1
|
Narwal P, Lorz N, Minaei M, Jannin S, Kouřil K, Gossert A, Meier B. Bullet-DNP Enables NMR Spectroscopy of Pyruvate and Amino Acids at Nanomolar to Low Micromolar Concentrations. Anal Chem 2024; 96:14734-14740. [PMID: 39227032 PMCID: PMC11411493 DOI: 10.1021/acs.analchem.4c00618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Hyperpolarized pyruvate is a widely used marker to track metabolism in vivo and a benchmark molecule for hyperpolarization methods. Here, we show how a combination of improved bullet-DNP instrumentation, an optimized sample preparation and a further sensitivity increase via a 13C-1H polarization transfer after dissolution enable the observation of pyruvate at a concentration of 250 nM immediately after dissolution. At this concentration, the experiment employs a total mass of pyruvate of only 20 ng or 180 pmol. If the concentration is increased to 45 μM, pyruvate may be detected 1 min after dissolution with a signal-to-noise ratio exceeding 50. The procedure can be extended to observe a mixture of amino acids at low micromolar concentrations.
Collapse
Affiliation(s)
- Pooja Narwal
- Institute of Biological Interfaces 4, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen 76344, Germany
| | - Nils Lorz
- Department of Biology, ETH Zurich, Zürich 8093, Switzerland
| | - Masoud Minaei
- Institute of Biological Interfaces 4, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen 76344, Germany
| | - Sami Jannin
- CRMN UMR-5082, CNRS, ENS Lyon, Universite Claude Bernard Lyon 1, Villeurbanne 69100, France
| | - Karel Kouřil
- Institute of Biological Interfaces 4, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen 76344, Germany
| | - Alvar Gossert
- Department of Biology, ETH Zurich, Zürich 8093, Switzerland
| | - Benno Meier
- Institute of Biological Interfaces 4, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen 76344, Germany
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Karlsruhe 76131, Germany
| |
Collapse
|
2
|
Yang J, Xin R, Lehmkuhl S, Korvink JG, Brandner JJ. Development of a fully automated workstation for conducting routine SABRE hyperpolarization. Sci Rep 2024; 14:21022. [PMID: 39251663 PMCID: PMC11384770 DOI: 10.1038/s41598-024-71354-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/27/2024] [Indexed: 09/11/2024] Open
Abstract
SABRE is emerging as a fast, simple and low-cost hyperpolarization method because of its ability to regenerate enhanced NMR signals. Generally, SABRE hyperpolarization has been performed predominantly manually, leading to variations in reproducibility and efficiency. Recent advances in SABRE include the development of automated shuttling systems to address previous inconsistencies. However, the operational complexity of such systems and the challenges of integration with existing workflows hinder their widespread adoption. This work presents a fully automated lab workstation based on a benchtop NMR spectrometer, specifically designed to facilitate SABRE of different nuclei across different polarization fields. We demonstrated the capability of this system through a series of routine SABRE experimental protocols, including consecutive SABRE hyperpolarization with high reproducibility (average standard deviation of 1.03%), optimization polarization of 13C nuclei respect to the polarization transfer field, and measurement of polarization buildup rate or decay time across a wide range of magnetic fields. Furthermore, we have iteratively optimized the durations for pulsed SABRE-SHEATH 13C pyruvate. The constructed SABRE workstation offers full automation, high reproducibility, and functional diversification, making it a practical tool for conducting routine SABRE hyperpolarization experiments. It provides a robust platform for high-throughput and reliable SABRE and X-SABRE hyperpolarization studies.
Collapse
Affiliation(s)
- Jing Yang
- Karlsruhe Institute of Technology (KIT), Institute of Microstructure Technology (IMT), 76344, Eggenstein-Leopoldshafen, Germany
| | - Ruodong Xin
- Karlsruhe Institute of Technology (KIT), Institute of Microstructure Technology (IMT), 76344, Eggenstein-Leopoldshafen, Germany
| | - Sören Lehmkuhl
- Karlsruhe Institute of Technology (KIT), Institute of Microstructure Technology (IMT), 76344, Eggenstein-Leopoldshafen, Germany
| | - Jan G Korvink
- Karlsruhe Institute of Technology (KIT), Institute of Microstructure Technology (IMT), 76344, Eggenstein-Leopoldshafen, Germany
| | - Jürgen J Brandner
- Karlsruhe Institute of Technology (KIT), Institute of Microstructure Technology (IMT), 76344, Eggenstein-Leopoldshafen, Germany.
- Karlsruhe Nano Micro Facility (KNMFi), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
3
|
Barker S, Dagys L, Levitt MH, Utz M. Efficient Parahydrogen-Induced 13C Hyperpolarization on a Microfluidic Device. J Am Chem Soc 2024; 146:18379-18386. [PMID: 38916928 PMCID: PMC11240250 DOI: 10.1021/jacs.4c03271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/26/2024]
Abstract
We show the direct production and detection of 13C-hyperpolarized fumarate by parahydrogen-induced polarization (PHIP) in a microfluidic lab-on-a-chip (LoC) device and achieve 8.5% 13C polarization. This is the first demonstration of 13C-hyperpolarization of a metabolite by PHIP in a microfluidic device. LoC technology allows the culture of mammalian cells in a highly controlled environment, providing an important tool for the life sciences. In-situ preparation of hyperpolarized metabolites greatly enhances the ability to quantify metabolic processes in such systems by microfluidic NMR. PHIP of 1H nuclei has been successfully implemented in microfluidic systems, with mass sensitivities in the range of pmol/s. However, metabolic NMR requires high-yield production of hyperpolarized metabolites with longer spin life times than is possible with 1H. This can be achieved by transfer of the polarization onto 13C nuclei, which exhibit much longer T1 relaxation times. We report an improved microfluidic PHIP device, optimized using a finite element model, that enables the direct and efficient production of 13C-hyperpolarized fumarate.
Collapse
Affiliation(s)
- Sylwia
J. Barker
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
- Institute
of Microstructure Technology, Karlsruhe
Institute of Technology, Karlsruhe 76131, Germany
| | - Laurynas Dagys
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
- Institute
of Chemical Physics, Vilnius University, Vilnius 01513, Lithuania
| | - Malcolm H. Levitt
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Marcel Utz
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
- Institute
of Microstructure Technology, Karlsruhe
Institute of Technology, Karlsruhe 76131, Germany
| |
Collapse
|
4
|
Sahin Solmaz N, Farsi R, Boero G. 200 GHz single chip microsystems for dynamic nuclear polarization enhanced NMR spectroscopy. Nat Commun 2024; 15:5485. [PMID: 38942752 PMCID: PMC11213862 DOI: 10.1038/s41467-024-49767-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 06/12/2024] [Indexed: 06/30/2024] Open
Abstract
Dynamic nuclear polarization (DNP) is one of the most powerful and versatile hyperpolarization methods to enhance nuclear magnetic resonance (NMR) signals. A major drawback of DNP is the cost and complexity of the required microwave hardware, especially at high magnetic fields and low temperatures. To overcome this drawback and with the focus on the study of nanoliter and subnanoliter samples, this work demonstrates 200 GHz single chip DNP microsystems where the microwave excitation/detection are performed locally on chip without the need of external microwave generators and transmission lines. The single chip integrated microsystems consist of a single or an array of microwave oscillators operating at about 200 GHz for ESR excitation/detection and an RF receiver operating at about 300 MHz for NMR detection. This work demonstrates the possibility of using the single chip approach for the realization of probes for DNP studies at high frequency, high field, and low temperature.
Collapse
Affiliation(s)
- Nergiz Sahin Solmaz
- Institute of Electrical and Micro Engineering (IEM) and Center for Quantum Science and Engineering (QSE) École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland.
| | - Reza Farsi
- Institute of Electrical and Micro Engineering (IEM) and Center for Quantum Science and Engineering (QSE) École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Giovanni Boero
- Institute of Electrical and Micro Engineering (IEM) and Center for Quantum Science and Engineering (QSE) École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| |
Collapse
|
5
|
Yeste J, Azagra M, Ortega MA, Portela A, Matajsz G, Herrero-Gómez A, Kim Y, Sriram R, Kurhanewicz J, Vigneron DB, Marco-Rius I. Parallel detection of chemical reactions in a microfluidic platform using hyperpolarized nuclear magnetic resonance. LAB ON A CHIP 2023; 23:4950-4958. [PMID: 37906028 PMCID: PMC10661666 DOI: 10.1039/d3lc00474k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/06/2023] [Indexed: 11/02/2023]
Abstract
The sensitivity of NMR may be enhanced by more than four orders of magnitude via dissolution dynamic nuclear polarization (dDNP), potentially allowing real-time, in situ analysis of chemical reactions. However, there has been no widespread use of the technique for this application and the major limitation has been the low experimental throughput caused by the time-consuming polarization build-up process at cryogenic temperatures and fast decay of the hyper-intense signal post dissolution. To overcome this limitation, we have developed a microfluidic device compatible with dDNP-MR spectroscopic imaging methods for detection of reactants and products in chemical reactions in which up to 8 reactions can be measured simultaneously using a single dDNP sample. Multiple MR spectroscopic data sets can be generated under the same exact conditions of hyperpolarized solute polarization, concentration, pH, and temperature. A proof-of-concept for the technology is demonstrated by identifying the reactants in the decarboxylation of pyruvate via hydrogen peroxide (e.g. 2-hydroperoxy-2-hydroxypropanoate, peroxymonocarbonate and CO2). dDNP-MR allows tracing of fast chemical reactions that would be barely detectable at thermal equilibrium by MR. We envisage that dDNP-MR spectroscopic imaging combined with microfluidics will provide a new high-throughput method for dDNP enhanced MR analysis of multiple components in chemical reactions and for non-destructive in situ metabolic analysis of hyperpolarized substrates in biological samples for laboratory and preclinical research.
