1
|
Wu Y, Liu D, Chu W, Wang B, Vasenko AS, Prezhdo OV. Point defects at grain boundaries can create structural instabilities and persistent deep traps in metal halide perovskites. NANOSCALE 2024. [PMID: 39660364 DOI: 10.1039/d4nr03424d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Metal halide perovskites (MHPs) have attracted strong interest for a variety of applications due to their low cost and excellent performance, attributed largely to favorable defect properties. MHPs exhibit complex dynamics of charges and ions that are coupled in unusual ways. Focusing on a combination of two common MHP defects, i.e., a grain boundary (GB) and a Pb interstitial, we developed a machine learning model of the interaction potential, and studied the structural and electronic dynamics on a nanosecond timescale. We demonstrate that point defects at MHP GBs can create new chemical species, such as Pb-Pb-Pb trimers, that are less likely to occur with point defects in bulk. The formed species create structural instabilities in the GB and prevent it from healing towards the pristine structure. Pb-Pb-Pb trimers produce deep trap states that can persist for hundreds of picoseconds, having a strong negative influence on the charge carrier mobility and lifetime. Such stable chemical defects at MHP GBs can only be broken by chemical means, e.g., the introduction of excess halide, highlighting the importance of proper defect passivation strategies. Long-lived GB structures with both deep and shallow trap states are found, rationalizing the contradictory statements in the literature regarding the influence of MHP GBs on performance.
Collapse
Affiliation(s)
- Yifan Wu
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA.
| | | | - Weibin Chu
- Key Laboratory of Computational Physical Sciences (Ministry of Education), Institute of Computational Physical Sciences, Fudan University, Shanghai 200433, China
| | - Bipeng Wang
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA.
| | - Andrey S Vasenko
- HSE University, 101000 Moscow, Russia
- Donostia International Physics Center (DIPC), 20018 San Sebastián-Donostia, Euskadi, Spain
| | - Oleg V Prezhdo
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA.
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
2
|
Wang Y, Cui BB, Zhao Y, Lin T, Li J. Investigation of perovskite materials for solar cells using scanning tunneling microscopy. Phys Chem Chem Phys 2024; 26:26192-26208. [PMID: 39387127 DOI: 10.1039/d4cp02010c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The issue of energy scarcity has become more prominent due to the recent scientific and technological advancements. Consequently, there is an urgent need for research on sustainable and renewable resources. Solar energy, in particular, has emerged as a highly promising option because of its pollution-free and environment-friendly characteristics. Among the various solar energy technologies, perovskite solar cells have attracted much attention due to their lower cost and higher photoelectric conversion efficiency (PCE). However, the inherent instability of perovskite materials hinders the commercialization of such devices. The utilization of scanning tunneling microscopy/spectroscopy (STM/STS) can provide valuable insights into the fundamental properties of different perovskite materials at the atomic scale, which is crucial for addressing this challenge. In this review, we present the recent research progress of STM/STS analysis applied to various perovskites for solar cells, including halide perovskites, two-dimensional Ruddlesden-Popper perovskites, and oxide perovskites. This comprehensive overview aims to inspire new ideas and strategies for optimizing solar cells.
Collapse
Affiliation(s)
- Yule Wang
- Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing 100081, China.
| | - Bin-Bin Cui
- Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing 100081, China.
| | - Yiming Zhao
- Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing 100081, China.
| | - Tao Lin
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China.
| | - Juan Li
- Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing 100081, China.
- Beijing Institute of Technology (Zhuhai), Beijing Institute of Technology, Zhuhai 519088, China
- Department of Materials Science, Shenzhen MSU-BIT University, Shenzhen 518172, China
| |
Collapse
|
3
|
Wang B, Liu D, Wu Y, Vasenko AS, Prezhdo OV. Identifying Rare Events in Quantum Molecular Dynamics of Nanomaterials with Outlier Detection Indices. J Phys Chem Lett 2024; 15:10384-10391. [PMID: 39374342 PMCID: PMC11492377 DOI: 10.1021/acs.jpclett.4c02586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/09/2024]
Abstract
Nanoscale and condensed matter systems evolve on multiple length- and time-scales, and rare events such as local phase transformation, ion segregation, defect migration, interface reconstruction, and grain boundary sliding can have a profound influence on material properties. We demonstrate how outlier detection indices can be used to identify rare events in machine-learning based, high-dimensional molecular dynamics (MD) simulations. Designed to order data-points from typical to untypical, the indices enable one to capture atomic events that are hard to detect otherwise. We demonstrate the approach with a nanosecond MD simulation of a grain boundary in a metal halide perovskite that is extensively studied for solar energy and optoelectronic applications. The method captures the initial grain boundary sliding and a spontaneous fluctuation half a nanosecond later, both events giving rise to persistent deep electronic trap states that impact charge carrier lifetime and transport and material performance. The approach offers a generalizable and simple method for identifying outlier events in complex condensed matter, molecular, and nanoscale systems.
Collapse
Affiliation(s)
- Bipeng Wang
- Department
of Chemical Engineering, University of Southern
California, Los Angeles, California 90089, United States
| | | | - Yifan Wu
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Andrey S. Vasenko
- HSE
University, 101000 Moscow, Russia
- Donostia
International Physics Center (DIPC), San Sebastián-Donostia, Euskadi 20018, Spain
| | - Oleg V. Prezhdo
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
- Department
of Physics and Astronomy, University of
Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
4
|
Kambhampati P. Unraveling the excitonics of light emission from metal-halide perovskite quantum dots. NANOSCALE 2024; 16:15033-15058. [PMID: 39052235 DOI: 10.1039/d4nr01481b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Metal halide semicondictor perovskites have been under intense investigation for their promise in light absorptive applications like photovoltaics. They have more recently experienced interest for their promise in light emissive applications. A key aspect of perovskites is their glassy, ionic lattice that exhibits dynamical disorder. One possible result of this dynamical disorder is their strong coupling between electronic and lattice degrees of freedom which may confer remarkable properties for light emission such as defect tolerance. How does the system, comprised of excitons, couple to the bath, comprised of lattice modes? How does this system-bath interaction give rise to novel light emissive properties and how do these properties give insight into the nature of these materials? We review recent work from this group in which time-resolved photoluminescence spectroscopy is used to reveal such insights. Based upon a fast time resolution of 3 ps, energy resolution, and temperature dependence, a wide variety of insights are gleaned. These insights include: lattice contributions to the emission linewidths, multiexciton formation, hot carrier cooling, excitonic fine structure, single dot superradiance, and a breakdown of the Condon approximation, all due to complex structural dynamics in these materials.
Collapse
|
5
|
Zhang Z, Liu S, Xiong Q. A-Site Cations Impact on Nonradiative Recombination, Mobility, and Defect Dynamics in Sn-Based Perovskites. J Phys Chem Lett 2024; 15:7659-7666. [PMID: 39037403 DOI: 10.1021/acs.jpclett.4c01952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Sn-based perovskites with different cations in the A-site exhibit distinct electronic structures and dynamic properties. By utilizing time-dependent density functional theory and nonadiabatic molecular dynamics, we demonstrate that larger FA cations decrease wave function overlap between initial and final states and slow down nuclear motion. In the case of FASnI3, this alteration decreases the nonadiabatic coupling and increases the nonradiative electron-hole recombination time by 130% and 76%, respectively, compared to CsSnI3 and MASnI3 (CH3NH3SnI3). Furthermore, A-site modification significantly improves electron mobility and changes the properties of defects in FASnI3 (HC(NH2)2SnI3), which achieves higher electron mobility through a polar optical phonon-dominated scattering mechanism and exhibits higher defect formation energy and migration barriers of A-site cations due to increased steric hindrance, relative to CsSnI3 and MASnI3. These results emphasize the critical function of A-site cation substitution in controlling nonradiative recombination dynamics, electron mobility, and defect characteristics in Sn-based perovskites and provide theoretical insights for the advancement of novel lead-free perovskite materials.
Collapse
Affiliation(s)
- Zhaosheng Zhang
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, P. R. China
| | - Sijia Liu
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, P. R. China
| | - Qing Xiong
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, P. R. China
| |
Collapse
|
6
|
Ma X, Fang WH, Long R, Prezhdo OV. Compression of Organic Molecules Coupled with Hydrogen Bonding Extends the Charge Carrier Lifetime in BA 2SnI 4. J Am Chem Soc 2024; 146:16314-16323. [PMID: 38812460 DOI: 10.1021/jacs.4c05191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Two-dimensional (2D) metal halide perovskites, such as BA2SnI4 (BA═CH3(CH2)3NH3), exhibit an enhanced charge carrier lifetime in experiments under strain. Experiments suggest that significant compression of the BA molecule, rather than of the inorganic lattice, contributes to this enhancement. To elucidate the underlying physical mechanism, we apply a moderate compressive strain to the entire system and subsequently introduce significant compression to the BA molecules. We then perform ab initio nonadiabatic molecular dynamics simulations of nonradiative electron-hole recombination. We observe that the overall lattice compression reduces atomic motions and decreases nonadiabatic coupling, thereby delaying electron-hole recombination. Additionally, compression of the BA molecules enhances hydrogen bonding between the BA molecules and iodine atoms, which lengthens the Sn-I bonds, distorts the [SnI6]4- octahedra, and suppresses atomic motions further, thus reducing nonadiabatic coupling. Also, the elongated Sn-I bonds and weakened antibonding interactions increase the band gap. Altogether, the compression delays the nonradiative electron-hole recombination by more than a factor of 3. Our simulations provide new and valuable physical insights into how compressive strain, accommodated primarily by the organic ligands, positively influences the optoelectronic properties of 2D layered halide perovskites, offering a promising pathway for further performance improvements.
Collapse
Affiliation(s)
- Xinbo Ma
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, P. R. China
| | - Wei-Hai Fang
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, P. R. China
| | - Run Long
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, P. R. China
| | - Oleg V Prezhdo
- University of Southern California, Los Angeles, California 90007, United States
| |
Collapse
|
7
|
Tan X, Feng Q, Nan G. Organic cations promote exciton dissociation in Ruddlesden-Popper lead iodide perovskites: a theoretical study. MATERIALS HORIZONS 2024; 11:2248-2257. [PMID: 38436053 DOI: 10.1039/d3mh01773g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Two-dimensional (2D) Ruddlesden-Popper perovskites (RPPs) are a class of quantum well (QW) materials showing large exciton binding energy owing to quantum confinement. The existence of localized edge states was proposed to accelerate exciton dissociation into long-lived charge carriers in 2D RPPs, but recent experimental reports suggested that highly efficient internal exciton dissociation is achievable in 2D RPPs despite the absence of edge states. Herein, we adopt first-principles calculations to unveil the physical origin of the high internal quantum efficiency in the bulk region of widely familiar (BA)2(MA)n-1PbnI3n+1 (BA = butylammonium; MA = methylammonium) materials. We discover that the dipolar nature of MA cations provides the driving force for the separation of photoexcited electron-hole pairs inside QWs as the inorganic layer thickens from n = 1 to n = 3. Concurrently, electronic coupling between organic spacer layers and QWs is enhanced in the energetically favorable configurations where MA cations orient with their CH3 groups towards the exterior PbI2 layers of QWs in the n = 3 structure. Consequently, hole delocalization is promoted along the out-of-plane direction of QWs, which in turn facilitates exciton dissociation into free charge carriers despite large exciton binding energy. Our simulations reveal that the hydrogen bonding between organic species (including both MA and BA cations) and iodine atoms, which is subtly interconnected, engineers the response of morphology in QWs and electronic interactions at organic-inorganic interfaces, providing novel insights for the exciton-free carrier behavior in the bulk area of 2D RPPs.
