1
|
Han CQ, Liu XY. Emission Library and Applications of 2,1,3-Benzothiadiazole and Its Derivative-Based Luminescent Metal-Organic Frameworks. Angew Chem Int Ed Engl 2025; 64:e202416286. [PMID: 39305074 DOI: 10.1002/anie.202416286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Indexed: 11/01/2024]
Abstract
Organic linker-based luminescent metal-organic frameworks (LMOFs) have received extensive attention due to their promising applications in chemical sensing, energy transfer, solid-state-lighting and heterogeneous catalysis. Benefiting from the virtually unlimited emissive organic linkers and the intrinsic advantages of MOFs, significant progress has been made in constructing LMOFs with specific emission behaviors and outstanding performances. Among these reported organic linkers, 2,1,3-benzothiadiazole and its derivatives, as unique building units with tunable electron-withdrawing abilities, can be used to synthesize numerous emissive linkers with a donor-bridge-acceptor-bridge-donor type structure. These linkers were utilized to coordinate with different metal nodes, forming LMOFs with diverse underlying nets and optical properties. In this Minireview, 2,1,3-benzothiadiazole and its derivative-based organic linkers and their corresponding LMOFs are summarized with which an emission library is built between the linker structures and the emission behaviors of constructed LMOFs. In particular, the preparation of LMOFs with customized emission properties ranging from deep-blue to near-infrared and sizes from dozens to hundreds of nanometers is discussed in detail. The applications of these LMOFs, including chemical sensing, energy harvesting and transfer, and catalysis, are then highlighted. Key perspectives and challenges for the future development of LMOFs are also addressed.
Collapse
Affiliation(s)
- Chao-Qin Han
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, Nanshan District, Shenzhen, 518055, P. R. China
| | - Xiao-Yuan Liu
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, Nanshan District, Shenzhen, 518055, P. R. China
| |
Collapse
|
2
|
Liu X, Yang X, Xiang S, Lv Y, Zhang Z. Coordination-Defect-Driven Construction of Responsive Pure-MOF Microspheres for Switchable Mode-Dependent Anticounterfeiting Labels. ACS APPLIED MATERIALS & INTERFACES 2025; 17:2063-2071. [PMID: 39716438 DOI: 10.1021/acsami.4c19719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Luminescent metal-organic frameworks (MOFs) with exceptional dynamics and diverse active sites possess tremendous potential in information security and anticounterfeiting applications. However, traditional MOF systems are based on broadband spectral signals with spectrum overlap, which easily leads to low-resolution signal identification, compromising the overall security level. Here, we report the coordination-defect-induced amorphous pure-MOF microsphere with switchable whispering-gallery-mode (WGM) signals as a mode-dependent security platform. Amorphous MOF microspheres are prepared by a chlorine coordination-defect-driven growth strategy based on the aperiodic arrangement in coordinate networks. The as-prepared amorphous MOF microspheres with well-defined circular morphology display the typical WGM resonance with dimension-dependent character, permitting the creation of photonic barcodes with substantial encoding capacity. Furthermore, the amorphous MOF microspheres exhibit optical mode switching behavior due to reversible framework shrinkage, which enables the design of covert photonic barcodes as anticounterfeiting labels, finally demonstrating responsive coding property and enhanced information security. The results provide a novel strategy for exploring an MOF-based security platform for information encryption and optical anticounterfeiting.
Collapse
Affiliation(s)
- Xinming Liu
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Xue Yang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Shengchang Xiang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Yuanchao Lv
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Zhangjing Zhang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| |
Collapse
|
3
|
Lv Y, Lin C, Liu X, Liang J, Li Y, Yao Z, Xiang S, Chen B, Zhang Z. Differentiated Intra-Ligand Charge Transfer Boosting Multicolor Responsive MOF Heterostructures as Robust Anti-Counterfeiting Labels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2412637. [PMID: 39539007 DOI: 10.1002/adma.202412637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/15/2024] [Indexed: 11/16/2024]
Abstract
Metal-organic framework (MOF) heterostructures with hybrid architectures and abundant functional sites possess great potential applications in advanced information security, yet still suffer from the harsh stimuli mechanisms with restrained emission control. Herein, the differentiated design strategy on intra-ligand charge transfer is first reported to realize smart-responsive multicolor MOF heterostructures as robust anticounterfeiting labels. Designed similar MOF blocks with the differentiated intra-ligand charge transfer are integrated via time-dependent epitaxial growth to form multicolor MOF heterostructures. Different numbers of electron-donating groups in MOF blocks offer distinct space regulation on the torsion of charge transfer ligands, which trigger the diverse responsive emissions under the same mild stimuli, thus generating multiple tunable color patterns in heterostructures. These spatial-resolved MOF heterostructures with stable multicolor responsive modes permit the encoding of fingerprint information, which further functions as robust anti-counterfeiting labels with high-security convert states. These results offer a promising route for the function-oriented exploitation of smart-responsive MOF heterosystems for advanced information anticounterfeiting.
Collapse
Affiliation(s)
- Yuanchao Lv
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Chenwei Lin
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Xinming Liu
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Jiashuai Liang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Yunbin Li
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Zizhu Yao
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Shengchang Xiang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Banglin Chen
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Zhangjing Zhang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| |
Collapse
|
4
|
Xing H, Tian S, Zhou Z, Zhang Z, Zhang C, Zhang S, Lin J, Guo C, Wang E, Li J. Rapid Preparation of a Self-Luminous Cd-Based Metal-Organic Framework Using AIEgen Ligands for High-Performance Electrochemiluminescence. Anal Chem 2024; 96:18781-18789. [PMID: 39540416 DOI: 10.1021/acs.analchem.4c04202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The design and synthesis of high-efficiency electrochemiluminescence (ECL) emitters hold great promise for a wide range of analytical applications. In this study, we developed a rapid and straightforward strategy to fabricate a self-luminous Cd-based metal-organic framework (Cd-MOF) using individual aggregation-induced emission ligands, specifically 1,1,2,2-tetrakis(4-(pyridin-4-yl)phenyl)ethane (TPPE), within a few seconds. The rigid and directionally enriched metal node of Cd, along with the organic ligands, is formed within the Cd-MOF via coordination, effectively constraining the intramolecular free motions of TPPE and suppressing nonradiative relaxation. Additionally, the unique porous structure combined with the catalytic activity resulting from the incorporation of Cd2+, endow the Cd-MOF with 90-fold ECL enhancement compared to individual TPPE as more chromophores are electro-excited and more coreactants are catalyzed to produce luminescence. The as-made Cd-MOF amplifies the ECL performance by integrating ECL emitters and coreactant accelerators into a single entity, simplifying the sensing process. Leveraging the excellent ECL performance, we constructed a sensitive ECL sensor for hydroquinone based on competitive reactions, with a wide linear range from 200 nM to 1 mM and a satisfying detection limit as low as 80 nM.
