1
|
Long Z, Meng J, Weddle LR, Videla PE, Menzel JP, Cabral DGA, Liu J, Qiu T, Palasz JM, Bhattacharyya D, Kubiak CP, Batista VS, Lian T. The Impact of Electric Fields on Processes at Electrode Interfaces. Chem Rev 2025; 125:1604-1628. [PMID: 39818737 DOI: 10.1021/acs.chemrev.4c00487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
The application of external electric fields to influence chemical reactions at electrode interfaces has attracted considerable interest in recent years. However, the design of electric fields to achieve highly efficient and selective catalytic systems, akin to the optimized fields found at enzyme active sites, remains a significant challenge. Consequently, there has been substantial effort in probing and understanding the interfacial electric fields at electrode/electrolyte interfaces and their effect on adsorbates. In this review, we examine recent advances in experimental, computational, and theoretical studies of the interfacial electric field, the origin of the vibrational Stark effect of adsorbates on electrode surfaces, and the effects of electric fields on reactions at electrode/electrolyte interfaces. We also discuss recent advances in control of charge transfer and chemical reactions using magnetic fields. Finally, we outline perspectives on key areas for future studies.
Collapse
Affiliation(s)
- Zhuoran Long
- Department of Chemistry and Energy Sciences Institute, Yale University, New Haven, Connecticut 06520, United States
| | - Jinhui Meng
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Lydia R Weddle
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, MC 0358, La Jolla, California 92093, United States
| | - Pablo E Videla
- Department of Chemistry and Energy Sciences Institute, Yale University, New Haven, Connecticut 06520, United States
| | - Jan Paul Menzel
- Department of Chemistry and Energy Sciences Institute, Yale University, New Haven, Connecticut 06520, United States
| | - Delmar G A Cabral
- Department of Chemistry and Energy Sciences Institute, Yale University, New Haven, Connecticut 06520, United States
| | - Jinchan Liu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Tianyin Qiu
- Department of Chemistry and Energy Sciences Institute, Yale University, New Haven, Connecticut 06520, United States
| | - Joseph M Palasz
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, MC 0358, La Jolla, California 92093, United States
| | | | - Clifford P Kubiak
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, MC 0358, La Jolla, California 92093, United States
| | - Victor S Batista
- Department of Chemistry and Energy Sciences Institute, Yale University, New Haven, Connecticut 06520, United States
| | - Tianquan Lian
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
2
|
Shen M, Guo W, Tong L, Wang L, Chu PK, Kawi S, Ding Y. Behavior, mechanisms, and applications of low-concentration CO 2 in energy media. Chem Soc Rev 2025. [PMID: 39866134 DOI: 10.1039/d4cs00574k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
This review explores the behavior of low-concentration CO2 (LCC) in various energy media, such as solid adsorbents, liquid absorbents, and catalytic surfaces. It delves into the mechanisms of diffusion, adsorption, and catalytic reactions, while analyzing the potential applications and challenges of these properties in technologies like air separation, compressed gas energy storage, and CO2 catalytic conversion. Given the current lack of comprehensive analyses, especially those encompassing multiscale studies of LCC behavior, this review aims to provide a theoretical foundation and data support for optimizing CO2 capture, storage, and conversion technologies, as well as guidance for the development and application of new materials. By summarizing recent advancements in LCC separation techniques (e.g., cryogenic air separation and direct air carbon capture) and catalytic conversion technologies (including thermal catalysis, electrochemical catalysis, photocatalysis, plasma catalysis, and biocatalysis), this review highlights their importance in achieving carbon neutrality. It also discusses the challenges and future directions of these technologies. The findings emphasize that advancing the efficient utilization of LCC not only enhances CO2 reduction and resource utilization efficiency, promoting the development of clean energy technologies, but also provides an economically and environmentally viable solution for addressing global climate change.
Collapse
Affiliation(s)
- Minghai Shen
- Beijing Key Laboratory of Energy Saving and Emission Reduction for Metallurgical Industry, School of Energy and Environmental Engineering, China.
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore.
| | - Wei Guo
- Beijing Key Laboratory of Energy Saving and Emission Reduction for Metallurgical Industry, School of Energy and Environmental Engineering, China.
| | - Lige Tong
- Beijing Key Laboratory of Energy Saving and Emission Reduction for Metallurgical Industry, School of Energy and Environmental Engineering, China.
| | - Li Wang
- Beijing Key Laboratory of Energy Saving and Emission Reduction for Metallurgical Industry, School of Energy and Environmental Engineering, China.
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Hong Kong
| | - Sibudjing Kawi
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore.
| | - Yulong Ding
- Birmingham Centre for Energy Storage & School of Chemical Engineering, University of Birmingham, UK.
| |
Collapse
|
3
|
Perets EA, Konstantinovsky D, Santiago T, Videla PE, Tremblay M, Velarde L, Batista VS, Hammes-Schiffer S, Yan ECY. Beyond the "spine of hydration": Chiral SFG spectroscopy detects DNA first hydration shell and base pair structures. J Chem Phys 2024; 161:095104. [PMID: 39230381 PMCID: PMC11377083 DOI: 10.1063/5.0220479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 08/06/2024] [Indexed: 09/05/2024] Open
Abstract
Experimental methods capable of selectively probing water at the DNA minor groove, major groove, and phosphate backbone are crucial for understanding how hydration influences DNA structure and function. Chiral-selective sum frequency generation spectroscopy (chiral SFG) is unique among vibrational spectroscopies because it can selectively probe water molecules that form chiral hydration structures around biomolecules. However, interpreting chiral SFG spectra is challenging since both water and the biomolecule can produce chiral SFG signals. Here, we combine experiment and computation to establish a theoretical framework for the rigorous interpretation of chiral SFG spectra of DNA. We demonstrate that chiral SFG detects the N-H stretch of DNA base pairs and the O-H stretch of water, exclusively probing water molecules in the DNA first hydration shell. Our analysis reveals that DNA transfers chirality to water molecules only within the first hydration shell, so they can be probed by chiral SFG spectroscopy. Beyond the first hydration shell, the electric field-induced water structure is symmetric and, therefore, precludes chiral SFG response. Furthermore, we find that chiral SFG can differentiate chiral subpopulations of first hydration shell water molecules at the minor groove, major groove, and phosphate backbone. Our findings challenge the scientific perspective dominant for more than 40 years that the minor groove "spine of hydration" is the only chiral water structure surrounding the DNA double helix. By identifying the molecular origins of the DNA chiral SFG spectrum, we lay a robust experimental and theoretical foundation for applying chiral SFG to explore the chemical and biological physics of DNA hydration.
Collapse
Affiliation(s)
- Ethan A Perets
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Daniel Konstantinovsky
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Ty Santiago
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Pablo E Videla
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Matthew Tremblay
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Luis Velarde
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, USA
| | - Victor S Batista
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Sharon Hammes-Schiffer
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - Elsa C Y Yan
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
4
|
Liu X, Long J, Fu Y, Wu L, Chen H, Xie X, Wang Z, Wu J, Xiang K, Liu H. Electric Field Generated at the Millisecond Pulse-Polarized Interface Facilitates the Electrolytic Conversion of SO 2 into H 2S. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37298-37307. [PMID: 38970147 DOI: 10.1021/acsami.4c07431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
Interfacial electric field holds significant importance in determining both the polar molecular configuration and surface coverage during electrocatalysis. This study introduces a methodology leveraging the varying electric dipole moment of SO2 under distinct interfacial electric field strengths to enhance the selectivity of the SO2 electroreduction process. This approach presented the first attempt to utilize pulsed voltage application to the Au/PTFE membrane electrode for the control of the molecular configuration and coverage of SO2 on the electrode surface. Remarkably, the modulation of pulse duration resulted in a substantial inhibition of the hydrogen evolution reaction (HER) (FEH2 < 3%) under millisecond pulse conditions (ta = 10 ms, tc = 300 ms, Ea = -0.8 V (vs Hg/Hg2SO4), Ec = -1.8 V (vs Hg/Hg2SO4)), concomitant with a noteworthy enhancement in H2S selectivity (FEH2S > 97%). A comprehensive analysis, incorporating in situ Raman spectroscopy, electrochemical quartz crystal microbalance, COMSOL simulations, and DFT calculations, corroborated the increased selectivity of H2S products was primarily associated with the inherently large dipole moment of the SO2 molecule. The enhancement of the interfacial electric field induced by millisecond pulses was instrumental in amplifying SO2 coverage, activating SO2, facilitating the formation of the pivotal intermediate product *SOH, and effectively reducing the reaction energy barrier in the SO2 reduction process. These findings provide novel insights into the influences of ion and molecular transport dynamics, as well as the temporal intricacies of competitive pathways during the SO2 electroreduction process. Moreover, it underscores the intrinsic correlation between the electric dipole moment and surface-molecule interaction of the catalyst.
Collapse
Affiliation(s)
- Xudong Liu
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Jiaqi Long
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Yingxue Fu
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Lin Wu
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Hao Chen
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Xiaofeng Xie
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Zhujiang Wang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Jun Wu
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
- State Key Laboratory of Advanced Metallurgy for Non-ferrous Metals, Changsha 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Kaisong Xiang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
- State Key Laboratory of Advanced Metallurgy for Non-ferrous Metals, Changsha 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Hui Liu
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
- State Key Laboratory of Advanced Metallurgy for Non-ferrous Metals, Changsha 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| |
Collapse
|
5
|
Bunjes O, Rittmeier A, Hedman D, Hua SA, Paul LA, Meyer F, Ding F, Wenderoth M. Testing functional anchor groups for the efficient immobilization of molecular catalysts on silver surfaces. Commun Chem 2024; 7:107. [PMID: 38724592 PMCID: PMC11082172 DOI: 10.1038/s42004-024-01186-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
Modifications of complexes by attachment of anchor groups are widely used to control molecule-surface interactions. This is of importance for the fabrication of (catalytically active) hybrid systems, viz. of surface immobilized molecular catalysts. In this study, the complex fac-Re(S-Sbpy)(CO)3Cl (S-Sbpy = 3,3'-disulfide-2,2'-bipyridine), a sulfurated derivative of the prominent Re(bpy)(CO)3Cl class of CO2 reduction catalysts, was deposited onto the clean Ag(001) surface at room temperature. The complex is thermostable upon sublimation as supported by infrared absorption and nuclear magnetic resonance spectroscopy. Its anchoring process has been analyzed using scanning tunneling microscopy (STM) and density functional theory (DFT) calculations. The growth behavior was directly contrasted to the one of the parent complex fac-Re(bpy)(CO)3Cl (bpy = 2,2'-bipyridine). The sulfurated complex nucleates as single molecule at different surface sites and at molecule clusters. In contrast, for the parent complex nucleation only occurs in clusters of several molecules at specifically oriented surface steps. While this shows that surface immobilization of the sulfurated complex is more efficient as compared to the parent, symmetry analysis of the STM topographic data supported by DFT calculations indicates that more than 90% of the complexes adsorb in a geometric configuration very similar to the one of the parent complex.
