proliferation. Meanwhile they exhibit relatively low toxicity to L927 normal cells. The in vivo evaluation confirms that DMCA-Zn1 NPs and DMCA-Zn2 NPs can more effectively inhibit the growth of Hep3B tumors with relatively few side effects compared with free NCTD. This approach can be extended to other anticancer drugs to construct nanodrug delivery systems for cancer treatment.
Collapse
Affiliation(s)
- Jia Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Xiange Huang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P. R. China
| | - Hegen Li
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P. R. China
| | - Deyue Yan
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Wei Huang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| |
Collapse
|
33
|
Fu Y, Bian X, Li P, Huang Y, Li C. Carrier-Free Nanomedicine for Cancer Immunotherapy. J Biomed Nanotechnol 2022; 18:939-956. [PMID: 35854464 DOI: 10.1166/jbn.2022.3315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
With the rapid development of nanotechnology, carrier-based nano-drug delivery systems (DDSs) have been widely studied due to their advantages in optimizing pharmacokinetic and distribution profiles. However, despite those merits, some carrier-related limitations, such as low drug-loading capacity, systematic toxicity and unclear metabolism, usually prevent their further clinical transformation. Carrier-free nanomedicines with non-therapeutic excipients, are considered as an excellent paradigm to overcome these obstacles, owing to their superiority in improving both drug delivery efficacy and safety concern. In recent years, carrier-free nanomedicines have opened new horizons for cancer immunotherapy, and have already made outstanding progress. Herein, in this review, we are focusing on making an integrated and exhaustive overview of lately reports about them. Firstly, the major synthetic strategies of carrier-free nanomedicines are introduced, such as nanocrystals, prodrug-, amphiphilic drug-drug conjugates (ADDCs)-, polymer-drug conjugates-, and peptide-drug conjugates (PepDCs)-assembled nanomedicines. Afterwards, the typical applications of carrier-free nanomedicines in cancer immunotherapy are well-discussed, including cancer vaccines, cytokine therapy, enhancing T-cell checkpoint inhibition, as well as modulating tumor microenvironment (TME). After that, both the advantages and the potential challenges, as well as the future prospects of carrier-free nanomedicines in cancer immunotherapy, were discussed. And we believe that it would be of great potential practiced and reference value to the relative fields.
Collapse
Affiliation(s)
- Yu Fu
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Xufei Bian
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Pingrong Li
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Yulan Huang
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Chong Li
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| |
Collapse
|
34
|
Liang H, Zhang F, Hong Y, Wu Y, Xie H, Zhang C, Wang Z, Lu Z, Yang H. Synergistic Silencing of Skp2 by siRNA Self-Assembled Nanoparticles as a Therapeutic Strategy for Advanced Prostate Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106046. [PMID: 35182014 DOI: 10.1002/smll.202106046] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Advanced prostate cancer, harboring multiple mutations of tumor suppressor genes, is refractory to conventional therapies. Knockout of the Skp2 gene blocks pRb/p53 doubly deficient prostate cancer in mice, which inspired the authors to develop an approach for delivering siRNA that would efficiently silence Skp2 (siSkp2) in vivo. Here, a facile strategy is reported to directly assemble siSkp2 with the natural compound quercetin (Que) into supramolecular nanoparticles (NPs). This carrier-free siSkp2 delivery system could effectively protect siSkp2 from degradation in serum and enhance its cellular internalization. Furthermore, the siSkp2/Que NPs exhibit synergistic effects in Skp2 silencing, because they can degrade the mRNA and protein of Skp2 simultaneously. Indeed, siSkp2/Que NPs remarkably diminish the Skp2 abundance and further inhibit the proliferation and migration of TMU cells (RB1/TP53/KRAS triple mutations) in vitro. The in vivo results further show that i.v. administration of siSkp2/Que NPs efficiently accumulates in tumor sites and strongly inhibits the growth of TMU tumors in nude mice. Importantly, the siSkp2/Que NPs do not induce any abnormality in the treated mice, which suggests satisfactory biocompatibility. Collectively, this study describes a tractable siRNA self-assembled strategy for Skp2 silencing, which might be a promising nanodrug to cure multitherapy-resistant advanced prostate cancer.