Collapse
Affiliation(s)
- Huanhuan Xing
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Sipeng Tian
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin, Changchun 130022, China
| | - Zihan Zhou
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Zihang Zhang
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Chunmei Zhang
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Shan Zhang
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jian Lin
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Chunxian Guo
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin, Changchun 130022, China
| | - Jing Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin, Changchun 130022, China
| |
Collapse
|
5
|
Xiao L, Duan R, Zhou X, Liu S, Du Q, Ren T, Yeow EKL, Ta VD, Huang Y, Sun H. Extended Surface Bands Enabled Lasing Emission and Wavelength Switch from Sulfur Quantum Dots. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408104. [PMID: 39295469 DOI: 10.1002/adma.202408104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/09/2024] [Indexed: 09/21/2024]
Abstract
The development of a lasing wavelength switch, particularly from a single inorganic gain material, is challenging but highly demanded for advanced photonics. Nonetheless, all current lasing emission of inorganic gain materials arises from band-edge states, and the inherent fixed bandgap limitation of the band-edge system leads to the inaccessibility of lasing wavelength switching from a single inorganic gain material. Here the realization of a single inorganic gain material-based lasing wavelength switch is reported by proposing an alternative lasing emission strategy, that is, lasing emission from surface gain. Previous efforts to achieve surface-gain-enabled lasing emission have been hindered by the limited gain volume provided by surface states due to the broad emission bandwidth and/or low emission efficiency. This challenge is overcome by introducing extended surface bands onto the surface of sulfur quantum dots. The extended surface bands contribute to a high photoluminescence quantum yield and narrow emission bandwidth, thereby providing sufficient gain volume and facilitating stimulated emission. When combined with whispering gallery mode microcavity, surface gain enabled lasing emission manifests an ultralow threshold of 8.3 µJ cm-2. Remarkably, the reconfigurable perturbation to surface gain, facilitated by molecular affinity, allows for the realization of the lasing wavelength switch from a single inorganic gain material.
Collapse
Affiliation(s)
- Lian Xiao
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Rui Duan
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao, SAR, 999078, China
| | - Xuehong Zhou
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Sihang Liu
- Research Institute of Aero-Engine, Beihang University, No. 37 XueYuan Road, Haidian District, Beijing, 100083, China
| | - Quanchao Du
- School of Chemistry, Chemical Engineering & Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Tianhua Ren
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao, SAR, 999078, China
| | - Edwin Kok Lee Yeow
- School of Chemistry, Chemical Engineering & Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Van Duong Ta
- Department of Optical Devices, Le Quy Don Technical University, Hanoi, 100000, Vietnam
| | - Yi Huang
- Research Institute of Aero-Engine, Beihang University, No. 37 XueYuan Road, Haidian District, Beijing, 100083, China
| | - Handong Sun
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao, SAR, 999078, China
| |
Collapse
|
6
|
Lu M, Li P, Dong X, Jiang Z, Ren S, Yao J, Dong H, Zhao YS. Adaptive Helical Chirality in Supramolecular Microcrystals for Circularly Polarized Lasing. Angew Chem Int Ed Engl 2024; 63:e202408619. [PMID: 38924245 DOI: 10.1002/anie.202408619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
Chiral organic molecules offer a promising platform for exploring circularly polarized lasing, which, however, faces a great challenge that the spatial separation of molecular chiral and luminescent centers limits chiroptical activity. Here we develop a helically chiral supramolecular system with completely overlapped chiral and luminescent units for realizing high-performance circularly polarized lasing. Adaptive helical chirality is obtained by incorporating chiral agents into organic microcrystals. Benefiting from the efficient coupling of stimulated emission with the adaptive helical chirality, the supramolecular microcrystals enable high-performance circularly polarized lasing emission with dissymmetry factors up to ~0.7. This work opens up the way to rational design of chiral organic materials for circularly polarized lasing.
Collapse
Affiliation(s)
- Miaosen Lu
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Penghao Li
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinyu Dong
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhengjun Jiang
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shizhe Ren
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiannian Yao
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haiyun Dong
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong Sheng Zhao
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
7
|
Chang M, Li N, Guo L, Zhang Y, Liu XT, Lu C. Manipulating AIE ligands into layers of pillar-layered MOFs for enhanced emission. Chem Commun (Camb) 2024. [PMID: 39054891 DOI: 10.1039/d4cc01831a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Four pillar-layered AIEgen-based MOFs exhibit higher thermal stability, tunable emission colors and improved QYs compared with that of non-pillar-layered AIEgen-based MOFs by confining the AIE ligands into layers. These results reveal that rationally manipulating AIE ligands into layers of pillar-layered MOFs is an effective strategy for the design and construction of tunable luminescent MOF systems.
Collapse
Affiliation(s)
- Manman Chang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
| | - Nan Li
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
| | - Lingxiao Guo
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
| | - Yijia Zhang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
| | - Xiao-Ting Liu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
| | - Chao Lu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
8
|
Xiong Z, Li Y, Yuan Z, Liang J, Wang S, Yang X, Xiang S, Lv Y, Chen B, Zhang Z. Switchable Anisotropic/Isotropic Photon Transport in a Double-Dipole Metal-Organic Framework via Radical-Controlled Energy Transfer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2314005. [PMID: 38375769 DOI: 10.1002/adma.202314005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/11/2024] [Indexed: 02/21/2024]
Abstract
Directional control of photon transport at micro/nanoscale holds great potential in developing multifunctional optoelectronic devices. Here, the switchable anisotropic/isotropic photon transport is reported in a double-dipole metal-organic framework (MOF) based on radical-controlled energy transfer. Double-dipole MOF microcrystals with transition dipole moments perpendicular to each other have been achieved by the pillared-layer coordination strategy. The energy transfer between the double dipolar chromophores can be modulated by the photogenerated radicals, which permits the in situ switchable output on both polarization (isotropy/anisotropy state) and wavelength information (blue/red-color emission). On this basis, the original MOF microcrystal with isotropic polarization state displays the isotropic photon transport and similar reabsorption losses at various directions, while the radical-affected MOF microcrystal with anisotropic polarization state shows the anisotropic photon transport with distinct reabsorption losses at different directions, finally leading to the in situ switchable anisotropic/isotropic photon transport. These results offer a novel strategy for the development of MOF-based photonic devices with tunable anisotropic performance.
Collapse
Affiliation(s)
- Zhile Xiong
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Yunbin Li
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Zhen Yuan
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Jiashuai Liang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Shuaiqi Wang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Xue Yang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Shengchang Xiang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Yuanchao Lv
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Banglin Chen
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Zhangjing Zhang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| |
Collapse
|
9
|
Wang SC, Zhang QS, Wang Z, Guan SQ, Zhang XD, Xiong XH, Pan M. Tetraphenylethylene-Based Hydrogen-Bonded Organic Frameworks (HOFs) with Brilliant Fluorescence. Angew Chem Int Ed Engl 2023; 62:e202315382. [PMID: 37945541 DOI: 10.1002/anie.202315382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/12/2023]
Abstract
By synergistically employing four key strategies: (I) introducing tetraphenylethylene groups as the central core unit with aggregation-induced emission (AIE) properties, (II) optimizing the π-conjugated length by extending the building block branches, (III) incorporating flexible groups containing ethylenic bonds, and (IV) applying crystal engineering to attain dense stacking mode and highly twisty conformation, we successfully synthesized a series of hydrogen-bonded organic frameworks (HOFs) exhibiting exceptional one/two-photon excited fluorescence. Notably, when utilizing the fluorescently superior building block L2, HOF-LIFM-7 and HOF-LIFM-8 exhibiting high quantum yields (QY) of 82.1 % and 77.1 %, and ultrahigh two-photon absorption (TPA) cross-sections of 148959.5 GM and 123901.1 GM were achieved. These materials were successfully employed in one and two-photon excited lysosome-targeting cellular imaging. It is believed that this strategy, combining building block optimization and crystal engineering, holds significant potential for guiding the development of outstanding fluorescent HOF materials.
