1
|
Li Q, Zheng Y, Wu H, Hu Z, Wang J, Wu Y, Yu H. Reticular chemistry-aided effective design of new second-order nonlinear optical selenites. MATERIALS HORIZONS 2024. [PMID: 39381851 DOI: 10.1039/d4mh01043d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Noncentrosymmetric (NCS) compounds are particularly important for modern optoelectronic technology, yet their rational structural design remains a great challenge. Herein, assisted by the idea of bottom-up reticular chemistry, seven new NCS selenites, AM3[SeO3]2[Se2O5]3 (A = K+/Rb+/Cs+; M = Al3+/Ga3+/In3+), have been successfully designed and synthesized by assembling main-group metal octahedral units and SeO3 units, to construct honeycomb layers with regular channels to accommodate a variety of cations, and using planar hexagonal shapes to orientate the groups within the network. Based on this strategy, the overall symmetry of the solid-state compounds was effectively controlled, and by modifying locally connected atoms or groups, without disrupting the overall prototypical framework, a series of iso-reticular analogues have been obtained, which greatly increases the probability of NCS structures. Three of these compounds, CsM3[SeO3]2[Se2O5]3 were characterized experimentally and theoretically. The results show that they all have moderate second harmonic generation (SHG) responses, which are as large as that of commercial KH2PO4, and wide band gaps. Our study confirms the feasibility of reticular chemistry-assisted strategy in designing nonlinear optical materials with stable frameworks and good performance.
Collapse
Affiliation(s)
- Qian Li
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China.
| | - Yi Zheng
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China.
| | - Hongping Wu
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China.
| | - Zhanggui Hu
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China.
| | - Jiyang Wang
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China.
| | - Yicheng Wu
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China.
| | - Hongwei Yu
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China.
| |
Collapse
|
2
|
Lei Z, Liu F, Pang X, Yi Y, Huang C, Yang T. Constructing Ultraviolet Nonlinear Optical Crystals with Superior Thermal Stability Based on Organic π-Conjugated [HCOO] Groups. Inorg Chem 2024; 63:18536-18542. [PMID: 39321329 DOI: 10.1021/acs.inorgchem.4c03628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
In recent years, more and more organic π-conjugated moieties have been screened out to create excellent ultraviolet (UV) and deep-UV nonlinear optical (NLO) crystal materials. However, NLO crystals with organic groups usually exhibit poor thermal stability compared with those of traditional inorganic NLO materials. Herein, the organic group [HCOO], which is similar to traditional planar trigonal π-conjugated anionic groups, was employed to successfully build three UV NLO crystals RE(HCOO)3 (RE = Eu, Gd, and Dy) and two centrosymmetric compounds RE(HCOO)2(OH) (RE = Eu, and Gd) with superior thermal stability. Their structures and properties were further studied and characterized, especially the structure evolutions between noncentrosymmetric RE(HCOO)3 (RE = Eu, Gd, and Dy) and centrosymmetric RE(HCOO)2(OH) (RE = Eu, and Gd), as well as the NLO properties of the three crystals RE(HCOO)3 (RE = Eu, Gd, and Dy).
Collapse
Affiliation(s)
- Zhiyuan Lei
- Chongqing Key Laboratory of inorganic functional materials, College of chemistry, Chongqing Normal University, Chongqing 401331, P.R. China
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, People's Republic of China
| | - Fangrong Liu
- Chongqing Key Laboratory of inorganic functional materials, College of chemistry, Chongqing Normal University, Chongqing 401331, P.R. China
| | - Xuan Pang
- Chongqing Key Laboratory of inorganic functional materials, College of chemistry, Chongqing Normal University, Chongqing 401331, P.R. China
| | - Yuanxue Yi
- Chongqing Precision Medical Industry Technology Research Institute, Chongqing 400000, P.R. China
| | - Chunmei Huang
- Chongqing Key Laboratory of inorganic functional materials, College of chemistry, Chongqing Normal University, Chongqing 401331, P.R. China
| | - Tao Yang
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, People's Republic of China
| |
Collapse
|
3
|
Li Y, Ok KM. Breaking Boundaries: Giant Ultraviolet Birefringence in Dimension-Reduced Zn-Based Crystals. Angew Chem Int Ed Engl 2024; 63:e202409336. [PMID: 38923746 DOI: 10.1002/anie.202409336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/18/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024]
Abstract
Birefringent crystals have essential applications in optical communication areas. Low-dimensional structures with inherited structural anisotropy are potential systems for investigating birefringent materials with large birefringence. In this work, the zero-dimensional (0D) [(p-C5H5NO)2ZnCl2] (1) and [p-C5H6NO]2[ZnCl4] (2) were obtained by introducing the π-conjugated p-C5H5NO (4HP) into the three-dimensional (3D) ZnCl2. Remarkably, 1 exhibits a giant birefringence of 0.482@546 nm, which is the largest among Zn-based ultraviolet (UV) compounds and 160 times that of ZnCl2. According to structural and theoretical calculation analyses, the large optical polarizability, high spatial density, ideal distribution of the [(4HP)2ZnCl2]0 cluster, and the low dimension of 1 result in the dramatically increased birefringence compared to ZnCl2. This work will provide a valid route for accelerating the design and synthesis of compounds with excellent birefringence in low-dimensional systems.
Collapse
Affiliation(s)
- Yang Li
- Department of Chemistry, Sogang University, Seoul, 04107, Republic of Korea
| | - Kang Min Ok
- Department of Chemistry, Sogang University, Seoul, 04107, Republic of Korea
| |
Collapse
|
4
|
Yang C, Kang Y, Wang X, Gou J, Xiong Y, Zhu Z, Chen L, Wu Q. N 2H 4Zn(HC 3N 3O 3): exceptionally strong second harmonic generation and ultra-long phosphorescence. Chem Sci 2024:d4sc04476b. [PMID: 39263656 PMCID: PMC11382538 DOI: 10.1039/d4sc04476b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 08/23/2024] [Indexed: 09/13/2024] Open
Abstract
The discovery and designed synthesis of multifunctional materials is a leading pursuit in materials science. Herein, we report a novel hydro-isocyanurate, N2H4Zn(HC3N3O3), which combines strong second harmonic generation (SHG) and ultra-long room-temperature phosphorescence (RTP). The SHG intensity is the highest within the cyanurate system (13 × KDP), and RTP lifetime extends up to 448 ms, accompanied by a long-lasting afterglow visible to the naked eye for 1.2 s, surpassing most of the current metal-organic complexes. This advancement holds promise for the development of multifunctional optoelectronic devices, particularly leveraging second-harmonic generation (SHG) processes.
Collapse
Affiliation(s)
- Can Yang
- State /Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University Wuhan 430200 China
| | - Yuwei Kang
- State /Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University Wuhan 430200 China
| | - Xuefei Wang
- State /Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University Wuhan 430200 China
| | - Jie Gou
- State /Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University Wuhan 430200 China
| | - Yi Xiong
- State /Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University Wuhan 430200 China
| | - Zece Zhu
- State /Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University Wuhan 430200 China
| | - Ling Chen
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University Beijing 100875 China
| | - Qi Wu
- State /Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University Wuhan 430200 China
| |
Collapse
|
5
|
Zhou H, Cheng M, Chu D, Liu X, An R, Pan S, Yang Z. Sulfate Derivatives with Heteroleptic Tetrahedra: New Deep-Ultraviolet Birefringent Materials in which Weak Interactions Modulate Functional Module Ordering. Angew Chem Int Ed Engl 2024:e202413680. [PMID: 39143747 DOI: 10.1002/anie.202413680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/16/2024]
Abstract
Deep-ultraviolet (UV) birefringent materials are urgently needed to facilitate light polarization in deep-UV lithography. Maximizing anisotropy by regulating the alignment of functional modules is essential for improving the linear optical performance of birefringent materials. In this work, we proposed a strategy to design deep-UV birefringent materials that achieve functional module ordering via weak interactions. Following this strategy, four compounds CN4H7SO3CF3, CN4H7SO3CH3, C(NH2)3SO3CH3, and C(NH2)3SO3CF3 were identified as high-performance candidates for deep-UV birefringent materials. The millimeter-sized crystals of CN4H7SO3CF3, CN4H7SO3CH3, and C(NH2)3SO3CH3 were grown, and the transmittance spectra show that their cutoff edges are below 200 nm. CN4H7SO3CF3 exhibits the largest birefringence (0.149 @ 546 nm, 0.395 @ 200 nm) in the deep-UV region among reported sulfates and sulfate derivatives. It reveals that the hydrogen bond can modulate the module ordering of the heteroleptic tetrahedra and planar π-conjugated cations, thus greatly enhancing the birefringence. Our study not only discovers new deep-UV birefringent materials but also provides an upgraded strategy for optimizing optical anisotropy to achieve efficient birefringence.
Collapse
Affiliation(s)
- Huan Zhou
- Research Center for Crystal Materials; State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Science., 40-1 South Beijing Road, Urumqi, 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meng Cheng
- Research Center for Crystal Materials; State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Science., 40-1 South Beijing Road, Urumqi, 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dongdong Chu
- Research Center for Crystal Materials; State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Science., 40-1 South Beijing Road, Urumqi, 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xu Liu
- Research Center for Crystal Materials; State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Science., 40-1 South Beijing Road, Urumqi, 830011, China
| | - Ran An
- Research Center for Crystal Materials; State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Science., 40-1 South Beijing Road, Urumqi, 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shilie Pan
- Research Center for Crystal Materials; State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Science., 40-1 South Beijing Road, Urumqi, 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhihua Yang
- Research Center for Crystal Materials; State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Science., 40-1 South Beijing Road, Urumqi, 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
6
|
Zhang HL, Jiao DX, Li XF, He C, Dong XM, Huang K, Li JH, An XT, Wei Q, Wang GM. A Noncentrosymmetric Metal-Free Borophosphate: Achieving a Large Birefringence and Excellent Stability by Covalent-Linkage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401464. [PMID: 38616766 DOI: 10.1002/smll.202401464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/25/2024] [Indexed: 04/16/2024]
Abstract
Organic-inorganic hybrid linear and nonlinear optical (NLO) materials have received increasingly wide spread attention in recent years. Herein, the first hybrid noncentrosymmetric (NCS) borophosphate, (C5H6N)2B2O(HPO4)2 (4PBP), is rationally designed and synthesized by a covalent-linkage strategy. 4-pyridyl-boronic acid (4 PB) is considered as a bifunctional unit, which may effectively improve the optical properties and stability of the resultant material. On the one hand, 4 PB units are covalently linked with PO3(OH) groups via strong B-O-P connections, which significantly enhances the thermal stability of 4PBP (decomposition at 321, vs lower 200 °C of most of hybrid materials). On the other hand, the planar π-conjugated C5H6N units and their uniform layered arrangements represent large structural anisotropy and hyperpolarizability, achieving the largest birefringence (0.156 @ 546 nm) in the reported borophosphates and a second-harmonic generation response (0.7 × KDP). 4PBP also exhibits a wide transparency range (0.27-1.50 µm). This work not only provides a promising birefringent material, but also offers a practical covalent-attachment strategy for the rational design of new high-performance optical materials.