Collapse
Affiliation(s)
- Hong Liang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, P. R. China
- Fujian Key Laboratory of Functional Marine Sensing Materials, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350108, P. R. China
| | - Fangming Zhang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Yannv Hong
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Yue Wu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Huanzhang Xie
- Fujian Key Laboratory of Functional Marine Sensing Materials, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350108, P. R. China
| | - Chen Zhang
- Fujian Key Laboratory of Functional Marine Sensing Materials, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350108, P. R. China
| | - Zonghua Wang
- Fujian Key Laboratory of Functional Marine Sensing Materials, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350108, P. R. China
| | - Zhonglei Lu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| |
Collapse
|
35
|
Sun M, Jiang H, Liu T, Tan X, Jiang Q, Sun B, Zheng Y, Wang G, Wang Y, Cheng M, He Z, Sun J. Structurally defined tandem-responsive nanoassemblies composed of dipeptide-based photosensitive derivatives and hypoxia-activated camptothecin prodrugs against primary and metastatic breast tumors. Acta Pharm Sin B 2022; 12:952-966. [PMID: 35256957 PMCID: PMC8897200 DOI: 10.1016/j.apsb.2021.08.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/10/2021] [Accepted: 05/28/2021] [Indexed: 12/29/2022] Open
Abstract
Substantial progress in the use of chemo-photodynamic nano-drug delivery systems (nano-DDS) for the treatment of the malignant breast cancer has been achieved. The inability to customize precise nanostructures, however, has limited the therapeutic efficacy of the prepared nano-DDS to date. Here, we report a structurally defined tandem-responsive chemo-photosensitive co-nanoassembly to eliminate primary breast tumor and prevent lung metastasis. This both-in-one co-nanoassembly is prepared by assembling a biocompatible photosensitive derivative (pheophorbide-diphenylalanine peptide, PPA-DA) with a hypoxia-activated camptothecin (CPT) prodrug [(4-nitrophenyl) formate camptothecin, N-CPT]. According to computational simulations, the co-assembly nanostructure is not the classical core-shell type, but consists of many small microphase regions. Upon exposure to a 660 nm laser, PPA-DA induce high levels of ROS production to effectively achieve the apoptosis of normoxic cancer cells. Subsequently, the hypoxia-activated N-CPT and CPT spatially penetrate deep into the hypoxic region of the tumor and suppress hypoxia-induced tumor metastasis. Benefiting from the rational design of the chemo-photodynamic both-in-one nano-DDS, these nanomedicines exhibit a promising potential in the inhibition of difficult-to-treat breast tumor metastasis in patients with breast cancer.
Collapse
Affiliation(s)
- Mengchi Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hailun Jiang
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education, Shenyang 110016, China
| | - Tian Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiao Tan
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qikun Jiang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Bingjun Sun
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education, Shenyang 110016, China
| | - Yulong Zheng
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Gang Wang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Yang Wang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education, Shenyang 110016, China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
- Corresponding authors. Tel./fax: +86 24 23986321.
| | - Jin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
- Corresponding authors. Tel./fax: +86 24 23986321.
| |
Collapse
|
36
|
Liu C, Li M, Liu C, Qiu S, Bai Y, Fan L, Tian W. A supramolecular organometallic drug complex with H 2O 2 self-provision intensifying intracellular autocatalysis for chemodynamic therapy. J Mater Chem B 2022; 10:8981-8987. [DOI: 10.1039/d2tb01834a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A supramolecular organometallic drug complex (SOMDC) with H2O2 self-provision was proposed to intensify the intracellular autocatalysis for enhancing the CDT effect.
Collapse
Affiliation(s)
- Chengfei Liu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an, 710072, Shaanxi, China
| | - Muqiong Li
- Department of Pharmaceutical Chemistry and Analysis, School of Pharmacy, Air Force Medical University, Xi’an, 710032, Shaanxi, China
| | - Caiping Liu
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an, 710021, China
| | - Shuai Qiu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an, 710072, Shaanxi, China
| | - Yang Bai
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an, 710021, China
| | - Li Fan
- Department of Pharmaceutical Chemistry and Analysis, School of Pharmacy, Air Force Medical University, Xi’an, 710032, Shaanxi, China
| | - Wei Tian
- Shaanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an, 710072, Shaanxi, China
| |
Collapse
|
37
|
Li M, Bai Y, Liu C, Fan L, Tian W. Supramolecular Dual Drug Nanomicelles for Circumventing Multidrug Resistance. ACS Biomater Sci Eng 2021; 7:5515-5523. [PMID: 34823350 DOI: 10.1021/acsbiomaterials.1c01144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Overexpressed P-glycoprotein (P-gp), as the key factor in multidrug resistance (MDR), can greatly reduce intracellular drug levels as a result of chemotherapeutic drug efflux out of cancer cells. Although various P-gp antagonists have been developed to circumvent the MDR effect, the common strategies of physical entrapment or chemical conjugation of anticancer drugs may inevitably induce unstable circulation in vivo or poor response in cancer cells, greatly limiting the therapeutic efficacy. Herein a double-drug-based supramolecular complex (DDSC) was first constructed based on the host-guest interactions between two active drugs, curcumin (Cur)-bridged bis(β-cyclodextrin) and ferrocene-linked camptothecin (CPT). Supramolecular dual drug nanomicelles (SDDNMs) formed by the DDSC self-assembly are proposed to work against the MDR effect, in which Cur as a P-gp antagonist in combination with CPT realized stable transport in vivo and efficient stimuli-responsiveness in cells. In vitro and in vivo studies further confirmed that SDDNMs effectively circumvented the drug efflux induced by the MDR effect and remarkably enhanced the synergistic therapeutic effects.
