1
|
Parra RD. Cooperativity and halonium transfer in the ternary NCI···CH 3I··· -CN halogen-bonded complex: An ab initio gas phase study. J Mol Model 2024; 30:363. [PMID: 39361054 DOI: 10.1007/s00894-024-06160-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/23/2024] [Indexed: 11/14/2024]
Abstract
CONTEXT The strength and nature of the two halogen bonds in the NCI···CH3I···-CN halogen-bonded ternary complex are studied in the gas phase via ab initio calculations. Different indicators of halogen bond strength were employed to examine the interactions including geometries, complexation energies, Natural Bond Order (NBO) Wiberg bond indices, and Atoms in Molecules (AIM)-based charge density topological properties. The results show that the halogen bond is strong and partly covalent in nature when CH3I donates the halogen bond, but weak and noncovalent in nature when CH3I accepts the halogen bond. Significant halogen bond cooperativity emerges in the ternary complex relative to the corresponding heterodimer complexes, NCI···CH3I and CH3I···-CN, respectively. For example, the CCSD(T) complexation energy of the ternary complex (-18.27 kcal/mol) is about twice the sum of the complexation energies of the component dimers (-9.54 kcal/mol). The halonium transfer reaction that converts the ternary complex into an equivalent one was also investigated. The electronic barrier for the halonium transfer was calculated to be 6.70 kcal/mol at the CCSD(T) level. Although the MP2 level underestimates and the MP3 overestimates the barrier, their calculated MP2.5 average barrier (6.44 kcal/mol) is close to that of the more robust CCSD(T) level. Insights on the halonium ion transfer reaction was obtained by examining the reaction energy and force profiles along the intrinsic reaction coordinate, IRC. The corresponding evolution of other properties such as bond lengths, Wiberg bond indices, and Mulliken charges provides specific insight on the extent of structural rearrangements and electronic redistribution throughout the entire IRC space. METHODS The MP2 method was used for geometry optimizations. Energy calculations were performed using the CCSD(T) method. The aug-cc-pVTZ basis set was employed for all atoms other than iodine for which the aug-cc-pVTZ-PP basis set was used instead.
Collapse
Affiliation(s)
- Rubén D Parra
- Department of Chemistry and Biochemistry, DePaul University, Chicago, IL, 60614, USA.
| |
Collapse
|
2
|
Docker A, Kuhn H, Beer PD. Stabilisation of Bromenium Ions in Macrocyclic Halogen Bond Complexes. Angew Chem Int Ed Engl 2024:e202417427. [PMID: 39351916 DOI: 10.1002/anie.202417427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Indexed: 11/16/2024]
Abstract
Halenium ions (X+) are highly reactive electron deficient species that are prevalent transient intermediates in halogenation reactions. The stabilisation of these species is especially challenging, with the most common approach to sequester reactivity through the formation of bis-pyridine (Py) complexes; [(Py)2X]+. Herein, we present the first example of a macrocyclic stabilisation effect for halenium species. Exploiting a series of bis-pyridine macrocycles, we demonstrate that preorganised macrocyclic ligands stabilise bromenium cations via endotopic complexation, impressively facilitating the isolation of a bench stable 'Br+ NO3 -' species. Solid state X-ray crystallographic structural comparison of macrocyclic Br(I) complexes with Ag(I) and Au(I) analogues provides insightful information concerning similarities and stark contrasts in halenium/metal cation coordination behaviors. Furthermore, the first chemical ligand exchange reactions of Br(I) complexes are reported between acyclic [(Py)2Br]+ species and a bis-pyridine macrocyclic donor ligand which importantly highlights a macrocycle effect for halenium cation stabilisation in the solution phase.
Collapse
Affiliation(s)
- Andrew Docker
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, U.K
| | - Heike Kuhn
- Chemistry Research Laboratory Oxford Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, U.K
| | - Paul D Beer
- Chemistry Research Laboratory Oxford Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, U.K
| |
Collapse
|
3
|
Puttreddy R, Kumar P, Rissanen K. Pyridine Iodine(I) Cations: Kinetic Trapping as a Sulfonate Complexes. Chemistry 2024; 30:e202304178. [PMID: 38193788 DOI: 10.1002/chem.202304178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 01/10/2024]
Abstract
Seven pyridine iodine(I) sulfonate complexes were prepared and isolated at low temperatures and characterized by X-ray diffraction analysis. The inherently instable pyridine iodine(I) cations are stabilized by an oxygen of sulfonate anions via the I⋅⋅⋅O halogen bond. In these complexes, the iodine atom of the pyridine iodine(I) cation acts as an electron acceptor and the sulfonate oxygen as the electron donor. These complexes are stable enough in the crystalline state, yet decompose rapidly under ambient conditions, also being unstable in solution. The (pyridine)N-I bond lengths [2.140(3)-2.197(2) Å] and the I⋅⋅⋅O halogen bonds [2.345(6)-2.227(3) Å] are analogous to (imide)N-I⋅⋅⋅O-N-pyridine uncharged halogen-bonded complexes formed from N-haloimides and pyridine N-oxides, thus confirming the existence of elusive pyridine iodine(I) cation.
Collapse
Affiliation(s)
- Rakesh Puttreddy
- University of Jyvaskyla, Department of Chemistry, P.O. BOX 35, FI-40014, Jyväskylä, Finland
| | - Parveen Kumar
- University of Jyvaskyla, Department of Chemistry, P.O. BOX 35, FI-40014, Jyväskylä, Finland
| | - Kari Rissanen
- University of Jyvaskyla, Department of Chemistry, P.O. BOX 35, FI-40014, Jyväskylä, Finland
| |
Collapse
|
4
|
Nishide T, Nakanishi W, Hayashi S. Intrinsic dynamic and static natures of APn--X +-- BPn σ(3c-4e) type interactions ( APn = BPn = N, P, As and Sb; X = H, F, Cl, Br and I) in bicyclo[3.3.3] and bicyclo[4.4.4] systems and their behaviour, elucidated with QTAIM dual functional analysis. RSC Adv 2024; 14:5675-5689. [PMID: 38357033 PMCID: PMC10865089 DOI: 10.1039/d3ra08926f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 01/09/2024] [Indexed: 02/16/2024] Open
Abstract
The intrinsic dynamic and static natures of APn--X+--BPn (APn = BPn: N, P, As and Sb; X = H, F, Cl, Br and I) in 1a+-8c+ were elucidated with the quantum theory of atoms-in-molecules dual functional analysis (QTAIM-DFA). Species 1a+-8c+ were formed by incorporating X+ between APn and BPn of APn(CH2CH2CH2)3BPn (1-4) and APn(CH2CH2CH2CH2)3BPn (5-8). The relative stabilities between the symmetric and nonsymmetric structures along with their transition states were investigated. Various natures from typical hydrogen bonds (t-HB) to classical covalent bonds were predicted for the APn-X/BPn-X interactions in APn--X+--BPn with QTAIM-DFA. The secondary interactions of H-H and X-C were also detected. The vdW to molecular complexes through charge transfer natures were predicted for them. Natural bond orbital analysis clarified that the CT terms were caused by not only n(APn)→ σ*(X-BPn) but also σ(APn-C)→σ*(X-BPn), σ(APn-C/BPn-C)→np(X+) and n(X)→ns(Pn+). The direction and magnitude of the p-character of n(APn) were the factors that determined the types of donor-acceptor interactions. Estimating the order of the interaction strengths was attempted. The σ(3c-4e) characters of APn--X+--BPn were also examined by analysing the charge distributions on APn--X+--BPn. These results would provide fundamentally important insight into designing molecules with high functionality containing X+ in symmetric and nonsymmetric structures.