Collapse
Affiliation(s)
- Hui-Li Zhang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Dong-Xue Jiao
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Xiao-Fei Li
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Chao He
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, College of Science, Hebei University of Science and Technology, Shijiazhuang, Hebei, 050018, P. R. China
| | - Xi-Ming Dong
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Kai Huang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Jin-Hua Li
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Xing-Tao An
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, College of Science, Hebei University of Science and Technology, Shijiazhuang, Hebei, 050018, P. R. China
| | - Qi Wei
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Guo-Ming Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| |
Collapse
|
7
|
Liu L, Huang H, Ding M, Shen Y. Noncentrosymmetric Crystal [C 10H 8NO 2] 2SiF 6·H 2O with Large Birefringence. Inorg Chem 2024; 63:13835-13839. [PMID: 38995694 DOI: 10.1021/acs.inorgchem.4c02097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Crystals with noncentrosymmetric structures are applied in many fields, but reported compounds have a high probability of forming a centrosymmetric structure. Here, by hydrogen-bonding the π-conjugated [C10H8NO2]+ cation with the separated [SiF6]2- octahedron, a noncentrosymmetric isoquinoline hexafluorosilicate monohydrate optical crystal of [C10H8NO2]2SiF6·H2O was formed under the regulatory influence of hydrogen bonding. It not only possesses a moderate second harmonic generation response (1.0 × KDP) but also has a large birefringence (0.282 at 550 nm), which is greater than those of most commercial birefringent crystals. In addition, the UV-vis-NIR diffuse reflectance spectrum and thermal stability analysis are also reported. Our finding gives insight into how to design noncentrosymmetric structural compounds in the organic-inorganic system.
Collapse
Affiliation(s)
- Liqin Liu
- Department of Physics and Electronic Information Engineering, Minjiang University, Fuzhou, Fujian 350108, China
| | - Hailan Huang
- Department of Physics and Electronic Information Engineering, Minjiang University, Fuzhou, Fujian 350108, China
| | - Mingliang Ding
- Department of Physics and Electronic Information Engineering, Minjiang University, Fuzhou, Fujian 350108, China
| | - Yaoguo Shen
- Department of Physics and Electronic Information Engineering, Minjiang University, Fuzhou, Fujian 350108, China
| |
Collapse
|
8
|
Long X, An R, Lv Y, Wu X, Mutailipu M. Tunable Optical Anisotropy in Rare-Earth Borates with Flexible [BO 3] Clusters. Chemistry 2024; 30:e202401488. [PMID: 38695300 DOI: 10.1002/chem.202401488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Indexed: 06/15/2024]
Abstract
Borates have garnered a lot of attention in the realm of solid-state chemistry due to their remarkable characteristics, in which the synthesis of borates with isolated [BO3] by adding rare-earth elements is one of the main areas of structural design study. Five new mixed-metal Y-based rare-earth borates, Ba2ZnY2(BO3)4, KNa2Y(BO3)2, Li2CsY4(BO3)5, LiRb2Y(BO3)2, and RbCaY(BO3)2, have been discovered using the high-temperature solution approach. Isolated [BO3] clusters arranged in various configurations comprise their entire anionic framework, allowing for optical anisotropy tuning between 0.024 and 0.081 under 1064 nm. In this study, we characterize the relative placements of their [BO3] groups and examine how their structure affects their characteristics. The origin of their considerable optical anisotropy has been proven theoretically. This study unequivocally demonstrates that even a slight alteration to borates' anionic structure can result in a significant improvement in performance.
Collapse
Affiliation(s)
- Xiangyu Long
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, People's Republic of China
| | - Ran An
- Research Center for Crystal Materials, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yan Lv
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, People's Republic of China
| | - Xueyan Wu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, People's Republic of China
| | - Miriding Mutailipu
- Research Center for Crystal Materials, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| |
Collapse
|
9
|
Yan Z, Fan J, Pan S, Zhang M. Recent advances in rational structure design for nonlinear optical crystals: leveraging advantageous templates. Chem Soc Rev 2024; 53:6568-6599. [PMID: 38809128 DOI: 10.1039/d3cs01136d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Nonlinear optical (NLO) crystals that can expand the spectral range of laser outputs have attracted significant attention for their optoelectronic applications. The research progress from the discovery of new single crystal structures to the realization of final device applications involves many key steps and is very time consuming and challenging. Consequently, exploring efficient design strategies to shorten the research period and accelerate the rational design of novel NLO materials has become imperative to address the pressing demand for advanced materials. The recent shift in paradigm toward exploring new NLO crystals involves significant progress from extensive "trial and error" methodologies to strategic approaches. This review proposes the concept of rational structure design for nonlinear optical crystals leveraging advantageous templates. It further discusses their optical characteristics, promising applications as second-order NLO materials, and the relationship between their structure and performance, and highlights urgent issues that need to be addressed in the field of NLO crystals in the future. The review aims to provide ideas and driving impetus to encourage researchers to achieve new breakthroughs in the next generation of NLO materials.
Collapse
Affiliation(s)
- Ziting Yan
- Research Center for Crystal Materials, State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions, Xinjiang Key Laboratory of Functional Crystal Materials, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi 830011, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinbin Fan
- Research Center for Crystal Materials, State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions, Xinjiang Key Laboratory of Functional Crystal Materials, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi 830011, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shilie Pan
- Research Center for Crystal Materials, State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions, Xinjiang Key Laboratory of Functional Crystal Materials, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi 830011, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Zhang
- Research Center for Crystal Materials, State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions, Xinjiang Key Laboratory of Functional Crystal Materials, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi 830011, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Zhao Y, Song Y, Li Y, Liu W, Zhou Y, Huang W, Luo J, Zhao S, Ahmed B. Deep-Ultraviolet Bialkali-Rare Earth Metal Anhydrous Sulfate Birefringent Crystal. Inorg Chem 2024; 63:11187-11193. [PMID: 38817098 DOI: 10.1021/acs.inorgchem.4c00938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Birefringence is an important linear optical property of anisotropic crystals that plays a significant role in regulating light polarization. A new bialkali-rare earth metal sulfate, NaRbY2(SO4)4 compound, consisting of non-π-conjugated alkali metals and rare earth metal-centered dodecahedral YO8 has been synthesized. The structure analysis suggests that the three-dimensional (3D) structure of the compound is found to be attributable to the combination of dodecahedral YO8 and tetrahedral SO4 groups with Na+ and Rb+ located in the cavities. The ultraviolet, visible, and near-infrared (UV-vis-NIR) spectra reveal that the compound exhibits transparency at a wavelength of less than 200 nm. The observed birefringence of the compound is 0.045@550 nm, which is comparatively larger than that of most deep-ultraviolet (DUV) birefringent crystals. The birefringence mainly originated from the YO8 dodecahedron, which is suggested by first-principles calculations. This research work can provide a useful perspective to explore new DUV sulfates with excellent birefringence.
Collapse
Affiliation(s)
- Yunqi Zhao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yipeng Song
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanqiang Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Liu
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi 541006, China
| | - Yang Zhou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiqi Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Junhua Luo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sangen Zhao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Belal Ahmed
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Department of Chemistry, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| |
Collapse
|
11
|
Wu JH, Hu CL, Li YF, Mao JG, Kong F. [(C 5H 6N 2) 2H](Sb 4F 13): a polyfluoroantimonite with a strong second harmonic generation effect. Chem Sci 2024; 15:8071-8079. [PMID: 38817564 PMCID: PMC11134327 DOI: 10.1039/d4sc01716a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/28/2024] [Indexed: 06/01/2024] Open
Abstract
It is of great difficulty to create a new antimonite with second-harmonic-generation (SHG) intensity larger than 6 times that of KDP. In this study, a polyfluoroantimonite strategy has been proposed to explore fluoroantimonites with large nonlinear optical (NLO) coefficients. Under the cooperation of chemical (highly asymmetric π-conjugated organic amine) and physical (viscous reaction medium ethylene glycol) methods, two novel polyfluoroantimonites, namely, (3PC)2(Sb4F14) and (3AP)2(Sb4F13), have been achieved. Interestingly, these two structures contain two new polyfluoroantimonite groups respectively, an isolated (Sb4F14)2- four-member polyhedral ring and an infinite [Sb4F13]∞- helical chain. More importantly, the polar (3AP)2(Sb4F13) displays a strong SHG intensity of 8.1 × KDP, a large birefringence of 0.258@546 nm and a high laser-induced damage threshold (LIDT) value of 149.7 MW cm-2. Theoretical calculations indicated that its strong SHG effect stems from the synergistic effect of the helical [Sb4F13]∞- polyfluoroantimonite chain and π-conjugated 3AP+ cation, with a contribution ratio of 48.93% and 50.77% respectively. This work provides a new approach for the design and synthesis of high-performance fluoroantimonites.
Collapse
Affiliation(s)
- Jia-Hang Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 P. R. China
- College of Chemistry, Fuzhou University Fuzhou 350108 P. R. China
| | - Chun-Li Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100039 P. R. China
| | - Ya-Feng Li
- College of Chemistry, Fuzhou University Fuzhou 350108 P. R. China
| | - Jiang-Gao Mao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100039 P. R. China
| | - Fang Kong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100039 P. R. China
| |
Collapse
|
12
|
Ding M, Wu Q, Shen Y, Hong J, Dong G, Ma L. (C 8H 7N 2O 2) 2[Bi 2Br 8]·2H 2O and (C 8H 7N 2O 2) 6[Bi 2Cl 10]Cl 2·2H 2O: Exploring Birefringent Crystals in Hybrid Halide Systems. Inorg Chem 2024; 63:9701-9705. [PMID: 38728855 DOI: 10.1021/acs.inorgchem.3c04476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
In this study, new hybrid birefringent crystals of (C8H7N2O2)2[Bi2Br8]·2H2O and (C8H7N2O2)6[Bi2Cl10]Cl2·2H2O were successfully synthesized by introducing a new birefringent group [C8H7N2O2]+ by a simple aqueous solution evaporation method. They crystallize in the P21/n space group, and their structure consists mainly of the π-conjugated group [C8H7N2O2]+ and the octahedron centered on Bi3+. By first-principles calculations, the birefringence response comes from the [C8H7N2O2]+ group with a planar π-conjugated structure. Meanwhile, the synthesis, structure, first-principles calculations, and optical properties are reported in this paper.