Collapse
Affiliation(s)
- Ole Bunjes
- IV. Physikalisches Institut, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077, Göttingen, Germany
| | - Alexandra Rittmeier
- IV. Physikalisches Institut, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077, Göttingen, Germany
| | - Daniel Hedman
- Center for Multidimensional Carbon Materials, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Shao-An Hua
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Tammannstraße 4, 37077, Göttingen, Germany
| | - Lucas A Paul
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Tammannstraße 4, 37077, Göttingen, Germany
| | - Franc Meyer
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Tammannstraße 4, 37077, Göttingen, Germany
- International Center for Advanced Studies of Energy Conversion (ICASEC), Georg-August-Universität Göttingen, D-37077, Göttingen, Germany
| | - Feng Ding
- Center for Multidimensional Carbon Materials, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Martin Wenderoth
- IV. Physikalisches Institut, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077, Göttingen, Germany.
- International Center for Advanced Studies of Energy Conversion (ICASEC), Georg-August-Universität Göttingen, D-37077, Göttingen, Germany.
| |
Collapse
|
6
|
Chan T, Kong CJ, King AJ, Babbe F, Prabhakar RR, Kubiak CP, Ager JW. Role of Mass Transport in Electrochemical CO 2 Reduction to Methanol Using Immobilized Cobalt Phthalocyanine. ACS APPLIED ENERGY MATERIALS 2024; 7:3091-3098. [PMID: 38665895 PMCID: PMC11040529 DOI: 10.1021/acsaem.3c02979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/22/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024]
Abstract
Electrochemical CO2 reduction (CO2R) using heterogenized molecular catalysts usually yields 2-electron reduction products (CO, formate). Recently, it has been reported that certain preparations of immobilized cobalt phthalocyanine (CoPc) produce methanol (MeOH), a 6-electron reduction product. Here, we demonstrate the significant role of intermediate mass transport in CoPc selectivity to methanol. We first developed a simple, physically mixed, polymer (and polyfluoroalkyl, PFAS)-free preparation of CoPc on multiwalled carbon nanotubes (MWCNTs) which can be integrated onto Au electrodes using a poly(3,4-ethylenedioxythiophene) polystyrenesulfonate (PEDOT:PSS) adhesion layer. After optimization of catalyst preparation and loading, methanol Faradaic efficiencies and partial current densities of 36% (±3%) and 3.8 (±0.5) mA cm-2, respectively, are achieved in the CO2-saturated aqueous electrolyte. The electrolyte flow rate has a large effect. A linear flow velocity of 8.5 cm/min produces the highest MeOH selectivity, with higher flow rates increasing CO selectivity and lower flow rates increasing the hydrogen evolution reaction, suggesting that CO is an unbound intermediate. Using a continuum multiphysics model assuming CO is the intermediate, we show qualitative agreement with the optimal inlet flow rate. Polymer binders were not required to achieve a high Faradaic efficiency for methanol using CoPc and MWCNTs. We also investigated the role of formaldehyde as an intermediate and the role of strain, but definitive conclusions could not be established.
Collapse
Affiliation(s)
- Thomas Chan
- Liquid
Sunlight Alliance, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Liquid Sunlight
Alliance, University of California, San Diego, La Jolla, California 92093, United States
- Department
of Chemistry & Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
- Department
of Nanoengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Calton J. Kong
- Liquid
Sunlight Alliance, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Materials Science and Engineering, University
of California, Berkeley, Berkeley, California 94720, United States
| | - Alex J. King
- Liquid
Sunlight Alliance, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Finn Babbe
- Liquid
Sunlight Alliance, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Rajiv Ramanujam Prabhakar
- Liquid
Sunlight Alliance, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Clifford P. Kubiak
- Liquid Sunlight
Alliance, University of California, San Diego, La Jolla, California 92093, United States
- Department
of Chemistry & Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| | - Joel W. Ager
- Liquid
Sunlight Alliance, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Materials Science and Engineering, University
of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
7
|
Li CY, Tian ZQ. Sixty years of electrochemical optical spectroscopy: a retrospective. Chem Soc Rev 2024; 53:3579-3605. [PMID: 38421335 DOI: 10.1039/d3cs00734k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Sixty years ago, Reddy, Devanatan, and Bockris performed the first in situ electrochemical ellipsometry experiment, which ushered in a new era in the study of electrochemistry, using optical spectroscopy. After six decades of development, electrochemical optical spectroscopy, particularly electrochemical vibrational spectroscopy, has advanced from a phase of immaturity with few methods and limited applications to a phase of maturity with excellent substrate generality and significantly improved resolutions. Here, we divide the development of electrochemical optical spectroscopy into four phases, focusing on the proof-of-concept of different electrochemical optical spectroscopy studies, the emergence of plasmonic enhancement-based electrochemical optical spectroscopic (in particular vibrational spectroscopic) methods, the realization of electrochemical vibrational spectroscopy on well-defined surfaces, and the efforts to achieve operando spectroelectrochemical applications. Finally, we discuss the future development trend of electrochemical optical spectroscopy, as well as examples of new methodology and research paradigms for operando spectroelectrochemistry.
Collapse
Affiliation(s)
- Chao-Yu Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
8
|
Cobb SJ, Rodríguez‐Jiménez S, Reisner E. Connecting Biological and Synthetic Approaches for Electrocatalytic CO 2 Reduction. Angew Chem Int Ed Engl 2024; 63:e202310547. [PMID: 37983571 PMCID: PMC11497245 DOI: 10.1002/anie.202310547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/07/2023] [Accepted: 11/20/2023] [Indexed: 11/22/2023]
Abstract
Electrocatalytic CO2 reduction has developed into a broad field, spanning fundamental studies of enzymatic 'model' catalysts to synthetic molecular catalysts and heterogeneous gas diffusion electrodes producing commercially relevant quantities of product. This diversification has resulted in apparent differences and a disconnect between seemingly related approaches when using different types of catalysts. Enzymes possess discrete and well understood active sites that can perform reactions with high selectivity and activities at their thermodynamic limit. Synthetic small molecule catalysts can be designed with desired active site composition but do not yet display enzyme-like performance. These properties of the biological and small molecule catalysts contrast with heterogeneous materials, which can contain multiple, often poorly understood active sites with distinct reactivity and therefore introducing significant complexity in understanding their activities. As these systems are being better understood and the continuously improving performance of their heterogeneous active sites closes the gap with enzymatic activity, this performance difference between heterogeneous and enzymatic systems begins to close. This convergence removes the barriers between using different types of catalysts and future challenges can be addressed without multiple efforts as a unified picture for the biological-synthetic catalyst spectrum emerges.
Collapse
Affiliation(s)
- Samuel J. Cobb
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | | | - Erwin Reisner
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| |
Collapse
|
9
|
Shang B, Zhao F, Suo S, Gao Y, Sheehan C, Jeon S, Li J, Rooney CL, Leitner O, Xiao L, Fan H, Elimelech M, Wang L, Meyer GJ, Stach EA, Mallouk TE, Lian T, Wang H. Tailoring Interfaces for Enhanced Methanol Production from Photoelectrochemical CO 2 Reduction. J Am Chem Soc 2024; 146:2267-2274. [PMID: 38207288 DOI: 10.1021/jacs.3c13540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Efficient and stable photoelectrochemical reduction of CO2 into highly reduced liquid fuels remains a formidable challenge, which requires an innovative semiconductor/catalyst interface to tackle. In this study, we introduce a strategy involving the fabrication of a silicon micropillar array structure coated with a superhydrophobic fluorinated carbon layer for the photoelectrochemical conversion of CO2 into methanol. The pillars increase the electrode surface area, improve catalyst loading and adhesion without compromising light absorption, and help confine gaseous intermediates near the catalyst surface. The superhydrophobic coating passivates parasitic side reactions and further enhances local accumulation of reaction intermediates. Upon one-electron reduction of the molecular catalyst, the semiconductor-catalyst interface changes from adaptive to buried junctions, providing a sufficient thermodynamic driving force for CO2 reduction. These structures together create a unique microenvironment for effective reduction of CO2 to methanol, leading to a remarkable Faradaic efficiency reaching 20% together with a partial current density of 3.4 mA cm-2, surpassing the previous record based on planar silicon photoelectrodes by a notable factor of 17. This work demonstrates a new pathway for enhancing photoelectrocatalytic CO2 reduction through meticulous interface and microenvironment tailoring and sets a benchmark for both Faradaic efficiency and current density in solar liquid fuel production.
Collapse
Affiliation(s)
- Bo Shang
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Fengyi Zhao
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Sa Suo
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Yuanzuo Gao
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Colton Sheehan
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Sungho Jeon
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jing Li
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Conor L Rooney
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Oliver Leitner
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Langqiu Xiao
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Hanqing Fan
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
| | - Leizhi Wang
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Gerald J Meyer
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Eric A Stach
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Thomas E Mallouk
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Tianquan Lian
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Hailiang Wang
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| |
Collapse
|
10
|
Lake WR, Meng J, Dawlaty JM, Lian T, Hammes-Schiffer S. Electro-inductive Effect Dominates Vibrational Frequency Shifts of Conjugated Probes on Gold Electrodes. J Am Chem Soc 2023; 145:22548-22554. [PMID: 37795975 DOI: 10.1021/jacs.3c07489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Interfacial electric fields play a critical role in electrocatalysis and are often characterized by using vibrational probes attached to an electrode surface. Understanding the physical principles dictating the impact of the applied electrode potential on the vibrational probe frequency is important. Herein, a comparative study is performed for two molecular probes attached to a gold electrode. Both probes contain a nitrile (CN) group, but 4-mercaptobenzonitrile (4-MBN) exhibits continuous conjugation from the electrode through the nitrile group, whereas this conjugation is interrupted for 2-(4-mercaptophenyl)acetonitrile (4-MPCN). Periodic density functional theory calculations predict that the CN vibrational frequency shift of the 4-MBN system is dominated by induction, which is a through-bond polarization effect, leading to a strong potential dependence that does not depend significantly on the orientation of the CN bond relative to the surface. In contrast, the CN vibrational frequency shift of the 4-MPCN system is influenced less by induction and more by through-space electric field effects, leading to a weaker potential dependence and a greater orientation dependence. These theoretical predictions were confirmed by surface-enhanced Raman spectroscopy experiments. Balancing through-bond and through-space electrostatic effects may assist in the fundamental understanding and design of electrocatalytic systems.