Collapse
Affiliation(s)
- Xiaohua Tan
- Department of Physics, Zhejiang Normal University, Jinhua, Zhejiang 321004, P. R. China.
| | - Qingjie Feng
- Department of Physics, Zhejiang Normal University, Jinhua, Zhejiang 321004, P. R. China.
| | - Guangjun Nan
- Department of Physics, Zhejiang Normal University, Jinhua, Zhejiang 321004, P. R. China.
- Zhejiang Institute of Photoelectronics & Zhejiang Institute for Advanced Light Source, Zhejiang Normal University, Jinhua, Zhejiang 321004, P. R. China
| |
Collapse
|
8
|
Zheng C, Zheng F. Carrier Transport in 2D Hybrid Organic-Inorganic Perovskites: The Role of Spacer Molecules. J Phys Chem Lett 2024; 15:1254-1263. [PMID: 38277685 DOI: 10.1021/acs.jpclett.3c03357] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Two-dimensional organic-inorganic hybrid perovskites (2D HOIPs) have been widely used for various optoelectronics applications owing to their excellent photoelectric properties. However, the selection of organic spacer cations is mostly qualitative without quantitative guidance. Meanwhile, the fundamental mechanism of the carrier transport across the organic spacer layer is still unclear. Here, by using the first-principles nonadiabatic molecular dynamics (NAMD) method, we have studied the transport process of excited carriers between 2D HOIPs separated by a spacer cation layer in real time at atomic levels. We find that the excited electrons and holes can transfer from single-inorganic-layer 2D HOIP to bi-inorganic-layer 2D HOIP on a subpicosecond to picosecond scale. Moreover, we have developed a new method to capture the electron-hole interaction in the frame of NAMD. This work provides a promising direction to design new materials toward high-performance optoelectronics.
Collapse
Affiliation(s)
- Caihong Zheng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Fan Zheng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
9
|
Li W, Giannini S, Quarti C, Hou Z, Prezhdo OV, Beljonne D. Interlayer Charge Transport in 2D Lead Halide Perovskites from First Principles. J Chem Theory Comput 2023; 19:9403-9415. [PMID: 38048307 DOI: 10.1021/acs.jctc.3c00904] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
We report on the implementation of a versatile projection-operator diabatization approach to calculate electronic coupling integrals in layered periodic systems. The approach is applied to model charge transport across the saturated organic spacers in two-dimensional (2D) lead halide perovskites. The calculations yield out-of-plane charge transfer rates that decay exponentially with the increasing length of the alkyl chain, range from a few nanoseconds to milliseconds, and are supportive of a hopping mechanism. Most importantly, we show that the charge carriers strongly couple to distortions of the Pb-I framework and that accounting for the associated nonlocal dynamic disorder increases the thermally averaged interlayer rates by a few orders of magnitude compared to the frozen-ion 0 K-optimized structure. Our formalism provides the first comprehensive insight into the role of the organic spacer cation on vertical transport in 2D lead halide perovskites and can be readily extended to functional π-conjugated spacers, where we expect the improved energy alignment with the inorganic layout to speed up the charge transfer between the semiconducting layers.
Collapse
Affiliation(s)
- Wei Li
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, China
- Laboratory for Chemistry of Novel Materials, University of Mons, Place du Parc, 20, B-7000 Mons, Belgium
| | - Samuele Giannini
- Laboratory for Chemistry of Novel Materials, University of Mons, Place du Parc, 20, B-7000 Mons, Belgium
| | - Claudio Quarti
- Laboratory for Chemistry of Novel Materials, University of Mons, Place du Parc, 20, B-7000 Mons, Belgium
| | - Zhufeng Hou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Oleg V Prezhdo
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - David Beljonne
- Laboratory for Chemistry of Novel Materials, University of Mons, Place du Parc, 20, B-7000 Mons, Belgium
| |
Collapse
|
10
|
Mondal S, Chowdhury U, Dey S, Habib M, Mora Perez C, Frauenheim T, Sarkar R, Pal S, Prezhdo OV. Controlling Charge Carrier Dynamics in Porphyrin Nanorings by Optically Active Templates. J Phys Chem Lett 2023; 14:11384-11392. [PMID: 38078872 PMCID: PMC10749466 DOI: 10.1021/acs.jpclett.3c03304] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/01/2023] [Accepted: 12/01/2023] [Indexed: 12/22/2023]
Abstract
Understanding the dynamics of photogenerated charge carriers is essential for enhancing the performance of solar and optoelectronic devices. Using atomistic quantum dynamics simulations, we demonstrate that a short π-conjugated optically active template can be used to control hot carrier relaxation, charge carrier separation, and carrier recombination in light-harvesting porphyrin nanorings. Relaxation of hot holes is slowed by 60% with an optically active template compared to that with an analogous optically inactive template. Both systems exhibit subpicosecond electron transfer from the photoactive core to the templates. Notably, charge recombination is suppressed 6-fold by the optically active template. The atomistic time-domain simulations rationalize these effects by the extent of electron and hole localization, modification of the density of states, participation of distinct vibrational motions, and changes in quantum coherence. Extension of the hot carrier lifetime and reduction of charge carrier recombination, without hampering charge separation, demonstrate a strategy for enhancing efficiencies of energy materials with optically active templates.
Collapse
Affiliation(s)
- Shrabanti Mondal
- Department
of Chemistry, University of Gour Banga, Malda 732103, India
| | - Uttam Chowdhury
- Department
of Chemistry, University of Gour Banga, Malda 732103, India
| | - Subhajit Dey
- Department
of Chemistry, University of Gour Banga, Malda 732103, India
| | - Md Habib
- Department
of Chemistry, University of Gour Banga, Malda 732103, India
- Department
of Chemistry, Sripat Singh College, Jiaganj 742122, India
| | - Carlos Mora Perez
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Thomas Frauenheim
- Bremen
Center
for Computational Materials Science, Universität
Bremen, Bremen 28359, Germany
- Beijing
Computational Science Research Center, Beijing 100193, China
- Shenzhen
JL Computational Science and Applied Research Institute, Shenzhen 518109, China
| | - Ritabrata Sarkar
- Department
of Chemistry, University of Gour Banga, Malda 732103, India
- Bremen
Center
for Computational Materials Science, Universität
Bremen, Bremen 28359, Germany
| | - Sougata Pal
- Department
of Chemistry, University of Gour Banga, Malda 732103, India
| | - Oleg V. Prezhdo
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
- Department
of Physics and Astronomy, University of
Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
11
|
Strandell D, Wu Y, Mora-Perez C, Prezhdo O, Kambhampati P. Breaking the Condon Approximation for Light Emission from Metal Halide Perovskite Nanocrystals. J Phys Chem Lett 2023; 14:11281-11285. [PMID: 38061060 DOI: 10.1021/acs.jpclett.3c02826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
The idea that the electronic transition dipole moment does not depend upon nuclear excursions is the Condon approximation and is central to most spectroscopy, especially in the solid state. We show a strong breakdown of the Condon approximation in the time-resolved photoluminescence from CsPbBr3 metal halide perovskite semiconductor nanocrystals. Experiments reveal that the electronic transition dipole moment increases on the 30 ps time scale due to structural dynamics in the lattice. Ab initio molecular dynamics calculations quantitatively reproduce experiments by considering excitation-induced structural dynamics.
Collapse
Affiliation(s)
- Dallas Strandell
- Department of Chemistry, McGill University, Montreal, QC H3A 0G4, Canada
| | - Yifan Wu
- Department of Chemistry, University of Southern California, Los Angeles, California 90007, United States
| | - Carlos Mora-Perez
- Department of Chemistry, University of Southern California, Los Angeles, California 90007, United States
| | - Oleg Prezhdo
- Department of Chemistry, University of Southern California, Los Angeles, California 90007, United States
| | | |
Collapse
|
12
|
Lu TF, Chu W, Agrawal S, Zhang Z, Prezhdo OV. Lattice Distortion and Low-Frequency Anharmonic Phonons Suppress Charge Recombination in Lead Halide Perovskites upon Pseudohalide Doping: Time-Domain Ab Initio Analysis. J Phys Chem Lett 2023; 14:10685-10692. [PMID: 37988630 PMCID: PMC10694819 DOI: 10.1021/acs.jpclett.3c02850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/23/2023]
Abstract
Perovskite solar cells have witnessed a surge in interest as a promising technology for low-cost, high-efficiency photovoltaics with certified power conversion efficiencies beyond 25%. However, their commercial development is hindered by poor stability and nonradiative losses that restrict their approach to the theoretical efficiency limit. Using ab initio nonadiabatic molecular dynamics, we demonstrate that nonradiative charge recombination is suppressed when the iodide in formamidinium lead iodide (FAPbI3) is partially replaced with pseudohalide anions (SCN-, BF4-, and PF6-). The replacement breaks the symmetry of the system and creates local structural distortion and dynamic disorder, decreasing electron-hole overlap and nonadiabatic electron-vibrational coupling. The charge carrier lifetime is found to increase with increased structural distortion and is the longest for PF6-. This work is fundamentally relevant to the design of high-performance perovskite materials for optoelectronic applications.
Collapse
Affiliation(s)
- Teng-Fei Lu
- School
of Materials Science and Engineering, Dalian
Jiaotong University, Dalian 116028, Liaoning, China
| | - Weibin Chu
- Key
Laboratory of Computational Physical Sciences (Ministry of Education),
Institute of Computational Physical Sciences, Fudan University, Shanghai 200433, China
| | - Sraddha Agrawal
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Zhihua Zhang
- School
of Materials Science and Engineering, Dalian
Jiaotong University, Dalian 116028, Liaoning, China
| | - Oleg V. Prezhdo
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
13
|
Ma X, Long R. The sp 3 Defect Decreases Charge Carrier Lifetime in (8,3) Single-Walled Carbon Nanotubes. J Phys Chem Lett 2023; 14:10242-10248. [PMID: 37937588 DOI: 10.1021/acs.jpclett.3c02923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
A recent experimental approach introduces sp3 defects into single-walled carbon nanotubes (SWNTs) through controlled functionalization with guanine, resulting in a decrease in charge carrier lifetime. However, the physical mechanism behind this phenomenon remains unclear. We employ nonadiabatic molecular dynamics to systematically model the nonradiative recombination process of electron-hole pairs in SWNTs with sp3 defects generated by a guanine molecule. We demonstrate that the introduction of sp3 defects creates an overlapping channel between the highest occupied (HOMO) and lowest unoccupied molecular orbital (LUMO), significantly enhancing the nonadiabatic (NA) coupling and leading to a 4.7-fold acceleration in charge carrier recombination compared to defect-free SWNTs. The charge carrier recombination slows significantly at a lower temperature (50 K) due to the weakening of the NA coupling. Our results rationalize the accelerated recombination of charge carriers in SWNTs with sp3 defects in experiments and contribute to a deeper understanding of the carrier dynamics in SWNTs.