Collapse
Affiliation(s)
- Mingliang Ding
- College of Physics and Electronic Information Engineering, Minjiang University, Fuzhou, Fujian 350108, China
| | - Qiong Wu
- College of Physics and Electronic Information Engineering, Minjiang University, Fuzhou, Fujian 350108, China
| | - Yaoguo Shen
- College of Physics and Electronic Information Engineering, Minjiang University, Fuzhou, Fujian 350108, China
| | - Jinquan Hong
- College of Physics and Electronic Information Engineering, Minjiang University, Fuzhou, Fujian 350108, China
| | - Guofa Dong
- Department of Materials, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian 350108, China
| | - Liang Ma
- Department of Materials, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian 350108, China
| |
Collapse
|
13
|
Bai Z, Lee J, Hu CL, Zou G, Ok KM. Hydrogen bonding bolstered head-to-tail ligation of functional chromophores in a 0D SbF 3·glycine adduct for a short-wave ultraviolet nonlinear optical material. Chem Sci 2024; 15:6572-6576. [PMID: 38699253 PMCID: PMC11062127 DOI: 10.1039/d4sc01353k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 03/31/2024] [Indexed: 05/05/2024] Open
Abstract
The key properties of nonlinear optical (NLO) materials highly rely on the quality of functional chromophores (FCs) and their optimized interarrangement in the lattice. Despite the screening of various FCs, significant challenges persist in optimizing their arrangement within specific structures. Generally, FC alignment is achieved by designing negatively charged 2D layers or 3D frameworks, further regulated by templating cations. In this study, a novel 0D adduct NLO material, SbF3·glycine, is reported. Neutrally charged 0D [SbF3C2H5NO2] FCs, comprising [SbF3] pyramids and zwitterionic glycine, are well-aligned in the structure. The alignment is facilitated by the hydrogen bonding, reinforcing a 'head-to-tail' ligation of [SbF3C2H5NO2] FCs. Consequently, the title compound exhibits favorable NLO properties, including a large second-harmonic generation efficiency (3.6 × KDP) and suitable birefringence (cal. 0.057 @ 1064 nm). Additionally, its short absorption cut-off edge (231 nm) positions it as a promising short-wave ultraviolet NLO material. Importantly, the binary SbF3-amino acid system is expected to serve as a new resource for exploring ultraviolet NLO crystals, owing to the abundance of the amino acid family.
Collapse
Affiliation(s)
- Zhiyong Bai
- Department of Chemistry, Sogang University Seoul 04107 Republic of Korea
| | - Jihyun Lee
- Department of Chemistry, Sogang University Seoul 04107 Republic of Korea
| | - Chun-Li Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 P. R. China
| | - Guohong Zou
- College of Chemistry, Sichuan University Chengdu 610065 P. R. China
| | - Kang Min Ok
- Department of Chemistry, Sogang University Seoul 04107 Republic of Korea
| |
Collapse
|
14
|
Dou D, Shi Q, Li H, Zhang B, Yang D, Wang Y. Rational Combination of π-Conjugated and Non-π-Conjugated Groups Achieving Strong Nonlinear Optical Response, Large Optical Anisotropy, and UV Light-Switchable Fluorescence. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401325. [PMID: 38477442 PMCID: PMC11109661 DOI: 10.1002/advs.202401325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/28/2024] [Indexed: 03/14/2024]
Abstract
Combining π-conjugated and non-π-conjugated groups is an important strategy for synthesizing new nonlinear optical (NLO) crystals. However, the second harmonic generation (SHG) response and optical anisotropy can be limited by improper spatial alignment of these functional groups in the crystal structure. In this work, it is revealed that non-π-conjugated [NH2SO3] group acts as both hydrogen bond donor and acceptor, effectively regulating the 2D planar structure formed by π-conjugated [C4N3H6] groups. The resulting organic-inorganic hybrid crystal C4N3H6SO3NH2 exhibits a strong SHG response (2.5 × KDP), large optical anisotropy (0.233@546 nm), and blue-violet and green fluorescence near 360 and 520 nm, respectively. This work expands the methodology for creating new NLO crystals through organic-inorganic hybridization, while also showcasing the potential of C4N3H6SO3NH2 as a multifunctional optical material.
Collapse
Affiliation(s)
- Danyang Dou
- Hebei Research Center of the Basic Discipline of Synthetic ChemistryKey Laboratory of Analytical Science and Technology of Hebei ProvinceCollege of Chemistry and Materials ScienceHebei UniversityBaoding071002China
| | - Qi Shi
- Hebei Research Center of the Basic Discipline of Synthetic ChemistryKey Laboratory of Analytical Science and Technology of Hebei ProvinceCollege of Chemistry and Materials ScienceHebei UniversityBaoding071002China
| | - Huimin Li
- Hebei Research Center of the Basic Discipline of Synthetic ChemistryKey Laboratory of Analytical Science and Technology of Hebei ProvinceCollege of Chemistry and Materials ScienceHebei UniversityBaoding071002China
| | - Bingbing Zhang
- Hebei Research Center of the Basic Discipline of Synthetic ChemistryKey Laboratory of Analytical Science and Technology of Hebei ProvinceCollege of Chemistry and Materials ScienceHebei UniversityBaoding071002China
- Institute of Life Science and Green DevelopmentHebei UniversityBaoding071002China
| | - Daqing Yang
- Hebei Research Center of the Basic Discipline of Synthetic ChemistryKey Laboratory of Analytical Science and Technology of Hebei ProvinceCollege of Chemistry and Materials ScienceHebei UniversityBaoding071002China
| | - Ying Wang
- Hebei Research Center of the Basic Discipline of Synthetic ChemistryKey Laboratory of Analytical Science and Technology of Hebei ProvinceCollege of Chemistry and Materials ScienceHebei UniversityBaoding071002China
- Institute of Life Science and Green DevelopmentHebei UniversityBaoding071002China
| |
Collapse
|
15
|
Huang W, Song X, Li Y, Zhou Y, Xu Q, Song Y, Wang H, Li M, Zhao S, Luo J. Designing a Hybrid Perovskite with Enlarged Birefringence and Bandgap for Modulation of Light Polarization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306158. [PMID: 37863830 DOI: 10.1002/smll.202306158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/01/2023] [Indexed: 10/22/2023]
Abstract
Birefringent crystals have important applications in optoelectronics areas due to their ability to modulate and polarize light. Despite increasing discovery of the birefringence potential of new crystals, it remains a great challenge to optimize both birefringence and bandgap simultaneously. Herein, a 1D chain-like hybrid perovskite birefringent crystal designed by 3D-to-1D dimensional tailoring, (GAM)2 PbI7 ·H2 O (GAM = C5 N10 H10 ), is presented, showing enlarged birefringence of 0.49@550 nm and enlarged optical bandgap (2.48 eV). Consequently, the birefringent quality factor of (GAM)2 PbI7 ·H2 O is up to 2.8 times that of the template MAPbI3 . In particular, the birefringence is much larger than those of commercial birefringent crystals and surpasses that of the vast majority of hybrid perovskite known to date. Theoretical calculations reveal that the strongly anisotropic arrangement of (GAM)2.5+ π-conjugated cations and ordered PbI6 octahedra contributes to the large birefringence and wide bandgap of (GAM)2 PbI7 ·H2 O. It is believed that this work will provide a new pathway toward the rational design and synthesis of hybrid perovskite birefringent crystals for compact wide-bandgap polarization dependent devices.
Collapse
Affiliation(s)
- Weiqi Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Xianyu Song
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Yanqiang Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Yang Zhou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Qianting Xu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Yipeng Song
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Han Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Minjuan Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Sangen Zhao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, China
| | - Junhua Luo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, China
| |
Collapse
|
16
|
Bai Z, Kuk Y, Lee J, Kim H, Ok KM. Guanidinium Vanadate [C(NH 2) 3] 3VO 4·2H 2O Revealing Enhanced Second-Harmonic Generation and Wide Band Gaps. Inorg Chem 2024; 63:3578-3585. [PMID: 38315816 DOI: 10.1021/acs.inorgchem.3c04484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
A new guanidinium-templated vanadate, [C(NH2)3]3VO4·2H2O, has been synthesized in a phase-pure form. It crystallizes in a noncentrosymmetric polar space group, Cc, and the crystal structure is built upon a framework of guanidinium, vanadate tetrahedra, and water molecules linked by hydrogen bonds. Notably, optical measurements reveal that the material exhibits an approximately 9.6-fold enhancement in second-harmonic generation efficiency compared to its phosphate analogue. The enhancement can be attributed to the increased geometrical distortion of the VO4 tetrahedra. Furthermore, we found that the coordination number of the central vanadium atom significantly affects the optical band gaps. Among various coordination numbers, the 4-coordinate VO4 tetrahedra are found to be more favorable for widening the optical band gap of materials compared to the 5- and 6-coordinate vanadium polyhedra, as demonstrated by this work.
Collapse
Affiliation(s)
- Zhiyong Bai
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| | - Yunseung Kuk
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| | - Jihyun Lee
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| | - Heewon Kim
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| | - Kang Min Ok
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| |
Collapse
|
17
|
Cui J, Wang S, Tudi A, Gai M, Yang Z, Pan S. (C(NH 2) 3) 2(I 2O 5F)(IO 3)(H 2O) and C(NH 2) 3IO 2F 2: Two Guanidine Fluorooxoiodates with Wide Band Gap and Large Birefringence. Inorg Chem 2024; 63:661-667. [PMID: 38131323 DOI: 10.1021/acs.inorgchem.3c03551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Enhancing anisotropy through an effective synergistic arrangement of anionic and cationic groups is crucial for improving the birefringence optical properties of materials. In this work, by transforming I-O into I-F through the fluorination strategy, two metal-free guanidine fluorooxoiodates (C(NH2)3)2(I2O5F)(IO3)(H2O) and C(NH2)3IO2F2 and one guanidine iodate C(NH2)3IO3 were successfully synthesized using the hydrothermal method. An unprecedented dimer [I2O5F] formed by [IO3F] and [IO3] in (C(NH2)3)2(I2O5F)(IO3)(H2O) was found, which greatly enriches the structural diversity of fluorooxoiodates. All three compounds feature a relatively large birefringence (Δn = 0.068, 0.110 and 0.075 at 546 nm) and a short ultraviolet cutoff edge. The theoretical calculation was carried out to understand the electronic structures and linear optical properties.