Collapse
Affiliation(s)
- Muqiong Li
- Department of Pharmaceutical Chemistry and Analysis, School of Pharmacy, Air Force Medical University, Xi'an 710032, Shaanxi, China
| | - Yang Bai
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China
| | - Chengfei Liu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Li Fan
- Department of Pharmaceutical Chemistry and Analysis, School of Pharmacy, Air Force Medical University, Xi'an 710032, Shaanxi, China
| | - Wei Tian
- Shaanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
38
|
Song X, Zhang Z, Shen Z, Zheng J, Liu X, Ni Y, Quan J, Li X, Hu G, Zhang Y. Facile Preparation of Drug-Releasing Supramolecular Hydrogel for Preventing Postoperative Peritoneal Adhesion. ACS APPLIED MATERIALS & INTERFACES 2021; 13:56881-56891. [PMID: 34797976 DOI: 10.1021/acsami.1c16269] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Hydrogels have attracted widespread attention for breaking the bottlenecks faced during facile drug delivery. To date, the preparation of jelly carriers for hydrophobic drugs remains challenging. In this study, by evaporating ethanol to drive the formation of hydrogen bonds, hydrophilic poly(vinyl alcohol) (PVA) and certain hydrophobic compounds [luteolin (LUT), quercetin (QUE), and myricetin (MYR)] were rapidly prepared into supramolecular hydrogel within 10 min. The gelation performance of these three hydrogels changed regularly with the changing sequence of LUT, QUE, and MYR. An investigation of the gelation pathway of these hybrid gels reveals that the formation of this type of gel follows a simple supramolecular self-assembly process, called "hydrophobe-hydrophile crosslinked gelation". Because the hydrogen bond between PVA and the drug is noncovalent and reversible, the hydrogel has good plasticity and self-healing properties, while the drugs can be controllably released by tuning the output stimuli. Using a rat sidewall-cecum abrasion adhesion model, the as-prepared hydrogel was highly efficient and safe in preventing postsurgical adhesion. This work provides a useful archetypical template for researchers interested in the efficient delivery and controllable release of hydrophobic drugs.
Collapse
Affiliation(s)
- Xianwen Song
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Zequn Zhang
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Tongzipo Road, Changsha, 410013 Hunan, China
| | - Zhaolong Shen
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Tongzipo Road, Changsha, 410013 Hunan, China
| | - Jun Zheng
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Xi Liu
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Tongzipo Road, Changsha, 410013 Hunan, China
| | - Yaqiong Ni
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Jun Quan
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Tongzipo Road, Changsha, 410013 Hunan, China
| | - Xiaorong Li
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Tongzipo Road, Changsha, 410013 Hunan, China
| | - Gui Hu
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Tongzipo Road, Changsha, 410013 Hunan, China
| | - Yi Zhang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
39
|
Li F, Zhe T, Ma K, Li R, Li M, Liu Y, Cao Y, Wang L. A Naturally Derived Nanocomposite Film with Photodynamic Antibacterial Activity: New Prospect for Sustainable Food Packaging. ACS APPLIED MATERIALS & INTERFACES 2021; 13:52998-53008. [PMID: 34723456 DOI: 10.1021/acsami.1c12243] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Food packaging with efficient antibacterial ability is highly desirable and challenging in facing the crisis of microbial contamination. However, most present packaging is based on metal-based antibacterial agents and requires a time-consuming antibacterial process. Here, the unique packaging (CC/BB films) featuring aggregation-induced emission behavior and photodynamic inactivation activity is prepared by dispersing self-assembled berberine-baicalin nanoparticles (BB NPs) into a mixed matrix of sodium carboxymethylcellulose-carrageenan (CC). The superiority of this design is that this packaging film can utilize sunlight to generate reactive oxygen species, thus eradicating more than 99% of E. coli and S. aureus within 60 min. Also, this film can release BB NPs to inactivate bacteria under all weather conditions. Surprisingly, the CC/BB nanocomposite film presented excellent mechanical performances (29.80 MPa and 38.65%), hydrophobicity (117.8°), and thermostability. The nanocomposite film is validated to be biocompatible and effective in protecting chicken samples, so this work will provide novel insights to explore safe and efficient antibacterial food packaging.