Collapse
Affiliation(s)
- Taro Nishide
- Faculty of Systems Engineering, Wakayama University 930 Sakaedani Wakayama 640-8510 Japan
| | - Waro Nakanishi
- Faculty of Systems Engineering, Wakayama University 930 Sakaedani Wakayama 640-8510 Japan
| | - Satoko Hayashi
- Faculty of Systems Engineering, Wakayama University 930 Sakaedani Wakayama 640-8510 Japan
| |
Collapse
|
5
|
Wieske LE, Erdelyi M. Halogen Bonds of Halogen(I) Ions─Where Are We and Where to Go? J Am Chem Soc 2024; 146:3-18. [PMID: 38117016 PMCID: PMC10785816 DOI: 10.1021/jacs.3c11449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/20/2023] [Accepted: 12/01/2023] [Indexed: 12/21/2023]
Abstract
Halenium ions, X+, are particularly strong halogen-bond donors that interact with two Lewis bases simultaneously to form linear [D···X···D]+-type halonium complexes. Their three-center, four-electron halogen bond is both fundamentally interesting and technologically valuable as it tames the reactivity of halogen(I) ions, opening up new horizons in a variety of fields including synthetic organic and supramolecular chemistry. Understanding this bonding situation enables the development of improved halogen(I) transfer reactions and of advanced functional materials. Following a decade of investigations of basic principles, the range of applications is now rapidly widening. In this Perspective, we assess the status of the field and identify its key advances and the main bottlenecks. Clearing common misunderstandings that may hinder future progress, we aim to inspire and direct future research efforts.
Collapse
Affiliation(s)
- Lianne
H. E. Wieske
- Department of Chemistry−BMC, Uppsala University, Box 576, SE-751 23 Uppsala, Sweden
| | - Mate Erdelyi
- Department of Chemistry−BMC, Uppsala University, Box 576, SE-751 23 Uppsala, Sweden
| |
Collapse
|
6
|
Kumar P, Rautiainen JM, Novotný J, Ward JS, Marek R, Rissanen K, Puttreddy R. The Impact of ortho-substituents on Bonding in Silver(I) and Halogen(I) Complexes of 2-Mono- and 2,6-Disubstituted Pyridines: An In-Depth Experimental and Theoretical Study. Chemistry 2023:e202303643. [PMID: 38055221 DOI: 10.1002/chem.202303643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/07/2023]
Abstract
The coordination nature of 2-mono- and 2,6-disubstituted pyridines with electron-withdrawing halogen and electron-donating methyl groups for [N-X-N]+ (X=I, Br) complexations have been studied using 15 N NMR, X-ray crystallography, and Density Functional Theory (DFT) calculations. The 15 N NMR chemical shifts reveal iodine(I) and bromine(I) prefer to form complexes with 2-substituted pyridines and only 2,6-dimethylpyridine. The crystalline halogen(I) complexes of 2-substituted pyridines were characterized by using X-ray diffraction analysis, but 2,6-dihalopyridines were unable to form stable crystalline halogen(I) complexes due to the lower nucleophilicity of the pyridinic nitrogen. In contrast, the halogen(I) complexes of 2,6-dimethylpyridine, which has a more basic nitrogen, are characterized by X-crystallography, which complements the 15 N NMR studies. DFT calculations reveal that the bond energies for iodine(I) complexes vary between -291 and -351 kJ mol-1 and for bromine between -370 and -427 kJ mol-1 . The bond energies of halogen(I) complexes of 2-halopyridines with more nucleophilic nitrogen are 66-76 kJ mol-1 larger than those of analogous 2,6-dihalopyridines with less nucleophilic nitrogen. The experimental and DFT results show that the electronic influence of ortho-halogen substituents on pyridinic nitrogen leads to a completely different preference for the coordination bonding of halogen(I) ions, providing new insights into bonding in halogen(I) chemistry.
Collapse
Affiliation(s)
- Parveen Kumar
- Department of chemistry, University of Jyvaskyla, Jyvaskyla, P.O. BOX 35, FI-40014, Finland
| | - J Mikko Rautiainen
- Department of chemistry, University of Jyvaskyla, Jyvaskyla, P.O. BOX 35, FI-40014, Finland
| | - Jan Novotný
- Department of Chemistry, Faculty of Science, Masaryk university, Kamenice 5, 62500, Brno, Czechia
| | - Jas S Ward
- Department of chemistry, University of Jyvaskyla, Jyvaskyla, P.O. BOX 35, FI-40014, Finland
| | - Radek Marek
- Department of Chemistry, Faculty of Science, Masaryk university, Kamenice 5, 62500, Brno, Czechia
| | - Kari Rissanen
- Department of chemistry, University of Jyvaskyla, Jyvaskyla, P.O. BOX 35, FI-40014, Finland
| | - Rakesh Puttreddy
- Department of chemistry, University of Jyvaskyla, Jyvaskyla, P.O. BOX 35, FI-40014, Finland
| |
Collapse
|
7
|
Kumar P, Komulainen J, Frontera A, Ward JS, Schalley C, Rissanen K, Puttreddy R. Linear bis-Coordinate Silver(I) and Iodine(I) Complexes with R 3 R 2 R 1 N Tertiary Amines. Chemistry 2023:e202302162. [PMID: 37682579 DOI: 10.1002/chem.202302162] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/09/2023]
Abstract
Homoleptic [L-I-L]+ iodine(I) complexes (where L is a R3 R2 R1 N tertiary amine) were synthesized via the [L-Ag-L]+ → [L-I-L]+ cation exchange reaction. In solution, the amines form [R3 R2 R1 N-Ag-NR1 R2 R3 ]+ silver(I) complexes, which crystallize out from solution as the meso-[L-Ag-L]+ complexes, as characterized by X-ray crystallography. The subsequent [L-I-L]+ iodine(I) analogues were extremely reactive and could not be isolated in the solid state. Density functional theory (DFT) calculations were performed to study the Ag+ -N and I+ -N interaction energies in silver(I) and iodine(I) complexes, with the former ranging from -80 to -100 kJ mol-1 and latter from -260 to -279 kJ mol-1 . The X-ray crystal structures revealed Ag+ ⋅⋅⋅Cπ and Ag+ ⋅⋅⋅H-C short contacts between the silver(I) cation and flexible N-alkyl/N-aryl groups, which are the first of their kind in such precursor complexes.
Collapse
Affiliation(s)
- Parveen Kumar
- Department of chemistry, University of Jyvaskyla, P.O. BOX 35, FI-40014, Jyväskylä, Finland
| | - Joonas Komulainen
- Department of chemistry, University of Jyvaskyla, P.O. BOX 35, FI-40014, Jyväskylä, Finland
| | - Antonio Frontera
- Department of Chemistry, Universitat de les Illes Balears, Crta de Valldemossa km 7.5, 07122, Palma de Mallorca, Baleares, Spain
| | - Jas S Ward
- Department of chemistry, University of Jyvaskyla, P.O. BOX 35, FI-40014, Jyväskylä, Finland
| | - Christoph Schalley
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 20, 14195, Berlin, Germany
| | - Kari Rissanen
- Department of chemistry, University of Jyvaskyla, P.O. BOX 35, FI-40014, Jyväskylä, Finland
| | - Rakesh Puttreddy
- Department of chemistry, University of Jyvaskyla, P.O. BOX 35, FI-40014, Jyväskylä, Finland
| |
Collapse
|
8
|
Perrin CL. Symmetry of Hydrogen Bonds: Application of NMR Method of Isotopic Perturbation and Relevance of Solvatomers. Molecules 2023; 28:molecules28114462. [PMID: 37298938 DOI: 10.3390/molecules28114462] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/25/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023] Open
Abstract
Short, strong, symmetric, low-barrier hydrogen bonds (H-bonds) are thought to be of special significance. We have been searching for symmetric H-bonds by using the NMR technique of isotopic perturbation. Various dicarboxylate monoanions, aldehyde enols, diamines, enamines, acid-base complexes, and two sterically encumbered enols have been investigated. Among all of these, we have found only one example of a symmetric H-bond, in nitromalonamide enol, and all of the others are equilibrating mixtures of tautomers. The nearly universal lack of symmetry is attributed to the presence of these H-bonded species as a mixture of solvatomers, meaning isomers (or stereoisomers or tautomers) that differ in their solvation environment. The disorder of solvation renders the two donor atoms instantaneously inequivalent, whereupon the hydrogen attaches to the less well solvated donor. We therefore conclude that there is no special significance to short, strong, symmetric, low-barrier H-bonds. Moreover, they have no heightened stability or else they would have been more prevalent.