Collapse
Affiliation(s)
- Juhui Cui
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics and Chemistry of CAS, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shibin Wang
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics and Chemistry of CAS, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Abudukadi Tudi
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics and Chemistry of CAS, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minqiang Gai
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics and Chemistry of CAS, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihua Yang
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics and Chemistry of CAS, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shilie Pan
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics and Chemistry of CAS, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
18
|
Zuo J, Feng Q, Du H. K 2RbB 8PO 16: A Borophosphate with Moderate Birefringence and Deep-Ultraviolet Transmission. Inorg Chem 2024; 63:272-279. [PMID: 38099743 DOI: 10.1021/acs.inorgchem.3c03090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
A new borophosphate, K2RbB8PO16 (KRBPO) was synthesized. It exhibits a bilayer structure consisting of two B-O layers with an 18-membered ring (18-MR) joined by [PO4], which is composed of the π-conjugated group [BO3] and non-π-conjugated groups [BO4] and [PO4]. The UV-vis-NIR diffuse reflectance spectroscopy shows that the cutoff edge is less than 200 nm. The calculation indicates that KRBPO exhibits moderate birefringence of 0.057@1064 nm, and the source of birefringence is mainly from the [BO3] groups.
Collapse
Affiliation(s)
- Jianyi Zuo
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China
| | - Qiuyuan Feng
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China
| | - Hong Du
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China
- Xinjiang Key Laboratory of Energy Storage and Photoelectrocatalytic Materials, Urumqi 830054, China
| |
Collapse
|
19
|
Wu L, Lin C, Tian H, Zhou Y, Fan H, Yang S, Ye N, Luo M. Mg(C 3 O 4 H 2 )(H 2 O) 2 : A New Ultraviolet Nonlinear Optical Material Derived from KBe 2 BO 3 F 2 with High Performance and Excellent Water-Resistance. Angew Chem Int Ed Engl 2024; 63:e202315647. [PMID: 38009714 DOI: 10.1002/anie.202315647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/24/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023]
Abstract
Acquiring high-performance ultraviolet (UV) nonlinear optical (NLO) materials that simultaneously exhibit a strong second harmonic generation (SHG) coefficients, as short as possible SHG phase-matching (PM) wavelength and non-hygroscopic properties has consistently posed a significant challenge. Herein, through multicomponent modification of KBe2 BO3 F2 (KBBF), an excellent UV NLO crystal, Mg(C3 O4 H2 )(H2 O)2 , was successfully synthesized in malonic system. This material possesses a unique 2D NLO-favorable electroneutral [Mg(C3 O4 H2 )3 (H2 O)2 ]∞ layer, resulting in the rare coexistence of a strong SHG response of 3×KDP (@1064 nm) and short PM wavelength of 200 nm. More importantly, it exhibits exceptional water resistance, which is rare among ionic organic NLO crystals. Theoretical calculations revealed that its excellent water-resistant may be originated from its small available cavity volumes, which is similar to the famous LiB3 O5 (LBO). Therefore, excellent NLO properties and stability against air and moisture indicate it should be a promising UV NLO crystal.
Collapse
Affiliation(s)
- Lingli Wu
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou, Fujian, 350002, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Chensheng Lin
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou, Fujian, 350002, China
| | - Haotian Tian
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou, Fujian, 350002, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuqiao Zhou
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Huixin Fan
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou, Fujian, 350002, China
| | - Shunda Yang
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou, Fujian, 350002, China
| | - Ning Ye
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin, 300384, China
| | - Min Luo
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou, Fujian, 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, China
| |
Collapse
|
20
|
Jung A, Li Y, Ok KM. Chiral amino acid-templated tin fluorides tailoring nonlinear optical properties, birefringence, and photoluminescence. Dalton Trans 2023; 53:105-114. [PMID: 38047538 DOI: 10.1039/d3dt03257d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
In this study, we successfully synthesized two types of new chiral amino acid-templated tin fluoride crystals: (R)-[(C8H10NO3)2]Sn(IV)F6, (S)-[(C8H10NO3)2]Sn(IV)F6, (R)-[C8H10NO3]Sn(II)F3, and (S)-[C8H10NO3]Sn(II)F3, employing a slow evaporation method. The crystal structures of Sn(IV)-compounds were determined to belong to the noncentrosymmetric (NCS) nonpolar space group, P21212. Conversely, the structures of Sn(II)-compounds were found to crystallize in the NCS polar space group, P21, as revealed by single-crystal X-ray diffraction analysis. Remarkably, Sn(IV)-compounds exhibited a larger birefringence (0.328@546.1 nm), attributed to the well-stacked arrangement of planar π-conjugated benzene rings along the b-axis. The ability of tin(IV) fluorides to form more hydrogen bonds with ligands increased the probability of π-π interactions between benzene rings, enabling the growth of centimeter-sized crystals in Sn(IV)-compounds. In contrast, Sn(II)-compounds displayed a stronger second-harmonic generation (SHG) response (0.85 × KDP) than Sn(IV)-compounds (0.46 × KDP). This enhanced SHG response in Sn(II)-compounds was attributed to the increased dipole moments resulting from the presence of lone pairs. Additionally, Sn(II)-compounds exhibited photoluminescent properties due to the transition from the metal-to-ligand charge transfer state, facilitated by the presence of the lone pairs.
Collapse
Affiliation(s)
- Ahyung Jung
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea.
| | - Yang Li
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea.
| | - Kang Min Ok
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea.
| |
Collapse
|
21
|
Chen QQ, Hu CL, Zhang MZ, Mao JG. (C 5H 6.16N 2Cl 0.84)(IO 2Cl 2): a birefringent crystal featuring unprecedented (IO 2Cl 2) - anions and π-conjugated organic cations. Chem Sci 2023; 14:14302-14307. [PMID: 38098716 PMCID: PMC10718177 DOI: 10.1039/d3sc05770d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 11/24/2023] [Indexed: 12/17/2023] Open
Abstract
Birefringent crystals can manipulate the polarization state of lasers and have vital application in polarizers, optical isolators, phase compensators, etc. The design and synthesis of crystals with large birefringence remains a challenging task. To design crystals with large birefringence, we combine an unprecedented chloroiodate(v) group (IO2Cl2)- featuring large polarizability anisotropy and a strong stereochemically active lone pair (SCALP) with the π-conjugated 2-amino-5-chloropyridine group. The superior synergy effect of (IO2Cl2)- and 2-amino-5-chloropyridine groups produces a new birefringent crystal, namely (C5H6.16N2Cl0.84)(IO2Cl2). It exhibits remarkably large birefringence of 0.67 at 546 nm, far exceeding those of most visible birefringent materials reported. This work discovers the first chloroiodate(v) group and provides a new synthetic route for birefringent materials.
Collapse
Affiliation(s)
- Qian-Qian Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100039 P. R. China
| | - Chun-Li Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 P. R. China
| | - Ming-Zhi Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100039 P. R. China
| | - Jiang-Gao Mao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100039 P. R. China
| |
Collapse
|
22
|
Liu X, Yang YC, Li MY, Chen L, Wu LM. Anisotropic structure building unit involving diverse chemical bonds: a new opportunity for high-performance second-order NLO materials. Chem Soc Rev 2023. [PMID: 38014465 DOI: 10.1039/d3cs00691c] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
We define the anisotropic structure building unit that encompasses diverse chemical bonds (ABUCB). The ABUCB is highly likely to cause anisotropy in both crystallographic structure and spatial electron distribution, ultimately resulting in enhanced macroscopic optical anisotropy. Accordingly, the (PO3F)2- or (SO3F)- tetrahedron involving the unique P-F or S-F bond serves as such an ABUCB. The distinct chemical bond effectively alters the microscopic nature of the structure building unit, such as polarizability anisotropy, hyperpolarizability, and geometry distortion; this consequently changes the macroscopic second-order nonlinear optical (2nd-NLO) properties of the materials. In this review, we summarize both typical and newly emerged compounds containing ABUCBs. These compounds encompass approximately 90 examples representing six distinct categories, including phosphates, borates, sulfates, silicates, chalcogenides and oxyhalides. Furthermore, we demonstrate that the presence of ABUCBs in DUV/UV NLO compounds contributes to an increase in birefringence and retention of a large band gap, facilitating phase matching in high-energy short-wavelength spectral ranges. On the other hand, the inclusion of ABUCBs in IR NLO compounds offers a feasible method for increasing the band gap and consequently enhancing the larger laser-induced damage threshold. This review consolidates various trial-and-error explorations and presents a novel strategy for designing 2nd-NLO compounds, potentially offering an opportunity for the development of high-performance 2nd-NLO materials.
Collapse
Affiliation(s)
- Xin Liu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China.
| | - Yi-Chang Yang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China.
| | - Meng-Yue Li
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China.
| | - Ling Chen
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China.
- Center for Advanced Materials Research, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai 519087, People's Republic of China
| | - Li-Ming Wu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China.