Collapse
Affiliation(s)
- Fan Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Taotao Zhe
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Kaixuan Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ruixia Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mingyan Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yingnan Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuanyuan Cao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Li Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
40
|
Liu C, Li M, Li P, Bai Y, Pang J, Fan L, Tian W. Ruthenium (II)‐Coordinated Supramolecular Metallodrug Complex Realizing Oxygen Self‐Supply In Situ for Overcoming Hypoxic Tumors. ADVANCED FUNCTIONAL MATERIALS 2021; 31. [DOI: 10.1002/adfm.202105837] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Indexed: 01/06/2025]
Abstract
AbstractTumor hypoxia greatly limits the antitumor therapeutic efficacy of oxygen (O2)‐dependent treatments. The common strategies of doping O2 generating compounds into one “package” may lead to insufficient O2 supply in situ in cancer cells due to the relatively low loading content, limited reproducibility, and uncontrollable release kinetics. Herein, organometallic drug complexes combined with a supramolecular interaction strategy are proposed to realize a stable and efficient O2 self‐supply in situ for overcoming hypoxic tumors. A ruthenium (II)‐coordinated supramolecular metallodrug complex (RuSMDC) is first designed and synthesized via host–guest interactions between two functionalized drug molecules, in which ruthenium is used to catalyze the decomposition of hydrogen peroxide to produce O2. The obtained RuSMDC further self‐assembles into Ru‐containing supramolecular metallodrug micelles (RuSMDMs), which provides sufficient O2 for chemotherapy and photodynamic therapy (PDT) oncotherapy in an anaerobic tumor environment. In vitro and in vivo studies further confirm that RuSMDMs effectively alleviate the tumor hypoxic environment, greatly improve the therapeutic effect of chemotherapy and PDT oncotherapy, and reduce the systemic toxicity to normal organs.
Collapse
Affiliation(s)
- Chengfei Liu
- Shaanxi Key Laboratory of Macromolecular Science and Technology MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions School of Chemistry and Chemical Engineering Northwestern Polytechnical University Xi'an Shaanxi 710072 China
| | - Muqiong Li
- Department of Pharmaceutical Chemistry and Analysis School of Pharmacy Air Force Medical University Xi'an Shaanxi 710032 China
| | - Pengxiang Li
- Shaanxi Key Laboratory of Macromolecular Science and Technology MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions School of Chemistry and Chemical Engineering Northwestern Polytechnical University Xi'an Shaanxi 710072 China
| | - Yang Bai
- Shaanxi Key Laboratory of Chemical Additives for Industry College of Chemistry and Chemical Engineering Shaanxi University of Science and Technology Xi'an Shaanxi 710021 China
| | - Jun Pang
- Department of Chemistry Institute of Biomimetic Materials & Chemistry University of Science and Technology of China Hefei Anhui 230026 China
| | - Li Fan
- Department of Pharmaceutical Chemistry and Analysis School of Pharmacy Air Force Medical University Xi'an Shaanxi 710032 China
| | - Wei Tian
- Shaanxi Key Laboratory of Macromolecular Science and Technology MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions School of Chemistry and Chemical Engineering Northwestern Polytechnical University Xi'an Shaanxi 710072 China
| |
Collapse
|
41
|
Chen H, Deng J, Yao X, He Y, Li H, Jian Z, Tang Y, Zhang X, Zhang J, Dai H. Bone-targeted erythrocyte-cancer hybrid membrane-camouflaged nanoparticles for enhancing photothermal and hypoxia-activated chemotherapy of bone invasion by OSCC. J Nanobiotechnology 2021; 19:342. [PMID: 34702291 PMCID: PMC8549398 DOI: 10.1186/s12951-021-01088-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/13/2021] [Indexed: 11/10/2022] Open
Abstract