Collapse
Affiliation(s)
- Shi-Cheng Wang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, IGCME, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China
| | - Qiang-Sheng Zhang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, IGCME, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
- Hainan Provincial Key Laboratory of Fine Chem, School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China
| | - Zheng Wang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, IGCME, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Shao-Qi Guan
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, IGCME, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Xiao-Dong Zhang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, IGCME, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Xiao-Hong Xiong
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, IGCME, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Mei Pan
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, IGCME, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| |
Collapse
|
10
|
Zou Y, Cui W, Chen D, Luo F, Li H. In Situ-Generated Heat-Resistant Hydrogen-Bonded Organic Framework for Remarkably Improving Both Flame Retardancy and Mechanical Properties of Epoxy Composites. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47463-47474. [PMID: 37750712 DOI: 10.1021/acsami.3c09197] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
In this study, the heat-resistant hydrogen-bonded organic framework (HOF) material HOF-FJU-1 was synthesized via in situ generation and then used as flame retardants (FRs) to improve the flame retardancy of epoxy resin (EP). HOF-FJU-1 can maintain high crystallinity at 450 °C and thus function as a flame retardant in EP. The study found that HOF-FJU-1 facilitates the improvement of char formation in EP, thus inhibiting heat transfer and smoke release during combustion. For EP/HOF-FJU-1 composites, the in situ-generated HOF-FJU-1 can remarkably improve both the mechanical properties and the flame retardancy of EP. Furthermore, the in situ-generated HOF-FJU-1 has better fire safety than the ex situ-generated HOF-FJU-1 at the same filling content. Thermal degradation products and flame retardation mechanisms in the gas and condensed phases were further investigated. This work demonstrates that the in situ-generated HOF-FJU-1 is promising to be an excellent flame-retardant candidate.
Collapse
Affiliation(s)
- Yingbing Zou
- Engineering Research Center of polymer Green Recycling of Ministry of Education, College of Environment and Resource science, Fujian Normal University, Fuzhou 350007, China
| | - Wenqi Cui
- Engineering Research Center of polymer Green Recycling of Ministry of Education, College of Environment and Resource science, Fujian Normal University, Fuzhou 350007, China
| | - Denglong Chen
- Quangang Petrochemical Research Institute, Fujian Normal University, Quanzhou 362801, China
| | - Fubin Luo
- Engineering Research Center of polymer Green Recycling of Ministry of Education, College of Environment and Resource science, Fujian Normal University, Fuzhou 350007, China
| | - Hongzhou Li
- Engineering Research Center of polymer Green Recycling of Ministry of Education, College of Environment and Resource science, Fujian Normal University, Fuzhou 350007, China
| |
Collapse
|
11
|
Peng QC, Si YB, Yuan JW, Yang Q, Gao ZY, Liu YY, Wang ZY, Li K, Zang SQ, Zhong Tang B. High Performance Dynamic X-ray Flexible Imaging Realized Using a Copper Iodide Cluster-Based MOF Microcrystal Scintillator. Angew Chem Int Ed Engl 2023; 62:e202308194. [PMID: 37366600 DOI: 10.1002/anie.202308194] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 06/28/2023]
Abstract
X-ray imaging technology has achieved important applications in many fields and has attracted extensive attentions. Dynamic X-ray flexible imaging for the real-time observation of the internal structure of complex materials is the most challenging type of X-ray imaging technology, which requires high-performance X-ray scintillators with high X-ray excited luminescence (XEL) efficiency as well as excellent processibility and stability. Here, a macrocyclic bridging ligand with aggregation-induced emission (AIE) feature was introduced for constructing a copper iodide cluster-based metal-organic framework (MOF) scintillator. This strategy endows the scintillator with high XEL efficiency and excellent chemical stability. Moreover, a regular rod-like microcrystal was prepared through the addition of polyvinyl pyrrolidone during the in situ synthesis process, which further enhanced the XEL and processibility of the scintillator. The microcrystal was used for the preparation of a scintillator screen with excellent flexibility and stability, which can be used for high-performance X-ray imaging in extremely humid environments. Furthermore, dynamic X-ray flexible imaging was realized for the first time. The internal structure of flexible objects was observed in real time with an ultrahigh resolution of 20 LP mm-1 .
Collapse
Affiliation(s)
- Qiu-Chen Peng
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostic Cluster Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), Ministry of Education, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Yu-Bing Si
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostic Cluster Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), Ministry of Education, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Jia-Wang Yuan
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostic Cluster Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), Ministry of Education, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Qi Yang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostic Cluster Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), Ministry of Education, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Zi-Ying Gao
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostic Cluster Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), Ministry of Education, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Yuan-Yuan Liu
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostic Cluster Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), Ministry of Education, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhao-Yang Wang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostic Cluster Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), Ministry of Education, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Kai Li
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostic Cluster Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), Ministry of Education, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostic Cluster Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), Ministry of Education, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, 518172, China
| |
Collapse
|
12
|
Liu X, Wang K, Ren A, Zhang T, Ren S, Yao J, Dong H, Zhao YS. Continuous-Wave Raman Lasing from Metal-Linked Organic Dimer Microcrystals. Angew Chem Int Ed Engl 2023; 62:e202309386. [PMID: 37587321 DOI: 10.1002/anie.202309386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/12/2023] [Accepted: 08/16/2023] [Indexed: 08/18/2023]
Abstract
Stimulated Raman scattering offers an alternative strategy to explore continuous-wave (c.w.) organic lasers, which, however, still suffers from the limitation of inadequate Raman gain in organic material systems. Here we propose a metal-linking approach to enhance the Raman gain of organic molecules. Self-assembled microcrystals of the metal linked organic dimers exhibit large Raman gain, therefore allowing for c.w. Raman lasing. Furthermore, broadband tunable Raman lasing is achieved in the organic dimer microcrystals by adjusting excitation wavelengths. This work advances the understanding of Raman gain in organic molecules, paving a way for the design of c.w. organic lasers.
Collapse
Affiliation(s)
- Xiaolong Liu
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kang Wang
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Ang Ren
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tongjin Zhang
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shizhe Ren
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiannian Yao
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haiyun Dong
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong Sheng Zhao
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
13
|
Kim KH, Yan H, Yun SH. Aggregation-Induced Stimulated Emission of 100% Dye Microspheres. ADVANCED OPTICAL MATERIALS 2023; 11:2202956. [PMID: 38107448 PMCID: PMC10723759 DOI: 10.1002/adom.202202956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Indexed: 12/19/2023]
Abstract
Dyes with aggregation-induced emission (AIE) properties have gained interests due to their bright luminescence in solid-state aggregates. While fluorescence from AIE dyes have been widely exploited, relatively little is known about aggregation-induced stimulated emission. Here, we investigated stimulated emission of tetraphenylethene (TPE)-based organoboron AIE dyes, TPEQBN, in thin films and in microcavity lasers. Using femtosecond pump-probe spectroscopy, gain coefficients up to 230 cm-1 at 500 nm were measured. Using rate equations, we analyzed concentration- and pump-dependent gain dynamics as well as laser build up dynamics. During laser oscillation, radiative stimulated emission allows high instantaneous quantum yield greater than 90% to be achieved. We fabricated solid-state microspheres made of 100% AIE dyes via microfluidic emulsion and solvent evaporation method. Coupled with high gain and high refractive index of 1.76, microspheres as small as 2 μm in diameter showed lasing by nanosecond pumping with a threshold of ~10 pJ μm-2. Polymer coated, but not bare, microspheres were internalized by live cells and generated narrowband cavity mode emission from within the cytoplasm. Our work shows the potential of AIE dyes as laser materials.