- Center for Advanced Materials Research, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai 519087, People's Republic of China
| |
Collapse
|
23
|
Fan H, Ye N, Luo M. New Functional Groups Design toward High Performance Ultraviolet Nonlinear Optical Materials. Acc Chem Res 2023; 56:3099-3109. [PMID: 37889615 DOI: 10.1021/acs.accounts.3c00575] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
ConspectusThe invention of the laser is a pivotal milestone in the evolution of modern science and technology. Second-order nonlinear optical (NLO) crystals, which possess the ability to convert frequencies, have found widespread applications in laser science, information transmission, industrial Internet, and other cutting-edge fields within materials and optics. As modern science and technology continue to advance at a rapid pace, existing ultraviolet (UV) and deep ultraviolet (DUV) NLO crystals struggle to meet the ever-growing demands of various applications. Consequently, the development of novel UV and DUV NLO crystals has become an urgent necessity. For a UV NLO crystal to be considered outstanding in the UV/DUV range, it must exhibit three fundamental yet crucial properties: large second-order NLO coefficients, suitable birefringence, and short UV cutoff edge corresponding to a wide band gap. However, these key factors often conflict with one another, making it challenging to achieve a harmonious balance within a single crystal. It is widely believed that these mutually constrained optical properties are codetermined by microscopic NLO-active units and macroscopic structure features. Therefore, how to design high performance UV NLO-active groups to balance these three key properties is an essential scientifically question and serious challenge. In this Account, we present three strategies for designing high-performance UV NLO-active groups: (1) The "tetrahedron partial substitution" strategy by employing various substituents to replace one or more atoms in the traditional nonpolar tetrahedral groups, might achieve the aim of increasing the polarizability anisotropy and hyperpolarizability of the newly formed polar tetrahedral functional groups, such as from SO4 to SO3NH2 or SO3CH3 groups. (2) The "structure-analogue" strategy to develop a range of organic functional groups exhibiting more strong polarizability anisotropy and hyperpolarizability by using inorganic π-conjugated groups, such as BO3 and B3O6 groups, as templates. (3) The "two in one" strategy for integrating groups featuring planar triangle configurations and tetrahedrons to create NLO-active functional groups possessing large band gaps, strong hyperpolarizability, and moderate polarizability anisotropy. These three strategies successfully guide us to design and explore various kinds of organic-inorganic composite NLO crystal materials with excellent performances, like Ba(SO3CH3)2, M(SO3NH2)2 (M = Sr, Ba), C(NH2)3SO3F, KLi(HC3N3O3)·2H2O, KLi(C3H2O4)·H2O, and so on. Finally, we briefly conclude these strategies and propose some prospects for exploring new excellent UV/DUV NLO materials with practical applications. These findings could inspire novel thoughts for researchers designing new UV/DUV NLO materials and providing abundant materials used in UV/DUV regions.
Collapse
Affiliation(s)
- Huixin Fan
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Ning Ye
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Min Luo
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| |
Collapse
|
24
|
Li Y, Wu Q, Lin Z, Liu Y, Zhou Y, Chen X, Li M, Hong M, Luo J, Zhao S. Maximizing the linear and nonlinear optical responses of alkaline tricyanomelaminate. FUNDAMENTAL RESEARCH 2023; 3:974-978. [PMID: 38932999 PMCID: PMC11197770 DOI: 10.1016/j.fmre.2022.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/03/2022] [Accepted: 04/11/2022] [Indexed: 11/17/2022] Open
Abstract
High-performance bi-functional materials are in urgent demand for the next-generation integrated optical devices. In this work, we successfully synthesized the first tricyanomelaminate with bi-functional optical responses, namely Cs3C6N9•H2O (I), from its analogue Na3C6N9•3H2O by a facile ion exchange method. In contrast to Na3C6N9•3H2O, I realizes an optimal arrangement of π-conjugated (C6N9)3- anion groups in its crystal structure. As a result, the second-order nonlinear optical (NLO) response is greatly enhanced from nearly zero of Na3C6N9•3H2O to ∼9.8 × KH2PO4 of I. Furthermore, I exhibits a giant linear optical anisotropic response (i.e. birefringence) of 0.52 at the wavelength of 550 nm. Both responses are almost the largest among the inorganic compounds of π-conjugated rings, which indicates that I has great potential as a bi-functional optical crystal. Structural and theoretical analyses reveal the microscopic origin of excellent optical properties. This work would attract a lot of interest to the persistently neglected potential of tricyanomelaminates as linear optical and NLO crystals.
Collapse
Affiliation(s)
- Yanqiang Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingchen Wu
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheshuai Lin
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Youchao Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Yang Zhou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Xin Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Minjuan Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Maochun Hong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junhua Luo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
| | - Sangen Zhao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
| |
Collapse
|
25
|
Jin C, Jiang X, Wu C, Duanmu K, Lin Z, Huang Z, Humphrey MG, Zhang C. Giant Mid-Infrared Second-Harmonic Generation Response in a Densely-Stacked Van Der Waals Transition-Metal Oxychloride. Angew Chem Int Ed Engl 2023; 62:e202310835. [PMID: 37610762 DOI: 10.1002/anie.202310835] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/24/2023]
Abstract
Second-harmonic generation (SHG) is a fundamental optical property of nonlinear optical (NLO) crystals. Thus far, it has proved difficult to engineer large SHG responses, particularly in the mid-infrared region, owing to the difficulty in simultaneously controlling the arrangement and density of functional NLO-active units. Herein, a new assembly strategy employing functional modules only, and aimed at maximizing the density and optimizing the spatial arrangement of highly efficient functional modules, has been applied to the preparation of NLO crystals, affording the van der Waals crystal MoO2 Cl2 . This exhibits the strongest powder SHG response (2.1×KTiOPO4 (KTP) @ 2100 nm) for a transition-metal oxyhalide, a wide optical transparency window, and a sufficient birefringence. MoO2 Cl2 is the first SHG-active transition-metal oxyhalide effective in the infrared region. Theoretical studies and crystal structure analysis suggest that the densely packed, optimally-aligned [MoO4 Cl2 ] modules within the two-dimensional van der Waals layers are responsible for the giant SHG response.
Collapse
Affiliation(s)
- Congcong Jin
- China-Australia Joint Research Center for Functional Molecular Materials, School of Materials Science and Engineering, Ocean University of China, Qingdao, 266404, China
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Xingxing Jiang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chao Wu
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Kaining Duanmu
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Zheshuai Lin
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhipeng Huang
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Mark G Humphrey
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Chi Zhang
- China-Australia Joint Research Center for Functional Molecular Materials, School of Materials Science and Engineering, Ocean University of China, Qingdao, 266404, China
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| |
Collapse
|
26
|
Li Y, Zhang X, Zheng J, Zhou Y, Huang W, Song Y, Wang H, Song X, Luo J, Zhao S. A Hydrogen Bonded Supramolecular Framework Birefringent Crystal. Angew Chem Int Ed Engl 2023; 62:e202304498. [PMID: 37161839 DOI: 10.1002/anie.202304498] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/11/2023]
Abstract
Birefringent crystals could modulate the polarization of light and are widely used as polarizers, waveplates, optical isolators, etc. To date, commercial birefringent crystals have been exclusively limited to purely inorganic compounds such as α-BaB2 O4 with birefringence of about 0.12. Herein, we report a new hydrogen bonded supramolecular framework, namely, Cd(H2 C6 N7 O3 )2 ⋅8 H2 O, which exhibits exceptionally large birefringence up to about 0.60. To the best of our knowledge, the birefringence of Cd(H2 C6 N7 O3 )2 ⋅8 H2 O is significantly larger than those of all commercial birefringent crystals and is the largest among hydrogen bonded supramolecular framework crystals. First-principles calculations and structural analyses reveal that the exceptional birefringence is mainly ascribed to strong covalent interactions within (H2 C6 N7 O3 )- organic ligands and the perfect coplanarity between them. Given the rich structural diversity and tunability, hydrogen bonded supramolecular frameworks would offer unprecedented opportunities beyond the traditional purely inorganic oxides for birefringent crystals.
Collapse
Affiliation(s)
- Yanqiang Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xu Zhang
- School of Science, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Jieyu Zheng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Yang Zhou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weiqi Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Yipeng Song
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Han Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Xianyu Song
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Junhua Luo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, China
| | - Sangen Zhao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, China
| |
Collapse
|
27
|
Wu HY, Hu CL, Xu MB, Chen QQ, Ma N, Huang XY, Du KZ, Chen J. From H 12C 4N 2CdI 4 to H 11C 4N 2CdI 3: a highly polarizable CdNI 3 tetrahedron induced a sharp enhancement of second harmonic generation response and birefringence. Chem Sci 2023; 14:9533-9542. [PMID: 37712033 PMCID: PMC10498671 DOI: 10.1039/d3sc03052k] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/17/2023] [Indexed: 09/16/2023] Open
Abstract
In this study, we identify a novel class of second-order nonlinear optical (NLO) crystals, non-π-conjugated piperazine (H10C4N2, PIP) metal halides, represented by two centimeter-sized, noncentrosymmetric organic-inorganic metal halides (OIMHs), namely H12C4N2CdI4 (P212121) and H11C4N2CdI3 (Cc). H12C4N2CdI4 is the first to be prepared, and its structure contains a CdI4 tetrahedron, which led to a poor NLO performance, including a weak and non-phase-matchable second harmonic generation (SHG) response of 0.5 × KH2PO4 (KDP), a small birefringence of 0.047 @1064 nm and a narrow bandgap of 3.86 eV. Moreover, H12C4N2CdI4 is regarded as the model compound, and we further obtain H11C4N2CdI3via the replacement of CdI4 with a highly polarizable CdNI3 tetrahedron, which results in a sharp enhancement of SHG response and birefringence. H11C4N2CdI3 exhibits a promising NLO performance including 6 × KDP, 4.10 eV, Δn = 0.074 @1064 nm and phase matchability, indicating that it is the first OIMH to simultaneously exhibit strong SHG response (>5 × KDP) and a wide bandgap (>4.0 eV). Our work presents a novel direction for designing high-performance NLO crystals based on organic-inorganic halides and provides important insights into the role of the hybridized tetrahedron in enhancing the SHG response and birefringence.
Collapse
Affiliation(s)
- Huai-Yu Wu
- College of Chemistry and Materials Science, Fujian Normal University Fuzhou 350002 China
| | - Chun-Li Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 P. R. China
| | - Miao-Bin Xu
- College of Chemistry and Materials Science, Fujian Normal University Fuzhou 350002 China
| | - Qian-Qian Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 P. R. China
| | - Nan Ma
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 P. R. China
| | - Xiao-Ying Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 P. R. China
| | - Ke-Zhao Du
- College of Chemistry and Materials Science, Fujian Normal University Fuzhou 350002 China
| | - Jin Chen
- College of Chemistry and Materials Science, Fujian Normal University Fuzhou 350002 China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 P. R. China
| |
Collapse
|
28
|
Zhang L, Zhang X, Liang F, Hu Z, Wu Y. Rational Design of Noncentrosymmetric Organic-Inorganic Hybrids with a π-Conjugated Pyridium-Type Cation for High Nonlinear-Optical Performance. Inorg Chem 2023; 62:14518-14522. [PMID: 37625248 DOI: 10.1021/acs.inorgchem.3c02659] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
Organic-inorganic hybrid materials have attracted increasing attention due to their unique superiority by combining the features of organic parts with inorganic parts. Herein, two organic-inorganic hybrid nonlinear-optical crystals, [C5H6O2N3]2[IO3]2 (I) and [C5H6O2N3][HSO4]·H2O (II), were successfully synthesized in aqueous solution by selecting 2-amino-3-nitropyridine as the cation and different anions of [IO3]- and [HSO4]-. The two compounds crystallized in the noncentrosymmetric space groups of P21 and P212121, respectively. I displays second-harmonic-generation (SHG) effects of 2.4 × KDP (KH2PO4) and a large birefringence (Δncal ∼ 0.22). Moreover, II exhibits a stronger SHG response of 5.2 × KDP, an enhanced band gap (2.81 eV), as well as a large birefringence (Δncal ∼ 0.25). This work points out a new feasible path for the rational design of high-performance organic-inorganic hybrid materials.