Background Jaw bones are the most common organs to be invaded by oral malignancies, such as oral squamous cell carcinoma (OSCC), because of their special anatomical relationship. Various serious complications, such as pathological fractures and bone pain can significantly decrease the quality of life or even survival outcomes for a patient. Although chemotherapy is a promising strategy for bone invasion treatment, its clinical applications are limited by the lack of tumor-specific targeting and poor permeability in bone tissue. Therefore, it is necessary to develop a smart bone and cancer dual targeting drug delivery platform. Results We designed a dual targeting nano-biomimetic drug delivery vehicle Asp8[H40-TPZ/IR780@(RBC-H)] that has excellent bone and cancer targeting as well as immune escape abilities to treat malignancies in jaw bones. These nanoparticles were camouflaged with a head and neck squamous cell carcinoma WSU-HN6 cell (H) and red blood cell (RBC) hybrid membrane, which were modified by an oligopeptide of eight aspartate acid (Asp8). The spherical morphology and typical core-shell structure of biomimetic nanoparticles were observed by transmission electron microscopy. These nanoparticles exhibited the same surface proteins as those of WSU-HN6 and RBC. Flow cytometry and confocal microscopy showed a greater uptake of the biomimetic nanoparticles when compared to bare H40-PEG nanoparticles. Biodistribution of the nanoparticles in vivo revealed that they were mainly localized in the area of bone invasion by WSU-HN6 cells. Moreover, the Asp8[H40-TPZ/IR780@(RBC-H)] nanoparticles exhibited effective cancer growth inhibition properties when compared to other TPZ or IR780 formulations. Conclusions Asp8[H40-TPZ/IR780@(RBC-H)] has bone targeting, tumor-homing and immune escape abilities, therefore, it is an efficient multi-targeting drug delivery platform for achieving precise anti-cancer therapy during bone invasion. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-01088-9.
Collapse
Affiliation(s)
- Hongying Chen
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China
| | - Jiang Deng
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China
| | - Xintong Yao
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, China.,Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, China
| | - Yungang He
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China
| | - Hanyue Li
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China
| | - Zhixiang Jian
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China
| | - Yi Tang
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China
| | - Xiaoqing Zhang
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China
| | - Jingqing Zhang
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, 400016, China.
| | - Hongwei Dai
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, China. .,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, China. .,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China.
| |
Collapse
|
42
|
Dong J, Du X, Zhang Y, Zhuang T, Cui X, Li Z. Thermo/glutathione-sensitive release kinetics of heterogeneous magnetic micro-organogel prepared by sono-catalysis. Colloids Surf B Biointerfaces 2021; 208:112109. [PMID: 34562785 DOI: 10.1016/j.colsurfb.2021.112109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 12/17/2022]
Abstract
To improve the loading and delivery for hydrophobic drugs and optimize the release efficiency in tumor microenvironment, a novel core-shell magnetic micro-organogel carrier was successfully prepared by a sono-catalysis process in the study. As-synthesized magnetic micro-organogel had an appropriate dispersibility in water owing to the hydrophilicity of protein shell and could be kept steadily with a well-defined spherical morphology owing to the three-dimensional gel structure of oil core, and it promised an accessible targeted drug delivery owing to its good magnetism-mediated motion ability. Moreover, the magnetic micro-organogel showed a high loading efficiency up to 94.22% for coumarin 6 which was dissolved into the micro-organogel as a model hydrophobic drug. More importantly, the release kinetics revealed that the magnetic micro-organogel had a thermo-sensitive and glutathione (GSH)-sensitive ability to control the drug release, and proved that its release mechanisms referred to the combination of erosion, diffusion and degradation.
Collapse
Affiliation(s)
- Jun Dong
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center, Qingdao University, 266071 Qingdao, China
| | - Xiaoyu Du
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center, Qingdao University, 266071 Qingdao, China
| | - Yongqiang Zhang
- College of Chemistry, Jilin University, 130012 Changchun, China; Junan Sub-Bureau of Linyi Ecological Environmental Bureau, 276600 Linyi, China
| | - Tingting Zhuang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center, Qingdao University, 266071 Qingdao, China
| | - Xuejun Cui
- College of Chemistry, Jilin University, 130012 Changchun, China
| | - Zhanfeng Li
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center, Qingdao University, 266071 Qingdao, China.