Collapse
Affiliation(s)
- Charles L Perrin
- Department of Chemistry & Biochemistry University of California, La Jolla, San Diego, CA 92093, USA
| |
Collapse
|
9
|
Yoshida Y, Ao T, Mino T, Sakamoto M. Chiral Bromonium Salt (Hypervalent Bromine(III)) with N-Nitrosamine as a Halogen-Bonding Bifunctional Catalyst. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010384. [PMID: 36615579 PMCID: PMC9822295 DOI: 10.3390/molecules28010384] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023]
Abstract
There has been a great focus on halogen-bonding as a unique interaction between electron-deficient halogen atoms with Lewis basic moieties. Although the application of halogen-bonded atoms in organic chemistry has been eagerly researched in these decades, the development of chiral molecules with halogen-bonding functionalities and their utilization in asymmetric catalysis are still in the\ir infancy. We have previously developed chiral halonium salts with amide functionalities, which behaved as excellent catalysts albeit in only two reactions due to the lack of substrate activation abilities. In this manuscript, we have developed chiral halonium salts with an N-nitrosamine moiety and applied them to the Mannich reaction of isatin-derived ketimines with malonic esters. The study focused on our novel bromonium salt catalyst which provided the corresponding products in high yields with up to 80% ee. DFT calculations of the chiral catalyst structure suggested that the high asymmetric induction abilities of this catalyst are due to the Lewis basic role of the N-nitrosamine part. To the best of our knowledge, this is the first catalytic application of N-nitrosamines.
Collapse
|
10
|
Yoshida Y, Fujimura T, Mino T, Sakamoto M. Chiral Binaphthyl‐based Iodonium Salt (Hypervalent Iodine(III)) as Hydrogen‐ and Halogen‐bonding Bifunctional Catalyst: Insight into Abnormal Counteranion Effect and Asymmetric Synthesis of N, S‐Acetals. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101380] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
11
|
Wilcox S, Sethio D, Ward JS, Frontera A, Lindh R, Rissanen K, Erdelyi M. Do 2-coordinate iodine(I) and silver(I) complexes form Nucleophilic Iodonium Interactions (NIIs) in solution? Chem Commun (Camb) 2022; 58:4977-4980. [DOI: 10.1039/d2cc00994c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The interaction of a [bis(pyridine)iodine(I)]+ cation with a [bis(pyridine)silver(I)]+ cation, in which an iodonium ion acts as nucleophile by transferring electron density to the silver(I) cation, is reinvestigated herein. No...
Collapse
|
12
|
Abstract
A detailed investigation of ligand exchange between iodine(I) ions in [N···I···N]+ halogen-bonded complexes is presented. Ligand exchange reactions were conducted to successfully confirm whether iodine(I) complex formation, via the classical...
Collapse
|
13
|
Ibrahim MAA, Mohamed YAM, Abd Elhafez HSM, Shehata MNI, Soliman MES, Ahmed MN, Abd El-Mageed HR, Moussa NAM. R •-hole interactions of group IV-VII radical-containing molecules: A comparative study. J Mol Graph Model 2021; 111:108097. [PMID: 34890896 DOI: 10.1016/j.jmgm.2021.108097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/10/2021] [Accepted: 11/26/2021] [Indexed: 11/30/2022]
Abstract
For the first time, the potentiality of the sp2-hybridized group IV-VII radical (R•)-containing molecules to participate in R•-hole interactions was comparatively assessed using •SiF3,•POF2, •SO2F, and •ClO3 models in the trigonal pyramidal geometry. In that spirit, a plethora of quantum mechanical calculations was performed at the MP2/aug-cc-pVTZ level of theory. According to the results, all the investigated R•-containing molecules exhibited potent versatility to engage in R•-hole … Lewis base interactions with significant negative binding energies for the NCH-based complexes. The strength of R•-hole interactions was perceived to obey the •ClO3 … > •SO2F … > •POF2 … > •SiF3 … Lewis base order, outlining an inverse correlation between the binding energy and the atomic size of the R•-hole donor. Benchmarking of the binding energy at the CCSD/CBS(T) computational level was executed for all the explored interactions and addressed an obvious similarity between the MP2 and CCSD energetic findings. QTAIM analysis critically unveiled the closed-shell nature of the explored R•-hole interactions. SAPT-EDA proclaimed the reciprocal contributions of electrostatic and dispersion forces to the total binding energy. These observations demonstrate in better detail the nature of R•-hole interactions, leading to a convincing amelioration for versatile fields relevant to materials science and drug design.
Collapse
Affiliation(s)
- Mahmoud A A Ibrahim
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia, 61519, Egypt.
| | - Yasmeen A M Mohamed
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia, 61519, Egypt
| | - Heba S M Abd Elhafez
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia, 61519, Egypt
| | - Mohammed N I Shehata
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia, 61519, Egypt
| | - Mahmoud E S Soliman
- Molecular Bio-computation and Drug Design Lab, School of Health Sciences, University of KwaZulu-Natal, Westville, Durban, 4000, South Africa
| | - Muhammad Naeem Ahmed
- Department of Chemistry, The University of Azad Jammu and Kashmir, Muzaffarabad, 13100, Pakistan
| | - H R Abd El-Mageed
- Micro-Analysis, Environmental Research nd Community Affairs Center (MAESC), Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Nayra A M Moussa
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia, 61519, Egypt
| |
Collapse
|
14
|
Yu S, Kalenius E, Frontera A, Rissanen K. Macrocyclic complexes based on [N⋯I⋯N] + halogen bonds. Chem Commun (Camb) 2021; 57:12464-12467. [PMID: 34734592 DOI: 10.1039/d1cc05616f] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New 1-2 nm macrocyclic iodine(I) complexes prepared VIA a simple ligand exchange reaction manifest rigid 0.5-1 nm cavities that bind the hexafluorophosphate anion in the gas phase. The size of the cavities and the electrostatic interactions with the iodine(I) cations influence the anion binding properties of these macrocyclic complexes.
Collapse
Affiliation(s)
- Shilin Yu
- University of Jyvaskyla, Department of Chemistry, 40014, Jyväskylä, Finland.
| | - Elina Kalenius
- University of Jyvaskyla, Department of Chemistry, 40014, Jyväskylä, Finland.
| | - Antonio Frontera
- Department of Chemistry, Universitat de les Illes Balears, Crts de Valldemossa km 7.6, 07122, Palma de Mallorca Baleares, Spain
| | - Kari Rissanen
- University of Jyvaskyla, Department of Chemistry, 40014, Jyväskylä, Finland.
| |
Collapse
|
15
|
von der Heiden D, Németh FB, Andreasson M, Sethio D, Pápai I, Erdelyi M. Are bis(pyridine)iodine(I) complexes applicable for asymmetric halogenation? Org Biomol Chem 2021; 19:8307-8323. [PMID: 34522944 PMCID: PMC8494190 DOI: 10.1039/d1ob01532j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Enantiopure halogenated molecules are of tremendous importance as synthetic intermediates in the construction of pharmaceuticals, fragrances, flavours, natural products, pesticides, and functional materials. Enantioselective halofunctionalizations remain poorly understood and generally applicable procedures are lacking. The applicability of chiral trans-chelating bis(pyridine)iodine(i) complexes in the development of substrate independent, catalytic enantioselective halofunctionalization has been explored herein. Six novel chiral bidentate pyridine donor ligands have been designed, routes for their synthesis developed and their [N–I–N]+-type halogen bond complexes studied by 15N NMR and DFT. The chiral complexes encompassing a halogen bond stabilized iodenium ion are shown to be capable of efficient iodenium transfer to alkenes; however, without enantioselectivity. The lack of stereoselectivity is shown to originate from the availability of multiple ligand conformations of comparable energies and an insufficient steric influence by the chiral ligand. Substrate preorganization by the chiral catalyst appears a necessity for enantioselective halofunctionalization. The enantioselectivity of the iodine(i) transfer process from chiral bis(pyridine)iodine(i) complexes to alkenes is explored.![]()
Collapse
Affiliation(s)
| | - Flóra Boróka Németh
- Institute of Organic Chemistry, Research Centre for Natural Sciences, H-1117 Budapest, Hungary
| | - Måns Andreasson
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96 Gothenburg, Sweden
| | - Daniel Sethio
- Department of Chemistry - BMC, Uppsala University, SE-751 23 Uppsala, Sweden.