Collapse
Affiliation(s)
- Xinbo Ma
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, P. R. China
| | - Run Long
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
14
|
Zhou JN, Cheng KQ, Zhang X, Yang S, Liu J, Li W, Li Q, Han J, Xie XY, Cui G. Mechanistic insights into photoinduced energy and charge transfer dynamics between magnesium-centered tetrapyrroles and carbon nanotubes. Phys Chem Chem Phys 2023; 25:30627-30635. [PMID: 37933177 DOI: 10.1039/d3cp04573k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Functionalizing single-walled carbon nanotubes (SWNTs) with light-harvesting molecules is a facile way to construct donor-acceptor nanoarchitectures with intriguing optoelectronic properties. Magnesium-centered bacteriochlorin (MgBC), chlorin (MgC), and porphyrin (MgP) are a series of tetrapyrrole macrocycles comprising a central metal and four coordinated aromatic or antiaromatic five-membered rings linked by methine units, which show excellent visible light absorption. To delineate the effects of the aromaticity of coordinated rings on the optoelectronic properties of the nanocomposites, the photoinduced energy and charge transfer dynamics between Mg-centered tetrapyrroles and SWNTs are explored. The results show that excited energy transfer (EET) can occur within MgP@SWNT ascribed to the stabilization of the highest occupied molecular orbital (HOMO) in MgP with the increase of aromatic coordinated rings, while only electron transfer can take place in MgBC@SWNT and MgC@SWNT. Non-adiabatic dynamics simulations demonstrate that electron and hole transfer from MgP to SWNT is asynchronous. The electron transfer is ultrafast with a timescale of ca. 50 fs. By contrast, the hole transfer is significantly suppressed, although it can be accelerated to some extent when using a lower excitation energy of 2.2 eV as opposed to 3.1 eV. Further analysis reveals that the large energy gaps between charge-donor and charge-acceptor states play a crucial role in regulating photoexcited state relaxation dynamics. Our theoretical insights elucidate the structure-functionality interrelations between Mg-centered tetrapyrroles and SWNTs and provide a comprehensive understanding of the underlying charge transfer mechanism within MgP@SWNT nanocomposites, which paves the way for the forthcoming development of SWNT-based photo-related functional materials with targeted applications.
Collapse
Affiliation(s)
- Jia-Ning Zhou
- School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China.
| | - Ke-Qin Cheng
- School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China.
| | - Xiaolong Zhang
- School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China.
| | - Shubin Yang
- School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China.
| | - Jie Liu
- School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China.
| | - Wenzuo Li
- School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China.
| | - Qingzhong Li
- School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China.
| | - Juan Han
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China.
| | - Xiao-Ying Xie
- School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China.
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China.
- Hefei National Laboratory, Hefei, 230088, China
| |
Collapse
|
15
|
Armstrong ZT, Forlano KM, Roy CR, Bohlmann Kunz M, Farrell K, Pan D, Wright JC, Jin S, Zanni MT. Spatial Heterogeneity of Biexcitons in Two-Dimensional Ruddlesden-Popper Lead Iodide Perovskites. J Am Chem Soc 2023; 145:18568-18577. [PMID: 37565990 DOI: 10.1021/jacs.3c05533] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Quantum confinement in two-dimensional (2D) Ruddlesden-Popper (RP) perovskites leads to the formation of stable quasi-particles, including excitons and biexcitons, the latter of which may enable lasing in these materials. Due to their hybrid organic-inorganic structures and the solution phase synthesis, microcrystals of 2D RP perovskites can be quite heterogeneous, with variations in excitonic and biexcitonic properties between crystals from the same synthesis and even within individual crystals. Here, we employ one- and two-quantum two-dimensional white-light microscopy to systematically study the spatial variations of excitons and biexcitons in microcrystals of a series of 2D RP perovskites BA2MAn-1PbnI3n+1 (n = 2-4, BA= butylammonium, MA = methylammonium). We find that the average biexciton binding energy of around 60 meV is essentially independent of the perovskite layer thickness (n). We also resolve spatial variations of the exciton and biexciton energies on micron length scales within individual crystals. By comparing the one-quantum and two-quantum spectra at each pixel, we conclude that biexcitons are more sensitive to their environments than excitons. These results shed new light on the ways disorder can modify the energetic landscape of excitons and biexcitons in RP perovskites and how biexcitons can be used as a sensitive probe of the microscopic environment of a semiconductor.
Collapse
Affiliation(s)
- Zachary T Armstrong
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Kristel M Forlano
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Chris R Roy
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Miriam Bohlmann Kunz
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Kieran Farrell
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Dongxu Pan
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - John C Wright
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Song Jin
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Martin T Zanni
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
16
|
Simbula A, Wu L, Pitzalis F, Pau R, Lai S, Liu F, Matta S, Marongiu D, Quochi F, Saba M, Mura A, Bongiovanni G. Exciton dissociation in 2D layered metal-halide perovskites. Nat Commun 2023; 14:4125. [PMID: 37433858 DOI: 10.1038/s41467-023-39831-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 06/29/2023] [Indexed: 07/13/2023] Open
Abstract
Layered 2D perovskites are making inroads as materials for photovoltaics and light emitting diodes, but their photophysics is still lively debated. Although their large exciton binding energies should hinder charge separation, significant evidence has been uncovered for an abundance of free carriers among optical excitations. Several explanations have been proposed, like exciton dissociation at grain boundaries or polaron formation, without clarifying yet if excitons form and then dissociate, or if the formation is prevented by competing relaxation processes. Here we address exciton stability in layered Ruddlesden-Popper PEA2PbI4 (PEA stands for phenethylammonium) both in form of thin film and single crystal, by resonant injection of cold excitons, whose dissociation is then probed with femtosecond differential transmission. We show the intrinsic nature of exciton dissociation in 2D layered perovskites, demonstrating that both 2D and 3D perovskites are free carrier semiconductors and their photophysics is described by a unique and universal framework.
Collapse
Affiliation(s)
- Angelica Simbula
- Dipartimento di Fisica, Università degli Studi di Cagliari, Monserrato, CA, I-09042, Italy.
| | - Luyan Wu
- Dipartimento di Fisica, Università degli Studi di Cagliari, Monserrato, CA, I-09042, Italy
| | - Federico Pitzalis
- Dipartimento di Fisica, Università degli Studi di Cagliari, Monserrato, CA, I-09042, Italy
| | - Riccardo Pau
- Dipartimento di Fisica, Università degli Studi di Cagliari, Monserrato, CA, I-09042, Italy
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 09747, AG, Groningen, The Netherlands
| | - Stefano Lai
- Dipartimento di Fisica, Università degli Studi di Cagliari, Monserrato, CA, I-09042, Italy
| | - Fang Liu
- School of Environmental Science and Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Selene Matta
- Dipartimento di Fisica, Università degli Studi di Cagliari, Monserrato, CA, I-09042, Italy
| | - Daniela Marongiu
- Dipartimento di Fisica, Università degli Studi di Cagliari, Monserrato, CA, I-09042, Italy
| | - Francesco Quochi
- Dipartimento di Fisica, Università degli Studi di Cagliari, Monserrato, CA, I-09042, Italy
| | - Michele Saba
- Dipartimento di Fisica, Università degli Studi di Cagliari, Monserrato, CA, I-09042, Italy.
| | - Andrea Mura
- Dipartimento di Fisica, Università degli Studi di Cagliari, Monserrato, CA, I-09042, Italy
| | - Giovanni Bongiovanni
- Dipartimento di Fisica, Università degli Studi di Cagliari, Monserrato, CA, I-09042, Italy
| |
Collapse
|
17
|
Shi R, Long R, Fang WH, Prezhdo OV. Rapid Interlayer Charge Separation and Extended Carrier Lifetimes due to Spontaneous Symmetry Breaking in Organic and Mixed Organic-Inorganic Dion-Jacobson Perovskites. J Am Chem Soc 2023; 145:5297-5309. [PMID: 36826471 DOI: 10.1021/jacs.2c12903] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Promising alternatives to three-dimensional perovskites, two-dimensional (2D) layered metal halide perovskites have proven their potential in optoelectronic applications due to improved photo- and chemical stability. Nevertheless, photovoltaic devices based on 2D perovskites suffer from poor efficiency owing to unfavorable charge carrier dynamics and energy losses. Focusing on the 2D Dion-Jacobson perovskite phase that is rapidly rising in popularity, we demonstrate that doping of complementary cations into the 3-(aminomethyl)piperidinium perovskite accelerates spontaneous charge separation and slows down charge recombination, both factors improving the photovoltaic performance. Employing ab initio nonadiabatic (NA) molecular dynamics combined with time-dependent density functional theory, we demonstrate that cesium doping broadens the bandgap by 0.4 eV and breaks structural symmetry. Assisted by thermal fluctuations, the symmetry breaking helps to localize electrons and holes in different layers and activates additional vibrational modes. As a result, the charge separation is accelerated. Simultaneously, the charge carrier lifetime grows due to shortened coherence time between the ground and excited states. The established relationships between perovskite composition and charge carrier dynamics provide guidelines toward future material discovery and design of perovskite solar cells.
Collapse
Affiliation(s)
- Ran Shi
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Run Long
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Wei-Hai Fang
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Oleg V Prezhdo
- Departments of Chemistry, and Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
18
|
Zhong F, Nie GZ, Lang Y, Zhang Z, Li H, Gan L, Xu Y, Zhao YQ. First-principles study on photoelectric properties of all-inorganic two-dimensional double perovskite Cs 3AgBiBr 7. Phys Chem Chem Phys 2023; 25:3175-3181. [PMID: 36621958 DOI: 10.1039/d2cp04707a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Two-dimensional (2D) all-inorganic double perovskite materials have attracted great interest owing to their unique photoelectric characteristics, such as high quantum efficiency and relative stability. However, few studies have been conducted on the 2D all-inorganic double perovskite Cs3AgBiBr7, and its photoelectric properties are unclear. In this study, we present a detailed investigation of the band structure, optical absorption spectrum, carrier mobility and exciton binding energy of the double perovskite Cs3AgBiBr7 based on the first-principles. The results show that this system has an indirect band gap and low carrier mobility, high exciton binding energy (2041.38 meV) and significant light absorption in the UV region. We also find that the material may be a potential exciton insulation candidate owing to the exciton binding energy beyond the band gap. Our calculated results also show that low dimensional perovskite Cs3AgBiBr7 is more suitable for luminescence than a photovoltaic device. We hope our theoretical results will inspire and promote the experimental exploration of 2D all-inorganic double perovskite materials for photoelectric applications.