Collapse
Affiliation(s)
- William R Lake
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Jinhui Meng
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Jahan M Dawlaty
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Tianquan Lian
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | | |
Collapse
|
11
|
Dongare S, Coskun OK, Cagli E, Lee KYC, Rao G, Britt RD, Berben LA, Gurkan B. A Bifunctional Ionic Liquid for Capture and Electrochemical Conversion of CO 2 to CO over Silver. ACS Catal 2023; 13:7812-7821. [PMID: 37342831 PMCID: PMC10278597 DOI: 10.1021/acscatal.3c01538] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/09/2023] [Indexed: 06/23/2023]
Abstract
Electrochemical conversion of CO2 requires selective catalysts and high solubility of CO2 in the electrolyte to reduce the energy requirement and increase the current efficiency. In this study, the CO2 reduction reaction (CO2RR) over Ag electrodes in acetonitrile-based electrolytes containing 0.1 M [EMIM][2-CNpyr] (1-ethyl-3-methylimidazolium 2-cyanopyrolide), a reactive ionic liquid (IL), is shown to selectively (>94%) convert CO2 to CO with a stable current density (6 mA·cm-2) for at least 12 h. The linear sweep voltammetry experiments show the onset potential of CO2 reduction in acetonitrile shifts positively by 240 mV when [EMIM][2-CNpyr] is added. This is attributed to the pre-activation of CO2 through the carboxylate formation via the carbene intermediate of the [EMIM]+ cation and the carbamate formation via binding to the nucleophilic [2-CNpyr]- anion. The analysis of the electrode-electrolyte interface by surface-enhanced Raman spectroscopy (SERS) confirms the catalytic role of the functionalized IL where the accumulation of the IL-CO2 adduct between -1.7 and -2.3 V vs Ag/Ag+ and the simultaneous CO formation are captured. This study reveals the electrode surface species and the role of the functionalized ions in lowering the energy requirement of CO2RR for the design of multifunctional electrolytes for the integrated capture and conversion.
Collapse
Affiliation(s)
- Saudagar Dongare
- Chemical
and Biomolecular Engineering, Case Western
Reserve University, Cleveland, Ohio 44106, United States
| | - Oguz Kagan Coskun
- Chemical
and Biomolecular Engineering, Case Western
Reserve University, Cleveland, Ohio 44106, United States
| | - Eda Cagli
- Chemical
and Biomolecular Engineering, Case Western
Reserve University, Cleveland, Ohio 44106, United States
| | - Kevin Y. C. Lee
- Department
of Chemistry, University of California,
Davis, One Shields Avenue, Davis, California 95616, United States
| | - Guodong Rao
- Department
of Chemistry, University of California,
Davis, One Shields Avenue, Davis, California 95616, United States
| | - R. David Britt
- Department
of Chemistry, University of California,
Davis, One Shields Avenue, Davis, California 95616, United States
| | - Louise A. Berben
- Department
of Chemistry, University of California,
Davis, One Shields Avenue, Davis, California 95616, United States
| | - Burcu Gurkan
- Chemical
and Biomolecular Engineering, Case Western
Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
12
|
Guo W, Zhu Z, Liu X, Ning Q, Song Q, Wang Y, He Y, Wang Z. Time-dependent band position difference between vibrational sum and difference frequency generation: a phenomenon originating from dispersion in the visible pulse. OPTICS EXPRESS 2023; 31:8325-8334. [PMID: 36859947 DOI: 10.1364/oe.481760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Vibrational spectroscopy is significant for identifying chemical specification. Here, the spectral band frequencies corresponding to the same molecular vibration in sum frequency generation (SFG) and difference frequency generation (DFG) spectra present delay-dependent deviation. Through numerical analysis of time resolved SFG and DFG spectra with a frequency marker in the incident IR pulse, the frequency ambiguity was not caused by any structure and dynamic variation on the surface, but from the dispersion in the incident visible pulse. Our results provide a helpful method to correct the vibrational frequency deviation and improve the assignment accuracy for SFG and DFG spectroscopies.
Collapse
|
13
|
Florian J, Cole JM. Analyzing Structure-Activity Variations for Mn-Carbonyl Complexes in the Reduction of CO 2 to CO. Inorg Chem 2023; 62:318-335. [PMID: 36541860 PMCID: PMC9832541 DOI: 10.1021/acs.inorgchem.2c03391] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Contemporary electrocatalysts for the reduction of CO2 often suffer from low stability, activity, and selectivity, or a combination thereof. Mn-carbonyl complexes represent a promising class of molecular electrocatalysts for the reduction of CO2 to CO as they are able to promote this reaction at relatively mild overpotentials, whereby rare-earth metals are not required. The electronic and geometric structure of the reaction center of these molecular electrocatalysts is precisely known and can be tuned via ligand modifications. However, ligand characteristics that are required to achieve high catalytic turnover at minimal overpotential remain unclear. We consider 55 Mn-carbonyl complexes, which have previously been synthesized and characterized experimentally. Four intermediates were identified that are common across all catalytic mechanisms proposed for Mn-carbonyl complexes, and their structures were used to calculate descriptors for each of the 55 Mn-carbonyl complexes. These electronic-structure-based descriptors encompass the binding energies, the highest occupied and lowest unoccupied molecular orbitals, and partial charges. Trends in turnover frequency and overpotential with these descriptors were analyzed to afford meaningful physical insights into what ligand characteristics lead to good catalytic performance, and how this is affected by the reaction conditions. These insights can be expected to significantly contribute to the rational design of more active Mn-carbonyl electrocatalysts.
Collapse
Affiliation(s)
- Jacob Florian
- Cavendish
Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, U.K.
| | - Jacqueline M. Cole
- Cavendish
Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, U.K.,ISIS
Neutron and Muon Source, STFC Rutherford
Appleton Laboratory, Harwell Campus for Science and Innovation, Didcot OX11 0QX, U.K.,
| |
Collapse
|
14
|
Wang H, Chen J, Cheng W, Zheng Y, Zou S, Du W, Xu X, Gou Q. Rotational spectrum of anisole-CO 2: Cooperative C···O tetrel bond and CH···O hydrogen bond. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 282:121677. [PMID: 35908502 DOI: 10.1016/j.saa.2022.121677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/20/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
Rotational spectrum of the 1:1 anisole-CO2 complex has been investigated using a pulsed jet Fourier transform microwave spectrometer supplemented with quantum chemical calculations. In the pulsed jet, only one isomer has been observed which is characterized by a dominant C···O tetrel bond and two CH···OCO2 weak hydrogen bonds. Different theoretical methods predict different orders of relative energies of plausible conformations. The experimental observation is most consistent with the theoretical estimation at the B3LYP-D3(BJ)/6-311++G(d,p) level of theory. Johnson's non-covalent interaction, quantum theory of atoms in molecules and natural bond orbital analyses have been applied to better understand the nature of non-covalent interactions at play in the anisole-CO2 complex.
Collapse
Affiliation(s)
- Hao Wang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China
| | - Junhua Chen
- School of Pharmacy, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Wanying Cheng
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China
| | - Yang Zheng
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China
| | - Siyu Zou
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China
| | - Weiping Du
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China
| | - Xuefang Xu
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China.
| | - Qian Gou
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China; Chongqing Key Laboratory of Theoretical and Computational Chemistry, Daxuecheng South Rd. 55, 401331 Chongqing, China.
| |
Collapse
|
15
|
De R, Dietzek‐Ivanšić B. A Happy Get-Together - Probing Electrochemical Interfaces by Non-Linear Vibrational Spectroscopy. Chemistry 2022; 28:e202200407. [PMID: 35730530 PMCID: PMC9796775 DOI: 10.1002/chem.202200407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Indexed: 01/07/2023]
Abstract
Electrochemical interfaces are key structures in energy storage and catalysis. Hence, a molecular understanding of the active sites at these interfaces, their solvation, the structure of adsorbates, and the formation of solid-electrolyte interfaces are crucial for an in-depth mechanistic understanding of their function. Vibrational sum-frequency generation (VSFG) spectroscopy has emerged as an operando spectroscopic technique to monitor complex electrochemical interfaces due to its intrinsic interface sensitivity and chemical specificity. Thus, this review discusses the happy get-together between VSFG spectroscopy and electrochemical interfaces. Methodological approaches for answering core issues associated with the behavior of adsorbates on electrodes, the structure of solvent adlayers, the transient formation of reaction intermediates, and the emergence of solid electrolyte interphase in battery research are assessed to provide a critical inventory of highly promising avenues to bring optical spectroscopy to use in modern material research in energy conversion and storage.