Collapse
Affiliation(s)
- Limei Zhang
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystals, Tianjin University of Technology, Tianjin 300384, China
| | - Xinyuan Zhang
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystals, Tianjin University of Technology, Tianjin 300384, China
| | - Fei Liang
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China
| | - Zhanggui Hu
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystals, Tianjin University of Technology, Tianjin 300384, China
| | - Yicheng Wu
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystals, Tianjin University of Technology, Tianjin 300384, China
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China
| |
Collapse
|
29
|
Xu Q, Huang W, Wang H, Li Y, Zhou Y, Hou L, Zhao S, Luo J. Designing a Dimension Reduced Hybrid Perovskite with Robust Large Birefringence by Expanding Cationic π-Delocation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2304333. [PMID: 37616508 DOI: 10.1002/smll.202304333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/31/2023] [Indexed: 08/26/2023]
Abstract
It is in great demand to discover new materials with large birefringence for the miniaturization of optical communication devices. In this work, a new one-dimensional hybrid halide perovskite, (C6 N10 H8 )Pb2 Br6 , is obtained successfully through structural design of dimension reduction from the notable three-dimensional halide perovskite CsPbBr3 . Remarkably, (C6 N10 H8 )Pb2 Br6 exhibits a significantly enhanced birefringence of ∆n = 0.42@550 nm, which is the largest among halide perovskites so far. Furthermore, its birefringence performance is robust in a wide temperature range of 300-440 K. Theoretical calculations reveal that this outstanding birefringence results from the synergistic effect of [PbBr6 ]4- octahedra and [C6 N10 H8 ]2+ cations with expanding π-delocation. According to further structural analyses, the structural dimension reduction cooperating with the increase of [PbBr6 ]4- octahedral distortion leads to the enhanced birefringence. This work uncovers the great promise of hybrid halide perovskites as robust birefringent crystals in future optical communication and would shed useful insights on the design and synthesis of new birefringent crystals.
Collapse
Affiliation(s)
- Qianting Xu
- Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering, Fuzhou University, Fuzhou, Fujian, 350116, P. R. China
- Qingyuan Innovation Laboratory, Quanzhou, Fujian, 362801, P. R. China
| | - Weiqi Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Han Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Yanqiang Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yang Zhou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Linxi Hou
- Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering, Fuzhou University, Fuzhou, Fujian, 350116, P. R. China
- Qingyuan Innovation Laboratory, Quanzhou, Fujian, 362801, P. R. China
| | - Sangen Zhao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Fujian Science, Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
| | - Junhua Luo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Fujian Science, Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
| |
Collapse
|
30
|
Huang T, Wang Y, Yang D, Zhang B. NaCl·CH 4N 2O·H 2O: An Organic-Inorganic Hybrid Ultraviolet Nonlinear Optical Crystal with Optimized Comprehensive Properties. Inorg Chem 2023; 62:13626-13631. [PMID: 37556794 DOI: 10.1021/acs.inorgchem.3c02025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Ultraviolet (UV) nonlinear optical (NLO) crystals are a vital component in laser systems to modulate frequency. Organic groups have the advantages of easy synthesis, structural diversity, and large hyperpolarizations (β), which can be combined with inorganic groups to form unique organic-inorganic hybrid NLO crystal materials. Herein, a urea-containing crystal NaCl·CH4N2O·H2O is screened out and large-size crystals have been grown by a simple aqueous solution method. Compared with most reported organic-inorganic hybrid NLO materials, it has optimized comprehensive properties including a large SHG effect of 1.53 × KDP, a moderate birefringence (0.084@1064 nm), and a short UV cutoff edge of 209 nm. First-principles studies reveal that the dominant contributor to the linear and nonlinear optical properties is the urea molecule.
Collapse
Affiliation(s)
- Tingting Huang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, Hebei 071002, China
| | - Ying Wang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, Hebei 071002, China
| | - Daqing Yang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, Hebei 071002, China
| | - Bingbing Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, Hebei 071002, China
| |
Collapse
|
31
|
Cheng H, Li F, Lu J, Hou X. Li 2RbSO 4Cl with a Short Ultraviolet Absorption Edge and an Acentric Structure through Assembling Heteroleptic [LiO 3Cl] Tetrahedra. Inorg Chem 2023; 62:13608-13614. [PMID: 37551151 DOI: 10.1021/acs.inorgchem.3c02015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Currently, short-wavelength nonlinear optical materials are urgently needed. Through substituting homoleptic [LiO4] in centrosymmetric LiRbSO4 with heteroleptic [LiO3Cl] tetrahedra, an acentric sulfate chloride, Li2RbSO4Cl, was designed and synthesized by the high-temperature melting method. Li2RbSO4Cl shows a relatively short ultraviolet absorption edge (<200 nm) among newly reported sulfate chlorides. Millimeter-sized crystals were grown due to the congruent melting behavior and high thermal stability of the compound.
Collapse
Affiliation(s)
- Huanhuan Cheng
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fuming Li
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juanjuan Lu
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi 830011, China
| | - Xueling Hou
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi 830011, China
| |
Collapse
|
32
|
Chen QQ, Hu CL, Zhang MZ, Li BX, Mao JG. α- and β-(C 4H 5N 2O)(IO 3)·HIO 3: Two SHG Materials Based on Organic-Inorganic Hybrid Iodates. Inorg Chem 2023; 62:12613-12619. [PMID: 37566101 DOI: 10.1021/acs.inorgchem.3c02207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Organic-inorganic hybrid nonlinear optical (NLO) materials are highly anticipated because of the integration of both merits of the organic and inorganic moieties. Herein, the 2-pyrimidinone cation (C4H5N2O)+ has been incorporated into the iodate system to form two polymorphic organic-inorganic hybrid iodates, namely, α- and β-(C4H5N2O)(IO3)·HIO3. They crystallize in different polar space groups (Ia and Pca21), and their structures feature one-dimensional (1D) chain structures composed of (C4H5N2O)+ cations, IO3- anions, and HIO3 molecules interconnected via hydrogen bonds. α- and β-(C4H5N2O) (IO3)·HIO3 exhibit strong and moderate second-harmonic-generation (SHG) responses of 6.4 and 0.9 × KH2PO4 (KDP), respectively, the same band gaps of 3.65 eV, and high powder laser-induced damage threshold (LIDT) values [51 and 57 × AgGaS2 (AGS)]. The results of theoretical calculations revealed that the large SHG effect of α-(C4H5N2O)(IO3)·HIO3 originated from the IO3 and HIO3 groups. This work indicates that (C4H5N2O)+ is a potential group for designing new NLO materials with brilliant optical performances.
Collapse
Affiliation(s)
- Qian-Qian Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chun-Li Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Ming-Zhi Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Bing-Xuan Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Jiang-Gao Mao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
33
|
Hao X, Lin C, Luo M, Zhou Y, Ye N, Shangguan E. Cs 2Mg(H 2C 3N 3S 3) 4·8H 2O: An Excellent Birefringent Material with Giant Optical Anisotropy in π-Conjugated Trithiocyanurate. Inorg Chem 2023; 62:7611-7616. [PMID: 37167341 DOI: 10.1021/acs.inorgchem.3c00802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The design of giant birefringence was performed by adjusting cations to make parallel and compact alignments of π-conjugated (HxC3N3S3)x-3, where x = 1 and 2) groups with large polarizability anisotropy. Finally, the first mixed alkali/alkali-earth-metal trithiocyanurates, A2B(H2C3N3S3)4·nH2O (A = K, Rb, Cs; B = Mg, Sr; n = 5-8, 12), were designed and synthesized successfully. Importantly, Cs2Mg(H2C3N3S3)4·8H2O (III) and K2Sr(H2C3N3S3)4·5H2O (IV) possess large birefringences of 0.580 and 0.194 at 800 nm, respectively, of III has the largest birefringence among all practical birefringent crystals, cyanurates, and hydroisocyanurates.
Collapse
Affiliation(s)
- Xia Hao
- School of Materials Science and Engineering, Henan Normal University, Xinxiang 453007, P. R. China
| | - Chensheng Lin
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Min Luo
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Yuqiao Zhou
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Ning Ye
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China
| | - Enbo Shangguan
- Henan Engineering Research Center of Design and Recycle for Advanced Electrochemical Energy Storage Materials, School of Materials Science and Engineering, Henan Normal University, Xinxiang 453007, P. R. China
| |
Collapse
|
34
|
Li XF, Wang K, He C, Li JH, An XT, Pan J, Wei Q, Wang GM, Yang GY. Sb 4O 3(TeO 3) 2(HSO 4)(OH): An Antimony Tellurite Sulfate Exhibiting Large Optical Anisotropy Activated by Lone Pair Stereoactivity. Inorg Chem 2023; 62:7123-7129. [PMID: 37083369 DOI: 10.1021/acs.inorgchem.3c00879] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
A new birefringent crystal of Sb4O3(TeO3)2(HSO4)(OH) was achieved by incorporating two stereochemically active lone pair (SCALP) cations of Sb(III) and Te(IV) into sulfates simultaneously. The Sb3+ and Te4+ ions display highly distorted coordination environments due to the SCALP effect. Sb4O3(TeO3)2(HSO4)(OH) displays a 3D structure composed of [Sb4O3(TeO3)2(OH)]∞+ layers bridged by [SO3(OH)]- tetrahedra. It possesses a large birefringence and a wide optical transparent range, making it a new UV birefringent crystal. First-principles calculation analysis suggests that the synergistic effect of the cooperation of SCALP effect of Sb3+ and Te4+ cations make a dominant contribution to the birefringence. The work highlights that units with SCALP cations have advantages in generating large optical anisotropy and are preferable structural units for designing novel birefringent materials.