Collapse
Affiliation(s)
- Fang Zhong
- School of Physics and Electronics Science, Hunan University of Science and Technology, Xiangtan 411201, People's Republic of China. .,Hunan Provincial key Laboratory of Intelligent Sensors and New Sensor Materials, Xiangtan 411201, Hunan, People's Republic of China
| | - Guo-Zheng Nie
- School of Physics and Electronics Science, Hunan University of Science and Technology, Xiangtan 411201, People's Republic of China. .,Hunan Provincial key Laboratory of Intelligent Sensors and New Sensor Materials, Xiangtan 411201, Hunan, People's Republic of China
| | - Yufei Lang
- School of Physics and Electronics Science, Hunan University of Science and Technology, Xiangtan 411201, People's Republic of China. .,Hunan Provincial key Laboratory of Intelligent Sensors and New Sensor Materials, Xiangtan 411201, Hunan, People's Republic of China
| | - Ziwen Zhang
- School of Physics and Electronics Science, Hunan University of Science and Technology, Xiangtan 411201, People's Republic of China. .,Hunan Provincial key Laboratory of Intelligent Sensors and New Sensor Materials, Xiangtan 411201, Hunan, People's Republic of China
| | - Huilin Li
- School of Physics and Electronics Science, Hunan University of Science and Technology, Xiangtan 411201, People's Republic of China. .,Hunan Provincial key Laboratory of Intelligent Sensors and New Sensor Materials, Xiangtan 411201, Hunan, People's Republic of China
| | - Longfei Gan
- School of Microelectronics and Physics, Hunan University of Technology and Business, Changsha 410205, People's Republic of China
| | - Ying Xu
- School of Physics and Electronics Science, Hunan University of Science and Technology, Xiangtan 411201, People's Republic of China. .,Hunan Provincial key Laboratory of Intelligent Sensors and New Sensor Materials, Xiangtan 411201, Hunan, People's Republic of China
| | - Yu-Qing Zhao
- School of Physics and Electronics Science, Hunan University of Science and Technology, Xiangtan 411201, People's Republic of China. .,Hunan Provincial key Laboratory of Intelligent Sensors and New Sensor Materials, Xiangtan 411201, Hunan, People's Republic of China
| |
Collapse
|
19
|
Lv F, Liang H, Duan Y. Superior Limit of Light-Absorption Improvement in Two-Dimensional Haeckelite GaN-ZnO by Nonadiabatic Molecular Dynamics Simulation. J Phys Chem Lett 2023; 14:663-669. [PMID: 36637371 DOI: 10.1021/acs.jpclett.2c03825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A weak internal electrostatic field is usually required to improve optical performance; however, this is not the case in two-dimensional haeckelite (8|4) GaN-ZnO that has physical properties that are better than those of their binary counterparts. By performing nonadiabatic molecular dynamics simulations, we ascribe the superior limit of improvement of light absorption to the convergence of the electron-hole recombination time when the thickness of the 8|4 phase exceeds a critical value, which arises from the competition between nonadiabatic coupling and quantum decoherence. We show that nonadiabatic coupling continuously becomes weaker because of the reduced nucleus velocity with an increase in thickness. We further demonstrate that the quantum decoherence is first accelerated and then decelerated because of the thickness-dependent electron-phonon coupling controlled by the peculiar in-plane A' and A″ phonon modes. Our study clarifies the issue with regard to light absorption, which provides useful guidance for improving our understanding of the optical properties in two-dimensional polar semiconductors.
Collapse
Affiliation(s)
- Fang Lv
- School of Materials and Physics, China University of Mining and Technology, Xuzhou, Jiangsu221116, China
| | - Hanpu Liang
- Beijing Computational Science Research Center, Beijing100193, China
| | - Yifeng Duan
- School of Materials and Physics, China University of Mining and Technology, Xuzhou, Jiangsu221116, China
| |
Collapse
|
20
|
Wang J, Zhang X, Song X, Fan Y, Zhang Z, Zhao M. Insights into Photoinduced Carrier Dynamics and Overall Water Splitting of Z-Scheme van der Waals Heterostructures with Intrinsic Electric Polarization. J Phys Chem Lett 2023; 14:798-808. [PMID: 36652698 DOI: 10.1021/acs.jpclett.2c03742] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Using first-principles calculations in combination with nonadiabatic molecular dynamics (NAMD), we propose novel heterostructures of carbon nitride (C7N6) and the Janus GaSnPS monolayer as promising direct Z-scheme photocatalysts for solar-driven overall water splitting. The out-of-plane electric field due to the electric polarization which is dependent on the stacking pattern alters the band alignment and catalytic activity of the heterostructures. The relatively strong interfacial nonadiabatic coupling and long quantum coherence time accelerate the interlayer carrier recombination, enabling a direct Z-scheme photocatalytic mechanism. More importantly, the redox ability of the remanent photogenerated carriers in the Z scheme is strong enough to trigger both the hydrogen evolution reaction (HER) and oxygen reduction reaction (OER) simultaneously without the help of sacrificial agents. Our work reveals a fundamental understanding of ultrafast charge carrier dynamics at vdW heterointerfaces as well as new design prospects for highly efficient direct Z-scheme photocatalysts.
Collapse
Affiliation(s)
- Juan Wang
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan250100, China
| | - Xuejin Zhang
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan250100, China
| | - Xiaohan Song
- Shandong Institute of Advanced Technology, Jinan250100, China
| | - Yingcai Fan
- School of Information and Electronic Engineering, Shandong Technology and Business University, Yantai264005, China
| | - Zhihua Zhang
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan250100, China
| | - Mingwen Zhao
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan250100, China
| |
Collapse
|
21
|
Shi R, Guo M, Long R. Improved Defect Tolerance and Charge Carrier Lifetime in Tin-Lead Mixed Perovskites: Ab Initio Quantum Dynamics. J Phys Chem Lett 2023; 14:499-507. [PMID: 36625793 DOI: 10.1021/acs.jpclett.2c03649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Simulations by nonadiabatic (NA) molecular dynamics demonstrate that mixing tin with lead in CH3NH3PbI3 can passivate the midgap state created by an interstitial iodine (Ii) via the imposed compressive strain and upshifted valence band maximum, reduce NA coupling by decreasing electron-hole wave functions overlap, and shortens pure-dephasing time by introducing high-frequency phonon modes. Thus, the charge carrier lifetime extends to 3.6 ns due to the significantly reduced nonradiative electron-hole recombination, which is an order of magnitude longer than the Ii-containing CH3NH3PbI3, over 2.5 times longer than the pristine CH3NH3PbI3 (1.4 ns), and even 1.7 times longer than the tin-lead mixed perovskite without the Ii defects (2.1 ns). Tin-lead alloying simultaneously increases the Ii defect formation energy to 0.402 eV from 0.179 eV in CH3NH3PbI3, which effectively enhances defect tolerance by reducing the defect concentration. The study reveals the factors controlling the enhanced performance of tin-lead mixed perovskite solar cells.
Collapse
Affiliation(s)
- Ran Shi
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing, 100875, P. R. China
| | - Meng Guo
- Shandong Computer Science Center (National Supercomputer Centre in Jinan), Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250013, P. R. China
- Jinan Institute of Supercomputing Technology, Jinan, Shandong 250103, P. R. China
| | - Run Long
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing, 100875, P. R. China
| |
Collapse
|
22
|
Zhao X, Vasenko AS, Prezhdo OV, Long R. Anion Doping Delays Nonradiative Electron-Hole Recombination in Cs-Based All-Inorganic Perovskites: Time Domain ab Initio Analysis. J Phys Chem Lett 2022; 13:11375-11382. [PMID: 36454707 DOI: 10.1021/acs.jpclett.2c03072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Using time-domain density functional theory combined with nonadiabatic (NA) molecular dynamics, we demonstrate that composition engineering of the X-site anions has a strong influence on the nonradiative electron-hole recombination and thermodynamic stability of cesium-based all-inorganic perovskites. Partial substitution of iodine(I) with bromine (Br) and acetate (Ac) anions reduces the NA electron-vibrational coupling by minimizing the overlap between the electron and hole wave functions and suppressing atomic fluctuations. The doping also widens the energy gap to further reduce the NA coupling and to enhance the open-circuit voltage of perovskite solar cells. These factors increase the charge carrier lifetime by an order of magnitude and improve structural stability in the series CsPbI1.88BrAc0.12 > CsPbI2Br > CsPbI3. The fundamental atomistic insights into the influence of anion doping on the photophysical properties of the all-inorganic lead halide perovskites guide the design of efficient optoelectronic materials.
Collapse
Affiliation(s)
- Xi Zhao
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing100875, People's Republic of China
| | - Andrey S Vasenko
- HSE University, 101000Moscow, Russia
- I. E. Tamm Department of Theoretical Physics, P. N. Lebedev Physical Institute, Russian Academy of Sciences, 119991Moscow, Russia
| | - Oleg V Prezhdo
- Departments of Chemistry, and Physics and Astronomy, University of Southern California, Los Angeles, California90089, United States
| | - Run Long
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing100875, People's Republic of China
| |
Collapse
|
23
|
Maiti A, Pal AJ. Quasi-2D Ruddlesden-Popper Lead Halide Perovskites: How Edge Matters. J Phys Chem Lett 2022; 13:9875-9882. [PMID: 36251849 DOI: 10.1021/acs.jpclett.2c02739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A band-mapping technique is introduced to investigate the formation of low-energy edge states in quasi-2D Ruddlesden-Popper (RP) perovskites, (BA)2(MA)n-1PbnI3n+1, through a localized mode of measurement, namely, scanning tunneling spectroscopy. The local band structures measured at different points reveal the formation of 3D CH3NH3PbI3 (MAPbI3) at the edges of the perovskite nanosheets; for thin films, the 3D phase (n = ∞) could be seen to form at grain boundaries. The presence of MAPbI3 at the edges or grain boundaries of the perovskites has led to self-forming type-II band alignment in BA2MA2Pb3I10 (n = 3). The rationale behind achieving a high-efficiency solar cell based on the material, which has a large exciton binding energy, has been inferred. Kelvin probe force microscopy studies under illumination have yielded a higher surface photovoltage at the edges compared to the interior and supported the inference of exciton dissociation due to internal type-II band alignment in the quasi-2D RP perovskites.
Collapse
Affiliation(s)
- Abhishek Maiti
- School of Physical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Amlan J Pal
- School of Physical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
- UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore 452001, India
| |
Collapse
|
24
|
Shi R, Fang Q, Vasenko AS, Long R, Fang WH, Prezhdo OV. Structural Disorder in Higher-Temperature Phases Increases Charge Carrier Lifetimes in Metal Halide Perovskites. J Am Chem Soc 2022; 144:19137-19149. [PMID: 36206144 DOI: 10.1021/jacs.2c08627] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Solar cells and optoelectronic devices are exposed to heat that degrades performance. Therefore, elucidating temperature-dependent charge carrier dynamics is essential for device optimization. Charge carrier lifetimes decrease with temperature in conventional semiconductors. The opposite, anomalous trend is observed in some experiments performed with MAPbI3 (MA = CH3NH3+) and other metal halide perovskites. Using ab initio quantum dynamics simulation, we establish the atomic mechanisms responsible for nonradiative electron-hole recombination in orthorhombic-, tetragonal-, and cubic MAPbI3. We demonstrate that structural disorder arising from the phase transitions is as important as the disorder due to heating in the same phase. The carrier lifetimes grow both with increasing temperature in the same phase and upon transition to the higher-temperature phases. The increased lifetime is rationalized by structural disorder that induces partial charge localization, decreases nonadiabatic coupling, and shortens quantum coherence. Inelastic and elastic electron-vibrational interactions exhibit opposite dependence on temperature and phase. The partial disorder and localization arise from thermal motions of both the inorganic lattice and the organic cations and depend significantly on the phase. The structural deformations induced by thermal fluctuations and phase transitions are on the same order as deformations induced by defects, and hence, thermal disorder plays a very important role. Since charge localization increases carrier lifetimes but inhibits transport, an optimal regime maximizing carrier diffusion can be designed, depending on phase, temperature, material morphology, and device architecture. The atomistic mechanisms responsible for the enhanced carrier lifetimes at elevated temperatures provide guidelines for the design of improved solar energy and optoelectronic materials.