| | - Imre Pápai
- Institute of Organic Chemistry, Research Centre for Natural Sciences, H-1117 Budapest, Hungary.,Department of Chemistry, University J. Selyeho, 94505 Komárno, Slovakia
| | - Mate Erdelyi
- Department of Chemistry - BMC, Uppsala University, SE-751 23 Uppsala, Sweden.
| |
Collapse
|
16
|
Lindblad S, Boróka Németh F, Földes T, von der Heiden D, Vang HG, Driscoll ZL, Gonnering ER, Pápai I, Bowling N, Erdelyi M. The Influence of Secondary Interactions on the [N-I-N] + Halogen Bond. Chemistry 2021; 27:13748-13756. [PMID: 34339075 PMCID: PMC8518683 DOI: 10.1002/chem.202102575] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Indexed: 12/21/2022]
Abstract
[Bis(pyridine)iodine(I)]+ complexes offer controlled access to halonium ions under mild conditions. The reactivity of such stabilized halonium ions is primarily determined by their three-center, four-electron [N-I-N]+ halogen bond. We studied the importance of chelation, strain, steric hindrance and electrostatic interaction for the structure and reactivity of halogen bonded halonium ions by acquiring their 15 N NMR coordination shifts and measuring their iodenium release rates, and interpreted the data with the support of DFT computations. A bidentate ligand stabilizes the [N-I-N]+ halogen bond, decreasing the halenium transfer rate. Strain weakens the bond and accordingly increases the release rate. Remote modifications in the backbone do not influence the stability as long as the effect is entirely steric. Incorporating an electron-rich moiety close by the [N-I-N]+ motif increases the iodenium release rate. The analysis of the iodine(I) transfer mechanism highlights the impact of secondary interactions, and may provide a handle on the induction of stereoselectivity in electrophilic halogenations.
Collapse
Affiliation(s)
- Sofia Lindblad
- Department of Chemistry - BMC, Uppsala University, 751 23, Uppsala, Sweden
| | - Flóra Boróka Németh
- Institute of Organic Chemistry, Research Center for Natural Sciences, Budapest, Hungary
| | - Tamás Földes
- Institute of Organic Chemistry, Research Center for Natural Sciences, Budapest, Hungary
| | | | - Herh G Vang
- Department of Chemistry, University of Wisconsin-Stevens Point, 2001 Fourth Avenue, Stevens Point, Wisconsin, 54481, USA
| | - Zakarias L Driscoll
- Department of Chemistry, University of Wisconsin-Stevens Point, 2001 Fourth Avenue, Stevens Point, Wisconsin, 54481, USA
| | - Emily R Gonnering
- Department of Chemistry, University of Wisconsin-Stevens Point, 2001 Fourth Avenue, Stevens Point, Wisconsin, 54481, USA
| | - Imre Pápai
- Institute of Organic Chemistry, Research Center for Natural Sciences, Budapest, Hungary.,Department of Chemistry, University J. Selyeho, 94505, Komárno, Slovakia
| | - Nathan Bowling
- Department of Chemistry, University of Wisconsin-Stevens Point, 2001 Fourth Avenue, Stevens Point, Wisconsin, 54481, USA
| | - Mate Erdelyi
- Department of Chemistry - BMC, Uppsala University, 751 23, Uppsala, Sweden
| |
Collapse
|
17
|
Yu S, Ward JS, Truong K, Rissanen K. Carbonyl Hypoiodites as Extremely Strong Halogen Bond Donors. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Shilin Yu
- Department of Chemistry University of Jyvaskyla Survontie 9 B 40014 Jyväskylä Finland
| | - Jas S. Ward
- Department of Chemistry University of Jyvaskyla Survontie 9 B 40014 Jyväskylä Finland
| | - Khai‐Nghi Truong
- Department of Chemistry University of Jyvaskyla Survontie 9 B 40014 Jyväskylä Finland
| | - Kari Rissanen
- Department of Chemistry University of Jyvaskyla Survontie 9 B 40014 Jyväskylä Finland
| |
Collapse
|
18
|
Yu S, Ward JS, Truong K, Rissanen K. Carbonyl Hypoiodites as Extremely Strong Halogen Bond Donors. Angew Chem Int Ed Engl 2021; 60:20739-20743. [PMID: 34268851 PMCID: PMC8518949 DOI: 10.1002/anie.202108126] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Indexed: 12/19/2022]
Abstract
Neutral halogen-bonded O-I-N complexes were prepared from in situ formed carbonyl hypoiodites and aromatic organic bases. The carbonyl hypoiodites have a strongly polarized iodine atom with larger σ-holes than any known uncharged halogen bond donor. Modulating the Lewis basicity of the selected pyridine derivatives and carboxylates leads to halogen-bonded complexes where the classical O-I⋅⋅⋅N halogen bond transforms more into a halogen-bonded COO- ⋅⋅⋅I-N+ ion-pair (salt) with an asymmetric O-I-N moiety. X-ray analyses, NMR studies, and calculations reveal the halogen bonding geometries of the carbonyl hypoiodite-based O-I-N complexes, confirming that in the solid-state the iodine atom is much closer to the N-atom of the pyridine derivatives than its original position at the carboxylate O-atom.
Collapse
Affiliation(s)
- Shilin Yu
- Department of ChemistryUniversity of JyvaskylaSurvontie 9 B40014JyväskyläFinland
| | - Jas S. Ward
- Department of ChemistryUniversity of JyvaskylaSurvontie 9 B40014JyväskyläFinland
| | - Khai‐Nghi Truong
- Department of ChemistryUniversity of JyvaskylaSurvontie 9 B40014JyväskyläFinland
| | - Kari Rissanen
- Department of ChemistryUniversity of JyvaskylaSurvontie 9 B40014JyväskyläFinland
| |
Collapse
|
19
|
Kuhn S, Wieske LHE, Trevorrow P, Schober D, Schlörer NE, Nuzillard JM, Kessler P, Junker J, Herráez A, Farès C, Erdélyi M, Jeannerat D. NMReDATA: Tools and applications. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2021; 59:792-803. [PMID: 33729627 DOI: 10.1002/mrc.5146] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
The nuclear magnetic resonance extracted data (NMReDATA) format has been proposed as a way to store, exchange, and disseminate nuclear magnetic resonance (NMR) data and physical and chemical metadata of chemical compounds. In this paper, we report on analytical workflows that take advantage of the uniform and standardized NMReDATA format. We also give access to a repository of sample data, which can serve for validating software packages that encode or decode files in NMReDATA format.
Collapse
Affiliation(s)
- Stefan Kuhn
- School of Computer Science and Informatics, De Montfort University, Leicester, UK
| | | | | | - Daniel Schober
- Ontology Development, MatterWaveSemantics, Südharz, Germany
- Leibniz Institute of Plant Biochemistry, Stress and Developmental Biology, Halle (Saale), Germany
| | - Nils E Schlörer
- Department of Chemistry, University of Cologne, Köln, Germany
| | | | | | - Jochen Junker
- Center for Technological Development in Public Health, Fundação Oswaldo Cruz - CDTS, Rio de Janeiro - RJ, Brazil
| | - Angel Herráez
- Department of Systems Biology, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Christophe Farès
- Abteilung NMR, Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany
| | - Mate Erdélyi
- Department of Chemistry - BMC, Uppsala Universitet, Uppsala, Sweden
| | | |
Collapse
|
20
|
Lindblad S, Sethio D, Berryman OB, Erdélyi M. Modulating photoswitch performance with halogen, coordinative and hydrogen bonding: a comparison of relative bond strengths. Chem Commun (Camb) 2021; 57:6261-6263. [PMID: 34060568 DOI: 10.1039/d1cc01827b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The behavior of an enediyne photoswitch is modulated with halogen bonding, coordinative bonding and hydrogen bonding. Through NMR and computational studies we demonstrate that the relative strength of the secondary bonding directly influences the rate of photoisomerization and the photostationary state.