Collapse
Affiliation(s)
- Jose Yeste
- Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona, Spain.
| | - Marc Azagra
- Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona, Spain.
| | - Maria A Ortega
- Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona, Spain.
| | - Alejandro Portela
- Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona, Spain.
| | - Gergő Matajsz
- Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona, Spain.
| | - Alba Herrero-Gómez
- Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona, Spain.
| | - Yaewon Kim
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Renuka Sriram
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - John Kurhanewicz
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
- Graduate program in Bioengineering, University of California, Berkeley and University of California, San Francisco, California, USA
| | - Daniel B Vigneron
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
- Graduate program in Bioengineering, University of California, Berkeley and University of California, San Francisco, California, USA
| | - Irene Marco-Rius
- Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona, Spain.
| |
Collapse
|
6
|
Ellermann F, Sirbu A, Brahms A, Assaf C, Herges R, Hövener JB, Pravdivtsev AN. Spying on parahydrogen-induced polarization transfer using a half-tesla benchtop MRI and hyperpolarized imaging enabled by automation. Nat Commun 2023; 14:4774. [PMID: 37553405 PMCID: PMC10409769 DOI: 10.1038/s41467-023-40539-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/31/2023] [Indexed: 08/10/2023] Open
Abstract
Nuclear spin hyperpolarization is a quantum effect that enhances the nuclear magnetic resonance signal by several orders of magnitude and has enabled real-time metabolic imaging in humans. However, the translation of hyperpolarization technology into routine use in laboratories and medical centers is hampered by the lack of portable, cost-effective polarizers that are not commercially available. Here, we present a portable, automated polarizer based on parahydrogen-induced hyperpolarization (PHIP) at an intermediate magnetic field of 0.5 T (achieved by permanent magnets). With a footprint of 1 m2, we demonstrate semi-continuous, fully automated 1H hyperpolarization of ethyl acetate-d6 and ethyl pyruvate-d6 to P = 14.4% and 16.2%, respectively, and a 13C polarization of 1-13C-ethyl pyruvate-d6 of P = 7%. The duty cycle for preparing a dose is no more than 1 min. To reveal the full potential of 1H hyperpolarization in an inhomogeneous magnetic field, we convert the anti-phase PHIP signals into in-phase peaks, thereby increasing the SNR by a factor of 5. Using a spin-echo approach allowed us to observe the evolution of spin order distribution in real time while conserving the expensive reagents for reaction monitoring, imaging and potential in vivo usage. This compact polarizer will allow us to pursue the translation of hyperpolarized MRI towards in vivo applications further.
Collapse
Affiliation(s)
- Frowin Ellermann
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Aidan Sirbu
- Western University, 1151 Richmond St, London, ON, N6A 3K7, Canada
| | - Arne Brahms
- Otto Diels Institute for Organic Chemistry, Kiel University, Otto- Hahn Platz 4, 24118, Kiel, Germany
| | - Charbel Assaf
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Rainer Herges
- Otto Diels Institute for Organic Chemistry, Kiel University, Otto- Hahn Platz 4, 24118, Kiel, Germany
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Andrey N Pravdivtsev
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany.
| |
Collapse
|
7
|
Gomez MV, Baas S, Velders AH. Multinuclear 1D and 2D NMR with 19F-Photo-CIDNP hyperpolarization in a microfluidic chip with untuned microcoil. Nat Commun 2023; 14:3885. [PMID: 37391397 PMCID: PMC10313780 DOI: 10.1038/s41467-023-39537-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 06/14/2023] [Indexed: 07/02/2023] Open
Abstract
Nuclear Magnetic Resonance (NMR) spectroscopy is a most powerful molecular characterization and quantification technique, yet two major persistent factors limit its more wide-spread applications: poor sensitivity, and intricate complex and expensive hardware required for sophisticated experiments. Here we show NMR with a single planar-spiral microcoil in an untuned circuit with hyperpolarization option and capability to execute complex experiments addressing simultaneously up to three different nuclides. A microfluidic NMR-chip in which the 25 nL detection volume can be efficiently illuminated with laser-diode light enhances the sensitivity by orders of magnitude via photochemically induced dynamic nuclear polarization (photo-CIDNP), allowing rapid detection of samples in the lower picomole range (normalized limit of detection at 600 MHz, nLODf,600, of 0.01 nmol Hz1/2). The chip is equipped with a single planar microcoil operating in an untuned circuit that allows different Larmor frequencies to be addressed simultaneously, permitting advanced hetero-, di- and trinuclear, 1D and 2D NMR experiments. Here we show NMR chips with photo-CIDNP and broadband capabilities addressing two of the major limiting factors of NMR, by enhancing sensitivity as well as reducing cost and hardware complexity; the performance is compared to state-of-the-art instruments.
Collapse
Affiliation(s)
- M Victoria Gomez
- IRICA, Department of Inorganic, Organic and Biochemistry, Faculty of Chemical Sciences and Technologies, Universidad de Castilla-La Mancha (UCLM), Av. Camilo José Cela 10, 13071, Ciudad Real, Spain.
| | - Sander Baas
- Laboratory of BioNanoTechnology, Wageningen University, 6700 EK, Wageningen, The Netherlands
| | - Aldrik H Velders
- IRICA, Department of Inorganic, Organic and Biochemistry, Faculty of Chemical Sciences and Technologies, Universidad de Castilla-La Mancha (UCLM), Av. Camilo José Cela 10, 13071, Ciudad Real, Spain.
- Laboratory of BioNanoTechnology, Wageningen University, 6700 EK, Wageningen, The Netherlands.
| |
Collapse
|
8
|
Ellermann F, Saul P, Hövener JB, Pravdivtsev AN. Modern Manufacturing Enables Magnetic Field Cycling Experiments and Parahydrogen-Induced Hyperpolarization with a Benchtop NMR. Anal Chem 2023; 95:6244-6252. [PMID: 37018544 DOI: 10.1021/acs.analchem.2c03682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Benchtop NMR (btNMR) spectrometers are revolutionizing the way we use NMR and lowering the cost drastically. Magnetic field cycling (MFC) experiments with precise timing and control over the magnetic field, however, were hitherto not available on btNMRs, although some systems exist for high-field, high-resolution NMR spectrometers. Still, the need and potential for btNMR MFC is great─e.g., to perform and analyze parahydrogen-induced hyperpolarization, another method that has affected analytical chemistry and NMR beyond expectations. Here, we describe a setup that enables MFC on btNMRs for chemical analysis and hyperpolarization. Taking full advantage of the power of modern manufacturing, including computer-aided design, three-dimensional printing, and microcontrollers, the setup is easy to reproduce, highly reliable, and easy to adjust and operate. Within 380 ms, the NMR tube was shuttled reliably from the electromagnet to the NMR isocenter (using a stepper motor and gear rod). We demonstrated the power of this setup by hyperpolarizing nicotinamide using signal amplification by reversible exchange (SABRE), a versatile method to hyperpolarize a broad variety of molecules including metabolites and drugs. Here, the standard deviation of SABRE hyperpolarization was between 0.2 and 3.3%. The setup also allowed us to investigate the field dependency of the polarization and the effect of different sample preparation protocols. We found that redissolution of the activated and dried Ir catalyst always reduced the polarization. We anticipate that this design will greatly accelerate the ascension of MFC experiments for chemical analysis with btNMR─adding yet another application to this rapidly developing field.
Collapse
Affiliation(s)
- Frowin Ellermann
- Section for Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH), Kiel 24118, Germany
| | - Philip Saul
- Section for Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH), Kiel 24118, Germany
| | - Jan-Bernd Hövener
- Section for Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH), Kiel 24118, Germany
| | - Andrey N Pravdivtsev
- Section for Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH), Kiel 24118, Germany
| |
Collapse
|
9
|
Eills J, Budker D, Cavagnero S, Chekmenev EY, Elliott SJ, Jannin S, Lesage A, Matysik J, Meersmann T, Prisner T, Reimer JA, Yang H, Koptyug IV. Spin Hyperpolarization in Modern Magnetic Resonance. Chem Rev 2023; 123:1417-1551. [PMID: 36701528 PMCID: PMC9951229 DOI: 10.1021/acs.chemrev.2c00534] [Citation(s) in RCA: 64] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Indexed: 01/27/2023]
Abstract
Magnetic resonance techniques are successfully utilized in a broad range of scientific disciplines and in various practical applications, with medical magnetic resonance imaging being the most widely known example. Currently, both fundamental and applied magnetic resonance are enjoying a major boost owing to the rapidly developing field of spin hyperpolarization. Hyperpolarization techniques are able to enhance signal intensities in magnetic resonance by several orders of magnitude, and thus to largely overcome its major disadvantage of relatively low sensitivity. This provides new impetus for existing applications of magnetic resonance and opens the gates to exciting new possibilities. In this review, we provide a unified picture of the many methods and techniques that fall under the umbrella term "hyperpolarization" but are currently seldom perceived as integral parts of the same field. Specifically, before delving into the individual techniques, we provide a detailed analysis of the underlying principles of spin hyperpolarization. We attempt to uncover and classify the origins of hyperpolarization, to establish its sources and the specific mechanisms that enable the flow of polarization from a source to the target spins. We then give a more detailed analysis of individual hyperpolarization techniques: the mechanisms by which they work, fundamental and technical requirements, characteristic applications, unresolved issues, and possible future directions. We are seeing a continuous growth of activity in the field of spin hyperpolarization, and we expect the field to flourish as new and improved hyperpolarization techniques are implemented. Some key areas for development are in prolonging polarization lifetimes, making hyperpolarization techniques more generally applicable to chemical/biological systems, reducing the technical and equipment requirements, and creating more efficient excitation and detection schemes. We hope this review will facilitate the sharing of knowledge between subfields within the broad topic of hyperpolarization, to help overcome existing challenges in magnetic resonance and enable novel applications.