Collapse
Affiliation(s)
- Ratnadip De
- Leibniz-Institute of Photonic TechnologyDepartment Functional InterfacesAlbert-Einstein-Straße 907745JenaGermany
- Institute of Physical ChemistryFriedrich Schiller UniversityHelmholtzweg 407743JenaGermany
| | - Benjamin Dietzek‐Ivanšić
- Leibniz-Institute of Photonic TechnologyDepartment Functional InterfacesAlbert-Einstein-Straße 907745JenaGermany
- Institute of Physical ChemistryFriedrich Schiller UniversityHelmholtzweg 407743JenaGermany
- Center of Energy and Environmental Chemistry (CEEC Jena)Friedrich Schiller UniversityHelmholtzweg 407743JenaGermany
| |
Collapse
|
16
|
Grammatico D, Bagnall AJ, Riccardi L, Fontecave M, Su BL, Billon L. Heterogenised Molecular Catalysts for Sustainable Electrochemical CO 2 Reduction. Angew Chem Int Ed Engl 2022; 61:e202206399. [PMID: 35781916 DOI: 10.1002/anie.202206399] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Indexed: 12/17/2022]
Abstract
There has been a rapid rise in interest regarding the advantages of support materials to protect and immobilise molecular catalysts for the carbon dioxide reduction reaction (CO2 RR) in order to overcome the weaknesses of many well-known catalysts in terms of their stability and selectivity. In this Review, the state of the art of different catalyst-support systems for the CO2 RR is discussed with the intention of leading towards standard benchmarking for comparison of such systems across the most relevant supports and immobilisation strategies, taking into account these multiple pertinent metrics, and also enabling clearer consideration of the necessary steps for further progress. The most promising support systems are described, along with a final note on the need for developing more advanced experimental and computational techniques to aid the rational design principles that are prerequisite to prospective industrial upscaling.
Collapse
Affiliation(s)
- Domenico Grammatico
- Laboratory of Inorganic Materials Chemistry (CMI), University of Namur, 61 rue de Bruxelles, 5000, Namur, Belgium.,Bio-inspired Materials Group: Functionality & Self-assembly, Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM UMR 5254, 64000, Pau, France.,Present address: Energy Conversion and Hydrogen Center for Energy, Austrian Institute of Technology GmbH, Giefinggasse 2, 1210, Vienna, Austria
| | - Andrew J Bagnall
- Bio-inspired Materials Group: Functionality & Self-assembly, Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM UMR 5254, 64000, Pau, France.,Department of Chemistry, Ångström Laboratories, Uppsala University, Box 523, 751 20, Uppsala, Sweden.,Laboratoire de Chimie et Biologie des Métaux, Univ. Grenoble Alpes, CNRS, CEA, IRIG, 17 Rue des Martyrs, 38054, Grenoble Cedex, France
| | - Ludovico Riccardi
- Department of Chemistry, Ångström Laboratories, Uppsala University, Box 523, 751 20, Uppsala, Sweden.,Molecular Materials and Nanosystems, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - Marc Fontecave
- Laboratoire de Chimie des Processus Biologiques, UMR CNRS 8229, Collège de France-CNRS-Sorbonne Université, PSL Research University, 11 Place Marcelin Berthelot, 75005, Paris, France
| | - Bao-Lian Su
- Laboratory of Inorganic Materials Chemistry (CMI), University of Namur, 61 rue de Bruxelles, 5000, Namur, Belgium.,State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, Hubei, China
| | - Laurent Billon
- Bio-inspired Materials Group: Functionality & Self-assembly, Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM UMR 5254, 64000, Pau, France
| |
Collapse
|
17
|
Tezel E, Whitten A, Yarema G, Denecke R, McEwen JS, Nikolla E. Electrochemical Reduction of CO 2 using Solid Oxide Electrolysis Cells: Insights into Catalysis by Nonstoichiometric Mixed Metal Oxides. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Elif Tezel
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, United States
| | - Ariel Whitten
- The Gene & Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164, United States
| | - Genevieve Yarema
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, United States
| | - Reinhard Denecke
- Wilhelm-Ostwald Institute for Physical and Theoretical Chemistry, Leipzig University, Linnéstr. 2, 04103 Leipzig, Germany
| | - Jean-Sabin McEwen
- The Gene & Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164, United States
- Department of Physics and Astronomy, Washington State University, Pullman, Washington 99164, United States
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Department of Biological Systems Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Eranda Nikolla
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, United States
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
18
|
Grammatico D, Bagnall AJ, Riccardi L, Fontecave M, Su BL, Billlon L. Heterogenised molecular catalysts for sustainable electrochemical CO2 reduction. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Domenico Grammatico
- University of Namur: Universite de Namur Chemistry-CMI 61 rue de Bruxelles 5000 Namur BELGIUM
| | - Andrew J. Bagnall
- Uppsala University: Uppsala Universitet Ångström Laboratories SWEDEN
| | - Ludovico Riccardi
- Eindhoven University of Technology: Technische Universiteit Eindhoven Institute for Complex Molecular Systems NETHERLANDS
| | | | - Bao-Lian Su
- University of Namur: Universite de Namur Chemistry 61 rue de Bruxelles 5000 Namur BELGIUM
| | - Laurent Billlon
- Université de Pau et des Pays de l'Adour: Universite de Pau et des Pays de l'Adour Physical Chemistry FRANCE
| |
Collapse
|
19
|
|
20
|
Warburton RE, Soudackov AV, Hammes-Schiffer S. Theoretical Modeling of Electrochemical Proton-Coupled Electron Transfer. Chem Rev 2022; 122:10599-10650. [PMID: 35230812 DOI: 10.1021/acs.chemrev.1c00929] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Proton-coupled electron transfer (PCET) plays an essential role in a wide range of electrocatalytic processes. A vast array of theoretical and computational methods have been developed to study electrochemical PCET. These methods can be used to calculate redox potentials and pKa values for molecular electrocatalysts, proton-coupled redox potentials and bond dissociation free energies for PCET at metal and semiconductor interfaces, and reorganization energies associated with electrochemical PCET. Periodic density functional theory can also be used to compute PCET activation energies and perform molecular dynamics simulations of electrochemical interfaces. Various approaches for maintaining a constant electrode potential in electronic structure calculations and modeling complex interactions in the electric double layer (EDL) have been developed. Theoretical formulations for both homogeneous and heterogeneous electrochemical PCET spanning the adiabatic, nonadiabatic, and solvent-controlled regimes have been developed and provide analytical expressions for the rate constants and current densities as functions of applied potential. The quantum mechanical treatment of the proton and inclusion of excited vibronic states have been shown to be critical for describing experimental data, such as Tafel slopes and potential-dependent kinetic isotope effects. The calculated rate constants can be used as input to microkinetic models and voltammogram simulations to elucidate complex electrocatalytic processes.
Collapse
Affiliation(s)
- Robert E Warburton
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Alexander V Soudackov
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Sharon Hammes-Schiffer
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| |
Collapse
|
21
|
Electrochemical Ce(III)/Ce(IV) interconversion, electrodeposition, and catalytic CO ↔ CO2 interconversion over terpyridine-modified indium tin oxide electrodes. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.11.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
22
|
Wang H, Chen J, Zheng Y, Obenchain DA, Xu X, Gou Q, Grabow JU, Caminati W. Interaction Types in C 6H 5(CH 2) nOH-CO 2 ( n = 0-4) Determined by the Length of the Side Alkyl Chain. J Phys Chem Lett 2022; 13:149-155. [PMID: 34962816 DOI: 10.1021/acs.jpclett.1c03740] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
C6H5(CH2)nOH-CO2 complexes have been investigated using rotational spectroscopy (n = 0-2) complemented by quantum chemical calculations (n = 0-4), which implies that the side alkyl chain length can determine the types of intermolecular interactions. Unlike the in-plane C···O tetrel bond in phenol-CO2, the π*CO2···πaromatic interaction has been shown to link CO2 to phenylmethanol and 2-phenylethanol, which is, to the best of our knowledge, the first time it has been demonstrated by rotational spectroscopy. Further elongations of the side alkyl chain gradually increase the energies of intramolecular hydrogen bonds in 3-phenylpropanol and 4-phenylbutanol so that CO2 cannot break it. CO2 will be pushed farther from the monomers and link with the -OH group through a dominating C···O tetrel bond. Our observations would allow, with the choice of the proper length of the side alkyl chain, new strategies for engineering C···πaromatic-centered noncovalent bonding schemes for the capture, utilization, and storage of CO2.
Collapse
Affiliation(s)
- Hao Wang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, No. 55 Daxuecheng South Road, Shapingba, Chongqing 401331, China
| | - Junhua Chen
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, No. 55 Daxuecheng South Road, Shapingba, Chongqing 401331, China
| | - Yang Zheng
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, No. 55 Daxuecheng South Road, Shapingba, Chongqing 401331, China
| | - Daniel A Obenchain
- Institut für Physikalische Chemie, Universität Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany
| | - Xuefang Xu
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, No. 55 Daxuecheng South Road, Shapingba, Chongqing 401331, China
| | - Qian Gou
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, No. 55 Daxuecheng South Road, Shapingba, Chongqing 401331, China
| | - Jens-Uwe Grabow
- Institut für Physikalische Chemie & Elektrochemie, Leibniz Universität Hannover, Callinstraβe 3A, 30167 Hannover, Germany
| | - Walther Caminati
- Dipartimento di Chimica "G. Ciamician", Università di Bologna, Via Selmi 2, I-40126 Bologna, Italy
| |
Collapse
|
23
|
Ordering a rhenium catalyst on Ag(001) through molecule-surface step interaction. Commun Chem 2022; 5:3. [PMID: 36697683 PMCID: PMC9814538 DOI: 10.1038/s42004-021-00617-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 12/03/2021] [Indexed: 01/28/2023] Open
Abstract
Atomic scale studies of the anchoring of catalytically active complexes to surfaces may provide valuable insights for the design of new catalytically active hybrid systems. In this work, the self-assembly of 1D, 2D and 3D structures of the complex fac-Re(bpy)(CO)3Cl (bpy = 2,2'-bipyridine), a CO2 reduction catalyst, on the Ag(001) surface are studied by a combination of low-temperature scanning tunneling microscopy and density functional theory calculations. Infrared and sum frequency generation spectroscopy confirm that the complex remains chemically intact under sublimation. Deposition of the complexes onto the silver surface at 300 K leads to strong local variations in the resulting surface coverage on the nanometer scale, indicating that in the initial phase of deposition a large fraction of the molecules is desorbing from the surface. Low coverage regions show a decoration of step edges aligned along the crystal's symmetry axes <110>. These crystallographic directions are found to be of major importance to the binding of the complexes to the surface. Moreover, the interaction between the molecules and the substrate promotes the restructuring of surface steps along these directions. Well-aligned and decorated steps are found to act as nucleation point for monolayer growth (2D) before 3D growth starts.