Collapse
Affiliation(s)
- Sofia Lindblad
- Department of Chemistry-BMC, Uppsala University, Uppsala SE-751 23, Sweden.
| | - Daniel Sethio
- Department of Chemistry-BMC, Uppsala University, Uppsala SE-751 23, Sweden.
| | - Orion B Berryman
- Department of Chemistry and Biochemistry, 32 Campus Drive, University of Montana, Missoula, Montana 59812, USA.
| | - Máté Erdélyi
- Department of Chemistry-BMC, Uppsala University, Uppsala SE-751 23, Sweden.
| |
Collapse
|
21
|
Ward JS, Frontera A, Rissanen K. Iodonium complexes of the tertiary amines quinuclidine and 1-ethylpiperidine. Dalton Trans 2021; 50:8297-8301. [PMID: 34096945 DOI: 10.1039/d1dt01437d] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Iodonium complexes incorporating tertiary amines have been synthesised to study and explore why such species comprised of alkyl amines are relatively rare. The complexes were characterised in solution (1H and 15N NMR spectroscopy) and the solid state (SCXRD), and analysed computationally.
Collapse
Affiliation(s)
- Jas S Ward
- University of Jyvaskyla, Department of Chemistry, Jyväskylä 40014, Finland.
| | - Antonio Frontera
- Department of Chemistry, Universitat de les Illes Balears, Crts de Valldemossa km 7.6, 07122 Palma de Mallorca (Baleares), Spain
| | - Kari Rissanen
- University of Jyvaskyla, Department of Chemistry, Jyväskylä 40014, Finland.
| |
Collapse
|
22
|
Ward JS, Frontera A, Rissanen K. Utility of Three-Coordinate Silver Complexes Toward the Formation of Iodonium Ions. Inorg Chem 2021; 60:5383-5390. [PMID: 33765391 PMCID: PMC8154410 DOI: 10.1021/acs.inorgchem.1c00409] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The work herein describes the synthesis of five three-coordinate silver(I) complexes comprising a bidentate ligand L1, either bpy (2,2'-bipyridyl) or bpyMe2 (4,4'-dimethyl-2,2'-dipyridyl), and a monodentate ligand L2, either mtz (1-methyl-1H-1,2,3-triazole), 4-Etpy (4-ethylpyridine), or 4-DMAP (N,N-dimethylpyridin-4-amine). Upon reaction of the three-coordinate silver(I) complexes with 0.5 equiv of I2, the reactions quantitatively produce a 1:1 pair of complexes of a four-coordinate silver(I) complex [Ag(L1)2]PF6 and a two-coordinate iodonium complex [I(L2)2]PF6. The combination of [Ag(bpyMe2)2]PF6 and [I(4-DMAP)2]PF6 gave rise to an I+···Ag+ interaction where the I+ acts as a nucleophile, only the second example of which, that was observed in both the solution (NMR) and solid (X-ray) states.
Collapse
Affiliation(s)
- Jas S. Ward
- Department
of Chemistry, University of Jyvaskyla, Jyväskylä 40014, Finland,
| | - Antonio Frontera
- Department
of Chemistry, Universitat de les Illes Balears, Crts de Valldemossa km 7.6, 07122 Palma de Mallorca, Baleares, Spain
| | - Kari Rissanen
- Department
of Chemistry, University of Jyvaskyla, Jyväskylä 40014, Finland,
| |
Collapse
|
23
|
Yu S, Kumar P, Ward JS, Frontera A, Rissanen K. A “nucleophilic” iodine in a halogen-bonded iodonium complex manifests an unprecedented I+···Ag+ interaction. Chem 2021. [DOI: 10.1016/j.chempr.2021.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
24
|
Karbalaei Khani S, Geissler B, Engelage E, Nuernberger P, Hättig C. Tracing absorption and emission characteristics of halogen-bonded ion pairs involving halogenated imidazolium species. Phys Chem Chem Phys 2021; 23:7480-7494. [PMID: 33876108 DOI: 10.1039/d1cp00009h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We investigate how the absorption and fluorescence of halogenated imidazolium compounds in acetonitrile solution is influenced by the presence of counterions and the ability to act as halogen-bond donors. Experimental measurements and quantum chemical calculations with correlated wavefunction methods are applied to study three monodentate halogen-bond complexes of iodo-imidazolium, iodo-benzimidazolium and bromo-benzimidazolium cations with triflate counterions, and a bidentate complex of bis(iodo-benzimidazolium) dications with chloride as counterion. The three monodentate complexes with triflate counterions relax after photoexcitation to minima on the S1 potential energy surface where the C-I bond and the IO halogen bond are partially broken. For the bidentate complex with the smaller chloride counterion the halogen-bond interaction stays intact in the S1 minimum that is reached by relaxation from the Franck-Condon point. In a complementing experimental approach, stationary absorption and emission as well as transient fluorescence spectra are recorded for iodo- and bromo-benzimidazolium in acetonitrile. Variation of the counterion, substitution of the iodine by bromine, hydrogen, or methyl, and the comparison to theory allows the identification of spectroscopic signatures and photoinduced dynamics associated with ion-pairing.
Collapse
|
25
|
Frosch J, Koneczny M, Bannenberg T, Tamm M. Halogen Complexes of Anionic N-Heterocyclic Carbenes. Chemistry 2021; 27:4349-4363. [PMID: 33094865 PMCID: PMC7986712 DOI: 10.1002/chem.202004418] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Indexed: 12/12/2022]
Abstract
The lithium complexes [(WCA-NHC)Li(toluene)] of anionic N-heterocyclic carbenes with a weakly coordinating anionic borate moiety (WCA-NHC) reacted with iodine, bromine, or CCl4 to afford the zwitterionic 2-halogenoimidazolium borates (WCA-NHC)X (X=I, Br, Cl; WCA=B(C6 F5 )3 , B{3,5-C6 H3 (CF3 )2 }3 ; NHC=IDipp=1,3-bis(2,6-diisopropylphenyl)imidazolin-2-ylidene, or NHC=IMes=1,3-bis(2,4,6-trimethylphenyl)imidazolin-2-ylidene). The iodine derivative (WCA-IDipp)I (WCA=B(C6 F5 )3 ) formed several complexes of the type (WCA-IDipp)I⋅L (L=C6 H5 Cl, C6 H5 Me, CH3 CN, THF, ONMe3 ), revealing its ability to act as an efficient halogen bond donor, which was also exploited for the preparation of hypervalent bis(carbene)iodine(I) complexes of the type [(WCA-IDipp)I(NHC)] and [PPh4 ][(WCA-IDipp)I(WCA-NHC)] (NHC=IDipp, IMes). The corresponding bromine complex [PPh4 ][(WCA-IDipp)2 Br] was isolated as a rare example of a hypervalent (10-Br-2) system. DFT calculations reveal that London dispersion contributes significantly to the stability of the bis(carbene)halogen(I) complexes, and the bonding was further analyzed by quantum theory of atoms in molecules (QTAIM) analysis.
Collapse
Affiliation(s)
- Jenni Frosch
- Institut für Anorganische und Analytische ChemieTechnische Universität BraunschweigHagenring 3038106BraunschweigGermany
| | - Marvin Koneczny
- Institut für Anorganische und Analytische ChemieTechnische Universität BraunschweigHagenring 3038106BraunschweigGermany
| | - Thomas Bannenberg
- Institut für Anorganische und Analytische ChemieTechnische Universität BraunschweigHagenring 3038106BraunschweigGermany
| | - Matthias Tamm
- Institut für Anorganische und Analytische ChemieTechnische Universität BraunschweigHagenring 3038106BraunschweigGermany
| |
Collapse
|
26
|
Reiersølmoen AC, Battaglia S, Orthaber A, Lindh R, Erdélyi M, Fiksdahl A. P, N-Chelated Gold(III) Complexes: Structure and Reactivity. Inorg Chem 2021; 60:2847-2855. [PMID: 33169989 PMCID: PMC7927145 DOI: 10.1021/acs.inorgchem.0c02720] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Gold(III) complexes are versatile catalysts offering a growing number of new synthetic transformations. Our current understanding of the mechanism of homogeneous gold(III) catalysis is, however, limited, with that of phosphorus-containing complexes being hitherto underexplored. The ease of phosphorus oxidation by gold(III) has so far hindered the use of phosphorus ligands in the context of gold(III) catalysis. We present a method for the generation of P,N-chelated gold(III) complexes that circumvents ligand oxidation and offers full counterion control, avoiding the unwanted formation of AuCl4-. On the basis of NMR spectroscopic, X-ray crystallographic, and density functional theory analyses, we assess the mechanism of formation of the active catalyst and of gold(III)-mediated styrene cyclopropanation with propargyl ester and intramolecular alkoxycyclization of 1,6-enyne. P,N-chelated gold(III) complexes are demonstrated to be straightforward to generate and be catalytically active in synthetically useful transformations of complex molecules.