Collapse
Affiliation(s)
- James Eills
- Institute
for Bioengineering of Catalonia, Barcelona
Institute of Science and Technology, 08028Barcelona, Spain
| | - Dmitry Budker
- Johannes
Gutenberg-Universität Mainz, 55128Mainz, Germany
- Helmholtz-Institut,
GSI Helmholtzzentrum für Schwerionenforschung, 55128Mainz, Germany
- Department
of Physics, UC Berkeley, Berkeley, California94720, United States
| | - Silvia Cavagnero
- Department
of Chemistry, University of Wisconsin, Madison, Madison, Wisconsin53706, United States
| | - Eduard Y. Chekmenev
- Department
of Chemistry, Integrative Biosciences (IBio), Karmanos Cancer Institute
(KCI), Wayne State University, Detroit, Michigan48202, United States
- Russian
Academy of Sciences, Moscow119991, Russia
| | - Stuart J. Elliott
- Molecular
Sciences Research Hub, Imperial College
London, LondonW12 0BZ, United Kingdom
| | - Sami Jannin
- Centre
de RMN à Hauts Champs de Lyon, Université
de Lyon, CNRS, ENS Lyon, Université Lyon 1, 69100Villeurbanne, France
| | - Anne Lesage
- Centre
de RMN à Hauts Champs de Lyon, Université
de Lyon, CNRS, ENS Lyon, Université Lyon 1, 69100Villeurbanne, France
| | - Jörg Matysik
- Institut
für Analytische Chemie, Universität
Leipzig, Linnéstr. 3, 04103Leipzig, Germany
| | - Thomas Meersmann
- Sir
Peter Mansfield Imaging Centre, University Park, School of Medicine, University of Nottingham, NottinghamNG7 2RD, United Kingdom
| | - Thomas Prisner
- Institute
of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic
Resonance, Goethe University Frankfurt, , 60438Frankfurt
am Main, Germany
| | - Jeffrey A. Reimer
- Department
of Chemical and Biomolecular Engineering, UC Berkeley, and Materials Science Division, Lawrence Berkeley National
Laboratory, Berkeley, California94720, United States
| | - Hanming Yang
- Department
of Chemistry, University of Wisconsin, Madison, Madison, Wisconsin53706, United States
| | - Igor V. Koptyug
- International Tomography Center, Siberian
Branch of the Russian Academy
of Sciences, 630090Novosibirsk, Russia
| |
Collapse
|
10
|
Theillet FX, Luchinat E. In-cell NMR: Why and how? PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 132-133:1-112. [PMID: 36496255 DOI: 10.1016/j.pnmrs.2022.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 04/19/2022] [Accepted: 04/27/2022] [Indexed: 06/17/2023]
Abstract
NMR spectroscopy has been applied to cells and tissues analysis since its beginnings, as early as 1950. We have attempted to gather here in a didactic fashion the broad diversity of data and ideas that emerged from NMR investigations on living cells. Covering a large proportion of the periodic table, NMR spectroscopy permits scrutiny of a great variety of atomic nuclei in all living organisms non-invasively. It has thus provided quantitative information on cellular atoms and their chemical environment, dynamics, or interactions. We will show that NMR studies have generated valuable knowledge on a vast array of cellular molecules and events, from water, salts, metabolites, cell walls, proteins, nucleic acids, drugs and drug targets, to pH, redox equilibria and chemical reactions. The characterization of such a multitude of objects at the atomic scale has thus shaped our mental representation of cellular life at multiple levels, together with major techniques like mass-spectrometry or microscopies. NMR studies on cells has accompanied the developments of MRI and metabolomics, and various subfields have flourished, coined with appealing names: fluxomics, foodomics, MRI and MRS (i.e. imaging and localized spectroscopy of living tissues, respectively), whole-cell NMR, on-cell ligand-based NMR, systems NMR, cellular structural biology, in-cell NMR… All these have not grown separately, but rather by reinforcing each other like a braided trunk. Hence, we try here to provide an analytical account of a large ensemble of intricately linked approaches, whose integration has been and will be key to their success. We present extensive overviews, firstly on the various types of information provided by NMR in a cellular environment (the "why", oriented towards a broad readership), and secondly on the employed NMR techniques and setups (the "how", where we discuss the past, current and future methods). Each subsection is constructed as a historical anthology, showing how the intrinsic properties of NMR spectroscopy and its developments structured the accessible knowledge on cellular phenomena. Using this systematic approach, we sought i) to make this review accessible to the broadest audience and ii) to highlight some early techniques that may find renewed interest. Finally, we present a brief discussion on what may be potential and desirable developments in the context of integrative studies in biology.
Collapse
Affiliation(s)
- Francois-Xavier Theillet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| | - Enrico Luchinat
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum - Università di Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; CERM - Magnetic Resonance Center, and Neurofarba Department, Università degli Studi di Firenze, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
11
|
Barker S, Dagys L, Hale W, Ripka B, Eills J, Sharma M, Levitt MH, Utz M. Direct Production of a Hyperpolarized Metabolite on a Microfluidic Chip. Anal Chem 2022; 94:3260-3267. [PMID: 35147413 PMCID: PMC9096798 DOI: 10.1021/acs.analchem.1c05030] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/24/2022] [Indexed: 12/28/2022]
Abstract
Microfluidic systems hold great potential for the study of live microscopic cultures of cells, tissue samples, and small organisms. Integration of hyperpolarization would enable quantitative studies of metabolism in such volume limited systems by high-resolution NMR spectroscopy. We demonstrate, for the first time, the integrated generation and detection of a hyperpolarized metabolite on a microfluidic chip. The metabolite [1-13C]fumarate is produced in a nuclear hyperpolarized form by (i) introducing para-enriched hydrogen into the solution by diffusion through a polymer membrane, (ii) reaction with a substrate in the presence of a ruthenium-based catalyst, and (iii) conversion of the singlet-polarized reaction product into a magnetized form by the application of a radiofrequency pulse sequence, all on the same microfluidic chip. The microfluidic device delivers a continuous flow of hyperpolarized material at the 2.5 μL/min scale, with a polarization level of 4%. We demonstrate two methods for mitigating singlet-triplet mixing effects which otherwise reduce the achieved polarization level.
Collapse
Affiliation(s)
- Sylwia
J. Barker
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Laurynas Dagys
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - William Hale
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
- Department
of Chemistry, University of Florida, Gainesville 32611, United States
| | - Barbara Ripka
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - James Eills
- Institute
for Physics, Johannes Gutenberg University, D-55090 Mainz, Germany
- GSI
Helmholtzzentrum für Schwerionenforschung GmbH, Helmholtz-Institut Mainz, 55128 Mainz, Germany
| | - Manvendra Sharma
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Malcolm H. Levitt
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Marcel Utz
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| |
Collapse
|
12
|
Schmidt AB, Zimmermann M, Berner S, de Maissin H, Müller CA, Ivantaev V, Hennig J, Elverfeldt DV, Hövener JB. Quasi-continuous production of highly hyperpolarized carbon-13 contrast agents every 15 seconds within an MRI system. Commun Chem 2022; 5:21. [PMID: 36697573 PMCID: PMC9814607 DOI: 10.1038/s42004-022-00634-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/25/2022] [Indexed: 01/28/2023] Open
Abstract
Hyperpolarized contrast agents (HyCAs) have enabled unprecedented magnetic resonance imaging (MRI) of metabolism and pH in vivo. Producing HyCAs with currently available methods, however, is typically time and cost intensive. Here, we show virtually-continuous production of HyCAs using parahydrogen-induced polarization (PHIP), without stand-alone polarizer, but using a system integrated in an MRI instead. Polarization of ≈2% for [1-13C]succinate-d2 or ≈19% for hydroxyethyl-[1-13C]propionate-d3 was created every 15 s, for which fast, effective, and well-synchronized cycling of chemicals and reactions in conjunction with efficient spin-order transfer was key. We addressed these challenges using a dedicated, high-pressure, high-temperature reactor with integrated water-based heating and a setup operated via the MRI pulse program. As PHIP of several biologically relevant HyCAs has recently been described, this Rapid-PHIP technique promises fast preclinical studies, repeated administration or continuous infusion within a single lifetime of the agent, as well as a prolonged window for observation with signal averaging and dynamic monitoring of metabolic alterations.
Collapse
Affiliation(s)
- Andreas B Schmidt
- Department of Radiology, Medical Physics, Medical Center, Faculty of Freiburg, University of Freiburg, Killianstr. 5a, Freiburg, 79106, Germany.
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany.