| |
Collapse
|
43
|
Li X, Yu L, Zhang C, Niu X, Sun M, Yan Z, Wang W, Yuan Z. Tumor acid microenvironment-activated self-targeting & splitting gold nanoassembly for tumor chemo-radiotherapy. Bioact Mater 2021; 7:377-388. [PMID: 34466739 PMCID: PMC8379383 DOI: 10.1016/j.bioactmat.2021.05.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/29/2021] [Accepted: 05/29/2021] [Indexed: 12/14/2022] Open
Abstract
Low accumulation and penetration of nanomedicines in tumor severely reduce therapeutic efficacy. Herein, a pH-responsive gold nanoassembly is designed to overcome these problems. Polyethylene glycol linked raltitrexed (RTX, target ligand and chemotherapy drug) and two tertiary amine molecules (1-(2-aminoethyl) pyrrolidine and N,N-dibutylethylenediamine) are modified on the surface of the 6-nm gold nanoparticles by lipoic acid to form gold nanoassembly defined as Au-NNP(RTX). The Au-NNP (RTX) nanoassembly could remain at about 160 nm at the blood circulation (pH 7.4), while split into 6-nm gold nanoparticles due to tertiary amine protonation at tumor extracellular pH (pH 6.8). This pH-responsive disassembly behavior endows Au-NNP(RTX) better tumor tissue permeability through the better diffusion brought by the size reduction. Meanwhile, after disassembly, more RTXs on the surface of gold nanoparticles are exposed from the shielded state of assembly along with 2.25-fold augment of cellular uptake capability. Most importantly, the results show that Au-NNP(RTX) possesses of high tumor accumulation and effective tumor penetration, thereby enhancing the tumor chemo-radiotherapy efficiency. A pH-responsive self-targeting & splitting gold nanoassembly is fabricated. The nanoassembly holds better tumor tissue permeability by the size reduction. The nanoassembly enhances targeting capability by ligand shielding and exposure. Clever design endows the system synergistic effect of chemo-radiotherapy.
Collapse
Affiliation(s)
- Xiaomin Li
- Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Licheng Yu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Chuangnian Zhang
- Tianjin Key Laboratory of Biomaterial Research, Biomedical Barriers Research Center, Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China
| | - Xiaoyan Niu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Mengjie Sun
- Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zichao Yan
- Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Wei Wang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhi Yuan
- Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, China.,Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin, 300071, China
| |
Collapse
|
44
|
Wang P, Guo W, Huang G, Zhen J, Li Y, Li T, Zhao L, Yuan K, Tian X, Huang X, Feng Y, Lei H, Xu A. Berberine-Based Heterogeneous Linear Supramolecules Neutralized the Acute Nephrotoxicity of Aristolochic Acid by the Self-Assembly Strategy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:32729-32742. [PMID: 34247476 DOI: 10.1021/acsami.1c06968] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Aristolochic acid (AA) has been reported to cause a series of health problems, including aristolochic acid nephropathy and liver cancer. However, AA-containing herbs are highly safe in combination with berberine (Ber)-containing herbs in traditional medicine, suggesting the possible neutralizing effect of Ber on the toxicity of AA. In the present study, in vivo systematic toxicological experiments performed in zebrafish and mice showed that the supramolecule self-assembly formed by Ber and AA significantly reduced the toxicity of AA and attenuated AA-induced acute kidney injury. Ber and AA can self-assemble into linear heterogenous supramolecules (A-B) via electrostatic attraction and π-π stacking, with the hydrophobic groups outside and the hydrophilic groups inside during the drug combination practice. This self-assembly strategy may block the toxic site of AA and hinder its metabolism. Meanwhile, A-B linear supramolecules did not disrupt the homeostasis of gut microflora as AA did. RNA-sequence analysis, immunostaining, and western blot of the mice kidney also showed that A-B supramolecules almost abolished the acute nephrotoxicity of AA in the activation of the immune system and tumorigenesis-related pathways.
Collapse
Affiliation(s)
- Penglong Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Wenbo Guo
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Guangrui Huang
- School of Life Science, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jianhua Zhen
- School of Life Science, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yini Li
- School of Life Science, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Tong Li
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Lu Zhao
- School of Life Science, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Kai Yuan
- School of Life Science, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xuehao Tian
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xuemei Huang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yanyan Feng
- School of Life Science, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Haimin Lei
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Anlong Xu
- School of Life Science, Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
45
|
Kang W, Ji Y, Cheng Y. Van der Waals force-driven indomethacin-ss-paclitaxel nanodrugs for reversing multidrug resistance and enhancing NSCLC therapy. Int J Pharm 2021; 603:120691. [PMID: 33965541 DOI: 10.1016/j.ijpharm.2021.120691] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 04/12/2021] [Accepted: 05/04/2021] [Indexed: 12/17/2022]
Abstract
The high expression of multidrug resistance-associated protein 1 (MRP1) in cancer cells caused serious multidrug resistance (MDR), which limited the effectiveness of paclitaxel (PTX) in non-small cell lung cancer (NSCLC) chemotherapy. Indomethacin (IND), a kind of non-steroidal anti-inflammatory drugs (NSAIDs), which has been confirmed to be a potential MRP1 inhibitor. Taking into account the advantages of old drugs without extra controversial biosafety issue, in this manuscript, the disulfide bond (-S-S-) was employed for connecting IND and PTX to construct conjugate IND-S-S-PTX, which was further self-assembled and formed nanodrug (IND-S-S-PTX NPs). The particle size of IND-S-S-PTX NPs was ~160 nm with a narrow PDI value of 0.099, which distributed well in water and also exhibited a stable characteristic. Moreover, due to the existence of disulfide bond, the NPs were sensitive to the high level of glutathione (GSH) in tumor microenvironment. Molecular dynamics (MD) simulation presented the process of self-assembly in detail. Density functional theory (DFT) calculations revealed that the main driving force in self-assembly process was originated from the van der waals force. In addition, this carrier-free nano drug delivery systems (nDDs) could reverse the MDR by downregulating the expression of MRP1 protein in A549/taxol.