Collapse
Affiliation(s)
- Ann Christin Reiersølmoen
- Department of Chemistry, Norwegian University of Science and Technology, Høgskoleringen 5, 7491 Trondheim, Norway
| | - Stefano Battaglia
- Department of Chemistry-BMC Uppsala University, Husargatan 3, 75237 Uppsala, Sweden
| | - Andreas Orthaber
- Ångström Laboratory, Department of Organic Chemistry, Uppsala University, Lägerhyddsvägen 1, 75120 Uppsala, Sweden
| | - Roland Lindh
- Department of Chemistry-BMC Uppsala University, Husargatan 3, 75237 Uppsala, Sweden
| | - Máté Erdélyi
- Department of Chemistry-BMC Uppsala University, Husargatan 3, 75237 Uppsala, Sweden
| | - Anne Fiksdahl
- Department of Chemistry, Norwegian University of Science and Technology, Høgskoleringen 5, 7491 Trondheim, Norway
| |
Collapse
|
27
|
Turunen L, Németh FB, Decato DA, Pápai I, Berryman OB, Erdélyi M. Halogen Bonds of Iodonium Ions: A World Dissimilar to Silver Coordination. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200274] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Lotta Turunen
- Department of Chemistry – BMC, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Flóra Boróka Németh
- Institute of Organic Chemistry, Research Centre for Natural Sciences, H-1117 Budapest, Hungary
| | - Daniel A. Decato
- Department of Chemistry and Biochemistry, University of Montana, Missoula, MT 59812, USA
| | - Imre Pápai
- Institute of Organic Chemistry, Research Centre for Natural Sciences, H-1117 Budapest, Hungary
| | - Orion B. Berryman
- Department of Chemistry and Biochemistry, University of Montana, Missoula, MT 59812, USA
| | - Máté Erdélyi
- Department of Chemistry – BMC, Uppsala University, SE-751 23 Uppsala, Sweden
| |
Collapse
|
28
|
Sethio D, Raggi G, Lindh R, Erdélyi M. Halogen Bond of Halonium Ions: Benchmarking DFT Methods for the Description of NMR Chemical Shifts. J Chem Theory Comput 2020; 16:7690-7701. [PMID: 33136388 PMCID: PMC7726912 DOI: 10.1021/acs.jctc.0c00860] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Indexed: 12/20/2022]
Abstract
Because of their anisotropic electron distribution and electron deficiency, halonium ions are unusually strong halogen-bond donors that form strong and directional three-center, four-electron halogen bonds. These halogen bonds have received considerable attention owing to their applicability in supramolecular and synthetic chemistry and have been intensely studied using spectroscopic and crystallographic techniques over the past decade. Their computational treatment faces different challenges to those of conventional weak and neutral halogen bonds. Literature studies have used a variety of wave functions and DFT functionals for prediction of their geometries and NMR chemical shifts, however, without any systematic evaluation of the accuracy of these methods being available. In order to provide guidance for future studies, we present the assessment of the accuracy of 12 common DFT functionals along with the Hartree-Fock (HF) and the second-order Møller-Plesset perturbation theory (MP2) methods, selected from an initial set of 36 prescreened functionals, for the prediction of 1H, 13C, and 15N NMR chemical shifts of [N-X-N]+ halogen-bond complexes, where X = F, Cl, Br, and I. Using a benchmark set of 14 complexes, providing 170 high-quality experimental chemical shifts, we show that the choice of the DFT functional is more important than that of the basis set. The M06 functional in combination with the aug-cc-pVTZ basis set is demonstrated to provide the overall most accurate NMR chemical shifts, whereas LC-ωPBE, ωB97X-D, LC-TPSS, CAM-B3LYP, and B3LYP to show acceptable performance. Our results are expected to provide a guideline to facilitate future developments and applications of the [N-X-N]+ halogen bond.
Collapse
Affiliation(s)
- Daniel Sethio
- Department of Chemistry—BMC, Uppsala University, Box 576, 751 23 Uppsala, Sweden
| | - Gerardo Raggi
- Department of Chemistry—BMC, Uppsala University, Box 576, 751 23 Uppsala, Sweden
| | - Roland Lindh
- Department of Chemistry—BMC, Uppsala University, Box 576, 751 23 Uppsala, Sweden
| | - Máté Erdélyi
- Department of Chemistry—BMC, Uppsala University, Box 576, 751 23 Uppsala, Sweden
| |
Collapse
|
29
|
Ping N, Zhang H, Meng L, Zeng Y. Insight into the halogen-bonding interactions in the C6F5X···ZH3 (X = Cl, Br, I; Z = N, P, As) and C6F5I···Z (Ph)3 (Z = N, P, As) complexes. Struct Chem 2020. [DOI: 10.1007/s11224-020-01656-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
30
|
Dominikowska J. Halogen-bonded haloamine trimers - modelling the X 3 synthon. Phys Chem Chem Phys 2020; 22:21938-21946. [PMID: 32974627 DOI: 10.1039/d0cp03352a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Halogen-halogen bonded haloamine trimers serve as model systems for the X3 synthon present in numerous crystal structures and in two-dimensional self-assembled nanoarchitectures. Halogen bonds forming the synthon are often considered to display cooperativity. Synergy effects were previously found for halogen-halogen bonded bromoamine and iodoamine tetramers. In the present study comparison between haloamine cyclic trimers and tetramers is made. The cooperativity occurring in bromoamine and iodoamine clusters is significantly weaker in the case of the trimers. The present study demonstrates that the bromoamine and iodoamine trimers display weaker cooperativity due to a smaller number of synergy components in comparison to the corresponding tetramers of stronger cooperativity. Moreover, the halogen-halogen interactions in bromoamine and iodoamine dimers with the geometries of the corresponding trimers and tetramers are examined using energy decomposition analysis methods (supermolecular, canonical EDA and SAPT) and the Kohn-Sham molecular orbital model. The results of the analysis indicate that although the interaction energy values for the dimers of the different spatial arrangement are very close to each other, their origin is substantially different. For pairs with the geometry of the trimers orbital interactions and electrostatic attraction are both weaker than for the corresponding dimers with the geometry of the tetramers. This is especially important because both donor-acceptor interactions and electrostatic attraction were previously proven to be responsible for cooperative effects occurring in the bromoamine and iodoamine tetramers.