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany.
| | - Mirko Zimmermann
- Department of Radiology, Medical Physics, Medical Center, Faculty of Freiburg, University of Freiburg, Killianstr. 5a, Freiburg, 79106, Germany
| | - Stephan Berner
- Department of Radiology, Medical Physics, Medical Center, Faculty of Freiburg, University of Freiburg, Killianstr. 5a, Freiburg, 79106, Germany
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany
| | - Henri de Maissin
- Department of Radiology, Medical Physics, Medical Center, Faculty of Freiburg, University of Freiburg, Killianstr. 5a, Freiburg, 79106, Germany
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany
| | - Christoph A Müller
- Department of Radiology, Medical Physics, Medical Center, Faculty of Freiburg, University of Freiburg, Killianstr. 5a, Freiburg, 79106, Germany
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany
| | - Vladislav Ivantaev
- Department of Radiology, Medical Physics, Medical Center, Faculty of Freiburg, University of Freiburg, Killianstr. 5a, Freiburg, 79106, Germany
| | - Jürgen Hennig
- Department of Radiology, Medical Physics, Medical Center, Faculty of Freiburg, University of Freiburg, Killianstr. 5a, Freiburg, 79106, Germany
| | - Dominik V Elverfeldt
- Department of Radiology, Medical Physics, Medical Center, Faculty of Freiburg, University of Freiburg, Killianstr. 5a, Freiburg, 79106, Germany
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany.
| |
Collapse
|
13
|
Eills J, Hale W, Utz M. Synergies between Hyperpolarized NMR and Microfluidics: A Review. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 128:44-69. [PMID: 35282869 DOI: 10.1016/j.pnmrs.2021.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/10/2021] [Accepted: 09/11/2021] [Indexed: 06/14/2023]
Abstract
Hyperpolarized nuclear magnetic resonance and lab-on-a-chip microfluidics are two dynamic, but until recently quite distinct, fields of research. Recent developments in both areas increased their synergistic overlap. By microfluidic integration, many complex experimental steps can be brought together onto a single platform. Microfluidic devices are therefore increasingly finding applications in medical diagnostics, forensic analysis, and biomedical research. In particular, they provide novel and powerful ways to culture cells, cell aggregates, and even functional models of entire organs. Nuclear magnetic resonance is a non-invasive, high-resolution spectroscopic technique which allows real-time process monitoring with chemical specificity. It is ideally suited for observing metabolic and other biological and chemical processes in microfluidic systems. However, its intrinsically low sensitivity has limited its application. Recent advances in nuclear hyperpolarization techniques may change this: under special circumstances, it is possible to enhance NMR signals by up to 5 orders of magnitude, which dramatically extends the utility of NMR in the context of microfluidic systems. Hyperpolarization requires complex chemical and/or physical manipulations, which in turn may benefit from microfluidic implementation. In fact, many hyperpolarization methodologies rely on processes that are more efficient at the micro-scale, such as molecular diffusion, penetration of electromagnetic radiation into a sample, or restricted molecular mobility on a surface. In this review we examine the confluence between the fields of hyperpolarization-enhanced NMR and microfluidics, and assess how these areas of research have mutually benefited one another, and will continue to do so.
Collapse
Affiliation(s)
- James Eills
- Institute for Physics, Johannes Gutenberg University, D-55090 Mainz, Germany; GSI Helmholtzzentrum für Schwerionenforschung GmbH, Helmholtz-Institut Mainz, 55128 Mainz, Germany.
| | - William Hale
- Department of Chemistry, University of Florida, 32611, USA
| | - Marcel Utz
- School of Chemistry, University of Southampton, SO17 1BJ, UK.
| |
Collapse
|
14
|
Schmidt AB, Bowers CR, Buckenmaier K, Chekmenev EY, de Maissin H, Eills J, Ellermann F, Glöggler S, Gordon JW, Knecht S, Koptyug IV, Kuhn J, Pravdivtsev AN, Reineri F, Theis T, Them K, Hövener JB. Instrumentation for Hydrogenative Parahydrogen-Based Hyperpolarization Techniques. Anal Chem 2022; 94:479-502. [PMID: 34974698 PMCID: PMC8784962 DOI: 10.1021/acs.analchem.1c04863] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Andreas B. Schmidt
- Department of Radiology – Medical Physics, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Killianstr. 5a, Freiburg 79106, Germany
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - C. Russell Bowers
- Department of Chemistry, University of Florida, 2001 Museum Road, Gainesville, Florida 32611, USA
- National High Magnetic Field Laboratory, 1800 E. Paul Dirac Drive, Tallahassee, Florida 32310, USA
| | - Kai Buckenmaier
- High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Max-Planck-Ring 11, 72076, Tübingen, Germany
| | - Eduard Y. Chekmenev
- Intergrative Biosciences (Ibio), Department of Chemistry, Karmanos Cancer Institute (KCI), Wayne State University, 5101 Cass Ave, Detroit, MI 48202, United States
- Russian Academy of Sciences (RAS), Leninskiy Prospect, 14, 119991 Moscow, Russia
| | - Henri de Maissin
- Department of Radiology – Medical Physics, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Killianstr. 5a, Freiburg 79106, Germany
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - James Eills
- Institute for Physics, Johannes Gutenberg University, D-55090 Mainz, Germany
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Helmholtz-Institut Mainz, 55128 Mainz, Germany
| | - Frowin Ellermann
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Stefan Glöggler
- NMR Signal Enhancement Group Max Planck Institutefor Biophysical Chemistry Am Fassberg 11, 37077 Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration of UMG Von-Siebold-Str. 3A, 37075 Göttingen, Germany
| | - Jeremy W. Gordon
- Department of Radiology & Biomedical Imaging, University of California San Francisco, 185 Berry St., San Francisco, CA, 94158, USA
| | | | - Igor V. Koptyug
- International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
| | - Jule Kuhn
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Andrey N. Pravdivtsev
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Francesca Reineri
- Dept. Molecular Biotechnology and Health Sciences, Via Nizza 52, University of Torino, Italy
| | - Thomas Theis
- Departments of Chemistry, Physics and Biomedical Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Kolja Them
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| |
Collapse
|
15
|
Vázquez M, Anfossi L, Ben-Yoav H, Diéguez L, Karopka T, Della Ventura B, Abalde-Cela S, Minopoli A, Di Nardo F, Shukla VK, Teixeira A, Tvarijonaviciute A, Franco-Martínez L. Use of some cost-effective technologies for a routine clinical pathology laboratory. LAB ON A CHIP 2021; 21:4330-4351. [PMID: 34664599 DOI: 10.1039/d1lc00658d] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Classically, the need for highly sophisticated instruments with important economic costs has been a major limiting factor for clinical pathology laboratories, especially in developing countries. With the aim of making clinical pathology more accessible, a wide variety of free or economical technologies have been developed worldwide in the last few years. 3D printing and Arduino approaches can provide up to 94% economical savings in hardware and instrumentation in comparison to commercial alternatives. The vast selection of point-of-care-tests (POCT) currently available also limits the need for specific instruments or personnel, as they can be used almost anywhere and by anyone. Lastly, there are dozens of free and libre digital tools available in health informatics. This review provides an overview of the state-of-the-art on cost-effective alternatives with applications in routine clinical pathology laboratories. In this context, a variety of technologies including 3D printing and Arduino, lateral flow assays, plasmonic biosensors, and microfluidics, as well as laboratory information systems, are discussed. This review aims to serve as an introduction to different technologies that can make clinical pathology more accessible and, therefore, contribute to achieve universal health coverage.
Collapse
Affiliation(s)
- Mercedes Vázquez
- National Centre For Sensor Research, School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Laura Anfossi
- Department of Chemistry, University of Turin, Via Giuria, 5, I-10125 Turin, Italy
| | - Hadar Ben-Yoav
- Nanobioelectronics Laboratory (NBEL), Department of Biomedical Engineering, Ilse Katz Institute of Nanoscale Science and Technology, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Lorena Diéguez
- Medical Devices Research Group, International Iberian Nanotechnology Laboratory - INL, 4715-330 Braga, Portugal
| | | | - Bartolomeo Della Ventura
- Department of Physics "E. Pancini", University of Naples Federico II, Via Cintia 26, I-80126 Napoli, Italy
| | - Sara Abalde-Cela
- Medical Devices Research Group, International Iberian Nanotechnology Laboratory - INL, 4715-330 Braga, Portugal
| | - Antonio Minopoli
- Department of Physics "E. Pancini", University of Naples Federico II, Via Cintia 26, I-80126 Napoli, Italy
| | - Fabio Di Nardo
- Department of Chemistry, University of Turin, Via Giuria, 5, I-10125 Turin, Italy
| | - Vikas Kumar Shukla
- Nanobioelectronics Laboratory (NBEL), Department of Biomedical Engineering, Ilse Katz Institute of Nanoscale Science and Technology, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Alexandra Teixeira
- Medical Devices Research Group, International Iberian Nanotechnology Laboratory - INL, 4715-330 Braga, Portugal
| | - Asta Tvarijonaviciute
- Interdisciplinary Laboratory of Clinical Pathology, Interlab-UMU, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, 30100 Murcia, Spain.
| | - Lorena Franco-Martínez
- Interdisciplinary Laboratory of Clinical Pathology, Interlab-UMU, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, 30100 Murcia, Spain.
| |
Collapse
|
16
|
Jiang W, Peng Q, Sun H, Zhang Q, Huang C, Cao S, Wang X, Chen Z. Determining the enantioselectivity of asymmetric hydrogenation through parahydrogen-induced hyperpolarization. J Chem Phys 2021; 155:161101. [PMID: 34717365 DOI: 10.1063/5.0067959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Asymmetric hydrogenation plays an essential role for both academic research and industry to produce enantiomeric pure chiral molecules. Although nuclear magnetic resonance (NMR) is powerful in determining the yields of hydrogenation, it is still challenging to use NMR for chirality-related analysis. Herein, we applied parahydrogen-induced hyperpolarization (PHIP) NMR to determine the enantioselectivity of asymmetric hydrogenation and the absolute chirality of products. We hyperpolarized two types of unsaturated amino acid precursors, i.e., methyl-α-acetoamido cinnamate and (E)-ethyl 3-acetamidobut-2-enoate. Hydrogenation of prochiral substrates with parahydrogen gave temporary hyperpolarized diastereoisomers, which exhibit different PHIP patterns distinguishable in 1H NMR. After assigning the NMR peaks by density functional theory calculations, we simulated the PHIP patterns of all the possible temporary hyperpolarized diastereoisomers and unambiguously assigned the chirality of the products and the enantioselectivity of asymmetric hydrogenation. Our work demonstrates the application and potential of PHIP in revealing the mechanism of asymmetric hydrogenation.