Collapse
|
24
|
Bartl JD, Thomas C, Henning A, Ober MF, Savasci G, Yazdanshenas B, Deimel PS, Magnano E, Bondino F, Zeller P, Gregoratti L, Amati M, Paulus C, Allegretti F, Cattani-Scholz A, Barth JV, Ochsenfeld C, Nickel B, Sharp ID, Stutzmann M, Rieger B. Modular Assembly of Vibrationally and Electronically Coupled Rhenium Bipyridine Carbonyl Complexes on Silicon. J Am Chem Soc 2021; 143:19505-19516. [PMID: 34766502 DOI: 10.1021/jacs.1c09061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hybrid inorganic/organic heterointerfaces are promising systems for next-generation photocatalytic, photovoltaic, and chemical-sensing applications. Their performance relies strongly on the development of robust and reliable surface passivation and functionalization protocols with (sub)molecular control. The structure, stability, and chemistry of the semiconductor surface determine the functionality of the hybrid assembly. Generally, these modification schemes have to be laboriously developed to satisfy the specific chemical demands of the semiconductor surface. The implementation of a chemically independent, yet highly selective, standardized surface functionalization scheme, compatible with nanoelectronic device fabrication, is of utmost technological relevance. Here, we introduce a modular surface assembly (MSA) approach that allows the covalent anchoring of molecular transition-metal complexes with sub-nanometer precision on any solid material by combining atomic layer deposition (ALD) and selectively self-assembled monolayers of phosphonic acids. ALD, as an essential tool in semiconductor device fabrication, is used to grow conformal aluminum oxide activation coatings, down to sub-nanometer thicknesses, on silicon surfaces to enable a selective step-by-step layer assembly of rhenium(I) bipyridine tricarbonyl molecular complexes. The modular surface assembly of molecular complexes generates precisely structured spatial ensembles with strong intermolecular vibrational and electronic coupling, as demonstrated by infrared spectroscopy, photoluminescence, and X-ray photoelectron spectroscopy analysis. The structure of the MSA can be chosen to avoid electronic interactions with the semiconductor substrate to exclusively investigate the electronic interactions between the surface-immobilized molecular complexes.
Collapse
Affiliation(s)
- Johannes D Bartl
- Walter Schottky Institute and Physics Department, Technische Universität München, Am Coulombwall 4, 85748 Garching bei München, Germany.,Department of Chemistry, WACKER-Chair for Macromolecular Chemistry, Technische Universität München, Lichtenbergstraße 4, 85747 Garching bei München, Germany
| | - Christopher Thomas
- Department of Chemistry, WACKER-Chair for Macromolecular Chemistry, Technische Universität München, Lichtenbergstraße 4, 85747 Garching bei München, Germany
| | - Alex Henning
- Walter Schottky Institute and Physics Department, Technische Universität München, Am Coulombwall 4, 85748 Garching bei München, Germany
| | - Martina F Ober
- Faculty of Physics, Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539 München, Germany.,Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539 München, Germany
| | - Gökcen Savasci
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany.,Department of Chemistry, University of Munich, LMU, Butenandtstraße 5-13, 81377 Munich, Germany.,Cluster of Excellence E-conversion, Lichtenbergstraße 4a, 85748 Garching, Germany
| | - Bahar Yazdanshenas
- Walter Schottky Institute and Physics Department, Technische Universität München, Am Coulombwall 4, 85748 Garching bei München, Germany
| | - Peter S Deimel
- Physics Department E20, Technische Universität München, James-Franck-Straße 1, 85748 Garching bei München, Germany
| | - Elena Magnano
- IOM CNR, Laboratorio TASC, AREA Science Park, Strada Statale 14 km 163.5, 34149 Basovizza, Trieste, Italy.,Department of Physics, University of Johannesburg, P.O. Box 524, Auckland Park 2006, South Africa
| | - Federica Bondino
- IOM CNR, Laboratorio TASC, AREA Science Park, Strada Statale 14 km 163.5, 34149 Basovizza, Trieste, Italy
| | - Patrick Zeller
- Elettra-Sincrotrone Trieste SCpA, AREA Science Park, Strada Statale 14 km 163.5, 34149, Trieste, Italy
| | - Luca Gregoratti
- Elettra-Sincrotrone Trieste SCpA, AREA Science Park, Strada Statale 14 km 163.5, 34149, Trieste, Italy
| | - Matteo Amati
- Elettra-Sincrotrone Trieste SCpA, AREA Science Park, Strada Statale 14 km 163.5, 34149, Trieste, Italy
| | - Claudia Paulus
- Walter Schottky Institute and Physics Department, Technische Universität München, Am Coulombwall 4, 85748 Garching bei München, Germany
| | - Francesco Allegretti
- Physics Department E20, Technische Universität München, James-Franck-Straße 1, 85748 Garching bei München, Germany
| | - Anna Cattani-Scholz
- Walter Schottky Institute and Physics Department, Technische Universität München, Am Coulombwall 4, 85748 Garching bei München, Germany.,Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539 München, Germany
| | - Johannes V Barth
- Physics Department E20, Technische Universität München, James-Franck-Straße 1, 85748 Garching bei München, Germany
| | - Christian Ochsenfeld
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany.,Department of Chemistry, University of Munich, LMU, Butenandtstraße 5-13, 81377 Munich, Germany.,Cluster of Excellence E-conversion, Lichtenbergstraße 4a, 85748 Garching, Germany
| | - Bert Nickel
- Faculty of Physics, Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539 München, Germany.,Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539 München, Germany
| | - Ian D Sharp
- Walter Schottky Institute and Physics Department, Technische Universität München, Am Coulombwall 4, 85748 Garching bei München, Germany
| | - Martin Stutzmann
- Walter Schottky Institute and Physics Department, Technische Universität München, Am Coulombwall 4, 85748 Garching bei München, Germany
| | - Bernhard Rieger
- Department of Chemistry, WACKER-Chair for Macromolecular Chemistry, Technische Universität München, Lichtenbergstraße 4, 85747 Garching bei München, Germany
| |
Collapse
|
25
|
Besalú-Sala P, Solà M, Luis JM, Torrent-Sucarrat M. Fast and Simple Evaluation of the Catalysis and Selectivity Induced by External Electric Fields. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04247] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Pau Besalú-Sala
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Campus de Montilivi, 17003 Girona, Catalonia, Spain
| | - Miquel Solà
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Campus de Montilivi, 17003 Girona, Catalonia, Spain
| | - Josep M. Luis
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Campus de Montilivi, 17003 Girona, Catalonia, Spain
| | - Miquel Torrent-Sucarrat
- Department of Organic Chemistry I, Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU) and Donostia International Physics Center (DIPC), P Manuel Lardizabal 3, E-20018 Donostia/San Sebastián, Euskadi, Spain
- Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Euskadi, Spain
| |
Collapse
|
26
|
Seki T, Yu X, Zhang P, Yu CC, Liu K, Gunkel L, Dong R, Nagata Y, Feng X, Bonn M. Real-time study of on-water chemistry: Surfactant monolayer-assisted growth of a crystalline quasi-2D polymer. Chem 2021. [DOI: 10.1016/j.chempr.2021.07.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
27
|
Bhattacharyya D, Videla PE, Cattaneo M, Batista VS, Lian T, Kubiak CP. Vibrational Stark shift spectroscopy of catalysts under the influence of electric fields at electrode-solution interfaces. Chem Sci 2021; 12:10131-10149. [PMID: 34377403 PMCID: PMC8336477 DOI: 10.1039/d1sc01876k] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 07/13/2021] [Indexed: 11/24/2022] Open
Abstract
External control of chemical processes is a subject of widespread interest in chemical research, including control of electrocatalytic processes with significant promise in energy research. The electrochemical double-layer is the nanoscale region next to the electrode/electrolyte interface where chemical reactions typically occur. Understanding the effects of electric fields within the electrochemical double layer requires a combination of synthesis, electrochemistry, spectroscopy, and theory. In particular, vibrational sum frequency generation (VSFG) spectroscopy is a powerful technique to probe the response of molecular catalysts at the electrode interface under bias. Fundamental understanding can be obtained via synthetic tuning of the adsorbed molecular catalysts on the electrode surface and by combining experimental VSFG data with theoretical modelling of the Stark shift response. The resulting insights at the molecular level are particularly valuable for the development of new methodologies to control and characterize catalysts confined to electrode surfaces. This Perspective article is focused on how systematic modifications of molecules anchored to surfaces report information concerning the geometric, energetic, and electronic parameters of catalysts under bias attached to electrode surfaces. Heterogeneous electrocatalysis: characterization of interfacial electric field within the electrochemical double layer.![]()
Collapse
Affiliation(s)
- Dhritiman Bhattacharyya
- Department of Chemistry, Emory University 1515 Dickey Drive Northeast Atlanta Georgia 30322 USA
| | - Pablo E Videla
- Department of Chemistry and Energy Sciences Institute, Yale University 225 Prospect Street New Haven Connecticut 06520 USA
| | - Mauricio Cattaneo
- INQUINOA-UNT-CONICET, Facultad de Bioquímica, Química y Farmacia, Instituto de Química Física, Universidad Nacional de Tucumán Ayacucho 471 (4000) San Miguel de Tucumán Argentina
| | - Victor S Batista
- Department of Chemistry and Energy Sciences Institute, Yale University 225 Prospect Street New Haven Connecticut 06520 USA
| | - Tianquan Lian
- Department of Chemistry, Emory University 1515 Dickey Drive Northeast Atlanta Georgia 30322 USA
| | - Clifford P Kubiak
- Department of Chemistry and Biochemistry, University of California, San Diego 9500 Gilman Drive, MC 0358 La Jolla California 92093 USA
| |
Collapse
|
28
|
Delley MF, Nichols EM, Mayer JM. Interfacial Acid-Base Equilibria and Electric Fields Concurrently Probed by In Situ Surface-Enhanced Infrared Spectroscopy. J Am Chem Soc 2021; 143:10778-10792. [PMID: 34253024 DOI: 10.1021/jacs.1c05419] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Understanding how applied potentials and electrolyte solution conditions affect interfacial proton (charge) transfers at electrode surfaces is critical for electrochemical technologies. Herein, we examine mixed self-assembled monolayers (SAMs) of 4-mercaptobenzoic acid (4-MBA) and 4-mercaptobenzonitrile (4-MBN) on gold using in situ surface-enhanced infrared absorption spectroscopy (SEIRAS). Measurements as a function of the applied potential, the electrolyte pD, and the electrolyte concentration determined both the relative surface populations of acidic and basic forms of 4-MBA, as well as the local electric fields at the SAM-solution interface by following the Stark shifts of 4-MBN. The effective acidity of the SAM varied with the applied potential, requiring a 600 mV change to move the pKa by one unit. Since this is ca. 10× the Nernstian value of 59 mV/pKa, ∼90% of the applied potential dropped across the SAM layer. This emphasizes the importance of distinguishing applied potentials from the potential experienced at the interface. We use the measured interfacial electric fields to estimate the experienced potential at the SAM edge. The SAM pKa showed a roughly Nernstian dependence on this estimated experienced potential. An analysis of the combined acid-base equilibria and Stark shifts reveals that the interfacial charge density has significant contributions from both SAM carboxylate headgroups and electrolyte components. Ion pairing and ion penetration into the SAM also influence the observed surface acidity. To our knowledge, this study is the first concurrent examination of both effective acidity and electric fields, and highlights the relevance of experienced potentials and specific ion effects at functionalized electrode surfaces.