Collapse
Affiliation(s)
- Kwon-Hyeon Kim
- Wellman Center for Photomedicine and Harvard Medical School, Massachusetts General Hospital, 65 Landsdowne St., Cambridge, MA 02139, USA
| | - Hao Yan
- Wellman Center for Photomedicine and Harvard Medical School, Massachusetts General Hospital, 65 Landsdowne St., Cambridge, MA 02139, USA
| | - Seok-Hyun Yun
- Wellman Center for Photomedicine and Harvard Medical School, Massachusetts General Hospital, 65 Landsdowne St., Cambridge, MA 02139, USA
| |
Collapse
|
14
|
Heterogeneous intercalated metal-organic framework active materials for fast-charging non-aqueous Li-ion capacitors. Nat Commun 2023; 14:1472. [PMID: 36928582 PMCID: PMC10020440 DOI: 10.1038/s41467-023-37120-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 03/01/2023] [Indexed: 03/18/2023] Open
Abstract
Intercalated metal-organic frameworks (iMOFs) based on aromatic dicarboxylate are appealing negative electrode active materials for Li-based electrochemical energy storage devices. They store Li ions at approximately 0.8 V vs. Li/Li+ and, thus, avoid Li metal plating during cell operation. However, their fast-charging capability is limited. Here, to circumvent this issue, we propose iMOFs with multi-aromatic units selected using machine learning and synthesized via solution spray drying. A naphthalene-based multivariate material with nanometric thickness allows the reversible storage of Li-ions in non-aqueous Li metal cell configuration reaching 85% capacity retention at 400 mA g-1 (i.e., 30 min for full charge) and 20 °C compared to cycling at 20 mA g-1 (i.e., 10 h for full charge). The same material, tested in combination with an activated carbon-based positive electrode, enables a discharge capacity retention of about 91% after 1000 cycles at 0.15 mA cm-2 (i.e., 2 h for full charge) and 20 °C. We elucidate the charge storage mechanism and demonstrate that during Li intercalation, the distorted crystal structure promotes electron delocalization by controlling the frame vibration. As a result, a phase transition suppresses phase separation, thus, benefitting the electrode's fast charging behavior.
Collapse
|
15
|
Zhang Z, Ye Y, Xiang S, Chen B. Exploring Multifunctional Hydrogen-Bonded Organic Framework Materials. Acc Chem Res 2022; 55:3752-3766. [PMID: 36454588 DOI: 10.1021/acs.accounts.2c00686] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Hydrogen-bonded organic framework (HOF) materials have provided a new dimension and bright promise as a new platform for developing multifunctional materials. They can be readily self-assembled from their corresponding organic molecules with diverse functional sites such as carboxylic acid and amine groups for their hydrogen bonding and aromatic ones for their weak π···π interactions to stabilize the frameworks. Compared with those established porous materials such as zeolites, metal-organic frameworks (MOFs), and covalent-organic frameworks (COFs), it is much more difficult to stabilize HOFs and thus establish their permanent porosities given the fact that hydrogen bonds are typically weaker than ionic, coordination, and covalent bonds. But it provides the uniqueness of HOF materials in which they can be easily recovered and regenerated through simple recrystallization. HOF materials can also be easily and straightforwardly processed and very compatible with the biomolecules, making them potentially very useful materials for industrial and biomedical applications. The reversible and weak bonding nature of the hydrogen bonds can be readily utilized to construct flexible porous HOF materials in which we can tune the temperature and pressure to control their porosities and, thus, their diverse applications, for example, on gas separations, gas storage, drug delivery, and sensing. Some specific organic functional groups are quite directional for the hydrogen bond formations; for example, carboxylic acid prefers to form a directional dimer, which has enabled us to readily construct reticular porous HOF materials whose pores can be systematically tuned. In this Account, we outline our journey of exploring this new type of porous material by establishing one of the first porous HOFs in 2011 and thus developing its diverse applications. We have been able to use organic molecules with different functional sites, including 2,4-diaminotriazine (DAT), carboxylic acid (COOH), aldehyde (CHO), and cyano (CN), to construct porous HOFs. Through tuning the pore sizes, introducing specific binding sites, and making use of the framework flexibility, we have realized a series of HOF materials for the gas separations of C2H2/C2H4, C2H4/C2H6, C3H6/C3H8, C2H2/CO2, CO2/N2, and Xe/Kr and enantioselective separation of alcohols. To make use of optically active organic molecules, we have developed HOF materials for their luminescent sensing and optical lasing. Our research endeavors on multifunctional HOF materials have initiated extensive research in this emerging research topic among chemistry and materials sciences communities. We foresee that not only many more HOF materials will be developed but novel functions will be fulfilled beyond our imaginations soon.
Collapse
Affiliation(s)
- Zhangjing Zhang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, People's Republic of China
| | - Yingxiang Ye
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, People's Republic of China
| | - Shengchang Xiang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, People's Republic of China
| | - Banglin Chen
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249-0698, United States
| |
Collapse
|
16
|
Lv Y, Liang J, Li D, Xiong Z, Cai K, Xiang S, Zhang Z. Hydration-Facilitated Coordination Tuning of Metal–Organic Frameworks toward Water-Responsive Fluorescence and Proton Conduction. Inorg Chem 2022; 61:18789-18794. [DOI: 10.1021/acs.inorgchem.2c03341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yuanchao Lv
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Jiashuai Liang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Delin Li
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Zhile Xiong
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Kaicong Cai
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Shengchang Xiang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Zhangjing Zhang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| |
Collapse
|
17
|
Chen Y, Zheng C, Yang W, Li J, Jin F, Li X, Wang J, Jiang L. Over 200 °C Broad-Temperature Lasers Reconstructed from a Blue-Phase Polymer Scaffold. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2206580. [PMID: 36189900 DOI: 10.1002/adma.202206580] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Blue-phase liquid crystal (BPLC) lasers have received extensive attention and have potential applications in sensors, displays, and anti-counterfeiting, owing to their unique 3D photonic bandgap. However, the working temperature range of such BPLC lasers is insufficient, and investigations are required to elucidate the underlying mechanism. Herein, a broad-temperature reconstructed laser is successfully achieved in dye-doped polymer-stabilized blue-phase liquid crystals (DD-PSBPLCs) with an unprecedented working temperature range of 25-230 °C based on a robust polymer scaffold, which combines the thermal stability and the tunability from the system. The broad-temperature lasing stems from the high thermal stability of the robust polymerized system used, which affords enough reflected and matched fluorescence signals. The temperature-tunable lasing behavior of the DD-PSBPLCs is associated with the phase transition of the unpolymerized content (≈60 wt%) in the system, which endows with a reconstructed characteristic of BP lasers including a U-shaped lasing threshold, a reversible lasing wavelength, and an obvious lasing enhancement at about 70 °C. This work not only provides a new idea for the design of broad-temperature BPLC lasers, but also sets out important insight in innovative microstructure changes for novel multifunctional organic optic devices.