Collapse
Affiliation(s)
- Wenlong Jiang
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, Xiamen University, 361005 Xiamen, China
| | - Qiwei Peng
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, Xiamen University, 361005 Xiamen, China
| | - Huijun Sun
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, Xiamen University, 361005 Xiamen, China
| | - Qi Zhang
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, Xiamen University, 361005 Xiamen, China
| | - Chengda Huang
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, Xiamen University, 361005 Xiamen, China
| | - Shuohui Cao
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, Xiamen University, 361005 Xiamen, China
| | - Xinchang Wang
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, Xiamen University, 361005 Xiamen, China
| | - Zhong Chen
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, Xiamen University, 361005 Xiamen, China
| |
Collapse
|
17
|
Bussandri S, Franzoni MB, Buljubasich L, Acosta RH. Discrimination of PHIP Signals Through their Evolution in Multipulse Sequences. Chemphyschem 2021; 22:1939-1946. [PMID: 34291548 DOI: 10.1002/cphc.202100146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/21/2021] [Indexed: 11/11/2022]
Abstract
The antiphase character of the PHIP associated signals after a hydrogenation reaction is particularly sensitive to line broadening introduced by magnetic field inhomogeneities and interferences by the presence of resonance lines steaming from a large amount of thermally polarized spins. These obstacles impose a limitation in the detection of reaction products as well as in the experimental setups. A simple way to overcome these impediments consists of acquiring the signal with a train of refocusing pulses instead of a single r.f. pulse. We present here a number of examples where this multipulse acquisition, denominated PhD-PHIP, displays its potentiality in improving the information related to hyperpolarized spins performed in a sample, where the former parahydrogen nuclei are part of a complex J-coupling network.
Collapse
Affiliation(s)
- S Bussandri
- Universidad Nacional de Córdoba, Facultad de Matemática, Astronomía, Física y Computación, Córdoba, Argentina.,CONICET, Instituto de Física Enrique Gaviola (IFEG), Córdoba, Argentina
| | - M B Franzoni
- Universidad Nacional de Córdoba, Facultad de Matemática, Astronomía, Física y Computación, Córdoba, Argentina.,CONICET, Instituto de Física Enrique Gaviola (IFEG), Córdoba, Argentina
| | - L Buljubasich
- Universidad Nacional de Córdoba, Facultad de Matemática, Astronomía, Física y Computación, Córdoba, Argentina.,CONICET, Instituto de Física Enrique Gaviola (IFEG), Córdoba, Argentina
| | - R H Acosta
- Universidad Nacional de Córdoba, Facultad de Matemática, Astronomía, Física y Computación, Córdoba, Argentina.,CONICET, Instituto de Física Enrique Gaviola (IFEG), Córdoba, Argentina
| |
Collapse
|
18
|
Ostrowska SJ, Rana A, Utz M. Spatially Resolved Kinetic Model of Parahydrogen Induced Polarisation (PHIP) in a Microfluidic Chip. Chemphyschem 2021; 22:2004-2013. [PMID: 33929791 PMCID: PMC8518753 DOI: 10.1002/cphc.202100135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/23/2021] [Indexed: 01/19/2023]
Abstract
We report a spatially resolved kinetic finite element model of parahydrogen-induced polarisation (PHIP) in a microfluidic chip that was calibrated using on-chip and off-chip NMR data. NMR spectroscopy has great potential as a read-out technique for lab-on-a-chip (LoC) devices, but is often limited by sensitivity. By integrating PHIP with a LoC device, a continuous stream of hyperpolarised material can be produced, and mass sensitivities of pmol s have been achieved. However, the yield and polarisation levels have so far been quite low, and can still be optimised. To facilitate this, a kinetic model of the reaction has been developed, and its rate constants have been calibrated using macroscopic kinetic measurements. The kinetic model was then coupled with a finite element model of the microfluidic chip. The model predicts the concentration of species involved in the reaction as a function of flow rate and position in the device. The results are in quantitative agreement with published experimental data.
Collapse
Affiliation(s)
| | - Aabidah Rana
- School of ChemistryUniversity of SouthamptonSouthamptonUK
| | - Marcel Utz
- School of ChemistryUniversity of SouthamptonSouthamptonUK
| |
Collapse
|
19
|
Abstract
Nuclear long-lived spin states represent spin density operator configurations that are exceptionally well protected against spin relaxation phenomena. Their long-lived character is exploited in a variety of Nuclear Magnetic Resonance (NMR) techniques. Despite the growing importance of long-lived spin states in modern NMR, strategies for their identification have changed little over the last decade. The standard approach heavily relies on a chain of group theoretical arguments. In this paper, we present a more streamlined method for the calculation of such configurations. Instead of focusing on the symmetry properties of the relaxation superoperator, we focus on its corresponding relaxation algebra. This enables us to analyze long-lived spin states with Lie algebraic methods rather than group theoretical arguments. We show that the centralizer of the relaxation algebra forms a basis for the set of long-lived spin states. The characterization of the centralizer, on the other hand, does not rely on any special symmetry arguments, and its calculation is straightforward. We outline a basic algorithm and illustrate advantages by considering long-lived spin states for some spin-1/2 pairs and rapidly rotating methyl groups.
Collapse
Affiliation(s)
- Christian Bengs
- School of Chemistry, School of Chemistry, University of Southampton, University Road, Southampton, SO17 1BJ United Kingdom
| |
Collapse
|
20
|
Hale WG, Zhao TY, Choi D, Ferrer MJ, Song B, Zhao H, Hagelin-Weaver HE, Bowers CR. Toward Continuous-Flow Hyperpolarisation of Metabolites via Heterogenous Catalysis, Side-Arm-Hydrogenation, and Membrane Dissolution of Parahydrogen. Chemphyschem 2021; 22:822-827. [PMID: 33689210 DOI: 10.1002/cphc.202100119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/09/2021] [Indexed: 02/03/2023]
Abstract
Side-arm hydrogenation (SAH) by homogeneous catalysis has extended the reach of the parahydrogen enhanced NMR technique to key metabolites such as pyruvate. However, homogeneous hydrogenation requires rapid separation of the dissolved catalyst and purification of the hyperpolarised species with a purity sufficient for safe in-vivo use. An alternate approach is to employ heterogeneous hydrogenation in a continuous-flow reactor, where separation from the solid catalysts is straightforward. Using a TiO2 -nanorod supported Rh catalyst, we demonstrate continuous-flow parahydrogen enhanced NMR by heterogeneous hydrogenation of a model SAH precursor, propargyl acetate, at a flow rate of 1.5 mL/min. Parahydrogen gas was introduced into the flowing solution phase using a novel tube-in-tube membrane dissolution device. Without much optimization, proton NMR signal enhancements of up to 297 (relative to the thermal equilibrium signals) at 9.4 Tesla were shown to be feasible on allyl-acetate at a continuous total yield of 33 %. The results are compared to those obtained with the standard batch-mode technique of parahydrogen bubbling through a suspension of the same catalyst.
Collapse
Affiliation(s)
- William G Hale
- Department of Chemistry, University of Florida, Gainesville, Florida, 32611
| | - Tommy Y Zhao
- Department of Chemistry, University of Florida, Gainesville, Florida, 32611
| | - Diana Choi
- Department of Chemistry, University of Florida, Gainesville, Florida, 32611
| | - Maria-Jose Ferrer
- Department of Chemistry, University of Florida, Gainesville, Florida, 32611
| | - Bochuan Song
- Department of Chemical Engineering, University of Florida, Gainesville, Florida, 32611
| | - Hanqin Zhao
- Department of Chemical Engineering, University of Florida, Gainesville, Florida, 32611
| | | | - Clifford R Bowers
- Department of Chemistry, University of Florida, Gainesville, Florida, 32611.,National High Magnetic Field Laboratory, Gainesville, Florida, 32611
| |
Collapse
|
21
|
Nassar O, Jouda M, Rapp M, Mager D, Korvink JG, MacKinnon N. Integrated impedance sensing of liquid sample plug flow enables automated high throughput NMR spectroscopy. MICROSYSTEMS & NANOENGINEERING 2021; 7:30. [PMID: 34567744 PMCID: PMC8433180 DOI: 10.1038/s41378-021-00253-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/22/2021] [Accepted: 02/16/2021] [Indexed: 06/13/2023]
Abstract
A novel approach for automated high throughput NMR spectroscopy with improved mass-sensitivity is accomplished by integrating microfluidic technologies and micro-NMR resonators. A flow system is utilized to transport a sample of interest from outside the NMR magnet through the NMR detector, circumventing the relatively vast dead volume in the supplying tube by loading a series of individual sample plugs separated by an immiscible fluid. This dual-phase flow demands a real-time robust sensing system to track the sample position and velocities and synchronize the NMR acquisition. In this contribution, we describe an NMR probe head that possesses a microfluidic system featuring: (i) a micro saddle coil for NMR spectroscopy and (ii) a pair of interdigitated capacitive sensors flanking the NMR detector for continuous position and velocity monitoring of the plugs with respect to the NMR detector. The system was successfully tested for automating flow-based measurement in a 500 MHz NMR system, enabling high resolution spectroscopy and NMR sensitivity of 2.18 nmol s1/2 with the flow sensors in operation. The flow sensors featured sensitivity to an absolute difference of 0.2 in relative permittivity, enabling distinction between most common solvents. It was demonstrated that a fully automated NMR measurement of nine individual 120 μL samples could be done within 3.6 min or effectively 15.3 s per sample.