Collapse
Affiliation(s)
- Murielle F Delley
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland.,Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Eva M Nichols
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada.,Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - James M Mayer
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| |
Collapse
|
29
|
Keough M, McLeod JF, Salomons T, Hillen P, Pei Y, Gibson G, McEleney K, Oleschuk R, She Z. Realizing new designs of multiplexed electrode chips by 3-D printed masks. RSC Adv 2021; 11:21600-21606. [PMID: 35478805 PMCID: PMC9034153 DOI: 10.1039/d1ra03482k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 05/28/2021] [Indexed: 12/29/2022] Open
Abstract
Creating small and portable analytical methods is a fast-growing field of research. Devices capable of performing bio-analytical detection are especially desirable with the onset of the global pandemic. Lab-on-a-chip (LOC) technologies, including rapid point-of-care (POC) devices such as glucose sensors, are attractive for applications in resource-poor settings. There are many challenges in creating such devices, from sensitive molecular designs to stable conditions for storing the sensor chips. In this study we have explored using three-dimensional (3D) printing to create shadow masks as a low-cost method to produce multiplexed electrodes by physical vapour deposition. Although the dimensional resolution of the electrodes produced by using 3D printed masks is inferior to those made through photolithography-based techniques, their dimensions can be readily tailored ranging from 1 mm to 3 mm. Multiple mask materials were tested, such as polylactic acid and polyethylene terephthalate glycol, with acrylonitrile butadiene styrene shown to be the best. Simple strategies in making chip holders by 3D printing and controlling working electrode surface area with epoxy glue were also investigated. The prepared chips were tested by performing surface chemistry with thiol-containing molecules and monitoring the signals electrochemically. Preparation of multiplexed electrodes by combining physical vapour deposition with 3-D printed masks.![]()
Collapse
Affiliation(s)
- Madeline Keough
- Department of Chemistry, Queen's University Chernoff Hall Kingston ON K7L 3N6 Canada
| | - Jennifer F McLeod
- Department of Chemistry, Queen's University Chernoff Hall Kingston ON K7L 3N6 Canada .,Beaty Water Research Centre, Queen's University Kingston ON K7L 3N6 Canada
| | - Timothy Salomons
- Department of Chemistry, Queen's University Chernoff Hall Kingston ON K7L 3N6 Canada
| | - Phillip Hillen
- Department of Chemistry, Queen's University Chernoff Hall Kingston ON K7L 3N6 Canada
| | - Yu Pei
- Department of Chemistry, Queen's University Chernoff Hall Kingston ON K7L 3N6 Canada .,Beaty Water Research Centre, Queen's University Kingston ON K7L 3N6 Canada
| | - Graham Gibson
- Department of Chemistry, Queen's University Chernoff Hall Kingston ON K7L 3N6 Canada .,NanoFabrication Kingston, Queen's University Kingston ON K7L 0E9 Canada
| | - Kevin McEleney
- Department of Chemistry, Queen's University Chernoff Hall Kingston ON K7L 3N6 Canada
| | - Richard Oleschuk
- Department of Chemistry, Queen's University Chernoff Hall Kingston ON K7L 3N6 Canada
| | - Zhe She
- Department of Chemistry, Queen's University Chernoff Hall Kingston ON K7L 3N6 Canada .,Beaty Water Research Centre, Queen's University Kingston ON K7L 3N6 Canada
| |
Collapse
|
30
|
Noriega R. Measuring the Multiscale Dynamics, Structure, and Function of Biomolecules at Interfaces. J Phys Chem B 2021; 125:5667-5675. [PMID: 34042455 DOI: 10.1021/acs.jpcb.1c01546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The individual and collective structure and properties of biomolecules can change dramatically when they are localized at an interface. However, the small spatial extent of interfacial regions poses challenges to the detailed characterization of multiscale processes that dictate the structure and function of large biological units such as peptides, proteins, or nucleic acids. This Perspective surveys a broad set of tools that provide new opportunities to probe complex, dynamic interfaces across the vast range of temporal regimes that connect molecular-scale events to macroscopic observables. An emphasis is placed on the integration over multiple time scales, the use of complementary techniques, and the incorporation of external stimuli to control interfacial properties with spatial, temporal, and chemical specificity.
Collapse
Affiliation(s)
- Rodrigo Noriega
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
31
|
Zhang N, Zhang X, Kang Y, Ye C, Jin R, Yan H, Lin R, Yang J, Xu Q, Wang Y, Zhang Q, Gu L, Liu L, Song W, Liu J, Wang D, Li Y. A Supported Pd
2
Dual‐Atom Site Catalyst for Efficient Electrochemical CO
2
Reduction. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101559] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Ningqiang Zhang
- Department of Chemistry Tsinghua University Beijing 100084 PR China
| | - Xinxin Zhang
- Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences Qingdao 266101 PR China
| | - Yikun Kang
- State Key Laboratory of Heavy Oil Processing China University of Petroleum Beijing 102249 PR China
| | - Chenliang Ye
- Department of Chemistry Tsinghua University Beijing 100084 PR China
| | - Rui Jin
- SINOPEC Research Institute of Petroleum Processing Xue Yuan Rd. 18 Beijing 100083 PR China
| | - Han Yan
- Department of Chemistry Tsinghua University Beijing 100084 PR China
| | - Rui Lin
- Department of Chemistry Tsinghua University Beijing 100084 PR China
| | - Jiarui Yang
- Department of Chemistry Tsinghua University Beijing 100084 PR China
| | - Qian Xu
- Department of Chemistry Tsinghua University Beijing 100084 PR China
| | - Yu Wang
- Shanghai Synchrotron Radiation Facilities Shanghai Institute of Applied Physics Chinese Academy of Science Shanghai 201204 PR China
| | - Qinghua Zhang
- Institute of Physics Chinese Academy of Sciences Beijing 100190 PR China
| | - Lin Gu
- Institute of Physics Chinese Academy of Sciences Beijing 100190 PR China
| | - Licheng Liu
- Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences Qingdao 266101 PR China
| | - Weiyu Song
- State Key Laboratory of Heavy Oil Processing China University of Petroleum Beijing 102249 PR China
| | - Jian Liu
- State Key Laboratory of Heavy Oil Processing China University of Petroleum Beijing 102249 PR China
| | - Dingsheng Wang
- Department of Chemistry Tsinghua University Beijing 100084 PR China
| | - Yadong Li
- Department of Chemistry Tsinghua University Beijing 100084 PR China
| |
Collapse
|
32
|
Progress of electrochemical CO2 reduction reactions over polyoxometalate-based materials. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(20)63718-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
33
|
Ma B, Blanco M, Calvillo L, Chen L, Chen G, Lau TC, Dražić G, Bonin J, Robert M, Granozzi G. Hybridization of Molecular and Graphene Materials for CO 2 Photocatalytic Reduction with Selectivity Control. J Am Chem Soc 2021; 143:8414-8425. [PMID: 34033471 DOI: 10.1021/jacs.1c02250] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the quest for designing efficient and stable photocatalytic materials for CO2 reduction, hybridizing a selective noble-metal-free molecular catalyst and carbon-based light-absorbing materials has recently emerged as a fruitful approach. In this work, we report about Co quaterpyridine complexes covalently linked to graphene surfaces functionalized by carboxylic acid groups. The nanostructured materials were characterized by X-ray photoemission spectroscopy, X-ray absorption spectroscopy, IR and Raman spectroscopies, high-resolution transmission electron microscopy and proved to be highly active in the visible-light-driven CO2 catalytic conversion in acetonitrile solutions. Exceptional stabilities (over 200 h of irradiation) were obtained without compromising the selective conversion of CO2 to products (>97%). Most importantly, complete selectivity control could be obtained upon adjusting the experimental conditions: production of CO as the only product was achieved when using a weak acid (phenol or trifluoroethanol) as a co-substrate, while formate was exclusively obtained in solutions of mixed acetonitrile and triethanolamine.