Collapse
Affiliation(s)
- Ran Shi
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing100875, People's Republic of China
| | - Qiu Fang
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing100875, People's Republic of China
| | | | - Run Long
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing100875, People's Republic of China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing100875, People's Republic of China
| | - Oleg V Prezhdo
- Departments of Chemistry, and Physics and Astronomy, University of Southern California, Los Angeles, California90089, United States
| |
Collapse
|
25
|
Miao Y, Xiao Z, Zheng Z, Lyu D, Liu Q, Wu J, Wu Y, Wen X, Shui L, Hu X, Wang K, Tang Z, Jiang X. Designable Layer Edge States in Quasi-2D Perovskites Induced by Femtosecond Pulse Laser. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201046. [PMID: 35557501 PMCID: PMC9284193 DOI: 10.1002/advs.202201046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/12/2022] [Indexed: 06/15/2023]
Abstract
The low-energy layer edge states (LESs) from quasi 2D hybrid perovskite single crystals have shown great potential because of their nontrivial photoelectrical properties. However, the underlying formation mechanism of the LESs still remains controversial. Also, the presence or creation of the LESs is of high randomness due to the lack of proper techniques to manually generate these LESs. Herein, using a single crystals platform of quasi-2D (BA)2 (MA)n-1 Pbn I3n+1 (n > 1) perovskites, the femtosecond laser ablation approach to design and write the LESs with a high spatial resolution is reported. Fundamentally, these LESs are of smaller bandgap 3D MAPbI3 nanocrystals which are formed by the laser-induced BA escaping from the lattice and thus the lattice shrinkage from quasi-2D to 3D structures. Furthermore, by covering the crystal with tape, an additional high-energy emission state corresponding to the reformation of (BA)2 PbI4 (n = 1) within the irradiation region is generated. This work presents a simple and efficient protocol to manually write LESs on single crystals and thus lays the foundation for utilizing these LESs to further enhance the performance of future photoelectronic devices.
Collapse
Affiliation(s)
- Yu Miao
- Laboratory of Quantum Engineering and Quantum MaterialSchool of Physics and Telecommunication EngineeringSouth China Normal UniversityGuangzhou510006P. R. China
| | - Zeqi Xiao
- Laboratory of Quantum Engineering and Quantum MaterialSchool of Physics and Telecommunication EngineeringSouth China Normal UniversityGuangzhou510006P. R. China
| | - Zeyu Zheng
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and DevicesSchool of Information and Optoelectronic Science and EngineeringSouth China Normal UniversityGuangzhou510006P. R. China
| | - Da Lyu
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper DisplaysSouth China Academy of Advanced OptoelectronicsSouth China Normal UniversityGuangzhou510006P. R. China
| | - Qin Liu
- Laboratory of Quantum Engineering and Quantum MaterialSchool of Physics and Telecommunication EngineeringSouth China Normal UniversityGuangzhou510006P. R. China
| | - Jieyu Wu
- Laboratory of Quantum Engineering and Quantum MaterialSchool of Physics and Telecommunication EngineeringSouth China Normal UniversityGuangzhou510006P. R. China
| | - Yongbo Wu
- Laboratory of Quantum Engineering and Quantum MaterialSchool of Physics and Telecommunication EngineeringSouth China Normal UniversityGuangzhou510006P. R. China
| | - Xiewen Wen
- Department of Mechanical EngineeringCity University of Hong KongTat Chee AvenueKowloonHong Kong
| | - Lingling Shui
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and DevicesSchool of Information and Optoelectronic Science and EngineeringSouth China Normal UniversityGuangzhou510006P. R. China
| | - Xiaowen Hu
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper DisplaysSouth China Academy of Advanced OptoelectronicsSouth China Normal UniversityGuangzhou510006P. R. China
| | - Kai Wang
- Materials Research InstitutePennsylvania State UniversityUniversity ParkPA16802USA
| | - Zhilie Tang
- Laboratory of Quantum Engineering and Quantum MaterialSchool of Physics and Telecommunication EngineeringSouth China Normal UniversityGuangzhou510006P. R. China
| | - Xiao‐Fang Jiang
- Laboratory of Quantum Engineering and Quantum MaterialSchool of Physics and Telecommunication EngineeringSouth China Normal UniversityGuangzhou510006P. R. China
| |
Collapse
|
26
|
Qin Y, Li ZG, Gao FF, Chen H, Li X, Xu B, Li Q, Jiang X, Li W, Wu X, Quan Z, Ye L, Zhang Y, Lin Z, Pedesseau L, Even J, Lu P, Bu XH. Dangling Octahedra Enable Edge States in 2D Lead Halide Perovskites. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201666. [PMID: 35583447 DOI: 10.1002/adma.202201666] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/13/2022] [Indexed: 06/15/2023]
Abstract
The structural reconstruction at the crystal layer edges of 2D lead halide perovskites (LHPs) leads to unique edge states (ES), which are manifested by prolonged carrier lifetime and reduced emission energy. These special ES can effectively enhance the optoelectronic performance of devices, but their intrinsic origin and working mechanism remain elusive. Here it is demonstrated that the ES of a family of 2D Ruddlesden-Popper LHPs [BA2 CsPb2 Br7 , BA2 MAPb2 Br7 , and BA2 MA2 Pb3 Br10 (BA = butylammonium; MA = methylammonium)] arise from the rotational symmetry elevation of the PbBr6 octahedra dangling at the crystal layer edges. These dangling octahedra give rise to localized electronic states that enable an effective transport of electrons from the interior to layer edges, and the population of electrons in both the interior states and the ES can be manipulated via controlling the external fields. Moreover, the abundant phonons, activated by the dangling octahedra, can interact with electrons to facilitate radiative recombination, counterintuitive to the suppressive role commonly observed in conventional semiconductors. This work unveils the intrinsic atomistic and electronic origins of ES in 2D LHPs, which can stimulate the exploration of ES-based exotic optoelectronic properties and the corresponding design of high-performance devices for these emergent low-dimensional semiconductors.
Collapse
Affiliation(s)
- Yan Qin
- School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350, China
- School of Physics and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhi-Gang Li
- School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350, China
| | - Fei-Fei Gao
- School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350, China
| | - Haisheng Chen
- Institute of Modern Optics and Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, Nankai University, Tianjin, 300350, China
| | - Xiang Li
- State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan, 430074, China
| | - Bin Xu
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies, and Shenzhen Engineering Research Center for Frontier Materials Synthesis at High Pressures, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Qian Li
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies, and Shenzhen Engineering Research Center for Frontier Materials Synthesis at High Pressures, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Xingxing Jiang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wei Li
- School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350, China
| | - Xiang Wu
- State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan, 430074, China
| | - Zewei Quan
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies, and Shenzhen Engineering Research Center for Frontier Materials Synthesis at High Pressures, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Lei Ye
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yang Zhang
- Institute of Modern Optics and Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, Nankai University, Tianjin, 300350, China
| | - Zheshuai Lin
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Laurent Pedesseau
- Univ Rennes, INSA Rennes, CNRS, Institut FOTON, UMR 6082, Rennes, F-35000, France
| | - Jacky Even
- Univ Rennes, INSA Rennes, CNRS, Institut FOTON, UMR 6082, Rennes, F-35000, France
| | - Peixiang Lu
- School of Physics and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xian-He Bu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350, China
| |
Collapse
|
27
|
Wang B, Chu W, Wu Y, Casanova D, Saidi WA, Prezhdo OV. Electron-Volt Fluctuation of Defect Levels in Metal Halide Perovskites on a 100 ps Time Scale. J Phys Chem Lett 2022; 13:5946-5952. [PMID: 35732502 DOI: 10.1021/acs.jpclett.2c01452] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Metal halide perovskites (MHPs) have gained considerable attention due to their excellent optoelectronic performance, which is often attributed to unusual defect properties. We demonstrate that midgap defect levels can exhibit very large and slow energy fluctuations associated with anharmonic acoustic motions. Therefore, care should be taken classifying MHP defects as deep or shallow, since shallow defects may become deep and vice versa. As a consequence, charges from deep levels can escape into bands, and light absorption can be extended to longer wavelengths, improving material performance. The phenomenon, demonstrated with iodine vacancy in CH3NH3PbI3 using a machine learning force field, can be expected for a variety of defects and dopants in many MHPs and other soft inorganic semiconductors. Since large-scale anharmonic motions can be precursors to chemical decomposition, a known problem with MHPs, we propose that materials that are stiffer than MHPs but softer than traditional inorganic semiconductors, such as Si and TiO2, may simultaneously exhibit excellent performance and stability.
Collapse
Affiliation(s)
- Bipeng Wang
- Department of Chemical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Weibin Chu
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Yifan Wu
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - David Casanova
- Donostia International Physics Center (DIPC), Donostia, 20018 Euskadi, Spain
- Basque Foundation for Science, IKERBASQUE, Bilbao, 48009 Euskadi, Spain
| | - Wissam A Saidi
- Department of Mechanical Engineering & Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Oleg V Prezhdo
- Department of Chemical Engineering, University of Southern California, Los Angeles, California 90089, United States
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
28
|
Lin H, Zhang Z, Zhang H, Lin KT, Wen X, Liang Y, Fu Y, Lau AKT, Ma T, Qiu CW, Jia B. Engineering van der Waals Materials for Advanced Metaphotonics. Chem Rev 2022; 122:15204-15355. [PMID: 35749269 DOI: 10.1021/acs.chemrev.2c00048] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The outstanding chemical and physical properties of 2D materials, together with their atomically thin nature, make them ideal candidates for metaphotonic device integration and construction, which requires deep subwavelength light-matter interaction to achieve optical functionalities beyond conventional optical phenomena observed in naturally available materials. In addition to their intrinsic properties, the possibility to further manipulate the properties of 2D materials via chemical or physical engineering dramatically enhances their capability, evoking new science on light-matter interaction, leading to leaped performance of existing functional devices and giving birth to new metaphotonic devices that were unattainable previously. Comprehensive understanding of the intrinsic properties of 2D materials, approaches and capabilities for chemical and physical engineering methods, the resulting property modifications and novel functionalities, and applications of metaphotonic devices are provided in this review. Through reviewing the detailed progress in each aspect and the state-of-the-art achievement, insightful analyses of the outstanding challenges and future directions are elucidated in this cross-disciplinary comprehensive review with the aim to provide an overall development picture in the field of 2D material metaphotonics and promote rapid progress in this fast emerging and prosperous field.
Collapse
Affiliation(s)
- Han Lin
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia.,The Australian Research Council (ARC) Industrial Transformation Training, Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Zhenfang Zhang
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, China
| | - Huihui Zhang
- Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Keng-Te Lin
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Xiaoming Wen
- Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Yao Liang
- Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Yang Fu
- Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Alan Kin Tak Lau
- Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Tianyi Ma
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia.,Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Baohua Jia
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia.,The Australian Research Council (ARC) Industrial Transformation Training, Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, Victoria 3122, Australia.,Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| |
Collapse
|
29
|
Lu J, Zhou C, Chen W, Wang X, Jia B, Wen X. Origin and physical effects of edge states in two-dimensional Ruddlesden-Popper perovskites. iScience 2022; 25:104420. [PMID: 35663014 PMCID: PMC9157205 DOI: 10.1016/j.isci.2022.104420] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The edge region of two-dimensional (2D) Ruddlesden-Popper (RP) perovskites exhibits anomalous properties from the bulk region, including low energy emission and superior capability of dissociating exciton, which is highly beneficial for the optoelectronic devices like solar cells and photodetectors, denoted as “edge states”. In this review, we introduce the recent progress on the edge states that have been focused on the origin and the optoelectronic properties of edge states in 2D RP perovskites. By providing theoretical frameworks and experimental observations, we elucidate the origin of the edge states from two aspects, intrinsic electronic properties and extrinsic structure distortions. Besides, we introduce the physical properties of the edge states and current debating on this topic. Finally, we present an outlook on future research about the edge states of 2D RP perovskites.