Collapse
Affiliation(s)
- Justyna Dominikowska
- University of Lodz, Faculty of Chemistry, Department of Physical Chemistry, Theoretical and Structural Chemistry Group, Pomorska 163/165, 90-236 Łódź, Poland.
| |
Collapse
|
31
|
Reiersølmoen AC, Battaglia S, Øien-Ødegaard S, Gupta AK, Fiksdahl A, Lindh R, Erdélyi M. Symmetry of three-center, four-electron bonds. Chem Sci 2020; 11:7979-7990. [PMID: 34094166 PMCID: PMC8163095 DOI: 10.1039/d0sc02076a] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Three-center, four-electron bonds provide unusually strong interactions; however, their nature remains ununderstood. Investigations of the strength, symmetry and the covalent versus electrostatic character of three-center hydrogen bonds have vastly contributed to the understanding of chemical bonding, whereas the assessments of the analogous three-center halogen, chalcogen, tetrel and metallic
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
-type long bonding are still lagging behind. Herein, we disclose the X-ray crystallographic, NMR spectroscopic and computational investigation of three-center, four-electron [D–X–D]+ bonding for a variety of cations (X+ = H+, Li+, Na+, F+, Cl+, Br+, I+, Ag+ and Au+) using a benchmark bidentate model system. Formation of a three-center bond, [D–X–D]+ is accompanied by an at least 30% shortening of the D–X bonds. We introduce a numerical index that correlates symmetry to the ionic size and the electron affinity of the central cation, X+. Providing an improved understanding of the fundamental factors determining bond symmetry on a comprehensive level is expected to facilitate future developments and applications of secondary bonding and hypervalent chemistry. The factors determining the symmetry and the fundamental nature of the three-center, four-electron bonds are assessed.![]()
Collapse
Affiliation(s)
- Ann Christin Reiersølmoen
- Department of Chemistry, Norwegian University of Science and Technology Høgskoleringen 5 Trondheim 7491 Norway
| | - Stefano Battaglia
- Department of Chemistry - BMC, Uppsala University Husargatan 3 Uppsala 752 37 Sweden
| | - Sigurd Øien-Ødegaard
- Centre for Material Sciences and Nanotechnology, University of Oslo Sem Sælands vei 26 0371 Oslo Norway
| | - Arvind Kumar Gupta
- Department of Chemistry - Ångström Laboratory, Uppsala University Lägerhyddsvägen 1 751 20 Uppsala Sweden
| | - Anne Fiksdahl
- Department of Chemistry, Norwegian University of Science and Technology Høgskoleringen 5 Trondheim 7491 Norway
| | - Roland Lindh
- Department of Chemistry - BMC, Uppsala University Husargatan 3 Uppsala 752 37 Sweden
| | - Máté Erdélyi
- Department of Chemistry - BMC, Uppsala University Husargatan 3 Uppsala 752 37 Sweden
| |
Collapse
|
32
|
Reiersølmoen AC, Csókás D, Øien-Ødegaard S, Vanderkooy A, Gupta AK, Carlsson ACC, Orthaber A, Fiksdahl A, Pápai I, Erdélyi M. Catalytic Activity of trans-Bis(pyridine)gold Complexes. J Am Chem Soc 2020; 142:6439-6446. [PMID: 32168451 PMCID: PMC7343288 DOI: 10.1021/jacs.0c01941] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
Gold
catalysis has become one of the fastest growing fields in
chemistry, providing new organic transformations and offering excellent
chemoselectivities under mild reaction conditions. Methodological
developments have been driven by wide applicability in the synthesis
of complex structures, whereas the mechanistic understanding of Au(III)-mediated
processes remains scanty and have become the Achilles’ heel
of methodology development. Herein, the systematic investigation of
the reactivity of bis(pyridine)-ligated Au(III) complexes is presented,
based on NMR spectroscopic, X-ray crystallographic, and DFT data.
The electron density of pyridines modulates the catalytic activity
of Au(III) complexes in propargyl ester cyclopropanation of styrene.
To avoid strain induced by a ligand with a nonoptimal nitrogen–nitrogen
distance, bidentate bis(pyridine)–Au(III) complexes convert
into dimers. For the first time, bis(pyridine)Au(I) complexes are
shown to be catalytically active, with their reactivity being modulated
by strain.
Collapse
Affiliation(s)
- Ann Christin Reiersølmoen
- Department of Chemistry, Norwegian University of Science and Technology, Høgskoleringen 5, 7491 Trondheim, Norway
| | - Dániel Csókás
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H1117 Budapest, Hungary
| | - Sigurd Øien-Ødegaard
- Centre for Material Sciences and Nanotechnology, University of Oslo, Sem Sælands vei 26, 0371 Oslo, Norway
| | - Alan Vanderkooy
- Department of Chemistry, BMC Uppsala University, Husargatan 3, 752 37 Uppsala, Sweden
| | - Arvind Kumar Gupta
- Department of Organic Chemistry - Ångström Laboratory, Uppsala University, Lägerhyddsvägen 1, 751 20 Uppsala, Sweden
| | - Anna-Carin C Carlsson
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96 Gothenburg, Sweden
| | - Andreas Orthaber
- Department of Organic Chemistry - Ångström Laboratory, Uppsala University, Lägerhyddsvägen 1, 751 20 Uppsala, Sweden
| | - Anne Fiksdahl
- Department of Chemistry, Norwegian University of Science and Technology, Høgskoleringen 5, 7491 Trondheim, Norway
| | - Imre Pápai
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H1117 Budapest, Hungary.,Department of Chemistry, University J. Selyeho, 94505 Komárno, Slovakia
| | - Máté Erdélyi
- Department of Chemistry, BMC Uppsala University, Husargatan 3, 752 37 Uppsala, Sweden
| |
Collapse
|
33
|
Phosphine Oxides as Spectroscopic Halogen Bond Descriptors: IR and NMR Correlations with Interatomic Distances and Complexation Energy. Molecules 2020; 25:molecules25061406. [PMID: 32204523 PMCID: PMC7144381 DOI: 10.3390/molecules25061406] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/14/2020] [Accepted: 03/16/2020] [Indexed: 02/07/2023] Open
Abstract
An extensive series of 128 halogen-bonded complexes formed by trimethylphosphine oxide and various F-, Cl-, Br-, I- and At-containing molecules, ranging in energy from 0 to 124 kJ/mol, is studied by DFT calculations in vacuum. The results reveal correlations between R–X⋅⋅⋅O=PMe3 halogen bond energy ΔE, X⋅⋅⋅O distance r, halogen’s σ-hole size, QTAIM parameters at halogen bond critical point and changes of spectroscopic parameters of phosphine oxide upon complexation, such as 31P NMR chemical shift, ΔδP, and P=O stretching frequency, Δν. Some of the correlations are halogen-specific, i.e., different for F, Cl, Br, I and At, such as ΔE(r), while others are general, i.e., fulfilled for the whole set of complexes at once, such as ΔE(ΔδP). The proposed correlations could be used to estimate the halogen bond properties in disordered media (liquids, solutions, polymers, glasses) from the corresponding NMR and IR spectra.
Collapse
|
34
|
von der Heiden D, Vanderkooy A, Erdélyi M. Halogen bonding in solution: NMR spectroscopic approaches. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2019.213147] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
35
|
von der Heiden D, Rissanen K, Erdélyi M. Asymmetric [N–I–N]+halonium complexes in solution? Chem Commun (Camb) 2020; 56:14431-14434. [PMID: 33146164 DOI: 10.1039/d0cc06706g] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Assessment of the solution equilibria of [bis(pyridine)iodine(i)]+complexes by ESI-MS and NMR reveals a statistical ligand distribution across the iodine(i) centres with a preference to form complexes with a more basic pyridine.
Collapse
Affiliation(s)
| | - Kari Rissanen
- University of Jyvaskyla
- Department of Chemistry
- 40014 Jyväskylä
- Finland
| | - Máté Erdélyi
- Department of Chemistry – BMC
- Uppsala University
- SE-751 23 Uppsala
- Sweden
| |
Collapse
|
36
|
Ward JS, Fiorini G, Frontera A, Rissanen K. Asymmetric [N–I–N]+ halonium complexes. Chem Commun (Camb) 2020; 56:8428-8431. [PMID: 32579654 DOI: 10.1039/d0cc02758h] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The first examples of unrestrained asymmetric silver(i) and halonium complexes have been prepared and characterised.
Collapse
Affiliation(s)
- Jas S. Ward
- University of Jyvaskyla
- Department of Chemistry
- Jyväskylä 40014
- Finland
| | - Giorgia Fiorini
- University of Jyvaskyla
- Department of Chemistry
- Jyväskylä 40014
- Finland
| | - Antonio Frontera
- Department of Chemistry
- Universitat de les Illes Balears
- 07122 Palma de Mallorca (Baleares)
- Spain
| | - Kari Rissanen
- University of Jyvaskyla
- Department of Chemistry
- Jyväskylä 40014
- Finland
| |
Collapse
|
37
|
Abstract
Halonium ions are particularly strong halogen bond donors, and are accordingly valuable tools for a variety of fields, such as supramolecular and synthetic organic chemistry.