Collapse
Affiliation(s)
- Omar Nassar
- Institute of Microstructure Technology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Mazin Jouda
- Institute of Microstructure Technology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Michael Rapp
- Institute of Microstructure Technology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Dario Mager
- Institute of Microstructure Technology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Jan G. Korvink
- Institute of Microstructure Technology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Neil MacKinnon
- Institute of Microstructure Technology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
22
|
Eills J, Cavallari E, Kircher R, Di Matteo G, Carrera C, Dagys L, Levitt MH, Ivanov KL, Aime S, Reineri F, Münnemann K, Budker D, Buntkowsky G, Knecht S. Singlet-Contrast Magnetic Resonance Imaging: Unlocking Hyperpolarization with Metabolism*. Angew Chem Int Ed Engl 2021; 60:6791-6798. [PMID: 33340439 PMCID: PMC7986935 DOI: 10.1002/anie.202014933] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Indexed: 11/21/2022]
Abstract
Hyperpolarization-enhanced magnetic resonance imaging can be used to study biomolecular processes in the body, but typically requires nuclei such as 13 C, 15 N, or 129 Xe due to their long spin-polarization lifetimes and the absence of a proton-background signal from water and fat in the images. Here we present a novel type of 1 H imaging, in which hyperpolarized spin order is locked in a nonmagnetic long-lived correlated (singlet) state, and is only liberated for imaging by a specific biochemical reaction. In this work we produce hyperpolarized fumarate via chemical reaction of a precursor molecule with para-enriched hydrogen gas, and the proton singlet order in fumarate is released as antiphase NMR signals by enzymatic conversion to malate in D2 O. Using this model system we show two pulse sequences to rephase the NMR signals for imaging and suppress the background signals from water. The hyperpolarization-enhanced 1 H-imaging modality presented here can allow for hyperpolarized imaging without the need for low-abundance, low-sensitivity heteronuclei.
Collapse
Affiliation(s)
- J. Eills
- Helmholtz Institute MainzGSI Helmholtzzentrum für Schwerionenforschung64291DarmstadtGermany
- Johannes Gutenberg University55090MainzGermany
| | - E. Cavallari
- Dept. of Molecular Biotechnology and Health SciencesUniversity of TorinoTorino10126Italy
| | - R. Kircher
- Technical University of Kaiserslautern67663KaiserslauternGermany
| | - G. Di Matteo
- Dept. of Molecular Biotechnology and Health SciencesUniversity of TorinoTorino10126Italy
| | - C. Carrera
- Institute of Biostructures and BioimagingNational Research Council of ItalyTorino10126Italy
| | - L. Dagys
- School of ChemistryUniversity of SouthamptonSouthamptonSO17 1BJVereinigtes Königreich
| | - M. H. Levitt
- School of ChemistryUniversity of SouthamptonSouthamptonSO17 1BJVereinigtes Königreich
| | - K. L. Ivanov
- International Tomography CenterSiberian Branch of the Russian Academy of ScienceNovosibirsk630090Russia
- Novosibirsk State UniversityNovosibirsk630090Russia
| | - S. Aime
- Dept. of Molecular Biotechnology and Health SciencesUniversity of TorinoTorino10126Italy
| | - F. Reineri
- Dept. of Molecular Biotechnology and Health SciencesUniversity of TorinoTorino10126Italy
| | - K. Münnemann
- Technical University of Kaiserslautern67663KaiserslauternGermany
| | - D. Budker
- Helmholtz Institute MainzGSI Helmholtzzentrum für Schwerionenforschung64291DarmstadtGermany
- Johannes Gutenberg University55090MainzGermany
| | - G. Buntkowsky
- Eduard-Zintl-Institute for Inorganic Chemistry and Physical, ChemistryTechnical University Darmstadt64287DarmstadtGermany
| | - S. Knecht
- Eduard-Zintl-Institute for Inorganic Chemistry and Physical, ChemistryTechnical University Darmstadt64287DarmstadtGermany
| |
Collapse
|
23
|
Eills J, Cavallari E, Kircher R, Di Matteo G, Carrera C, Dagys L, Levitt MH, Ivanov KL, Aime S, Reineri F, Münnemann K, Budker D, Buntkowsky G, Knecht S. Singulett‐Kontrast‐Magnetresonanztomographie: Freisetzung der Hyperpolarisation durch den Metabolismus**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014933] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- J. Eills
- Helmholtz Institute Mainz GSI Helmholtzzentrum für Schwerionenforschung 64291 Darmstadt Deutschland
- Johannes Gutenberg University 55090 Mainz Deutschland
| | - E. Cavallari
- Dept. of Molecular Biotechnology and Health Sciences University of Torino Torino 10126 Italien
| | - R. Kircher
- Technical University of Kaiserslautern 67663 Kaiserslautern Deutschland
| | - G. Di Matteo
- Dept. of Molecular Biotechnology and Health Sciences University of Torino Torino 10126 Italien
| | - C. Carrera
- Institute of Biostructures and Bioimaging National Research Council of Italy Torino 10126 Italien
| | - L. Dagys
- School of Chemistry University of Southampton Southampton SO17 1BJ Vereinigtes Königreich
| | - M. H. Levitt
- School of Chemistry University of Southampton Southampton SO17 1BJ Vereinigtes Königreich
| | - K. L. Ivanov
- International Tomography Center Siberian Branch of the Russian Academy of Science Novosibirsk 630090 Russland
- Novosibirsk State University Novosibirsk 630090 Russland
| | - S. Aime
- Dept. of Molecular Biotechnology and Health Sciences University of Torino Torino 10126 Italien
| | - F. Reineri
- Dept. of Molecular Biotechnology and Health Sciences University of Torino Torino 10126 Italien
| | - K. Münnemann
- Technical University of Kaiserslautern 67663 Kaiserslautern Deutschland
| | - D. Budker
- Helmholtz Institute Mainz GSI Helmholtzzentrum für Schwerionenforschung 64291 Darmstadt Deutschland
- Johannes Gutenberg University 55090 Mainz Deutschland
| | - G. Buntkowsky
- Eduard-Zintl-Institute for Inorganic Chemistry and Physical, Chemistry Technical University Darmstadt 64287 Darmstadt Deutschland
| | - S. Knecht
- Eduard-Zintl-Institute for Inorganic Chemistry and Physical, Chemistry Technical University Darmstadt 64287 Darmstadt Deutschland
| |
Collapse
|
24
|
Blanchard JW, Budker D, Trabesinger A. Lower than low: Perspectives on zero- to ultralow-field nuclear magnetic resonance. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 323:106886. [PMID: 33518173 DOI: 10.1016/j.jmr.2020.106886] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 06/12/2023]
Abstract
The less-traveled low road in nuclear magnetic resonance is discussed, honoring the contributions of Prof. Bernhard Blümich, aspiring towards reaching 'a new low.' A history of the subject and its current status are briefly reviewed, followed by an effort to prophesy possible directions for future developments.
Collapse
Affiliation(s)
- John W Blanchard
- Helmholtz-Institut Mainz, GSI Helmholtzzentrum für Schwerionenforschung, 55128 Mainz, Germany.
| | - Dmitry Budker
- Helmholtz-Institut Mainz, GSI Helmholtzzentrum für Schwerionenforschung, 55128 Mainz, Germany; Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany; Department of Physics, University of California, Berkeley, CA 94720-7300, USA
| | | |
Collapse
|
25
|
Bussandri S, Acosta RH, Buljubasich L. Radiofrequency encoded Only Parahydrogen SpectroscopY. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 323:106894. [PMID: 33387958 DOI: 10.1016/j.jmr.2020.106894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/08/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
A new pulse sequence aimed to filter out NMR signals coming from thermally polarized protons in PHIP experiments based on the OPSY pulse sequence (Only Parahydrogen SpectroscopY) is presented. In analogy to OPSY, which removes thermal polarization by using a pair of magnetic field gradient pulses with an intensity ratio 1:2 and equal duration, the same effect can be achieved using inhomogeneous radiofrequency fields. The spatial dependence of the radiofrequency field is used to control the Hamiltonian, which results in an effective suppression of thermal contributions in the NMR signal, while PHIP originated signals remain unmodified. A theoretical model for the radiofrequency encoded only parahydrogen (REOPSY) sequence is presented along with an experimental implementation on a birdcage coil in a 7 T magnetic field. The control level achieved by this strategy allows the inclusion of a long train of refocusing pulses. Therefore, the new sequence can be combined with the parahydrogen discriminated PHIP (PhD-PHIP) pulse sequence as a detection block to improve sensitivity and resolution in a single-scan experiment. Experiments with REOPSY and REOPSY+PhD-PHIP are presented in thermally and hyperpolarized samples.