Collapse
Affiliation(s)
- Bing Ma
- Université de Paris, CNRS, Laboratoire d'Electrochimie Moléculaire (LEM), F-75006 Paris, France
| | - Matías Blanco
- Department of Chemical Sciences, INSTM Unit, University of Padova, Via F. Marzolo, 1, 35131 Padova, Italy
| | - Laura Calvillo
- Department of Chemical Sciences, INSTM Unit, University of Padova, Via F. Marzolo, 1, 35131 Padova, Italy
| | - Lingjing Chen
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, Guangdong, P.R. China
| | - Gui Chen
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, Guangdong, P.R. China
| | - Tai-Chu Lau
- Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong, P.R. China
| | - Goran Dražić
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | - Julien Bonin
- Université de Paris, CNRS, Laboratoire d'Electrochimie Moléculaire (LEM), F-75006 Paris, France
| | - Marc Robert
- Université de Paris, CNRS, Laboratoire d'Electrochimie Moléculaire (LEM), F-75006 Paris, France.,Institut Universitaire de France (IUF), F-75005 Paris, France
| | - Gaetano Granozzi
- Department of Chemical Sciences, INSTM Unit, University of Padova, Via F. Marzolo, 1, 35131 Padova, Italy
| |
Collapse
|
34
|
Kinzel NW, Werlé C, Leitner W. Transition Metal Complexes as Catalysts for the Electroconversion of CO 2 : An Organometallic Perspective. Angew Chem Int Ed Engl 2021; 60:11628-11686. [PMID: 33464678 PMCID: PMC8248444 DOI: 10.1002/anie.202006988] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/11/2020] [Indexed: 12/17/2022]
Abstract
The electrocatalytic transformation of carbon dioxide has been a topic of interest in the field of CO2 utilization for a long time. Recently, the area has seen increasing dynamics as an alternative strategy to catalytic hydrogenation for CO2 reduction. While many studies focus on the direct electron transfer to the CO2 molecule at the electrode material, molecular transition metal complexes in solution offer the possibility to act as catalysts for the electron transfer. C1 compounds such as carbon monoxide, formate, and methanol are often targeted as the main products, but more elaborate transformations are also possible within the coordination sphere of the metal center. This perspective article will cover selected examples to illustrate and categorize the currently favored mechanisms for the electrochemically induced transformation of CO2 promoted by homogeneous transition metal complexes. The insights will be corroborated with the concepts and elementary steps of organometallic catalysis to derive potential strategies to broaden the molecular diversity of possible products.
Collapse
Affiliation(s)
- Niklas W. Kinzel
- Max Planck Institute for Chemical Energy ConversionStiftstr. 34–3645470Mülheim an der RuhrGermany
- Institut für Technische und Makromolekulare Chemie (ITMC)RWTH Aachen UniversityWorringer Weg 252074AachenGermany
| | - Christophe Werlé
- Max Planck Institute for Chemical Energy ConversionStiftstr. 34–3645470Mülheim an der RuhrGermany
- Ruhr University BochumUniversitätsstr. 15044801BochumGermany
| | - Walter Leitner
- Max Planck Institute for Chemical Energy ConversionStiftstr. 34–3645470Mülheim an der RuhrGermany
- Institut für Technische und Makromolekulare Chemie (ITMC)RWTH Aachen UniversityWorringer Weg 252074AachenGermany
| |
Collapse
|
35
|
Zhang N, Zhang X, Kang Y, Ye C, Jin R, Yan H, Lin R, Yang J, Xu Q, Wang Y, Zhang Q, Gu L, Liu L, Song W, Liu J, Wang D, Li Y. A Supported Pd 2 Dual-Atom Site Catalyst for Efficient Electrochemical CO 2 Reduction. Angew Chem Int Ed Engl 2021; 60:13388-13393. [PMID: 33817923 DOI: 10.1002/anie.202101559] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/08/2021] [Indexed: 01/09/2023]
Abstract
Dual-atom site catalysts (DACs) have emerged as a new frontier in heterogeneous catalysis because the synergistic effect between adjacent metal atoms can promote their catalytic activity while maintaining the advantages of single-atom site catalysts (SACs), like 100 % atomic utilization efficiency and excellent selectivity. Herein, a supported Pd2 DAC was synthesized and used for electrochemical CO2 reduction reaction (CO2 RR) for the first time. The as-obtained Pd2 DAC exhibited superior CO2 RR catalytic performance with 98.2 % CO faradic efficiency at -0.85 V vs. RHE, far exceeding that of Pd1 SAC, and coupled with long-term stability. The density functional theory (DFT) calculations revealed that the intrinsic reason for the superior activity of Pd2 DAC toward CO2 RR was the electron transfer between Pd atoms at the dimeric Pd sites. Thus, Pd2 DAC possessed moderate adsorption strength of CO*, which was beneficial for CO production in CO2 RR.
Collapse
Affiliation(s)
- Ningqiang Zhang
- Department of Chemistry, Tsinghua University, Beijing, 100084, PR China
| | - Xinxin Zhang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China
| | - Yikun Kang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, 102249, PR China
| | - Chenliang Ye
- Department of Chemistry, Tsinghua University, Beijing, 100084, PR China
| | - Rui Jin
- SINOPEC Research Institute of Petroleum Processing, Xue Yuan Rd. 18, Beijing, 100083, PR China
| | - Han Yan
- Department of Chemistry, Tsinghua University, Beijing, 100084, PR China
| | - Rui Lin
- Department of Chemistry, Tsinghua University, Beijing, 100084, PR China
| | - Jiarui Yang
- Department of Chemistry, Tsinghua University, Beijing, 100084, PR China
| | - Qian Xu
- Department of Chemistry, Tsinghua University, Beijing, 100084, PR China
| | - Yu Wang
- Shanghai Synchrotron Radiation Facilities, Shanghai Institute of Applied Physics, Chinese Academy of Science, Shanghai, 201204, PR China
| | - Qinghua Zhang
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Lin Gu
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Licheng Liu
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China
| | - Weiyu Song
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, 102249, PR China
| | - Jian Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, 102249, PR China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, PR China
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing, 100084, PR China
| |
Collapse
|
36
|
Farah YR, Krummel AT. The pH-dependent orientation of N3 dye on a gold substrate is revealed using heterodyne-detected vibrational sum frequency generation spectroscopy. J Chem Phys 2021; 154:124702. [PMID: 33810664 DOI: 10.1063/5.0040986] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We report on systematic changes to the adsorption geometry of the dye N3 {[cis-bis(isothiocyanato)bis(2,2'-bipyridyl-4,4'-dicarboxylato ruthenium(II)]} on a gold substrate as the pH of the deposition environment is altered. The protonation states of the four -COOH groups of the N3 dye change according to the modified pH conditions, thus affecting the number of -COOH and -NCS functional groups that participate in the adsorption to gold. Here, we use heterodyne detected vibrational sum frequency generation (HD-VSFG) spectroscopy to obtain surface specific vibrational information on both -COOH and -NCS groups as a function of pH of the deposition conditions. Polarization-dependent HD-VSFG yields sets of complex χ(2) spectra, enabling us to perform a simultaneous fitting procedure to the polarization-dependent real and imaginary components and thus extract detailed structural information of the N3/gold interface. Our results show that N3 preferentially adsorbs to gold either with two -COOH groups and one -NCS group in more acidic conditions or with one -COOH group and two -NCS groups in more basic conditions.
Collapse
Affiliation(s)
- Yusef R Farah
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Amber T Krummel
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA
| |
Collapse
|
37
|
Goldsmith ZK, Calegari Andrade MF, Selloni A. Effects of applied voltage on water at a gold electrode interface from ab initio molecular dynamics. Chem Sci 2021; 12:5865-5873. [PMID: 34168811 PMCID: PMC8179682 DOI: 10.1039/d1sc00354b] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Electrode–water interfaces under voltage bias demonstrate anomalous electrostatic and structural properties that are influential in their catalytic and technological applications. Mean-field and empirical models of the electrical double layer (EDL) that forms in response to an applied potential do not capture the heterogeneity that polarizable, liquid-phase water molecules engender. To illustrate the inhomogeneous nature of the electrochemical interface, Born–Oppenheimer ab initio molecular dynamics calculations of electrified Au(111) slabs interfaced with liquid water were performed using a combined explicit–implicit solvent approach. The excess charges localized on the model electrode were held constant and the electrode potentials were computed at frequent simulation times. The electrode potential in each trajectory fluctuated with changes in the atomic structure, and the trajectory-averaged potentials converged and yielded a physically reasonable differential capacitance for the system. The effects of the average applied voltages, both positive and negative, on the structural, hydrogen bonding, dynamical, and vibrational properties of water were characterized and compared to literature where applicable. Controlled-potential simulations of the interfacial solvent dynamics provide a framework for further investigation of more complex or reactive species in the EDL and broadly for understanding electrochemical interfaces in situ. Ab initio molecular dynamics of an aqueous electrode interface reveal the electrostatic, structural, and dynamic effects of quantifiable voltage biases on water.![]()
Collapse
Affiliation(s)
| | | | - Annabella Selloni
- Department of Chemistry, Princeton University Princeton NJ 08544 USA
| |
Collapse
|
38
|
Barrett JA, Miller CJ, Kubiak CP. Electrochemical Reduction of CO2 Using Group VII Metal Catalysts. TRENDS IN CHEMISTRY 2021. [DOI: 10.1016/j.trechm.2020.12.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
39
|
Wright D, Lin Q, Berta D, Földes T, Wagner A, Griffiths J, Readman C, Rosta E, Reisner E, Baumberg JJ. Mechanistic study of an immobilized molecular electrocatalyst by in situ gap-plasmon-assisted spectro-electrochemistry. Nat Catal 2021. [DOI: 10.1038/s41929-020-00566-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
40
|
Chen H, Brasiliense V, Mo J, Zhang L, Jiao Y, Chen Z, Jones LO, He G, Guo QH, Chen XY, Song B, Schatz GC, Stoddart JF. Single-Molecule Charge Transport through Positively Charged Electrostatic Anchors. J Am Chem Soc 2021; 143:2886-2895. [DOI: 10.1021/jacs.0c12664] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hongliang Chen
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Vitor Brasiliense
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, PPSM, 4 avenue des Sciences, 91190 Gif/Yvette, France
| | - Jingshan Mo
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510006, China
| | - Long Zhang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Yang Jiao
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Zhu Chen
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Leighton O. Jones
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Gen He
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510006, China
| | - Qing-Hui Guo
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Xiao-Yang Chen
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Bo Song
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - George C. Schatz
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - J. Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310021, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou 311215, China
| |
Collapse
|
41
|
Kinzel NW, Werlé C, Leitner W. Übergangsmetallkomplexe als Katalysatoren für die elektrische Umwandlung von CO
2
– eine metallorganische Perspektive. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202006988] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Niklas W. Kinzel
- Max-Planck-Institut für Chemische Energiekonversion Stiftstraße 34–36 45470 Mülheim an der Ruhr Deutschland
- Institut für Technische und Makromolekulare Chemie (ITMC) RWTH Aachen University Worringer Weg 2 52074 Aachen Deutschland
| | - Christophe Werlé
- Max-Planck-Institut für Chemische Energiekonversion Stiftstraße 34–36 45470 Mülheim an der Ruhr Deutschland
- Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Deutschland
| | - Walter Leitner
- Max-Planck-Institut für Chemische Energiekonversion Stiftstraße 34–36 45470 Mülheim an der Ruhr Deutschland
- Institut für Technische und Makromolekulare Chemie (ITMC) RWTH Aachen University Worringer Weg 2 52074 Aachen Deutschland
| |
Collapse
|
42
|
Wilsey MK, Cox CP, Forsythe RC, McCarney LR, Müller AM. Selective CO2 reduction towards a single upgraded product: a minireview on multi-elemental copper-free electrocatalysts. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02010a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electrocatalytic conversion of the greenhouse gas carbon dioxide to liquid fuels or upgraded chemicals is a critical strategy to mitigate anthropogenic climate change. To this end, we urgently need high-performance CO2 reduction catalysts.