Collapse
Affiliation(s)
- Yujie Chen
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Material Sciences and Optoelectronics Engineering, School of Future Technologies, University of Chinese Academy of Sciences, Beijing, 101407, China
| | - Chenglin Zheng
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Material Sciences and Optoelectronics Engineering, School of Future Technologies, University of Chinese Academy of Sciences, Beijing, 101407, China
| | - Wenjie Yang
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Material Sciences and Optoelectronics Engineering, School of Future Technologies, University of Chinese Academy of Sciences, Beijing, 101407, China
| | - Jing Li
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Feng Jin
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiuhong Li
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Jingxia Wang
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Material Sciences and Optoelectronics Engineering, School of Future Technologies, University of Chinese Academy of Sciences, Beijing, 101407, China
| | - Lei Jiang
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Material Sciences and Optoelectronics Engineering, School of Future Technologies, University of Chinese Academy of Sciences, Beijing, 101407, China
- Ji Hua Laboratory, Foshan, Guangdong, 528000, P. R. China
| |
Collapse
|
18
|
Wang S, Zhang Q, Wang Z, Zheng L, Zhang X, Fan Y, Fu P, Xiong X, Pan M. One and Two‐Photon Excited Fluorescence Optimization of Metal–Organic Frameworks with Symmetry‐Reduced AIEgen‐Ligand. Angew Chem Int Ed Engl 2022; 61:e202211356. [DOI: 10.1002/anie.202211356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Shi‐Cheng Wang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510006 China
| | - Qiang‐Sheng Zhang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510006 China
| | - Zheng Wang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510006 China
- College of Chemistry and Chemical Engineering Key Laboratory of Chemical Additives for China National Light Industry Shaanxi University of Science and Technology Xi'an 710021 China
| | - Lin Zheng
- MOE Laboratory of Bioinorganic and Synthetic Chemistry Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510006 China
| | - Xiao‐Dong Zhang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510006 China
| | - Ya‐Nan Fan
- MOE Laboratory of Bioinorganic and Synthetic Chemistry Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510006 China
| | - Peng‐Yan Fu
- MOE Laboratory of Bioinorganic and Synthetic Chemistry Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510006 China
| | | | - Mei Pan
- MOE Laboratory of Bioinorganic and Synthetic Chemistry Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510006 China
| |
Collapse
|
19
|
Wang SC, Zhang QS, Wang Z, Zheng L, Zhang XD, Fan YN, Fu PY, Xiong XH, Pan M. One and Two‐Photon Excited Fluorescence Optimization of Metal−Organic Frameworks with Symmetry‐Reduced AIEgen‐Ligand. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202211356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | | | - Zheng Wang
- Sun Yat-Sen University School of Chemistry CHINA
| | - Lin Zheng
- Sun Yat-Sen University School of Chemistry CHINA
| | | | - Ya-Nan Fan
- Sun Yat-Sen University School of Chemistry CHINA
| | - Peng-Yan Fu
- Sun Yat-Sen University School of Chemistry CHINA
| | | | - Mei Pan
- Sun Yat-Sen University School of Chemistry and Chemical Engineering 135 West Xingang Road 510275 Guangzhou CHINA
| |
Collapse
|
20
|
Xiong Z, Li Y, Liang J, Xiang S, Lv Y, Zhang Z. Coordination-Guided Conformational Locking of 1D Metal-Organic Frameworks for a Tunable Stimuli-Responsive Luminescence Region. ACS APPLIED MATERIALS & INTERFACES 2022; 14:38098-38104. [PMID: 35957563 DOI: 10.1021/acsami.2c11761] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
One-dimensional (1D) metal-organic frameworks (MOFs) have shown great potential for designing more sensitive and smart stimuli-responsive photoluminescence metal-organic frameworks (PL-MOFs). Herein, we propose a strategy for constructing the 1D MOFs with tunable stimuli-responsive luminescence regions based on coordination-guided conformational locking. Two flexible 1D MOF microcrystals with trans- and cis-coordination modes, respectively, were synthesized by controlling the spatial constraint of solvents. The two 1D frameworks possess different conformation lockings of gain ligands, which have a great influence on the rotating restrictions and corresponding excited-state behaviors, generating the remarkably distinct color-tunable ranges (cyan-blue to green and cyan-blue to yellow, respectively). On this basis, the two 1D MOF materials, benefiting from the varied stimuli-responsive ranges, have displayed great potential in fulfilling the anticounterfeiting and information encryption applications. These results provide valuable guidance for the development of smart MOF-based stimuli-responsive materials in information identification and data encryption.
Collapse
Affiliation(s)
- Zhile Xiong
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Yunbin Li
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Jiashuai Liang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Shengchang Xiang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Yuanchao Lv
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
- Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Zhangjing Zhang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| |
Collapse
|
21
|
Kang K, Li L, Zhang M, Miao X, Lei L, Xiao C. Two-Fold Interlocking Cationic Metal-Organic Framework Material with Exchangeable Chloride for Perrhenate/Pertechnetate Sorption. Inorg Chem 2022; 61:11463-11470. [PMID: 35833914 DOI: 10.1021/acs.inorgchem.2c01846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Albeit reported substantial sorbents for elimination of TcO4-, the issue of secondary contamination caused by released counterions (such as NO3-) from the cationic metal-organic framework (MOF) has not come into the sufficient limelight for researchers. Herein, our efforts are dedicated to settle the matter through synthesis of NiCl2 based on the cationic MOF (ZJU-X4). Less harmful chlorides are used as exchangeable anions for replacing hazardous anions. Notably, ZJU-X4 exhibited fast sorption kinetics, high sorption capacity of 395 mg/g, decent selectivity, and excellent reusability in four recycles. The results of ion chromatography revealed that the released chloride ion was equal to sorption of target ions, and pair distribution functions were employed to analyze the changes in ZJU-X4 after sorption of ReO4-, clearly elucidating the anion-exchange mechanism. Furthermore, in the dynamic sorption experiments, ReO4- could be facilely and effectively removed and recovered, showing the value of practical applications. This work indicated that cationic MOF-based metal chloride salts would be a better choice for anionic sorbents.
Collapse
Affiliation(s)
- Kang Kang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Lei Li
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Meiyu Zhang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xiaohe Miao
- Instrumentation and Service Center for Physical Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Lecheng Lei
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Chengliang Xiao
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.,Institute of Zhejiang University─Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| |
Collapse
|
22
|
Asad M, Imran Anwar M, Abbas A, Younas A, Hussain S, Gao R, Li LK, Shahid M, Khan S. AIE based luminescent porous materials as cutting-edge tool for environmental monitoring: State of the art advances and perspectives. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214539] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
23
|
Chen Q, Zhang T, Chen X, Liang M, Zhao H, Yuan P, Han Y, Li CP, Hao J, Xue P. Tunable Fluorescence in Two-Component Hydrogen-Bonded Organic Frameworks Based on Energy Transfer. ACS APPLIED MATERIALS & INTERFACES 2022; 14:24509-24517. [PMID: 35588507 DOI: 10.1021/acsami.2c05897] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A dumbbell-shaped compound (TPAD) with four 2,4-diaminotriazine moieties as H-bond units and a benzene ring as a bridge group was found to form hydrogen-bonded organic frameworks (HOFs) with strong cyan fluorescence. An energy acceptor, 6,6',6″,6‴-(((benzo[c][1,2,5]thiadiazole-4,7-diylbis-(4,1-phenylene))bis(azanetriyl))tetrakis(benzene-4,1-diyl))tetrakis(1,3,5-triazine-2,4-diamine) (BTAD), with the same molecular skeleton as TPAD and a longer emission wavelength could homogeneously distribute within the framework of TPAD through occupying the locations of TPAD. As a result, two-component HOFs (TC-HOFs) were formed. The nonradiative energy transfer from TPAD as the donor to BTAD as the acceptor happens within frameworks owing to the efficient spectral overlap between the emission of TPAD and the absorption of BTAD. Moreover, the emission wavelengths and colors of TC-HOFs could be easily and continuously modulated by the content of the acceptor. The fluorescence color changed from cyan to orange when the content of BTAD gradually increased. This finding affirms that TC-HOFs with continuously adjustable composition can be constructed from two molecules with the same molecular skeleton, and highly efficient nonradiative energy transfer may happen in porous TC-HOFs. To the best of our knowledge, these TC-HOFs are the first example of TC-HOFs involved in energy transfer.
Collapse
Affiliation(s)
- Qiao Chen
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Tong Zhang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Xinyu Chen
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Meng Liang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - He Zhao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Pengfei Yuan
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Yanning Han
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Cheng-Peng Li
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Jingjun Hao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Pengchong Xue
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| |
Collapse
|
24
|
Zhang X, Li T, Cao QL, Wang YJ, Hou WL, Wei J, Tian GH, Hu H, Sheng J, Geng L, Zhang DS, Zhang YZ, Li Q. Constructing [Co6(μ3-OH)6]-based pillar-layered MOF with open metal sites via steric-hindrance effect on ligand for CO2 adsorption and fixation. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
25
|
Jin L, Chen X, Wu Y, Ai X, Yang X, Xiao S, Song Q. Dual-wavelength switchable single-mode lasing from a lanthanide-doped resonator. Nat Commun 2022; 13:1727. [PMID: 35365646 PMCID: PMC8975839 DOI: 10.1038/s41467-022-29435-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 03/14/2022] [Indexed: 11/09/2022] Open
Abstract
The development of multi-wavelength lasing, particularly with the wavelength tuning in a wide spectral range, is challenging but highly desirable for integrated photonic devices due to its dynamic switching functionality, high spectral purity and contrast. Here, we propose a general strategy, that relies on the simultaneous design on the electronic states and the optical states, to demonstrate dynamically switchable single-mode lasing spanning beyond the record range (300 nm). This is achieved through integrating the reversely designed nanocrystals with two size-mismatched coupled microcavities. We show an experimental validation of a crosstalk-free violet-to-red single-mode behavior through collective control of asymmetric excitation and excitation wavelength. The single-mode action persists for a wide power range, and presents significant enhancement when compared with that in the microdisk laser. These findings enlighten the reverse design of luminescent materials. Given the remarkable doping flexibility, our results may create new opportunities in a variety of frontier applications.