Collapse
Affiliation(s)
- S Bussandri
- Universidad Nacional de Córdoba, Facultad de Matemática, Astronomía, Física y Computación, Córdoba, Argentina; CONICET, Instituto de Física Enrique Gaviola (IFEG), Córdoba, Argentina
| | - R H Acosta
- Universidad Nacional de Córdoba, Facultad de Matemática, Astronomía, Física y Computación, Córdoba, Argentina; CONICET, Instituto de Física Enrique Gaviola (IFEG), Córdoba, Argentina
| | - L Buljubasich
- Universidad Nacional de Córdoba, Facultad de Matemática, Astronomía, Física y Computación, Córdoba, Argentina; CONICET, Instituto de Física Enrique Gaviola (IFEG), Córdoba, Argentina.
| |
Collapse
|
26
|
Li J, Šimek H, Ilioae D, Jung N, Bräse S, Zappe H, Dittmeyer R, Ladewig BP. In situ sensors for flow reactors – a review. REACT CHEM ENG 2021. [DOI: 10.1039/d1re00038a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A comprehensive review on integrating microfluidic reactors with in situ sensors for reaction probing of chemical transformation.
Collapse
Affiliation(s)
- Jun Li
- Institute for Micro Process Engineering (IMVT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany
| | - Helena Šimek
- Institute of Biological and Chemical Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany
| | - David Ilioae
- Gisela and Erwin Sick Laboratory for Micro-optics, Department of Microsystems Engineering, University of Freiburg, Germany
| | - Nicole Jung
- Institute of Biological and Chemical Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany
| | - Stefan Bräse
- Institute of Biological and Chemical Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany
| | - Hans Zappe
- Gisela and Erwin Sick Laboratory for Micro-optics, Department of Microsystems Engineering, University of Freiburg, Germany
| | - Roland Dittmeyer
- Institute for Micro Process Engineering (IMVT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany
| | - Bradley P. Ladewig
- Institute for Micro Process Engineering (IMVT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany
| |
Collapse
|
27
|
Bengs C, Dagys L, Levitt MH. Robust transformation of singlet order into heteronuclear magnetisation over an extended coupling range. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2020; 321:106850. [PMID: 33190080 DOI: 10.1016/j.jmr.2020.106850] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/06/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
Several important NMR procedures involve the conversion of nuclear singlet order into heteronuclear magnetisation, including some experiments involving long-lived spin states and parahydrogen-induced hyperpolarisation. However most existing sequences suffer from a limited range of validity or a lack of robustness against experimental imperfections. We present a new radio-frequency scheme for the transformation of the singlet order of a chemically-equivalent homonuclear spin pair into the magnetisation of a heteronuclear coupling partner. The proposed radio-frequency (RF) scheme is called gS2hM (generalized singlet-to-heteronuclear magnetisation) and has good compensation for common experimental errors such as RF and static field inhomogeneities. The sequence retains its robustness for homonuclear spin pairs in the intermediate coupling regime, characterised by the in-pair coupling being of the same order of magnitude as the difference between the out-of-pair couplings. This is a substantial improvement to the validity range of existing sequences. Analytical solutions for the pulse sequence parameters are provided. Experimental results are shown for two test cases.
Collapse
Affiliation(s)
- Christian Bengs
- School of Chemistry, Southampton University, University Road, SO17 1BJ, UK.
| | - Laurynas Dagys
- School of Chemistry, Southampton University, University Road, SO17 1BJ, UK.
| | - Malcolm H Levitt
- School of Chemistry, Southampton University, University Road, SO17 1BJ, UK.
| |
Collapse
|
28
|
Burueva DB, Eills J, Blanchard JW, Garcon A, Picazo‐Frutos R, Kovtunov KV, Koptyug IV, Budker D. Chemical Reaction Monitoring using Zero‐Field Nuclear Magnetic Resonance Enables Study of Heterogeneous Samples in Metal Containers. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Dudari B. Burueva
- Laboratory of Magnetic Resonance Microimaging International Tomography Center 630090 Novosibirsk Russia
- Novosibirsk State University 630090 Novosibirsk Russia
| | - James Eills
- Helmholtz Institute Mainz GSI Helmholtzzentrum für Schwerionenforschung GmbH 55128 Mainz Germany
- Johannes Gutenberg University 55090 Mainz Germany
| | - John W. Blanchard
- Helmholtz Institute Mainz GSI Helmholtzzentrum für Schwerionenforschung GmbH 55128 Mainz Germany
| | - Antoine Garcon
- Helmholtz Institute Mainz GSI Helmholtzzentrum für Schwerionenforschung GmbH 55128 Mainz Germany
- Johannes Gutenberg University 55090 Mainz Germany
| | - Román Picazo‐Frutos
- Helmholtz Institute Mainz GSI Helmholtzzentrum für Schwerionenforschung GmbH 55128 Mainz Germany
- Johannes Gutenberg University 55090 Mainz Germany
| | - Kirill V. Kovtunov
- Laboratory of Magnetic Resonance Microimaging International Tomography Center 630090 Novosibirsk Russia
- Novosibirsk State University 630090 Novosibirsk Russia
| | - Igor V. Koptyug
- Laboratory of Magnetic Resonance Microimaging International Tomography Center 630090 Novosibirsk Russia
- Novosibirsk State University 630090 Novosibirsk Russia
| | - Dmitry Budker
- Helmholtz Institute Mainz GSI Helmholtzzentrum für Schwerionenforschung GmbH 55128 Mainz Germany
- Johannes Gutenberg University 55090 Mainz Germany
- University of California Berkeley Berkeley CA 94720 USA
| |
Collapse
|
29
|
Burueva DB, Eills J, Blanchard JW, Garcon A, Picazo‐Frutos R, Kovtunov KV, Koptyug IV, Budker D. Chemical Reaction Monitoring using Zero-Field Nuclear Magnetic Resonance Enables Study of Heterogeneous Samples in Metal Containers. Angew Chem Int Ed Engl 2020; 59:17026-17032. [PMID: 32510813 PMCID: PMC7540358 DOI: 10.1002/anie.202006266] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Indexed: 12/28/2022]
Abstract
We demonstrate that heterogeneous/biphasic chemical reactions can be monitored with high spectroscopic resolution using zero-field nuclear magnetic resonance spectroscopy. This is possible because magnetic susceptibility broadening is negligible at ultralow magnetic fields. We show the two-step hydrogenation of dimethyl acetylenedicarboxylate with para-enriched hydrogen gas in conventional glass NMR tubes, as well as in a titanium tube. The low frequency zero-field NMR signals ensure that there is no significant signal attenuation arising from shielding by the electrically conductive sample container. This method paves the way for in situ monitoring of reactions in complex heterogeneous multiphase systems and in reactors made of conductive materials while maintaining resolution and chemical specificity.
Collapse
Affiliation(s)
- Dudari B. Burueva
- Laboratory of Magnetic Resonance MicroimagingInternational Tomography Center630090NovosibirskRussia
- Novosibirsk State University630090NovosibirskRussia
| | - James Eills
- Helmholtz Institute MainzGSI Helmholtzzentrum für Schwerionenforschung GmbH55128MainzGermany
- Johannes Gutenberg University55090MainzGermany
| | - John W. Blanchard
- Helmholtz Institute MainzGSI Helmholtzzentrum für Schwerionenforschung GmbH55128MainzGermany
| | - Antoine Garcon
- Helmholtz Institute MainzGSI Helmholtzzentrum für Schwerionenforschung GmbH55128MainzGermany
- Johannes Gutenberg University55090MainzGermany
| | - Román Picazo‐Frutos
- Helmholtz Institute MainzGSI Helmholtzzentrum für Schwerionenforschung GmbH55128MainzGermany
- Johannes Gutenberg University55090MainzGermany
| | - Kirill V. Kovtunov
- Laboratory of Magnetic Resonance MicroimagingInternational Tomography Center630090NovosibirskRussia
- Novosibirsk State University630090NovosibirskRussia
| | - Igor V. Koptyug
- Laboratory of Magnetic Resonance MicroimagingInternational Tomography Center630090NovosibirskRussia
- Novosibirsk State University630090NovosibirskRussia
| | - Dmitry Budker
- Helmholtz Institute MainzGSI Helmholtzzentrum für Schwerionenforschung GmbH55128MainzGermany
- Johannes Gutenberg University55090MainzGermany
- University of California BerkeleyBerkeleyCA94720USA
| |
Collapse
|
30
|
Davoodi H, Nordin N, Bordonali L, Korvink JG, MacKinnon N, Badilita V. An NMR-compatible microfluidic platform enabling in situ electrochemistry. LAB ON A CHIP 2020; 20:3202-3212. [PMID: 32734975 DOI: 10.1039/d0lc00364f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Combining microfluidic devices with nuclear magnetic resonance (NMR) has the potential of unlocking their vast sample handling and processing operation space for use with the powerful analytics provided by NMR. One particularly challenging class of integrated functional elements from the perspective of NMR are conductive structures. Metallic electrodes could be used for electrochemical sample interaction for example, yet they can cause severe NMR spectral and SNR degradation. These issues are more entangled at the micro-scale since the distorted volume occupies a higher ratio of the sample volume. In this study, a combination of simulation and experimental validation was used to identify an electrode geometry that, in terms of NMR spectral parameters, performs as well as for the case when no electrodes are present. By placing the metal tracks in the side-walls of a microfluidic channel, we found that NMR RF excitation performance was actually enhanced, without compromising B0 homogeneity. Monitoring in situ deposition of chitosan in the microfluidic platform is presented as a proof-of-concept demonstration of NMR characterisation of an electrochemical process.