Collapse
Affiliation(s)
- Wenbo Kang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Yuanhui Ji
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China.
| | - Yu Cheng
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| |
Collapse
|
46
|
Joshi S, Mahadevan G, Verma S, Valiyaveettil S. Bioinspired adenine-dopamine immobilized polymer hydrogel adhesives for tissue engineering. Chem Commun (Camb) 2021; 56:11303-11306. [PMID: 32840264 DOI: 10.1039/d0cc04909c] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nontoxic adhesive hydrogels are of great importance in tissue engineering. Herein, we report a simple synthesis of a few biocompatible hydrogels from adenine and dopamine immobilized polyacrylic acid (PAA) and alginic acid (Alg) polymers. The adenine-dopamine adduct incorporated hydrogels showed enhanced adhesiveness, transparency and biocompatibility, and induced cell proliferation in 2D and 3D-cell culture models within 24 h. Moreover, blending the modified PAA and Alg polymers (P2P4) further increased the stability and bioactivity of the hydrogel. Such biogels can be developed as smart materials for biomedical applications.
Collapse
Affiliation(s)
- Saurabh Joshi
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore117543. and Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India.
| | - Gomathi Mahadevan
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore117543.
| | - Sandeep Verma
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India.
| | - Suresh Valiyaveettil
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore117543.
| |
Collapse
|
47
|
Liu C, Li M, Li P, Chen W, Li H, Fan L, Tian W. Platinum-Containing Supramolecular Drug Self-Delivery Nanomicelles for Efficient Synergistic Combination Chemotherapy. Biomacromolecules 2021; 22:2382-2392. [PMID: 33905223 DOI: 10.1021/acs.biomac.1c00173] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Supramolecular drug self-delivery systems (SDSDSs) involving active drugs as building blocks linked by supramolecular interactions have been well defined as an advanced chemotherapy strategy. However, the lack of detecting release of drugs from SDSDSs at specific tumor sites inevitably leads to unsatisfactory therapeutic effects, owing to the lack of information regarding the administration of these drugs. In this work, predesigned platinum-containing supramolecular drug self-delivery nanomicelles (SDSDNMs) were employed to synchronously realize drug monitoring by computed tomography imaging, immediately reflecting the evolution of drug release and real-time treatment at the tumor site. The appropriate administration dosage (1.2 mg mL-1,100 μL) and the injection interval (once every 3 days) needed to guide the antitumor activity of SDSDNMs were then defined, thereby attaining the aim of efficient synergistic combination chemotherapy. In vivo tumor inhibition and histological analyses showed that SDSDNMs exhibited a strong tumor inhibition effect and good safety with respect to normal organs. Such a supramolecular drug self-delivery strategy with monitored functions may offer new potential opportunities for application in the field of synergistic combination chemotherapy.
Collapse
Affiliation(s)
- Chengfei Liu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Muqiong Li
- Department of Pharmaceutical Chemistry and Analysis, School of Pharmacy, Air Force Medical University, Xi'an 710032, Shaanxi, China
| | - Pengxiang Li
- Shaanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Wenzhuo Chen
- Shaanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Huixin Li
- Shaanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Li Fan
- Department of Pharmaceutical Chemistry and Analysis, School of Pharmacy, Air Force Medical University, Xi'an 710032, Shaanxi, China
| | - Wei Tian
- Shaanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
48
|
Gafur A, Sukamdani GY, Kristi N, Maruf A, Xu J, Chen X, Wang G, Ye Z. From bulk to nano-delivery of essential phytochemicals: recent progress and strategies for antibacterial resistance. J Mater Chem B 2021; 8:9825-9835. [PMID: 33000844 DOI: 10.1039/d0tb01671c] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bacterial biofilms caused by antibiotic resistance are a severe cause of infection threatening human health nowadays. The primary causes of this emerging threat are poor penetration of conventional antibiotics and the growing number of varied strains of resistant bacteria. Recently, bulk phytochemical oils have been widely explored for their potential as antibacterial agents. However, due to their poor solubility, low stability, and highly volatile properties, essential oils are not effective for in vitro and in vivo antibacterial applications and require further preparation. In this review, we discuss the recent progress and strategies to overcome the drawbacks of bulk phytochemical oils using nano-delivery, as well as the current challenges and future outlook of these nano-delivery systems against bacterial resistance.