Collapse
Affiliation(s)
- Limin Jin
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Harbin Institute of Technology, Shenzhen, 518055, P. R. China.
| | - Xian Chen
- College of Materials Science of Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.
| | - Yunkai Wu
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Harbin Institute of Technology, Shenzhen, 518055, P. R. China
| | - Xiangzhe Ai
- College of Materials Science of Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Xiaoli Yang
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Harbin Institute of Technology, Shenzhen, 518055, P. R. China
| | - Shumin Xiao
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Harbin Institute of Technology, Shenzhen, 518055, P. R. China. .,Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, 030006, Shanxi, P. R. China. .,Pengcheng Laboratory, Shenzhen, 518055, P. R. China.
| | - Qinghai Song
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Harbin Institute of Technology, Shenzhen, 518055, P. R. China. .,Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, 030006, Shanxi, P. R. China. .,Pengcheng Laboratory, Shenzhen, 518055, P. R. China.
| |
Collapse
|
26
|
Jin X, Li S, Guo L, Hua J, Qu DH, Su J, Zhang Z, Tian H. Interplay of Steric Effects and Aromaticity Reversals to Expand the Structural/Electronic Responses of Dihydrophenazines. J Am Chem Soc 2022; 144:4883-4896. [PMID: 35259298 DOI: 10.1021/jacs.1c12610] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
To gain insights into the coupling of conformational and electronic variables, we exploited steric hindrance to modulate a polycyclic skeleton with a bent conformation in the S0 state and a twisted conformation in the S1 state under the guidance of photoexcited aromaticity reversals. Polycyclic 5,10-dihydrophenazine (DHP) adopted a bent structure in S0 but involved a bent-to-planar transformation in S1 due to the excited-state aromaticity of the 8π-electron central ring. The N,N'-locations and 1,4,6,9-sites of the DHP skeleton provided a versatile chemical handle for fine-tuning intramolecular steric hindrance. Specifically, N,N'-diphenyl-5,10-dihydrophenazine (DPP-00) and its derivatives DPP-10-DPP-22 were synthesized with different numbers of methyl groups on the 1,4,6,9-sites. X-ray crystal analyses suggested that the DHP skeletons of DPP-00-DPP-22 had more bending configurations along the N···N axis with an increase in the number of methyl groups. Following the bending-promoted interruption of π-conjugation, the absorption spectra of DPP-00-DPP-22 significantly blue-shifted from 416 to 324 nm. By contrast, the emission bands exhibited a reverse shift to longer wavelengths from 459 to 584 nm as the number of methyl substituents increased. Theoretical calculations revealed that introducing methyl groups caused the planar DHP skeleton in S1 to further twist along the N···N axis, resulting in a twisted high-strain conformation. The greater Stokes shift of the more steric-hindered structure can be attributed to the release of larger strain and aromatic stabilization energy. This research highlighted the potential promise associated with the interplay of steric effects and aromaticity reversals in a single fluorophore.
Collapse
Affiliation(s)
- Xin Jin
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technology, Shanghai 200237, China
| | - Sifan Li
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technology, Shanghai 200237, China
| | - Lifang Guo
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technology, Shanghai 200237, China
| | - Jianli Hua
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technology, Shanghai 200237, China
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technology, Shanghai 200237, China
| | - Jianhua Su
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technology, Shanghai 200237, China
| | - Zhiyun Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technology, Shanghai 200237, China
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technology, Shanghai 200237, China
| |
Collapse
|
27
|
Liu J, Chen Y, Jin F, Wang J, Ikeda T, Jiang L. Single-, Dual-, Triple, and Quadruple-Wavelength Surface-Emitting Lasing in Blue-Phase Liquid Crystal. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108330. [PMID: 34918395 DOI: 10.1002/adma.202108330] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Soft organic lasers with multiwavelength output and high spectral purity are of crucial importance for versatile photonic devices, owing to their monochromaticity, coherence, and high intensity. However, there remain challenges for the achievement of surface-emitting multiwavelength lasing in soft photonic crystals, and the relative mechanisms need to be investigated. Herein, single-, dual-, triple-, and quadruple-wavelength lasers are successfully achieved in dye-doped blue-phase liquid crystal (BPLC) film. The number and wavelength of the lasing peaks can be manipulated by tuning the center of the bandgap, the order parameter of the laser dye, the quality of the resonance cavity, and even the pump energy. For single-wavelength lasing, a lasing peak with an ultranarrow linewidth of 0.04 nm (Q-factor of 13 454) is achieved. Multiwavelength lasing is attained based on the following aspects: i) the narrow bandgaps of the BPLCs with full width at half maximum of 14-20 nm; ii) a laser dye with high gain over a wide wavelength band, having a low-order parameter in the liquid crystal matrix; iii) appropriate relative positions between the reflection and fluorescence peaks; and iv) the highly ordered crystal lattice of BPLC film. The proposed single-to-quadruple-wavelength surface-emitting lasers can be employed as coherent light sources for next-generation optical devices.
Collapse
Affiliation(s)
- Jie Liu
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Material Science and Optoelectronics Engineering, School of Future Technologies, University of Chinese Academy of Sciences, Beijing, 101407, China
| | - Yujie Chen
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Material Science and Optoelectronics Engineering, School of Future Technologies, University of Chinese Academy of Sciences, Beijing, 101407, China
| | - Feng Jin
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jingxia Wang
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Material Science and Optoelectronics Engineering, School of Future Technologies, University of Chinese Academy of Sciences, Beijing, 101407, China
| | - Tomiki Ikeda
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Lei Jiang
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Material Science and Optoelectronics Engineering, School of Future Technologies, University of Chinese Academy of Sciences, Beijing, 101407, China
| |
Collapse
|
28
|
Zhu B, Zhu L, Hou T, Ren K, Kang K, Xiao C, Luo J. Cobalt Metal-Organic Frameworks with Aggregation-Induced Emission Characteristics for Fluorometric/Colorimetric Dual Channel Detection of Nitrogen-Rich Heterocyclic Compounds. Anal Chem 2022; 94:3744-3748. [PMID: 35213129 DOI: 10.1021/acs.analchem.1c05537] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Nitrogen-rich heterocyclic compounds (NRHCs) are an emerging type of explosive, and their quantification is important in national security inspection and environmental monitoring. Up until now, designing an efficient NRHCs sensing strategy was still in the early stages. Herein, a new metal-organic framework (MOF) with aggregation-induced emission (AIE) characteristics is synthesized with fluorometric/colorimetric responses for rapid and selective detection of NRHCs. The nonemissive probe is designed with tetraphenylethylene derivative as the linker and Co as the node, quencher, and color-changing agent. Cobalt AIE-MOF exhibits a turn-on emission enhancement due to the competitive coordination substitution between NRHCs and the scaffold as well as the following AIE process of the liberative linkers. Meanwhile, the color appearance of the probe changes from blue to yellow based on the dissociation of the original Co coordinating system. Using this dual-mode probe, single- and dual-ring NRHCs are successfully detected from 5 μM to 7.5 mM within 25 s. The cobalt AIE-MOF exhibits excellent selectivity of NRHCs against a variety of interferences, providing a promising tool for designing a multichannel detection strategy.