Collapse
Affiliation(s)
- Junlin Lu
- Centre for Translational Atomaterials, Swinburne University of Technology, Hawthorn VIC 3122, Australia.,South China Academy of Advanced Optoelectronics and International Academy of Optoelectronics at Zhaoqing, South China Normal University, Zhaoqing, Guangdong 510631, China
| | - Chunhua Zhou
- College of Physics and Optoelectronics, Key Lab of Advanced Transducers and Intelligent Control System of Ministry of Education, Taiyuan University of Technology, Taiyuan, Shanxi 030024 China
| | - Weijian Chen
- Centre for Translational Atomaterials, Swinburne University of Technology, Hawthorn VIC 3122, Australia.,Australian Centre for Advanced Photovoltaics, School of Photovoltaic and Renewable Energy Engineering, University of New South Wales (UNSW), Kensington, NSW 2052, Australia
| | - Xin Wang
- South China Academy of Advanced Optoelectronics and International Academy of Optoelectronics at Zhaoqing, South China Normal University, Zhaoqing, Guangdong 510631, China.,Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, Guangdong 510006 China
| | - Baohua Jia
- Centre for Translational Atomaterials, Swinburne University of Technology, Hawthorn VIC 3122, Australia.,School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Xiaoming Wen
- Centre for Translational Atomaterials, Swinburne University of Technology, Hawthorn VIC 3122, Australia
| |
Collapse
|
30
|
Perez CM, Ghosh D, Prezhdo O, Nie W, Tretiak S, Neukirch A. Point Defects in Two-Dimensional Ruddlesden-Popper Perovskites Explored with Ab Initio Calculations. J Phys Chem Lett 2022; 13:5213-5219. [PMID: 35670577 DOI: 10.1021/acs.jpclett.2c00575] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Two-dimensional Ruddlesden-Popper (RP) halide perovskites stand out as excellent layered materials with favorable optoelectronic properties for efficient light-emitting, spintronic, and other spin-related applications. However, properties often determined by defects are not well understood in these perovskite systems. This work investigates the ground state electronic structure of commonly formed defects in a typical RP perovskite structure by density functional theory. Our study reveals that these 2D perovskites generally retain their defect tolerance with limited perturbation of the electronic structure in the case of neutral-type point defects. In contrast, donor/acceptor defects induce deep midgap states, potentially causing harm to the material's electronic performance. To retain positive intrinsic properties, the halide vacancies and interstitial defects should be avoided. The observed strong electron localization results in trap states and consequently leads to reduced device performance. This understanding can guide experimental efforts that aim for improved 2D halide perovskite-based device performance.
Collapse
Affiliation(s)
- Carlos Mora Perez
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Dibyajyoti Ghosh
- Department of Material Science and Engineering and Department of Chemistry, Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India
| | - Oleg Prezhdo
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | | | | | | |
Collapse
|
31
|
Qiu J, Lu Y, Wang L. Multilayer Subsystem Surface Hopping Method for Large-Scale Nonadiabatic Dynamics Simulation with Hundreds of Thousands of States. J Chem Theory Comput 2022; 18:2803-2815. [PMID: 35380833 DOI: 10.1021/acs.jctc.2c00130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We present a multilayer subsystem surface hopping (MSSH) method to deal with nonadiabatic dynamics in large-scale systems. A small subsystem instead of the full system is adopted for surface hopping and is updated on-the-fly to achieve a reliable description of important adiabatic states and the wave function evolution. Additional subsystems for molecular dynamics and statistical description are introduced to further improve the simulation reliability. The global flux hopping probabilities with optimal state assignments are utilized to treat the complex surface crossings. As demonstrated in a series of one- and two-dimensional Holstein models with up to hundreds of thousands of states, MSSH shows weak parameter dependence in all investigated systems. Especially, the computational costs are reduced by 2-6 orders of magnitude compared to traditional surface hopping simulations in full systems, and size-independent results are achieved with a large time-step size of 2-5 fs. The new method is compatible with different decoherence correction strategies and achieves a much better balance between efficiency and reliability, thus promising for applications in general charge and exciton dynamics simulations.
Collapse
Affiliation(s)
- Jing Qiu
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Yao Lu
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Linjun Wang
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
32
|
Qiao L, Fang WH, Long R. Dual Passivation of Point Defects at Perovskite Grain Boundaries with Ammonium Salts Greatly Inhibits Nonradiative Charge Recombination. J Phys Chem Lett 2022; 13:954-961. [PMID: 35060385 DOI: 10.1021/acs.jpclett.1c04038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Experiments demonstrate that grain boundaries (GBs) exhibit detrimental effect on carrier lifetimes in MAPbI3 (MA= CH3NH3+). On the basis of the nonadiabatic (NA) molecular dynamics simulations, we demonstrated that NH4Cl can simultaneously passivate the common point defects that introduce recombination centers at GBs and accelerate electron-hole recombination but shows small effects in the bulk. The MA interstitial (MAi) and the substitutional MA to Pb (MAPb) in pristine MAPbI3 leave the band gap and charge recombination rates largely unchanged but create deep electron traps at GBs by separately either distorting inorganic octahedra or creating an I-dimer. Cl- and NH4+ remove the in-gap states by either restoring the distorted octahedra or destroying the I-dimer. Thus, the band gap recovers to the pristine system, NA coupling decreases, and decoherence accelerates, extending the carrier lifetime even twice longer than MAPbI3. This study shows that the negative role of GBs can be removed by dually passivating with NH4Cl.
Collapse
Affiliation(s)
- Lu Qiao
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Wei-Hai Fang
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Run Long
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, People's Republic of China
| |
Collapse
|
33
|
Shrestha S, Li X, Tsai H, Hou CH, Huang HH, Ghosh D, Shyue JJ, Wang L, Tretiak S, Ma X, Nie W. Long carrier diffusion length in two-dimensional lead halide perovskite single crystals. Chem 2022. [DOI: 10.1016/j.chempr.2022.01.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
34
|
Kripalani DR, Cai Y, Lou J, Zhou K. Strong Edge Stress in Molecularly Thin Organic-Inorganic Hybrid Ruddlesden-Popper Perovskites and Modulations of Their Edge Electronic Properties. ACS NANO 2022; 16:261-270. [PMID: 34978421 DOI: 10.1021/acsnano.1c06158] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Organic-inorganic hybrid Ruddlesden-Popper perovskites (HRPPs) have gained much attention for optoelectronic applications due to their high moisture resistance, good processability under ambient conditions, and long functional lifetimes. Recent success in isolating molecularly thin hybrid perovskite nanosheets and their intriguing edge phenomena have raised the need for understanding the role of edges and the properties that dictate their fundamental behaviors. In this work, we perform a prototypical study on the edge effects in ultrathin hybrid perovskites by considering monolayer (BA)2PbI4 as a representative system. On the basis of first-principles simulations of nanoribbon models, we show that in addition to significant distortions of the octahedra network at the edges, strong edge stresses are also present in the material. Structural instabilities that arise from the edge stress could drive the relaxation process and dominate the morphological response of edges in practice. A clear downward shift of the bands at the narrower ribbons, as indicative of the edge effect, facilitates the separation of photoexcited carriers (electrons move toward the edge and holes move toward the interior part of the nanosheet). Moreover, the desorption energy of the organic molecule can also be much lower at the free edges, making it easier for functionalization and/or substitution events to take place. The findings reported in this work elucidate the underlying mechanisms responsible for edge states in HRPPs and will be important in guiding the rational design and development of high-performance layer-edge devices.
Collapse
Affiliation(s)
- Devesh R Kripalani
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yongqing Cai
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau 999078, P. R. China
| | - Jun Lou
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Kun Zhou
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Environmental Process Modelling Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| |
Collapse
|
35
|
Sun Q, Zhao C, Yin Z, Wang S, Leng J, Tian W, Jin S. Ultrafast and High-Yield Polaronic Exciton Dissociation in Two-Dimensional Perovskites. J Am Chem Soc 2021; 143:19128-19136. [PMID: 34730344 DOI: 10.1021/jacs.1c08900] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Layered two-dimensional (2D) lead halide perovskites are a class of quantum well (QW) materials, holding dramatic potentials for optical and optoelectronic applications. However, the thermally activated exciton dissociation into free carriers in 2D perovskites, a key property that determines their optoelectronic performance, was predicted to be weak due to large exciton binding energy (Eb, about 100-400 meV). Herein, in contrast to the theoretical prediction, we discover an ultrafast (<1.4 ps) and highly efficient (>80%) internal exciton dissociation in (PEA)2(MA)n-1PbnI3n+1 (PEA = C6H5C2H4NH3+, MA = CH3NH3+, n = 2-4) 2D perovskites despite the large Eb. We demonstrate that the exciton dissociation activity in 2D perovskites is significantly promoted because of the formation of exciton-polarons with considerably reduced exciton binding energy (down to a few tens of millielectronvolts) by the polaronic screening effect. This ultrafast and high-yield exciton dissociation limits the photoluminescence of 2D perovskites but on the other hand well explains their exceptional performance in photovoltaic devices. The finding should represent a common exciton property in the 2D hybrid perovskite family and provide a guideline for their rational applications in light emitting and photovoltaics.
Collapse
Affiliation(s)
- Qi Sun
- State Key Laboratory of Molecular Reaction Dynamics and the Dynamic Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunyi Zhao
- State Key Laboratory of Molecular Reaction Dynamics and the Dynamic Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,Anhui Province Key Laboratory of Optoelectronic Material Science and Technology, School of Physics and Electronic Information, Anhui Normal University, Wuhu 241002, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zixi Yin
- State Key Laboratory of Molecular Reaction Dynamics and the Dynamic Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiping Wang
- State Key Laboratory of Molecular Reaction Dynamics and the Dynamic Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Leng
- State Key Laboratory of Molecular Reaction Dynamics and the Dynamic Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Wenming Tian
- State Key Laboratory of Molecular Reaction Dynamics and the Dynamic Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Shengye Jin
- State Key Laboratory of Molecular Reaction Dynamics and the Dynamic Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
36
|
Yang JJ, Chen WK, Liu XY, Fang WH, Cui G. Spin-Orbit Coupling Is the Key to Promote Asynchronous Photoinduced Charge Transfer of Two-Dimensional Perovskites. JACS AU 2021; 1:1178-1186. [PMID: 34467356 PMCID: PMC8397356 DOI: 10.1021/jacsau.1c00192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Indexed: 06/13/2023]
Abstract
Two-dimensional (2D) perovskites are emerging as promising candidates for diverse optoelectronic applications because of low cost and excellent stability. In this work, we explore the electronic structures and interfacial properties of (4Tm)2PbI4 with both the collinear and noncollinear DFT (PBE and HSE06) methods. The results evidently manifest that explicitly considering the spin-orbit coupling (SOC) effects is necessary to attain correct band alignment of (4Tm)2PbI4 that agrees with recent experiments (Nat. Chem.2019, 11, 1151; Nature2020, 580, 614). The subsequent time-domain noncollinear DFT-based nonadiabatic carrier dynamics simulations with the SOC effects reveal that the photoinduced electron and hole transfer processes are asymmetric and associated with different rates. The differences are mainly ascribed to considerably different nonadiabatic couplings in charge of the electron and hole transfer processes. Shortly, our current work sheds important light on the mechanism of the interfacial charge carrier transfer processes of (4Tm)2PbI4. The importance of the SOC effects on correctly aligning the band states of (4Tm)2PbI4 may be generalized to similar organic-inorganic hybrid 2D perovskites having heavy Pb atoms.