Collapse
Affiliation(s)
- Alidha Gafur
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College, Faculty of Medicine, Chongqing University, Chongqing, 400030, China.
| | - Gerry Yusuf Sukamdani
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College, Faculty of Medicine, Chongqing University, Chongqing, 400030, China.
| | - Natalia Kristi
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College, Faculty of Medicine, Chongqing University, Chongqing, 400030, China.
| | - Ali Maruf
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College, Faculty of Medicine, Chongqing University, Chongqing, 400030, China.
| | - Jing Xu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College, Faculty of Medicine, Chongqing University, Chongqing, 400030, China.
| | - Xue Chen
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College, Faculty of Medicine, Chongqing University, Chongqing, 400030, China.
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College, Faculty of Medicine, Chongqing University, Chongqing, 400030, China.
| | - Zhiyi Ye
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College, Faculty of Medicine, Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
49
|
Xue K, Wei F, Lin J, Tian H, Zhu F, Li Y, Hou Z. Tumor acidity-responsive carrier-free nanodrugs based on targeting activation via ICG-templated assembly for NIR-II imaging-guided photothermal–chemotherapy. Biomater Sci 2021; 9:1008-1019. [DOI: 10.1039/d0bm01864c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Novel tumor microenvironment-driven self-targeting supramolecular nanodrugs via ICG-templated small-molecule self-assembly for NIR-II imaging-guided synergistic photothermal–chemotherapy.
Collapse
Affiliation(s)
- Kaihang Xue
- Department of Biomaterials
- College of Materials
- Research Center of Biomedical Engineering of Xiamen & Key Laboratory of Biomedical Engineering of Fujian Province
- Xiamen University
- Xiamen 361005
| | - Feng Wei
- Department of Translational Medicine
- Xiamen Institute of Rare Earth Materials
- Chinese Academy of Sciences
- Xiamen 361024
- P. R. China
| | - Jinyan Lin
- Department of Biomaterials
- College of Materials
- Research Center of Biomedical Engineering of Xiamen & Key Laboratory of Biomedical Engineering of Fujian Province
- Xiamen University
- Xiamen 361005
| | - Haina Tian
- Department of Biomaterials
- College of Materials
- Research Center of Biomedical Engineering of Xiamen & Key Laboratory of Biomedical Engineering of Fujian Province
- Xiamen University
- Xiamen 361005
| | - Fukai Zhu
- Department of Biomaterials
- College of Materials
- Research Center of Biomedical Engineering of Xiamen & Key Laboratory of Biomedical Engineering of Fujian Province
- Xiamen University
- Xiamen 361005
| | - Yang Li
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou 350002
- P.R. China
| | - Zhenqing Hou
- Department of Biomaterials
- College of Materials
- Research Center of Biomedical Engineering of Xiamen & Key Laboratory of Biomedical Engineering of Fujian Province
- Xiamen University
- Xiamen 361005
| |
Collapse
|
50
|
Chen W, He J, Li H, Li X, Tian W. A quinolone derivative-based organoplatinum(II) metallacycle supramolecular self-delivery nanocarrier for combined cancer therapy. Supramol Chem 2020. [DOI: 10.1080/10610278.2020.1846739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Wenzhuo Chen
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, Shanxi Key Laboratory of Macromolecular Science and Technology, School of Science, Northwestern Polytechnical University, Xi’an, PR China
| | - Jia He
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, Shanxi Key Laboratory of Macromolecular Science and Technology, School of Science, Northwestern Polytechnical University, Xi’an, PR China
| | - Hui Li
- School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou, P. R. China
| | - Xuefeng Li
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou, P. R. China
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, P. R. China
| | - Wei Tian
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, Shanxi Key Laboratory of Macromolecular Science and Technology, School of Science, Northwestern Polytechnical University, Xi’an, PR China
| |
Collapse
|