Collapse
Affiliation(s)
- Bin Zhu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Longyi Zhu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Tianjiao Hou
- College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Kewei Ren
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Kang Kang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Chengliang Xiao
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jun Luo
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
29
|
Lv Y, Xiong Z, Li Y, Li D, Liang J, Yang Y, Xiang F, Xiang S, Zhao YS, Zhang Z. Framework-Shrinkage-Induced Wavelength-Switchable Lasing from a Single Hydrogen-Bonded Organic Framework Microcrystal. J Phys Chem Lett 2022; 13:130-135. [PMID: 34962396 DOI: 10.1021/acs.jpclett.1c03855] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Porous organic materials (POMs) have shown great potential for fabricating tunable miniaturized lasers. However, most pure-POM micro/nanolasers are achieved via coordination interactions, during which strong charge exchanges inevitably destroy the intrinsic gain property and even lead to optical quenching, hindering their practical applications. Herein, we reported on an approach to realize hydrogen-bonded organic framework (HOF)-based in situ wavelength-switchable lasing based on the framework-shrinkage effect. A flexible HOF with reversible framework shrinkage was constructed from gain blocks with multiple rotors. The framework shrinkage of the HOF induced the in situ regulation on the conformation and conjugation degree of gain blocks, leading to distinct energy-level structures with blue/green-color gain emissions. Inspired by this, the in situ wavelength-switchable lasing from HOF microcrystals was achieved through reversibly controlling the framework shrinkage via the absorption/desorption of guests. The results offer useful insight into the use of flexible HOFs for exploiting miniaturized lasers with on-demand nanophotonics performance.
Collapse
Affiliation(s)
- Yuanchao Lv
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Zhile Xiong
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Yunbin Li
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Delin Li
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Jiashuai Liang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Yisi Yang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Fahui Xiang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Shengchang Xiang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Yong Sheng Zhao
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhangjing Zhang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| |
Collapse
|
30
|
Li P, Zhou Z, Zhao YS, Yan Y. Recent advances in luminescent metal-organic frameworks and their photonic applications. Chem Commun (Camb) 2021; 57:13678-13691. [PMID: 34870655 DOI: 10.1039/d1cc05541k] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In recent years, metal-organic frameworks (MOFs) have been attracting ever more interest owing to their fascinating structures and widespread applications. Among the optoelectronic materials, luminescent MOFs (LMOFs) have become one of the most attractive candidates in the fields of optics and photonics thanks to the unique characteristics of their frameworks. Luminescence from MOFs can originate from either the frameworks, mainly including organic linkers and metal ions, or the encapsulated guests, such as dyes, perovskites, and carbon dots. Here, we systematically review the recent progress in LMOFs, with an emphasis on the relationships between their structures and emission behaviour. On this basis, we comprehensively discuss the research progress and applications of multicolour emission from homogeneous and heterogeneous structures, host-guest hybrid lasers, and pure MOF lasers based on optically excited LMOFs in the field of micro/nanophotonics. We also highlight recent developments in other types of luminescence, such as electroluminescence and chemiluminescence, from LMOFs. Future perspectives and challenges for LMOFs are provided to give an outlook of this emerging field. We anticipate that this article will promote the development of MOF-based functional materials with desired performance towards robust optoelectronic applications.
Collapse
Affiliation(s)
- Penghao Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhonghao Zhou
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Yong Sheng Zhao
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongli Yan
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
31
|
Liu YY, Zhang X, Li K, Peng QC, Qin YJ, Hou HW, Zang SQ, Tang BZ. Restriction of Intramolecular Vibration in Aggregation‐Induced Emission Luminogens: Applications in Multifunctional Luminescent Metal–Organic Frameworks. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yuan Yuan Liu
- Green Catalysis Center College of Chemistry Zhengzhou University Science Road 100# Zhengzhou 450001 China
| | - Xin Zhang
- Green Catalysis Center College of Chemistry Zhengzhou University Science Road 100# Zhengzhou 450001 China
| | - Kai Li
- Green Catalysis Center College of Chemistry Zhengzhou University Science Road 100# Zhengzhou 450001 China
| | - Qiu Chen Peng
- Green Catalysis Center College of Chemistry Zhengzhou University Science Road 100# Zhengzhou 450001 China
| | - Yu Jing Qin
- Green Catalysis Center College of Chemistry Zhengzhou University Science Road 100# Zhengzhou 450001 China
| | - Hong Wei Hou
- Green Catalysis Center College of Chemistry Zhengzhou University Science Road 100# Zhengzhou 450001 China
| | - Shuang Quan Zang
- Green Catalysis Center College of Chemistry Zhengzhou University Science Road 100# Zhengzhou 450001 China
| | - Ben Zhong Tang
- Shenzhen Institute of Aggregate Science and Technology School of Science and Engineering The Chinese University of Hong Kong Shenzhen Guangdong 518172 China
| |
Collapse
|
32
|
Liu YY, Zhang X, Li K, Peng Q, Qin Y, Hou H, Zang SQ, Tang BZ. A New Kind of RIV-type AIEgens and Their Applications for the Construction of Multifunctional Luminescent MOFs. Angew Chem Int Ed Engl 2021; 60:22417-22423. [PMID: 34343403 DOI: 10.1002/anie.202108326] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/21/2021] [Indexed: 11/07/2022]
Abstract
In this work, a new kind of butterfly-like molecules of oxacalix[2]arene[2]pyrazine (OAP) are reported, which exhibit typical characteristics of aggregation-induced emission (AIE) via the restriction of intramolecular vibration (RIV) mechanism. Unlike any of the reported RIV-type AIE molecules, the synthetic procedures of which are complicated and associated high costs, OAP AIEgens can be synthesized in a facile manner by a one-step catalyst-free reaction using commercially available materials. Notably, OAP AIEgens are ideal ligands for constructing metal-organic frameworks (MOFs) due to their built-in coordination sites of pyrazine groups. OAP-based MOFs exhibit multiple potential applications in reversible gas response, encrypted information storage, and construction of white light-emitting devices. This work enriches limited kinds of RIV-type AIEgens, offers additional selections of bridging ligands for constructing luminescent MOFs and provides a visualized prototype to understand the effect of RIV process on the luminescence property of MOFs.
Collapse
Affiliation(s)
- Yuan-Yuan Liu
- Zhengzhou University, College of Chemistry, 450001, Zhengzhou, CHINA
| | - Xin Zhang
- Zhengzhou University, College of Chemistry, 450001, Zhengzhou, CHINA
| | - Kai Li
- Zhengzhou University, College of Chemistry, 450001, Zhengzhou, CHINA
| | - Qiuchen Peng
- Zhengzhou University, College of Chemistry, 450001, Zhengzhou, CHINA
| | - Yujing Qin
- Zhengzhou University, College of Chemistry, 450001, Zhengzhou, CHINA
| | - Hongwei Hou
- Zhengzhou University, College of Chemistry, 450001, Zhengzhou, CHINA
| | - Shuang-Quan Zang
- Zhengzhou University, No 100. Kexue Avenue, 450001, Zhengzhou, CHINA
| | - Ben Zhong Tang
- The Chinese University of Hong Kong - Shenzhen, School of Science and Engineering, 518172, Shenzhen, CHINA
| |
Collapse
|
33
|
Lv Y, Li D, Ren A, Xiong Z, Yao Y, Cai K, Xiang S, Zhang Z, Zhao YS. Hydrogen-Bonded Organic Framework Microlasers with Conformation-Induced Color-Tunable Output. ACS APPLIED MATERIALS & INTERFACES 2021; 13:28662-28667. [PMID: 34114811 DOI: 10.1021/acsami.1c06312] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Porous organic frameworks have emerged as the promising platforms to construct tunable microlasers. Most of these microlasers are achieved from metal-organic frameworks via meticulously accommodating the laser dyes with the sacrifice of the pore space, yet they often suffer from the obstacles of either relatively limited gain concentration or sophisticated fabrication techniques. Herein, we reported on the first hydrogen-bonded organic framework (HOF) microlasers with color-tunable performance based on conformation-dependent stimulated emissions. Two types of HOF microcrystals with the same gain lumnogen as the building block were synthesized via a temperature-controlled self-assembly method. The distinct frameworks offer different conformations of the gain building block, which lead to great impacts on their conjugation degrees and excited-state processes, resulting in remarkably distinct emission colors (blue and green). Accordingly, blue/green-color lasing actions were achieved in these two types of HOFs based on well-faceted assembled wire-like cavities. These results offer a deep insight on the exploitation of HOF-based miniaturized lasers with desired nanophotonics performances.