Collapse
Affiliation(s)
- Xiao-Fei Li
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, P. R. China
| | - Kui Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, P. R. China
| | - Chao He
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, College of Science, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China
| | - Jin-Hua Li
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, P. R. China
| | - Xing-Tao An
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, College of Science, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China
| | - Jie Pan
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, P. R. China
| | - Qi Wei
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, P. R. China
| | - Guo-Ming Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, P. R. China
| | - Guo-Yu Yang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, P. R. China
- MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, People's Republic of China
| |
Collapse
|
35
|
Bai Z, Lee J, Kim H, Hu CL, Ok KM. Unveiling the Superior Optical Properties of Novel Melamine-Based Nonlinear Optical Material with Strong Second-Harmonic Generation and Giant Optical Anisotropy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2301756. [PMID: 36970809 DOI: 10.1002/smll.202301756] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Two melamine-based metal halides, (C3 N6 H7 )(C3 N6 H6 )HgCl3 (I) and (C3 N6 H7 )3 HgCl5 (II), are synthesized by incorporating the heavy d10 cation, Hg2+ , and the halide anion, Cl- . The noncentrosymmetric structure of I results from two unique attributes: large asymmetric secondary building units produced by direct covalent coordination of melamine to Hg2+ and a small dihedral angle between melamine molecules. The former makes inorganic modules locally acentric, while the latter prevents planar organic groups from forming deleterious antiparallel arrangement. The unique coordination in I results in an enlarged band gap of 4.40 eV. Due to the large polarizability of the heavy Hg2+ cation and the π-conjugated system of melamine, I exhibits a strong second-harmonic generation efficiency of 5 × KH2 PO4 , larger than any reported melamine-based nonlinear optical materials to date. Density functional theory calculations indicate that I possesses giant optical anisotropy, with a birefringence of 0.246@1064 nm.
Collapse
Affiliation(s)
- Zhiyong Bai
- Department of Chemistry, Sogang University, Seoul, 04107, Republic of Korea
| | - Jihyun Lee
- Department of Chemistry, Sogang University, Seoul, 04107, Republic of Korea
| | - Heewon Kim
- Department of Chemistry, Sogang University, Seoul, 04107, Republic of Korea
| | - Chun-Li Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Kang Min Ok
- Department of Chemistry, Sogang University, Seoul, 04107, Republic of Korea
| |
Collapse
|
36
|
Yan D, Ren MM, Liu Q, Mao FF, Ma Y, Tang RL, Huang H, Zhang B, Zhang XD, Li SF. [C(NH 2) 2NHNO 2][C(NH 2) 3](NO 3) 2: A Mixed Organic Cationic Hybrid Nitrate with an Unprecedented Nonlinear-Optical-Active Unit. Inorg Chem 2023; 62:4757-4761. [PMID: 36916671 DOI: 10.1021/acs.inorgchem.3c00556] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
We herein report a mixed organic cationic hybrid nitrate, namely, [C(NH2)2NHNO2][C(NH2)3](NO3)2 (1). It was successfully achieved via combining three different planar groups: [(C(NH2)2NHNO2]+, C(NH2)3+, and NO3-. First-principles calculations confirm that the [(C(NH2)2NHNO2]+ group is an excellent cationic nonlinear-optical (NLO)-active unit. The title compound exhibits a moderate second-harmonic-generation (SHG) response (1.5 × KDP), a wide band gap (3.58 eV), and a suitable birefringence of 0.071 at 550 nm. Theoretical calculations indicate that the synergy effect between the [(C(NH2)2NHNO2]+ and C(NH2)3+ groups dominates the SHG process.
Collapse
Affiliation(s)
- Dong Yan
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China.,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Meng-Meng Ren
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
| | - Qian Liu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
| | - Fei-Fei Mao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.,College of Science, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Yu Ma
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Ru-Ling Tang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| | - Hongbo Huang
- College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei 071002, China
| | - Bingbing Zhang
- College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei 071002, China
| | - Xiu-Du Zhang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
| | - Shu-Fang Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China.,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| |
Collapse
|
37
|
Ding F, Griffith KJ, Zhang W, Cui S, Zhang C, Wang Y, Kamp K, Yu H, Halasyamani PS, Yang Z, Pan S, Poeppelmeier KR. NaRb 6(B 4O 5(OH) 4) 3(BO 2) Featuring Noncentrosymmetry, Chirality, and the Linear Anionic Group BO 2. J Am Chem Soc 2023; 145:4928-4933. [PMID: 36811389 DOI: 10.1021/jacs.2c12069] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Noncentrosymmetric (NCS) structures are of particular interest owing to their symmetry-dependent physical properties, e.g., pyroelectricity, ferroelectricity, piezoelectricity, and nonlinear optical (NLO) behavior. Among them, chiral materials exhibit polarization rotation and host topological properties. Borates often contribute to NCS and chiral structures via their triangular [BO3] and tetrahedral [BO4] units and their numerous superstructure motifs. However, no chiral compound with the linear [BO2] unit has been reported to date. Herein, an NCS and chiral mixed-alkali-metal borate, NaRb6(B4O5(OH)4)3(BO2), with a linear BO2- unit in the structure was synthesized and characterized. The structure features a combination of three types of basic building units (BBUs), [BO2], [BO3], and [BO4] with sp-, sp2-, and sp3-hybridization of boron atoms, respectively. It crystallizes in the trigonal space group R32 (No. 155), one of the 65 Sohncke space groups. Two enantiomers of NaRb6(B4O5(OH)4)3(BO2) were found, and their crystallographic relationships are discussed. These results not only expand the small family of NCS structures with the rare linear BO2- unit but also prompt recognition to the fact that NLO materials have generally overlooked the existence of two enantiomers in achiral Sohncke space groups.
Collapse
Affiliation(s)
- Fenghua Ding
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Kent J Griffith
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Weiguo Zhang
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Shaoxin Cui
- College of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Chi Zhang
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Yiran Wang
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Kendall Kamp
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Hongwei Yu
- College of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - P Shiv Halasyamani
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Zhihua Yang
- Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi 830011, China
| | - Shilie Pan
- Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi 830011, China
| | - Kenneth R Poeppelmeier
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
38
|
Chen Z, Li F, Han J, Yang Z, Pan S, Mutailipu M. Cs[B 3O 3F 2(OH) 2]: discovery of a hydroxyfluorooxoborate guided by selective organic-inorganic transformation. Chem Commun (Camb) 2023; 59:2114-2117. [PMID: 36723363 DOI: 10.1039/d2cc06924e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Selective transformation between organic and inorganic systems is crucial but still remains a challenge. Herein, we demonstrated that selective organic-inorganic transformation is a simple but effective strategy to find new hydroxyfluorooxoborates. By replacing the [Ph4P]/[Ph3MeP] organic cations with Cs atoms, a new hydroxyfluorooxoborate Cs[B3O3F2(OH)2] with three-membered [B3O3F2(OH)2] clusters was synthesized. Theoretical analysis confirmed the effects of different components in the lattice of reported structure on the optical properties.
Collapse
Affiliation(s)
- Ziqi Chen
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics and Chemistry, CAS, Urumqi, People's Republic of China. .,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Fuming Li
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics and Chemistry, CAS, Urumqi, People's Republic of China. .,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Jian Han
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics and Chemistry, CAS, Urumqi, People's Republic of China. .,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Zhihua Yang
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics and Chemistry, CAS, Urumqi, People's Republic of China. .,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Shilie Pan
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics and Chemistry, CAS, Urumqi, People's Republic of China. .,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Miriding Mutailipu
- Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics and Chemistry, CAS, Urumqi, People's Republic of China. .,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| |
Collapse
|
39
|
Wu C, Jiang C, Wei G, Jiang X, Wang Z, Lin Z, Huang Z, Humphrey MG, Zhang C. Toward Large Second-Harmonic Generation and Deep-UV Transparency in Strongly Electropositive Transition Metal Sulfates. J Am Chem Soc 2023; 145:3040-3046. [PMID: 36634002 DOI: 10.1021/jacs.2c11645] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The development of deep-ultraviolet (DUV)/solar-blind UV nonlinear optical (NLO) crystals simultaneously possessing wide UV transparency, strong second-harmonic generation (SHG) response, and suitable birefringence is a major challenge in advanced laser technology. We herein propose a "cation compensation" strategy for strong optical nonlinearity in inorganic solids that is exemplified by the introduction of strongly electropositive transition metals (TMs). Following this strategy, the first d0 TM UV-transparent NLO sulfates, MF2(SO4) (M = Zr (ZFSO), Hf (HFSO)), have been synthesized. Short UV cutoff edges of 206 nm and below 190 nm are observed for bulk ZFSO and HFSO crystals, respectively, together with the strongest powder SHG responses (3.2 × (ZFSO) and 2.5 × KDP (HFSO)) for solar-blind UV/DUV NLO sulfates, as well as suitable birefringence. This work provides a new and efficient approach to the development of urgently needed high-performance NLO materials for applications in the short-wavelength UV region.
Collapse
Affiliation(s)
- Chao Wu
- China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Chunbo Jiang
- China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Guangfeng Wei
- China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xingxing Jiang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zujian Wang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zheshuai Lin
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhipeng Huang
- China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Mark G Humphrey
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Chi Zhang
- China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
40
|
Wu L, Fan H, Lin C, Luo M. Compounds Consisting of Coplanar π-conjugated B3O6-typed Structures: An Emerging Source of Ultraviolet Nonlinear Optical Materials. CHINESE JOURNAL OF STRUCTURAL CHEMISTRY 2023. [DOI: 10.1016/j.cjsc.2023.100019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
41
|
Liu GX, Tang RL, Ma L, Lv YL, Liu W, Guo SP. Pb 2Cl 2(HPO 3)(H 2O) and Pb 3Br 2(HPO 3) 2: Two Phosphite Halides with 3D Structural Networks and Enlarged Birefringence. Inorg Chem 2023; 62:1069-1074. [PMID: 36622078 DOI: 10.1021/acs.inorgchem.2c04331] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Compounds constructed by mixed anions are widely favorable for their diverse crystal structures and physical performances. Here, two lead phosphite halides, Pb2Cl2(HPO3)(H2O) (1) and Pb3Br2(HPO3)2 (2), were obtained by facile hydrothermal reactions. Both compounds crystallize in the space group Pnma. 1 exhibits a 3D structure composed of HPO3 units, PbCl4O3 pentagonal bipyramids, and PbO3 pyramids. 2 also shows a 3D framework built by HPO3 units, PbO2Br4 octahedron, PbO5 and PbO3Br2 square pyramids. By introducing halogen anions to the lead phosphite system, 1 and 2 show enhanced birefringences of 0.083 and 0.072 at 1064 nm, respectively, compared with 0.023@1064 nm for Pb2(HPO3)2. In this work, syntheses, crystal structures, optical properties, and theoretical calculation results have been studied in detail.