Collapse
Affiliation(s)
| | - Connor P. Cox
- Materials Science Program
- University of Rochester
- New York 14627
- USA
| | - Ryland C. Forsythe
- Department of Chemical Engineering
- University of Rochester
- New York 14627
- USA
| | - Luke R. McCarney
- Department of Chemical Engineering
- University of Rochester
- New York 14627
- USA
| | - Astrid M. Müller
- Materials Science Program
- University of Rochester
- New York 14627
- USA
- Department of Chemical Engineering
| |
Collapse
|
43
|
Koyejo AO, Kesavan L, Damlin P, Salomäki M, Yao JG, Hakkarainen M, Kvarnström C. Cellulose‐Based Reduced Nanographene Oxide on Gold Nanoparticle Supports for CO
2
Electrocatalysis. ChemElectroChem 2020. [DOI: 10.1002/celc.202001132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Adefunke O. Koyejo
- Department of Chemistry Turku University Centre for Materials and Surfaces (MatSurf) University of Turku Vatselankatu 2 20014 Turku Finland
| | - Lokesh Kesavan
- Department of Chemistry Turku University Centre for Materials and Surfaces (MatSurf) University of Turku Vatselankatu 2 20014 Turku Finland
| | - Pia Damlin
- Department of Chemistry Turku University Centre for Materials and Surfaces (MatSurf) University of Turku Vatselankatu 2 20014 Turku Finland
| | - Mikko Salomäki
- Department of Chemistry Turku University Centre for Materials and Surfaces (MatSurf) University of Turku Vatselankatu 2 20014 Turku Finland
| | - Jenevieve G. Yao
- Department of Fibre and Polymer Technology KTH Royal Institute of Technology Teknikringen 58 10044 Stockholm Sweden
| | - Minna Hakkarainen
- Department of Fibre and Polymer Technology KTH Royal Institute of Technology Teknikringen 58 10044 Stockholm Sweden
| | - Carita Kvarnström
- Department of Chemistry Turku University Centre for Materials and Surfaces (MatSurf) University of Turku Vatselankatu 2 20014 Turku Finland
| |
Collapse
|
44
|
Ge A, Inoue KI, Ye S. Probing the electrode-solution interfaces in rechargeable batteries by sum-frequency generation spectroscopy. J Chem Phys 2020; 153:170902. [PMID: 33167651 DOI: 10.1063/5.0026283] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
An in-depth understanding of the electrode-electrolyte interaction and electrochemical reactions at the electrode-solution interfaces in rechargeable batteries is essential to develop novel electrolytes and electrode materials with high performance. In this perspective, we highlight the advantages of the interface-specific sum-frequency generation (SFG) spectroscopy on the studies of the electrode-solution interface for the Li-ion and Li-O2 batteries. The SFG studies in probing solvent adsorption structures and solid-electrolyte interphase formation for the Li-ion battery are briefly reviewed. Recent progress on the SFG study of the oxygen reaction mechanisms and stability of the electrolyte in the Li-O2 battery is also discussed. Finally, we present the current perspective and future directions in the SFG studies on the electrode-electrolyte interfaces toward providing deeper insight into the mechanisms of discharging/charging and parasitic reactions in novel rechargeable battery systems.
Collapse
Affiliation(s)
- Aimin Ge
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Ken-Ichi Inoue
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Shen Ye
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
45
|
Wallentine S, Bandaranayake S, Biswas S, Baker LR. Direct Observation of Carbon Dioxide Electroreduction on Gold: Site Blocking by the Stern Layer Controls CO 2 Adsorption Kinetics. J Phys Chem Lett 2020; 11:8307-8313. [PMID: 32946241 DOI: 10.1021/acs.jpclett.0c02628] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Directly observing active surface intermediates represents a major challenge in electrocatalysis, especially for CO2 electroreduction on Au. We use in-situ, plasmon-enhanced vibrational sum frequency generation spectroscopy, which has detection limits of <1% of a monolayer and can access the Au/electrolyte interface during active electrocatalysis in the absence of mass transport limitations. Measuring the potential-dependent surface coverage of atop CO confirms that the rate-determining step for this reaction is CO2 adsorption. An analysis of the interfacial electric field reveals the formation of a dense cation layer at the electrode surface, which is correlated to the onset of CO production. The Tafel slope increases in conjunction with the field saturation due to active site blocking by adsorbed cations. These findings show that CO2 reduction is extremely sensitive to the potential-dependent structure of the electrochemical double layer and provides direct observation of the interfacial processes that govern these kinetics.
Collapse
Affiliation(s)
- Spencer Wallentine
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Savini Bandaranayake
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Somnath Biswas
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - L Robert Baker
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
46
|
Towards molecular understanding of local chemical environment effects in electro- and photocatalytic CO2 reduction. Nat Catal 2020. [DOI: 10.1038/s41929-020-00512-x] [Citation(s) in RCA: 179] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
47
|
Gunathunge CM, Li J, Li X, Waegele MM. Surface-Adsorbed CO as an Infrared Probe of Electrocatalytic Interfaces. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03316] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Charuni M. Gunathunge
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Jingyi Li
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Xiang Li
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Matthias M. Waegele
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
48
|
Wallentine S, Bandaranayake S, Biswas S, Baker LR. Plasmon-Resonant Vibrational Sum Frequency Generation of Electrochemical Interfaces: Direct Observation of Carbon Dioxide Electroreduction on Gold. J Phys Chem A 2020; 124:8057-8064. [DOI: 10.1021/acs.jpca.0c04268] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Spencer Wallentine
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Savini Bandaranayake
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Somnath Biswas
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - L. Robert Baker
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
49
|
Yang W, Vansuch GE, Liu Y, Jin T, Liu Q, Ge A, Sanchez MLK, K Haja D, Adams MWW, Dyer RB, Lian T. Surface-Ligand "Liquid" to "Crystalline" Phase Transition Modulates the Solar H 2 Production Quantum Efficiency of CdS Nanorod/Mediator/Hydrogenase Assemblies. ACS APPLIED MATERIALS & INTERFACES 2020; 12:35614-35625. [PMID: 32662974 DOI: 10.1021/acsami.0c07820] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This study reports how the length of capping ligands on a nanocrystal surface affects its interfacial electron transfer (ET) with surrounding molecular electron acceptors, and consequently, impact the H2 production of a biotic-abiotic hybrid artificial photosynthetic system. Specifically, we study how the H2 production efficiency of a hybrid system, combining CdS nanorods (NRs), [NiFe] hydrogenase, and redox mediators (propyl-bridged 2,2'-bipyridinium, PDQ2+), depends on the alkyl chain length of mercaptocarboxylate ligands on the NR surface. We observe a minor decrease of the quantum yield for H2 production from 54 ± 6 to 43 ± 2% when varying the number of methylene units in the ligands from 2 to 7. In contrast, an abrupt decrease of the yield was observed from 43 ± 2 to 4 ± 1% when further increasing n from 7 to 11. ET studies reveal that the intrinsic ET rates from the NRs to the electron acceptor PDQ2+ are all within 108-109 s-1 regardless of the length of the capping ligands. However, the number of adsorbed PDQ2+ molecules on NR surfaces decreases dramatically when n ≥ 10, with the saturating number changing from 45 ± 5 to 0.3 ± 0.1 for n = 2 and 11, respectively. These results are not consistent with the commonly perceived exponential dependence of ET rates on the ligand length. Instead, they can be explained by the change of the accessibility of NR surfaces to electron acceptors from a disordered "liquid" phase at n < 7 to a more ordered "crystalline" phases at n > ∼7. These results highlight that the order of capping ligands is an important design parameter for further constructing nanocrystal/molecular assemblies in broad nanocrystal-based applications.
Collapse
Affiliation(s)
- Wenxing Yang
- Department of Chemistry, Emory University, 1515 Dickey Drive Northeast, Atlanta, Georgia 30322, United States
- Department of Chemistry-Ångström Laboratory, Physical Chemistry, Uppsala University, SE-75120 Uppsala, Sweden
| | - Gregory E Vansuch
- Department of Chemistry, Emory University, 1515 Dickey Drive Northeast, Atlanta, Georgia 30322, United States
| | - Yawei Liu
- Department of Chemistry, Emory University, 1515 Dickey Drive Northeast, Atlanta, Georgia 30322, United States
| | - Tao Jin
- Department of Chemistry, Emory University, 1515 Dickey Drive Northeast, Atlanta, Georgia 30322, United States
| | - Qiliang Liu
- Department of Chemistry, Emory University, 1515 Dickey Drive Northeast, Atlanta, Georgia 30322, United States
| | - Aimin Ge
- Department of Chemistry, Emory University, 1515 Dickey Drive Northeast, Atlanta, Georgia 30322, United States
| | - Monica L K Sanchez
- Department of Chemistry, Emory University, 1515 Dickey Drive Northeast, Atlanta, Georgia 30322, United States
| | - Dominik K Haja
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, United States
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, United States
| | - R Brian Dyer
- Department of Chemistry, Emory University, 1515 Dickey Drive Northeast, Atlanta, Georgia 30322, United States
| | - Tianquan Lian
- Department of Chemistry, Emory University, 1515 Dickey Drive Northeast, Atlanta, Georgia 30322, United States
| |
Collapse
|
50
|
Piontek SM, DelloStritto M, Mandal B, Marshall T, Klein ML, Borguet E. Probing Heterogeneous Charge Distributions at the α-Al2O3(0001)/H2O Interface. J Am Chem Soc 2020; 142:12096-12105. [DOI: 10.1021/jacs.0c01366] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|