Collapse
Affiliation(s)
- Jia-Jia Yang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Wen-Kai Chen
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Xiang-Yang Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| |
Collapse
|
37
|
Menahem M, Dai Z, Aharon S, Sharma R, Asher M, Diskin-Posner Y, Korobko R, Rappe AM, Yaffe O. Strongly Anharmonic Octahedral Tilting in Two-Dimensional Hybrid Halide Perovskites. ACS NANO 2021; 15:10153-10162. [PMID: 34003630 PMCID: PMC8223479 DOI: 10.1021/acsnano.1c02022] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/22/2021] [Indexed: 05/20/2023]
Abstract
Recent investigations of two-dimensional (2D) hybrid organic-inorganic halide perovskites (HHPs) indicate that their optical and electronic properties are dominated by strong coupling to thermal fluctuations. While the optical properties of 2D-HHPs have been extensively studied, a comprehensive understanding of electron-phonon interactions is limited because little is known about their structural dynamics. This is partially because the unit cells of 2D-HHPs contain many atoms. Therefore, the thermal fluctuations are complex and difficult to elucidate in detail. To overcome this challenge, we use polarization-orientation Raman spectroscopy and ab initio calculations to compare the structural dynamics of the prototypical 2D-HHPs [(BA)2PbI4 and (PhE)2PbI4] to their three-dimensional (3D) counterpart, MAPbI3. Comparison to the simpler, 3D MAPbI3 crystal shows clear similarities with the structural dynamics of (BA)2PbI4 and (PhE)2PbI4 across a wide temperature range. The analogy between the 3D and 2D crystals allows us to isolate the effect of the organic cation on the structural dynamics of the inorganic scaffold of the 2D-HHPs. Furthermore, using this approach, we uncover the mechanism of the order-disorder phase transition of (BA)2PbI4 (274 K) and show that it involves relaxation of octahedral tilting coupled to anharmonic thermal fluctuations. These anharmonic fluctuations are important because they induce charge carrier localization and affect the optoelectronic performance of these materials.
Collapse
Affiliation(s)
- Matan Menahem
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, Rehovot 76100, Israel
| | - Zhenbang Dai
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Sigalit Aharon
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, Rehovot 76100, Israel
| | - Rituraj Sharma
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, Rehovot 76100, Israel
| | - Maor Asher
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, Rehovot 76100, Israel
| | - Yael Diskin-Posner
- Chemical
Research Support, Weizmann Institute of
Science, Rehovot 76100, Israel
| | - Roman Korobko
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, Rehovot 76100, Israel
| | - Andrew M. Rappe
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Omer Yaffe
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
38
|
Qiao L, Fang WH, Long R, Prezhdo OV. Elimination of Charge Recombination Centers in Metal Halide Perovskites by Strain. J Am Chem Soc 2021; 143:9982-9990. [PMID: 34155882 DOI: 10.1021/jacs.1c04442] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Metal halide perovskites exhibit enhanced photoluminescence and long-lived carriers in experiments under strain. Using ab initio nonadiabatic molecular dynamics, we demonstrate that compressive and tensile strain can eliminate charge recombination centers created by defect states, by shifting traps from bandgap into bands. A compressive strain enhances coupling of Pb-s and I-p orbitals, pushes the valence band (VB) up in energy, and moves the trap state due to iodine interstitial (Ii) into the VB. The strain distorts the system and breaks the I-dimer responsible for the Ii trap. A tensile strain increases Pb-Pb distance, weakens overlap of Pb-p orbitals, and pushes the conduction band (CB) down in energy. The trap state created by replacement of iodine with methylammonium (MAI) is moved into the CB. Application of strain to the defective systems not only eliminates midgap traps but also creates moderate disorder that reduces overlap of electron and hole wave functions, activates phonon modes accelerating coherence loss within the electronic subsystem, and extends carrier lifetimes even beyond those in pristine MAPbI3. Our investigation rationalizes the high performance of perovskites solar cells under strain and reveals how strain passivates Ii and MAI defects in MAPbI3, providing a new nonchemical strategy for defect control and engineering.
Collapse
Affiliation(s)
- Lu Qiao
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Wei-Hai Fang
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Run Long
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Oleg V Prezhdo
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
39
|
Li W, She Y, Vasenko AS, Prezhdo OV. Ab initio nonadiabatic molecular dynamics of charge carriers in metal halide perovskites. NANOSCALE 2021; 13:10239-10265. [PMID: 34031683 DOI: 10.1039/d1nr01990b] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Photoinduced nonequilibrium processes in nanoscale materials play key roles in photovoltaic and photocatalytic applications. This review summarizes recent theoretical investigations of excited state dynamics in metal halide perovskites (MHPs), carried out using a state-of-the-art methodology combining nonadiabatic molecular dynamics with real-time time-dependent density functional theory. The simulations allow one to study evolution of charge carriers at the ab initio level and in the time-domain, in direct connection with time-resolved spectroscopy experiments. Eliminating the need for the common approximations, such as harmonic phonons, a choice of the reaction coordinate, weak electron-phonon coupling, a particular kinetic mechanism, and perturbative calculation of rate constants, we model full-dimensional quantum dynamics of electrons coupled to semiclassical vibrations. We study realistic aspects of material composition and structure and their influence on various nonequilibrium processes, including nonradiative trapping and relaxation of charge carriers, hot carrier cooling and luminescence, Auger-type charge-charge scattering, multiple excitons generation and recombination, charge and energy transfer between donor and acceptor materials, and charge recombination inside individual materials and across donor/acceptor interfaces. These phenomena are illustrated with representative materials and interfaces. Focus is placed on response to external perturbations, formation of point defects and their passivation, mixed stoichiometries, dopants, grain boundaries, and interfaces of MHPs with charge transport layers, and quantum confinement. In addition to bulk materials, perovskite quantum dots and 2D perovskites with different layer and spacer cation structures, edge passivation, and dielectric screening are discussed. The atomistic insights into excited state dynamics under realistic conditions provide the fundamental understanding needed for design of advanced solar energy and optoelectronic devices.
Collapse
Affiliation(s)
- Wei Li
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, People's Republic of China.
| | | | | | | |
Collapse
|
40
|
Xie W, Peng L, Li N. An Insight into the Effects of SnF 2 Assisting the Performance of Lead-Free Perovskite of FASnI 3: A First-Principles Calculations. ACS OMEGA 2021; 6:14938-14951. [PMID: 34151075 PMCID: PMC8209804 DOI: 10.1021/acsomega.1c00767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/10/2021] [Indexed: 06/13/2023]
Abstract
It is an effective method to use SnF2 and SnF4 molecules to assist in enhancing the performance of FASnI3 perovskite. However, the mechanism in this case is not clear as it lacks a certain explanation to specify the phenomenon. Through first-principles calculations, this paper constructed several modes of SnF2 and SnF4 adsorbed on the surfaces of FASnI3 and explored adsorption energies, band structures, photoelectric properties, absorption spectra, and dielectric functions. The SnF2 molecule adsorbed at the I5 position on the FAI-T surface has the lowest adsorption energy for the F atom, which is 0.5376 eV. The Sn-I bond and Sn-F bond mainly affect the photoelectric properties of FASnI3 perovskite solar cells, and the SnF2 adsorption on the FAI-T surface can effectively strengthen the bond energies, which shortens the bond lengths of the Sn-I and Sn-F bond, and eliminate surface unsaturated bonds to passivate the surface defects. Furthermore, the probability of energy transfer was lower between the SnF2 molecule and the ion around it than between SnF4 and its ion. Especially, in the aspect of optical properties, we found that the intensity of the absorption peak of SnF2 adsorption increase was larger than that of SnF4 adsorption. Additionally, the static dielectric constants of SnF4 adsorption on the two surfaces, denoted SnF4, made the perovskite respond more slowly to the external electric field. Based on this work, we found that SnF2 had a greater positive effect on the optical property of perovskite than SnF4. We consider that our results can help to deeply understand the essence of SnF2 assistance in the performance of FASnI3 and help researchers strive for lead-free perovskite solar cells.
Collapse
Affiliation(s)
- Wei Xie
- College
of Physics and Telecommunications, Huanggang
Normal University, Huangzhou 438000, P.R. China
| | - Liping Peng
- College
of Physics and Telecommunications, Huanggang
Normal University, Huangzhou 438000, P.R. China
| | - Neng Li
- State
Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, P.R. China
- Shenzhen
Research Institute of Wuhan University of Technology, Shenzhen 518000, China
- State
Center for International Cooperation on Designer Low-Carbon &
Environmental Materials (CDLCEM), School of Materials Science and
Engineering, Zhengzhou University, Zhengzhou 450001, Henan, China
| |
Collapse
|
41
|
Yang JJ, Liu XY, Li ZW, Frauenheim T, Yam C, Fang WH, Cui G. The spin-orbit interaction controls photoinduced interfacial electron transfer in fullerene-perovskite heterojunctions: C 60versus C 70. Phys Chem Chem Phys 2021; 23:6536-6543. [PMID: 33690742 DOI: 10.1039/d0cp06579j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here, we used collinear and noncollinear density functional theory (DFT) methods to explore the interfacial properties of two heterojunctions between a fullerene (C60 and C70) and the MAPbI3(110) surface. Methodologically, consideration of the spin-orbit interaction has been proven to be required to obtain accurate energy-level alignment and interfacial carrier dynamics between fullerenes and perovskites in hybrid perovskite solar cells including heavy atoms (such as Pb atoms). Both heterojunctions are predicted to be the same type-II heterojunction, but the interfacial electron transfer process from MAPbI3 to C60 is completely distinct from that to C70. In the former, the interfacial electron transfer is slow because of the associated large energy gap, and the excited electrons are thus trapped in MAPbI3 for a while. In contrast, in the latter, the smaller energy gap induces ultrafast electron transfer from MAPbI3 to C70. These points are further supported by DFT-based nonadiabatic dynamics simulations including the spin-orbit coupling (SOC) effects. These gained insights could help rationally design superior fullerene-perovskite interfaces to achieve high power conversion efficiencies of fullerene-perovskite solar cells.
Collapse
Affiliation(s)
- Jia-Jia Yang
- College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | | | | | | | | | | | | |
Collapse
|
42
|
Smith B, Shakiba M, Akimov AV. Crystal Symmetry and Static Electron Correlation Greatly Accelerate Nonradiative Dynamics in Lead Halide Perovskites. J Phys Chem Lett 2021; 12:2444-2453. [PMID: 33661640 DOI: 10.1021/acs.jpclett.0c03799] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Using a recently developed many-body nonadiabatic molecular dynamics (NA-MD) framework for large condensed matter systems, we study the phonon-driven nonradiative relaxation of excess electronic excitation energy in cubic and tetragonal phases of the lead halide perovskite CsPbI3. We find that the many-body treatment of the electronic excited states significantly changes the structure of the excited states' coupling, promotes a stronger nonadiabatic coupling of states, and ultimately accelerates the relaxation dynamics relative to the single-particle description of excited states. The acceleration of the nonadiabatic dynamics correlates with the degree of configurational mixing, which is controlled by the crystal symmetry. The higher-symmetry cubic phase of CsPbI3 exhibits stronger configuration mixing than does the tetragonal phase and subsequently yields faster nonradiative dynamics. Overall, using a many-body treatment of excited states and accounting for decoherence dynamics are important for closing the gap between the computationally derived and experimentally measured nonradiative excitation energy relaxation rates.