Collapse
Affiliation(s)
- Gang-Xiang Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, People's Republic of China
| | - Ru-Ling Tang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, People's Republic of China
| | - Liang Ma
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, People's Republic of China
| | - Yi-Lei Lv
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, People's Republic of China
| | - Wenlong Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, People's Republic of China
| | - Sheng-Ping Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, People's Republic of China
| |
Collapse
|
42
|
Li Y, Huang W, Zhou Y, Song X, Zheng J, Wang H, Song Y, Li M, Luo J, Zhao S. A High-Performance Nonlinear Optical Crystal with a Building Block Containing Expanded π-Delocalization. Angew Chem Int Ed Engl 2023; 62:e202215145. [PMID: 36341522 DOI: 10.1002/anie.202215145] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022]
Abstract
Common nonlinear optical (NLO) crystals consist of traditional functional building blocks with inherent optical limitation. Herein, inspired by traditional (B3 O6 )3- inorganic building block, we theoretically identified a new type of organic functional building blocks and then successfully synthesized the first cyamelurate NLO crystal, Ba(H2 C6 N7 O3 )2 ⋅ 8 H2 O. To our surprise, the constituent (H2 C6 N7 O3 )- building block is not in structurally optimal arrangement, but Ba(H2 C6 N7 O3 )2 ⋅ 8 H2 O exhibits excellent optical properties including wide band gap of 4.10 eV, very large birefringence of 0.24@550 nm, and exceptionally strong second-harmonic generation (SHG) response of about 12×KH2 PO4 . Both the SHG response and birefringence are much larger than those of commercial NLO crystal β-BaB2 O4 with optimally aligned (B3 O6 )3- building block. Theoretical calculations suggest that the expanded π-conjugation delocalization within (H2 C6 N7 O3 )- vs (B3 O6 )3- should be responsible to the enhanced performance. This work implies that there is still much room to develop new NLO crystals with excellent functional building blocks that may be longly neglected.
Collapse
Affiliation(s)
- Yanqiang Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weiqi Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Yang Zhou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xianyu Song
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Jieyu Zheng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Han Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Yipeng Song
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Minjuan Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Junhua Luo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, China
| | - Sangen Zhao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, China
| |
Collapse
|
43
|
Meng X, Zhang X, Liu Q, Zhou Z, Jiang X, Wang Y, Lin Z, Xia M. Perfectly Encoding π-Conjugated Anions in the RE 5 (C 3 N 3 O 3 )(OH) 12 (RE=Y, Yb, Lu) Family with Strong Second Harmonic Generation Response and Balanced Birefringence. Angew Chem Int Ed Engl 2023; 62:e202214848. [PMID: 36344484 DOI: 10.1002/anie.202214848] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Indexed: 11/09/2022]
Abstract
Nonlinear optical (NLO) crystal, which simultaneously exhibits strong second-harmonic-generation (SHG) response and desired optical anisotropy, is a core optical material accessible to the modern optoelectronics. Accompanied by strong SHG effect in a NLO crystal, a contradictory problem of overlarge birefringence is ignored, leading to low frequency doubling efficiency and poor beam quality. Herein, a series of rare earth cyanurates RE5 (C3 N3 O3 )(OH)12 (RE=Y, Yb, Lu) were successfully characterized by 3D electron diffraction technique. Based on a "three birds with one stone" strategy, they enable the simultaneous fulfillment of strong SHG responses (2.5-4.2× KH2 PO4 ), short UV cutoff (ca. 220 nm) and applicable birefringence (ca. 0.15 at 800 nm) by the introduction of rare earth coordination control of π-conjugated (C3 N3 O3 )3- anions. These findings provide high-performance short-wavelength NLO materials and highlight the exploration of cyanurates as a new research area.
Collapse
Affiliation(s)
- Xianghe Meng
- Beijing Center for Crystal Research and Development, Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xingyu Zhang
- Functional Crystals Lab, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Qingxiong Liu
- Beijing Center for Crystal Research and Development, Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhengyang Zhou
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China.,Beijing National Laboratory for Molecular Sciences, Beijing, 100190, China
| | - Xingxing Jiang
- Functional Crystals Lab, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yonggang Wang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Zheshuai Lin
- Functional Crystals Lab, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Mingjun Xia
- Beijing Center for Crystal Research and Development, Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
44
|
Liu GX, Wei YL, Zhang LN, Liu W, Guo SP, Tang RL. Three polar indium phosphites exhibiting diverse structural networks and SHG-activity. J SOLID STATE CHEM 2023. [DOI: 10.1016/j.jssc.2022.123655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
45
|
Shi Q, Dong L, Wang Y. Evaluating Refractive Index and Birefringence of Nonlinear Optical Crystals: Classical Methods and New Developments. CHINESE JOURNAL OF STRUCTURAL CHEMISTRY 2023. [DOI: 10.1016/j.cjsc.2023.100017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
46
|
Zhang X, Du X, Wang J, Wang F, Liang F, Hu Z, Lin Z, Wu Y. K 3C 6N 7O 3·2H 2O: A Multifunctional Nonlinear Optical Cyamelurate Crystal with Colossal π-Conjugated Orbitals. ACS APPLIED MATERIALS & INTERFACES 2022; 14:53074-53080. [PMID: 36379003 DOI: 10.1021/acsami.2c15835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The delocalized π-conjugated units are considered as an advantageous gene for improving the optical nonlinearity of acentric crystals. For the first time, we synthesized a new acentric SHG-active metal cyamelurate crystal K3C6N7O3·2H2O (I) by a facile solution method, containing a colossal planar π-conjugated (C6N7O3)3- unit. It displays a strong second-order harmonic generation (SHG) of 4 × KDP and a giant anisotropic birefringence of 0.446 at 1064 nm. The theoretical calculations reveal that such substantial improvement is contributed from the strong molecular susceptibility of (C6N7O3)3- units and their near-perfect coplanar arrangement. Moreover, I exhibits a broadband ultraviolet photoluminescence at 366 nm, suggesting its multifunctional capacity and great potential for compact highly integrated optoelectronic devices.
Collapse
Affiliation(s)
- Xinyuan Zhang
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystals, Tianjin University of Technology, Tianjin 300384, China
| | - Xiaoguang Du
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystals, Tianjin University of Technology, Tianjin 300384, China
| | - Jinhui Wang
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystals, Tianjin University of Technology, Tianjin 300384, China
| | - Fangyan Wang
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China
| | - Fei Liang
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China
| | - Zhanggui Hu
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystals, Tianjin University of Technology, Tianjin 300384, China
| | - Zheshuai Lin
- Functional Crystals Lab, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yicheng Wu
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystals, Tianjin University of Technology, Tianjin 300384, China
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China
| |
Collapse
|
47
|
Chen J, Du KZ. ZrF 2(IO 3) 2 and RbGaF 3(IO 3): Two Promising Birefringent Crystals Featuring 1D Metal-Fluoride Cationic Chains and Wide Bandgaps. Inorg Chem 2022; 61:17893-17901. [DOI: 10.1021/acs.inorgchem.2c03267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jin Chen
- College of Chemistry and Materials Science, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou350002, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou350002, China
| | - Ke-Zhao Du
- College of Chemistry and Materials Science, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou350002, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou350002, China
| |
Collapse
|
48
|
Li JH, Jiang XF, Wei Q, Xue ZZ, Wang GM, Yang GY. Dual-Ligand-Oriented Design of Noncentrosymmetric Complexes with Nonlinear-Optical Activity. Inorg Chem 2022; 61:16509-16514. [PMID: 36179365 DOI: 10.1021/acs.inorgchem.2c02979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
When the N- and O-donor ligands are combined as coligands, two noncentrosymmetric (NCS) complexes of [Ni(p-bdc)(tipa)(H2O)2]2·H2O (1) and Ni(npdc)(tipa)H2O (2) [tipa = tris[4-(1H-imidazol-1-yl)phenyl]amine, p-H2bdc = 1,4-benzenedicarboxylic acid, and H2npdc = 2,6-naphthalenedicarboxylic acid] were achieved under solvothermal conditions. For both structures, N-donor ligands are responsible for the generation of a layered structure, while the O-donor ligands are hung on the layers and are responsible for enhancing the polarity, giving rise to the NCS structures. Because of the different connection modes between the metal centers and different carboxylate ligands (p-bdc2- in 1 and npdc2- in 2), 1 and 2 show some structural differences. The p-bdc2- ligands in 1 are suspended on the upper and lower sides of the [Ni(tipa)]n layers, while all of the npdc2- ligands in 2 hang on one side of the [Ni(tipa)]n layers and point in the same direction, which makes the two NCS complexes show phase-matchable behavior with different second-harmonic-generation (SHG) responses of about 0.9 and 1.5 times that of KH2PO4 (KDP), respectively. Theoretical studies reveal that charge transfers between Ni2+ and carboxylate ligands make the dominant contribution to the optical properties. It is expected that a dual-ligand strategy may guide the design of novel superior-performing NCS complexes.
Collapse
Affiliation(s)
- Jin-Hua Li
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China
| | - Xiao-Fan Jiang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China
| | - Qi Wei
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China
| | - Zhen-Zhen Xue
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China
| | - Guo-Ming Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China
| | - Guo-Yu Yang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China.,MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| |
Collapse
|
49
|
Li Y, Zhang X, Zhou Y, Huang W, Song Y, Wang H, Li M, Hong M, Luo J, Zhao S. An Optically Anisotropic Crystal with Large Birefringence Arising from Cooperative π Orbitals. Angew Chem Int Ed Engl 2022; 61:e202208811. [DOI: 10.1002/anie.202208811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Yanqiang Li
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xu Zhang
- School of Science Jiangxi University of Science and Technology Ganzhou 341000 China
| | - Yang Zhou
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Weiqi Huang
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China
| | - Yipeng Song
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Han Wang
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China
| | - Minjuan Li
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China
| | - Maochun Hong
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China
| | - Junhua Luo
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou 350108 China
| | - Sangen Zhao
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou 350108 China
| |
Collapse
|
50
|
Li M, Zhang X, Xiong Z, Li Y, Zhou Y, Chen X, Song Y, Hong M, Luo J, Zhao S. A Hybrid Antiperovskite with Strong Linear and Second‐Order Nonlinear Optical Responses. Angew Chem Int Ed Engl 2022; 61:e202211151. [DOI: 10.1002/anie.202211151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Minjuan Li
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Xu Zhang
- School of Science Jiangxi University of Science and Technology Ganzhou 341000 China
| | - Zheyao Xiong
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Yanqiang Li
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Yang Zhou
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Xin Chen
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Yipeng Song
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Maochun Hong
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Junhua Luo
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou 350108 China
| | - Sangen Zhao
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou 350108 China
| |
Collapse
|