Collapse
Affiliation(s)
- Lotta Turunen
- Department of Chemistry – BMC
- Uppsala University
- SE-751 23 Uppsala
- Sweden
| | - Máté Erdélyi
- Department of Chemistry – BMC
- Uppsala University
- SE-751 23 Uppsala
- Sweden
| |
Collapse
|
38
|
Unravelling the Importance of H bonds, σ–hole and π–hole-Directed Intermolecular Interactions in Nature. J Indian Inst Sci 2019. [DOI: 10.1007/s41745-019-00144-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
39
|
Puttreddy R, Rautiainen JM, Mäkelä T, Rissanen K. Strong N−X⋅⋅⋅O−N Halogen Bonds: A Comprehensive Study on N‐Halosaccharin Pyridine
N
‐Oxide Complexes. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909759] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Rakesh Puttreddy
- University of JyvaskylaDepartment of Chemistry P.O. BOX 35 40014 Jyväskylä Finland
| | - J. Mikko Rautiainen
- University of JyvaskylaDepartment of Chemistry P.O. BOX 35 40014 Jyväskylä Finland
| | - Toni Mäkelä
- University of JyvaskylaDepartment of Chemistry P.O. BOX 35 40014 Jyväskylä Finland
| | - Kari Rissanen
- University of JyvaskylaDepartment of Chemistry P.O. BOX 35 40014 Jyväskylä Finland
| |
Collapse
|
40
|
Puttreddy R, Rautiainen JM, Mäkelä T, Rissanen K. Strong N−X⋅⋅⋅O−N Halogen Bonds: A Comprehensive Study on N‐Halosaccharin Pyridine
N
‐Oxide Complexes. Angew Chem Int Ed Engl 2019; 58:18610-18618. [DOI: 10.1002/anie.201909759] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/27/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Rakesh Puttreddy
- University of JyvaskylaDepartment of Chemistry P.O. BOX 35 40014 Jyväskylä Finland
| | - J. Mikko Rautiainen
- University of JyvaskylaDepartment of Chemistry P.O. BOX 35 40014 Jyväskylä Finland
| | - Toni Mäkelä
- University of JyvaskylaDepartment of Chemistry P.O. BOX 35 40014 Jyväskylä Finland
| | - Kari Rissanen
- University of JyvaskylaDepartment of Chemistry P.O. BOX 35 40014 Jyväskylä Finland
| |
Collapse
|
41
|
Lu J, Scheiner S. Comparison of halogen with proton transfer. Symmetric and asymmetric systems. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2019.136593] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
42
|
Vanderkooy A, Gupta AK, Földes T, Lindblad S, Orthaber A, Pápai I, Erdélyi M. Halogen Bonding Helicates Encompassing Iodonium Cations. Angew Chem Int Ed Engl 2019; 58:9012-9016. [PMID: 31074942 PMCID: PMC6773207 DOI: 10.1002/anie.201904817] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/06/2019] [Indexed: 12/16/2022]
Abstract
The first halonium-ion-based helices were designed and synthesized using oligo-aryl/pyridylene-ethynylene backbones that fold around reactive iodonium ions. Halogen bonding interactions stabilize the iodonium ions within the helices. Remarkably, the distance between two iodonium ions within a helix is shorter than the sum of their van der Waals radii. The helical conformations were characterized by X-ray crystallography in the solid state, by NMR spectroscopy in solution and corroborated by DFT calculations. The helical complexes possess potential synthetic utility, as demonstrated by their ability to induce iodocyclization of 4-penten-1-ol.
Collapse
Affiliation(s)
- Alan Vanderkooy
- Department of Chemistry-BMC, Uppsala Universitet, Husargatan 3, 752 37, Uppsala, Sweden
| | - Arvind Kumar Gupta
- Department of Chemistry-Ångström Laboratory, Uppsala Universitet, Lägerhyddsvägen 1, 751 20, Uppsala, Sweden
| | - Tamás Földes
- Institute of Organic Chemistry, Research Center for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary.,Present address: Department of Chemistry, King's College London, London, SE1 1DB, UK
| | - Sofia Lindblad
- Department of Chemistry-BMC, Uppsala Universitet, Husargatan 3, 752 37, Uppsala, Sweden
| | - Andreas Orthaber
- Department of Chemistry-Ångström Laboratory, Uppsala Universitet, Lägerhyddsvägen 1, 751 20, Uppsala, Sweden
| | - Imre Pápai
- Institute of Organic Chemistry, Research Center for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary
| | - Máté Erdélyi
- Department of Chemistry-BMC, Uppsala Universitet, Husargatan 3, 752 37, Uppsala, Sweden
| |
Collapse
|
43
|
Vanderkooy A, Gupta AK, Földes T, Lindblad S, Orthaber A, Pápai I, Erdélyi M. Halogen Bonding Helicates Encompassing Iodonium Cations. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904817] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Alan Vanderkooy
- Department of Chemistry—BMCUppsala Universitet Husargatan 3 752 37 Uppsala Sweden
| | - Arvind Kumar Gupta
- Department of Chemistry—Ångström LaboratoryUppsala Universitet Lägerhyddsvägen 1 751 20 Uppsala Sweden
| | - Tamás Földes
- Institute of Organic ChemistryResearch Center for Natural SciencesHungarian Academy of Sciences Magyar tudósok körútja 2 1117 Budapest Hungary
- Present address: Department of ChemistryKing's College London London SE1 1DB UK
| | - Sofia Lindblad
- Department of Chemistry—BMCUppsala Universitet Husargatan 3 752 37 Uppsala Sweden
| | - Andreas Orthaber
- Department of Chemistry—Ångström LaboratoryUppsala Universitet Lägerhyddsvägen 1 751 20 Uppsala Sweden
| | - Imre Pápai
- Institute of Organic ChemistryResearch Center for Natural SciencesHungarian Academy of Sciences Magyar tudósok körútja 2 1117 Budapest Hungary
| | - Máté Erdélyi
- Department of Chemistry—BMCUppsala Universitet Husargatan 3 752 37 Uppsala Sweden
| |
Collapse
|
44
|
Wang C, Danovich D, Chen H, Shaik S. Oriented External Electric Fields: Tweezers and Catalysts for Reactivity in Halogen-Bond Complexes. J Am Chem Soc 2019; 141:7122-7136. [PMID: 30945542 DOI: 10.1021/jacs.9b02174] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This theoretical study establishes ways of controlling and enabling an uncommon chemical reaction, the displacement reaction, B:---(X-Y) → (B-X)+ + :Y-, which is nascent from a B:---(X-Y) halogen bond (XB) by nucleophilic attack of the base, B:, on the halogen, X. In most of the 14 cases examined, these reactions possess high barriers either in the gas phase (where the X-Y bond dissociates to radicals) or in solvents such as CH2Cl2 and CH3CN (which lead to endothermic processes). Thus, generally, the XB species are trapped in deep minima, and their reactions are not allowed without catalysis. However, when an oriented-external electric field (OEEF) is directed along the B---X---Y reaction axis, the field acts as electric tweezers that orient the XB along the field's axis, and intensely catalyze the process, by tens of kcal/mol, thus rendering the reaction allowed. Flipping the OEEF along the reaction axis inhibits the reaction and weakens the interaction of the XB. Furthermore, at a critical OEEF, each XB undergoes spontaneous and barrier-free reaction. As such, OEEF achieves quite tight control of the structure and reactivity of XB species. Valence bond modeling is used to elucidate the means whereby OEEFs exert their control.
Collapse
Affiliation(s)
- Chao Wang
- Institute of Chemistry , The Hebrew University of Jerusalem , Jerusalem 9190407 , Israel.,Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - David Danovich
- Institute of Chemistry , The Hebrew University of Jerusalem , Jerusalem 9190407 , Israel
| | - Hui Chen
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Sason Shaik
- Institute of Chemistry , The Hebrew University of Jerusalem , Jerusalem 9190407 , Israel
| |
Collapse
|