Collapse
Affiliation(s)
- Hossein Davoodi
- Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| | - Nurdiana Nordin
- Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany. and Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Lorenzo Bordonali
- Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| | - Jan G Korvink
- Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| | - Neil MacKinnon
- Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| | - Vlad Badilita
- Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
31
|
Sahin Solmaz N, Grisi M, Matheoud AV, Gualco G, Boero G. Single-Chip Dynamic Nuclear Polarization Microsystem. Anal Chem 2020; 92:9782-9789. [PMID: 32530638 PMCID: PMC9559634 DOI: 10.1021/acs.analchem.0c01221] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
![]()
Integration
of the sensitivity-relevant electronics of nuclear
magnetic resonance (NMR) and electron spin resonance (ESR) spectrometers
on a single chip is a promising approach to improve the limit of detection,
especially for samples in the nanoliter and subnanoliter range. Here,
we demonstrate the cointegration on a single silicon chip of the front-end
electronics of NMR and ESR detectors. The excitation/detection planar
spiral microcoils of the NMR and ESR detectors are concentric and
interrogate the same sample volume. This combination of sensors allows
one to perform dynamic nuclear polarization (DNP) experiments using
a single-chip-integrated microsystem having an area of about 2 mm2. In particular, we report 1H DNP-enhanced NMR
experiments on liquid samples having a volume of about 1 nL performed
at 10.7 GHz(ESR)/16 MHz(NMR). NMR enhancements as large as 50 are
achieved on TEMPOL/H2O solutions at room temperature. The
use of state-of-the-art submicrometer integrated circuit technologies
should allow the future extension of the single-chip DNP microsystem
approach proposed here up the THz(ESR)/GHz(NMR) region, corresponding
to the strongest static magnetic fields currently available. Particularly
interesting is the possibility to create arrays of such sensors for
parallel DNP-enhanced NMR spectroscopy of nanoliter and subnanoliter
samples.
Collapse
Affiliation(s)
- Nergiz Sahin Solmaz
- School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Marco Grisi
- School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Alessandro V. Matheoud
- School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Gabriele Gualco
- School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Giovanni Boero
- School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
32
|
Berthault P, Boutin C, Martineau-Corcos C, Carret G. Use of dissolved hyperpolarized species in NMR: Practical considerations. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2020; 118-119:74-90. [PMID: 32883450 DOI: 10.1016/j.pnmrs.2020.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 03/20/2020] [Accepted: 03/20/2020] [Indexed: 06/11/2023]
Abstract
Hyperpolarization techniques that can transiently boost nuclear spin polarization are generally carried out at low temperature - as in the case of dynamic nuclear polarization - or at high temperature in the gaseous state - as in the case of optically pumped noble gases. This review aims at describing the various issues and challenges that have been encountered during dissolution of hyperpolarized species, and solutions to these problems that have been or are currently proposed in the literature. During the transport of molecules from the polarizer to the NMR detection region, and when the hyperpolarized species or a precursor of hyperpolarization (e.g. parahydrogen) is introduced into the solution of interest, several obstacles need to be overcome to keep a high level of final magnetization. The choice of the magnetic field, the design of the dissolution setup, and ways to isolate hyperpolarized compounds from relaxation agents will be presented. Due to the non-equilibrium character of the hyperpolarization, new NMR pulse sequences that perform better than the classical ones will be described. Finally, three applications in the field of biology will be briefly mentioned.
Collapse
Affiliation(s)
- Patrick Berthault
- NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France.
| | - Céline Boutin
- NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France
| | - Charlotte Martineau-Corcos
- ILV, UMR CNRS 8180, Université de Versailles Saint Quentin, 45 avenue des Etats-Unis, 78035 Versailles Cedex, France
| | - Guillaume Carret
- Cortecnet, 15 rue des tilleuls, 78960 Voisins-le-Bretonneux, France
| |
Collapse
|
33
|
Pravdivtsev AN, Sönnichsen FD, Hövener J. Continuous Radio Amplification by Stimulated Emission of Radiation using Parahydrogen Induced Polarization (PHIP-RASER) at 14 Tesla. Chemphyschem 2020; 21:667-672. [PMID: 31898393 PMCID: PMC7187451 DOI: 10.1002/cphc.201901056] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/21/2019] [Indexed: 01/20/2023]
Abstract
Nuclear Magnetic Resonance (NMR) is an intriguing quantum-mechanical effect that is used for routine medical diagnostics and chemical analysis alike. Numerous advancements have contributed to the success of the technique, including hyperpolarized contrast agents that enable real-time imaging of metabolism in vivo. Herein, we report the finding of an NMR radio amplification by stimulated emission of radiation (RASER), which continuously emits 1 H NMR signal for more than 10 min. Using parahydrogen induced hyperpolarization (PHIP) with 50 % para-hydrogen, we demonstrated the effect at 600 MHz but expect that it is functional across a wide range of frequencies, e.g. 101 -103 MHz. PHIP-RASER occurs spontaneously or can be triggered with a standard NMR excitation. Full chemical shift resolution was maintained, and a linewidth of 0.6 ppb was achieved. The effect was reproduced by simulations using a weakly coupled, two spin- 1 / 2 system. All devices used were standard issue, such that the effect can be reproduced by any NMR lab worldwide with access to liquid nitrogen for producing parahydrogen.
Collapse
Affiliation(s)
- Andrey N. Pravdivtsev
- Section Biomedical Imaging Molecular Imaging North Competence Center (MOIN CC) Department of Radiology and Neuroradiology University Medical Center KielKiel UniversityAm Botanischen Garten 1424114KielGermany
| | - Frank D. Sönnichsen
- Otto Diels Institute for Organic ChemistryKiel UniversityOtto Hahn Platz 524098KielGermany
| | - Jan‐Bernd Hövener
- Section Biomedical Imaging Molecular Imaging North Competence Center (MOIN CC) Department of Radiology and Neuroradiology University Medical Center KielKiel UniversityAm Botanischen Garten 1424114KielGermany
| |
Collapse
|
34
|
TomHon P, Akeroyd E, Lehmkuhl S, Chekmenev EY, Theis T. Automated pneumatic shuttle for magnetic field cycling and parahydrogen hyperpolarized multidimensional NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2020; 312:106700. [PMID: 32092678 PMCID: PMC7450533 DOI: 10.1016/j.jmr.2020.106700] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/31/2020] [Accepted: 02/03/2020] [Indexed: 05/06/2023]
Abstract
We present a simple-to-implement pneumatic sample shuttle for automation of magnetic field cycling and multidimensional NMR. The shuttle system is robust allowing automation of hyperpolarized and non-hyperpolarized measurements, including variable field lifetime measurements, SABRE polarization optimization, and SABRE multidimensional experiments. Relaxation-protected singlet states are evaluated by variable-field T1 and TS measurements. Automated shuttling facilitates characterization of hyperpolarization dynamics, field dependence and polarization buildup rates. Furthermore, reproducible hyperpolarization levels at every shuttling event enables automated 2D hyperpolarized NMR, including the first inverse 15N/1H HSQC. We uncover binding mechanisms of the catalytic species through cross peaks that are not accessible in standard one-dimensional hyperpolarized experiments. The simple design of the shuttling setup interfaced with standard TTL signals allows easy adaptation to any standard NMR magnet.
Collapse
Affiliation(s)
- Patrick TomHon
- Department of Chemistry, North Carolina State University, Raleigh, NC 27606, United States
| | - Evan Akeroyd
- Department of Chemistry, North Carolina State University, Raleigh, NC 27606, United States
| | - Sören Lehmkuhl
- Department of Chemistry, North Carolina State University, Raleigh, NC 27606, United States
| | - Eduard Y Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, MI 48202, United States; Russian Academy of Sciences, Leninskiy Prospekt 14, 119991 Moscow, Russia
| | - Thomas Theis
- Department of Chemistry, North Carolina State University, Raleigh, NC 27606, United States; Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, and North Carolina State University, Raleigh, NC, United States.
| |
Collapse
|
35
|
Tijssen KCH, van Weerdenburg BJA, Zhang H, Janssen JWG, Feiters MC, van Bentum PJM, Kentgens APM. Monitoring Heterogeneously Catalyzed Hydrogenation Reactions at Elevated Pressures Using In-Line Flow NMR. Anal Chem 2019; 91:12636-12643. [PMID: 31508941 PMCID: PMC6796828 DOI: 10.1021/acs.analchem.9b00895] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
We present a novel setup that can be used for the in-line monitoring of solid-catalyzed gas-liquid reactions. The method combines the high sensitivity and resolution of a stripline NMR detector with a microfluidic network that can withstand elevated pressures. In our setup we dissolve hydrogen gas in the solvent, then flow it with the added substrate through a catalyst cartridge, and finally flow the reaction mixture directly through the stripline NMR detector. The method is quantitative and can be used to determine the solubility of hydrogen gas in liquids; it allows in-line monitoring of hydrogenation reactions and can be used to determine the reaction kinetics of these reactions. In this work, as proof of concept we demonstrate the optimization of the Pd-catalyzed hydrogenation reactions of styrene, phenylacetylene, cyclohexene, and hex-5-en-2-one in a microfluidic context.
Collapse
Affiliation(s)
| | | | - Hainan Zhang
- Mesoscale Chemical Systems, Mesa+ Institute for Nanotechnology , University of Twente , Enschede , The Netherlands
| | | | | | | | | |
Collapse
|