Collapse
Affiliation(s)
- Brendan Smith
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Mohammad Shakiba
- Department of Materials Science and Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Alexey V Akimov
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
43
|
Zhang Z, Zhang Y, Wang J, Xu J, Long R. Doping-Induced Charge Localization Suppresses Electron-Hole Recombination in Copper Zinc Tin Sulfide: Quantum Dynamics Combined with Deep Neural Networks Analysis. J Phys Chem Lett 2021; 12:835-842. [PMID: 33417761 DOI: 10.1021/acs.jpclett.0c03522] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nonradiative electron-hole recombination constitutes a major route for charge and energy losses in copper zinc tin sulfide (CZTS) solar cells. Using a combination of nonadiabatic (NA) molecular dynamics and deep neural networks (DNN), we demonstrated that electron-hole recombination is notably retarded by doping with Ag and Ag+Cd. The replacement of lighter Cu and/or Zn with heavier Ag and/or Cd reduces the NA coupling by separating electron and hole wave functions. Such replacement suppresses atomic motions and makes the phonon modes move to low-frequency region, which reduces NA coupling further but inhibits decoherence. The small magnitudes of NA coupling beat the long coherence time, delaying the electron-hole recombination from the Ag+Cd-codoping to the Ag doping system compared with pristine CZTS. The NA couplings predicted by the DNN algorithm lead to the time scales in agreement with the direct simulations. The study provides a robust strategy to design high-performance CZTS solar cells.
Collapse
Affiliation(s)
- Zhaosheng Zhang
- College of Chemistry & Environmental Science, Institute of Life Science and Green Development, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Yan Zhang
- College of Chemistry & Environmental Science, Institute of Life Science and Green Development, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Jiazheng Wang
- College of Chemistry & Environmental Science, Institute of Life Science and Green Development, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Jianzhong Xu
- College of Chemistry & Environmental Science, Institute of Life Science and Green Development, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Run Long
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
44
|
Hong J, Prendergast D, Tan LZ. Layer Edge States Stabilized by Internal Electric Fields in Two-Dimensional Hybrid Perovskites. NANO LETTERS 2021; 21:182-188. [PMID: 33125252 DOI: 10.1021/acs.nanolett.0c03468] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Two-dimensional (2D) organic-inorganic hybrid perovskites have been intensively explored in recent years due to their tunable band gaps and exciton binding energies and increased stability with respect to three-dimensional (3D) hybrid perovskites. Experimental observations suggest the existence of localized edge states in 2D hybrid perovskites which facilitate extremely efficient electron-hole dissociation and long carrier lifetimes, while multiple origins for their formation have been proposed. Using first-principles calculations, we demonstrate that layer edge states are stabilized by internal electric fields created by polarized molecular alignment of organic cations in 2D hybrid perovskites when they are two layers or thicker. Our study gives a simple physical explanation of the edge state formation, and facilitating the design and manipulation of layer edge states for optoelectronic applications.
Collapse
Affiliation(s)
- Jisook Hong
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - David Prendergast
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Liang Z Tan
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
45
|
Blancon JC, Even J, Stoumpos CC, Kanatzidis MG, Mohite AD. Semiconductor physics of organic-inorganic 2D halide perovskites. NATURE NANOTECHNOLOGY 2020; 15:969-985. [PMID: 33277622 DOI: 10.1038/s41565-020-00811-1] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 10/30/2020] [Indexed: 05/02/2023]
Abstract
Achieving technologically relevant performance and stability for optoelectronics, energy conversion, photonics, spintronics and quantum devices requires creating atomically precise materials with tailored homo- and hetero-interfaces, which can form functional hierarchical assemblies. Nature employs tunable sequence chemistry to create complex architectures, which efficiently transform matter and energy, however, in contrast, the design of synthetic materials and their integration remains a long-standing challenge. Organic-inorganic two-dimensional halide perovskites (2DPKs) are organic and inorganic two-dimensional layers, which self-assemble in solution to form highly ordered periodic stacks. They exhibit a large compositional and structural phase space, which has led to novel and exciting physical properties. In this Review, we discuss the current understanding in the structure and physical properties of 2DPKs from the monolayers to assemblies, and present a comprehensive comparison with conventional semiconductors, thereby providing a broad understanding of low-dimensional semiconductors that feature complex organic-inorganic hetero-interfaces.
Collapse
Affiliation(s)
| | - Jacky Even
- Univ Rennes, INSA Rennes, CNRS, Institut FOTON - UMR 6082, Rennes, France
| | - Costas C Stoumpos
- Department of Materials Science and Technology, University of Crete, Heraklion, Crete, Greece
| | - Mercouri G Kanatzidis
- Department of Chemistry and Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
| | - Aditya D Mohite
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA.
| |
Collapse
|
46
|
Shi R, Vasenko AS, Long R, Prezhdo OV. Edge Influence on Charge Carrier Localization and Lifetime in CH 3NH 3PbBr 3 Perovskite: Ab Initio Quantum Dynamics Simulation. J Phys Chem Lett 2020; 11:9100-9109. [PMID: 33048554 DOI: 10.1021/acs.jpclett.0c02800] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The distribution of charge carriers in metal halide perovskites draws strong interest from the solar cell community, with experiments demonstrating that edges of various microstructures can improve material performance. This is rather surprising because edges and grain boundaries are often viewed as the main source of charge traps. We demonstrate by ab initio quantum dynamics simulations that edges of the CH3NH3PbBr3 perovskite create shallow trap states that mix well with the valence and conduction bands of the bulk and therefore support mobile charge carriers. Charges are steered to the edges energetically, facilitating dissociation of photo-generated excitons into free carriers. The edge-driven charge separation extends carrier lifetimes because of decreased overlap of the electron and hole wave functions, which leads to reduction of the nonadiabatic coupling responsible for nonradiative electron-hole recombination. Reduction of spatial symmetry near the edges activates additional vibrational modes that accelerate coherence loss within the electronic subsystem, further extending carrier lifetimes. Enhanced atomic motions at edges increase fluctuations of edge energy levels, enhancing mixing with band states and improving charge mobility. The simulations contribute to the atomistic understanding of the unusual properties of metal halide perovskites, generating the fundamental knowledge needed to design high-performance optoelectronic devices.
Collapse
Affiliation(s)
- Ran Shi
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Andrey S Vasenko
- National Research University Higher School of Economics, 101000 Moscow, Russia
- I.E. Tamm Department of Theoretical Physics, P.N. Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Run Long
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Oleg V Prezhdo
- Departments of Chemistry, and Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
47
|
Su J, Zheng Q, Shi Y, Zhao J. Interlayer Polarization Explains Slow Charge Recombination in Two-Dimensional Halide Perovskites by Nonadiabatic Molecular Dynamics Simulation. J Phys Chem Lett 2020; 11:9032-9037. [PMID: 33044072 DOI: 10.1021/acs.jpclett.0c02838] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Two-dimensional (2D) perovskites for applications in photovoltaics and optoelectronics are attracting a great deal of research interest. The nonradiative electron-hole (e-h) recombination is the major efficiency loss channel. Herein, we report a study of the thickness dependence of the e-h recombination dynamics in diamine-based 2D perovskite via ab initio NAMD. For multilayer structures, due to the emergence of spontaneous interlayer electric polarization, which is induced by the collective and correlated reorientation of methylammonium molecules, the electron and hole at the band edges are localized in different inorganic layers, suppressing the e-h recombination. Furthermore, a broad range of phonon excitation also inspired rapid pure dephasing related to the microscopic origin for longer recombination times. The combination of the two effects leads to the observation of a prolonged carrier lifetime in multilayer 2D perovskites, which is essential to understanding the nonradiative e-h recombination mechanism in such materials.
Collapse
Affiliation(s)
- Jianfeng Su
- Department of Mathematics and Physics, Luoyang Institute of Science and Technology, Luoyang 471023, P. R. China
| | - Qijing Zheng
- ICQD/Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yongliang Shi
- ICQD/Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Center for Spintronics and Quantum Systems, State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, Shanxi 710049, China
| | - Jin Zhao
- ICQD/Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
48
|
Qiao L, Fang WH, Long R, Prezhdo OV. Photoinduced Dynamics of Charge Carriers in Metal Halide Perovskites from an Atomistic Perspective. J Phys Chem Lett 2020; 11:7066-7082. [PMID: 32787332 DOI: 10.1021/acs.jpclett.0c01687] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Perovskite solar cells have attracted intense attention over the past decade because of their low cost, abundant raw materials, and rapidly growing power conversion efficiency (PCE). However, nonradiative charge carrier losses still constitute a major factor limiting the PCE to well below the Shockley-Queisser limit. This Perspective summarizes recent atomistic quantum dynamics studies on the photoinduced excited-state processes in metal halide perovskites (MHPs), including both hybrid organic-inorganic and all-inorganic MHPs and three- and two-dimensional MHPs. The simulations, performed using a combination of time-domain ab initio density functional theory and nonadiabatic molecular dynamics, allow emphasis on various intrinsic and extrinsic features, such as components, structure, dimensionality and interface engineering, control and exposure to various environmental factors, defects, surfaces, and their passivation. The detailed atomistic simulations advance our understanding of electron-vibrational dynamics in MHPs and provide valuable guidelines for enhancing the performance of perovskite solar cells.
Collapse
Affiliation(s)
- Lu Qiao
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, P.R. China
| | - Wei-Hai Fang
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, P.R. China
| | - Run Long
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, P.R. China
| | - Oleg V Prezhdo
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
49
|
He J, Fang WH, Long R, Prezhdo OV. Why Oxygen Increases Carrier Lifetimes but Accelerates Degradation of CH3NH3PbI3 under Light Irradiation: Time-Domain Ab Initio Analysis. J Am Chem Soc 2020; 142:14664-14673. [DOI: 10.1021/jacs.0c06769] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Jinlu He
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, P. R. China
| | - Wei-Hai Fang
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, P. R. China
| | - Run Long
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, P. R. China
| | - Oleg V. Prezhdo
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
50
|
He J, Fang WH, Long R. Two-Dimensional Perovskite Capping Layer Simultaneously Improves the Charge Carriers' Lifetime and Stability of MAPbI 3 Perovskite: A Time-Domain Ab Initio Study. J Phys Chem Lett 2020; 11:5100-5107. [PMID: 32513007 DOI: 10.1021/acs.jpclett.0c01463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Two- (2D) and three-dimensional (3D) heterostructured perovskites show enhanced stability and an extended charge lifetime compared to those of the 3D component. The mystery remains unexplored for both phenomena in the class of the typical type-I heterojunction. By using time-domain density functional theory combined with nonadiabatic (NA) molecular dynamics simulations for the MA3Bi2I9/MAPbI3 (MA = CH3NH3+) junction, we demonstrate that the formation of I-Pb chemical bonds at the junction suppresses the atomic motions. The inhibited charge recombination in the junction is ascribed to the increased band gap, reduced NA coupling, and shortened coherence time. By localizing the hole wave function, the NA coupling is decreased by about a factor of 1.4. The presence of multiple phonon modes, particularly the Bi-I vibrations, accelerates decoherence about twice as fast as that in the pristine MAPbI3. As a result, the 2D capping layer reduces the recombination in MAPbI3 by more than a factor of 2, decreasing charge and energy losses. The strategy can be applied to optimize the performance of other 2D/3D heterostructured perovskite solar cells.
Collapse
Affiliation(s)
- Jinlu He
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of the Ministry of Education, Beijing Normal University, Beijing 100875, P. R. China
| | - Wei-Hai Fang
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of the Ministry of Education, Beijing Normal University, Beijing 100875, P. R. China
| | - Run Long
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of the Ministry of Education, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|