Collapse
Affiliation(s)
- Yuanchao Lv
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Delin Li
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Ang Ren
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhile Xiong
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Yinan Yao
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Kaicong Cai
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Shengchang Xiang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Zhangjing Zhang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Yong Sheng Zhao
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
34
|
Gao Z, Xu B, Fan Y, Zhang T, Chen S, Yang S, Zhang W, Sun X, Wei Y, Wang Z, Wang X, Meng X, Zhao YS. Topological‐Distortion‐Driven Amorphous Spherical Metal‐Organic Frameworks for High‐Quality Single‐Mode Microlasers. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Zhenhua Gao
- School of Materials Science & Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 Shandong Province China
| | - Baoyuan Xu
- School of Materials Science & Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 Shandong Province China
| | - Yuqing Fan
- Key Laboratory of photochemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Tongjin Zhang
- Key Laboratory of photochemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Shunwei Chen
- School of Materials Science & Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 Shandong Province China
| | - Shuo Yang
- School of Materials Science & Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 Shandong Province China
| | - Weiguang Zhang
- School of Materials Science & Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 Shandong Province China
| | - Xun Sun
- School of Materials Science & Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 Shandong Province China
| | - Yanhui Wei
- College of Chemistry and Material Science Shandong Agricultural University Taian 271018 Shandong China
| | - Zifei Wang
- School of Materials Science & Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 Shandong Province China
| | - Xue Wang
- School of Materials Science & Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 Shandong Province China
| | - Xiangeng Meng
- School of Materials Science & Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 Shandong Province China
| | - Yong Sheng Zhao
- Key Laboratory of photochemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
35
|
Lv Y, Xiong Z, Yao Y, Ren A, Xiang S, Zhao YS, Zhang Z. Controlled Shape Evolution of Pure-MOF 1D Microcrystals towards Efficient Waveguide and Laser Applications. Chemistry 2021; 27:3297-3301. [PMID: 33283908 DOI: 10.1002/chem.202005217] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Indexed: 11/09/2022]
Abstract
MOF-based one-dimensional materials have received increasing attention in the nanophotonics field, but it is still difficult in the flexible shape evolution of MOF micro/nanocrystals for desired optical functionalities due to the susceptible solvothermal growth process. Herein, we report on the well-controlled shape evolution of pure-MOF microcrystals with optical waveguide and lasing performances based on a bottom-up and top-down synergistic method. The MOF microcrystals from solvothermal synthesis (bottom-up) enable the evolution from microrods via microtubes to nanowires through a chelating agent-assisted etching process (top-down). The three types of MOF 1D-microstructures with high crystallinity and smooth surfaces all exhibit efficient optical waveguide performance. Furthermore, MOF nanowire with lowest propagation loss served as low-threshold pure-MOF nanolasers with Fabry-Pérot resonance. These results advance the fundamental understanding on the controlled MOF evolution mechanism, and offer a valuable route for the development of pure-MOF-based photonic components with desired functionalities.
Collapse
Affiliation(s)
- Yuanchao Lv
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Zhile Xiong
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Yinan Yao
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Ang Ren
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Shengchang Xiang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Yong Sheng Zhao
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zhangjing Zhang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, P. R. China
| |
Collapse
|
36
|
Gao Z, Xu B, Fan Y, Zhang T, Chen S, Yang S, Zhang W, Sun X, Wei Y, Wang Z, Wang X, Meng X, Zhao YS. Topological-Distortion-Driven Amorphous Spherical Metal-Organic Frameworks for High-Quality Single-Mode Microlasers. Angew Chem Int Ed Engl 2021; 60:6362-6366. [PMID: 33315282 DOI: 10.1002/anie.202014033] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/26/2020] [Indexed: 01/25/2023]
Abstract
Metal-organic frameworks (MOFs) have recently emerged as appealing platforms to construct microlasers owing to their compelling characters combining the excellent stability of inorganic materials and processable characters of organic materials. However, MOF microstructures developed thus far are generally composed of multiple edge boundaries due to their crystalline nature, which consequently raises significant scattering losses that are detrimental to lasing performance. In this work, we propose a strategy to overcome the above drawback by designing spherically shaped MOFs microcavities. Such spherical MOF microstructures are constructed by amorphizing MOFs with a topological distortion network through introducing flexible building blocks into the growth environment. With an ultra-smooth surface and excellent circular boundaries, the acquired spherical microcavities possess a Q factor as high as ≈104 and can provide sufficient feedback for high-quality single-mode lasing oscillations. We hope that these results will pave an avenue for the construction of new types of flexible MOF-based photonic components.
Collapse
Affiliation(s)
- Zhenhua Gao
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong Province, China
| | - Baoyuan Xu
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong Province, China
| | - Yuqing Fan
- Key Laboratory of photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Tongjin Zhang
- Key Laboratory of photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Shunwei Chen
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong Province, China
| | - Shuo Yang
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong Province, China
| | - Weiguang Zhang
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong Province, China
| | - Xun Sun
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong Province, China
| | - Yanhui Wei
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Zifei Wang
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong Province, China
| | - Xue Wang
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong Province, China
| | - Xiangeng Meng
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong Province, China
| | - Yong Sheng Zhao
- Key Laboratory of photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
37
|
Zhu L, Zhu B, Luo J, Liu B. Design and Property Modulation of Metal–Organic Frameworks with Aggregation-Induced Emission. ACS MATERIALS LETTERS 2021; 3:77-89. [DOI: 10.1021/acsmaterialslett.0c00477] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Affiliation(s)
- Longyi Zhu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Bin Zhu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jun Luo
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| |
Collapse
|
38
|
Photofunctional metal-organic framework thin films for sensing, catalysis and device fabrication. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119926] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
39
|
Abstract
Advances in switchable microlasers have emerged as a building block with immense potential in controlling light-matter interactions and integrated photonics. Compared to artificially designed interfaces, a stimuli-responsive biointerface enables a higher level of functionalities and versatile ways of tailoring optical responses at the nanoscale. However, switching laser emission with biological recognition has yet to be addressed, particularly with reversibility and wavelength tunability over a broad spectral range. Here we demonstrate a self-switchable laser exploiting the biointerface between label-free DNA molecules and dye-doped liquid crystal matrix in a Fabry-Perot microcavity. Laser emission switching among different wavelengths was achieved by utilizing DNA conformation changes as the switching power, which alters the orientation of the liquid crystals. Our findings demonstrate that different concentrations of single-stranded DNA lead to different temporal switching of lasing wavelengths and intensities. The lasing wavelength could be reverted upon binding with the complementary sequence through DNA hybridization process. Both experimental and theoretical studies revealed that absorption strength is the key mechanism accounting for the laser shifting behavior. This study represents a milestone in achieving a biologically controlled laser, shedding light on the development of programmable photonic devices at the sub-nanoscale by exploiting the complexity and self-recognition of biomolecules.
Collapse
Affiliation(s)
- Yifan Zhang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Xuerui Gong
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Zhiyi Yuan
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Wenjie Wang
- Key Lab of Advanced Transducers and Intelligent Control System of Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Yu-Cheng Chen
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore
| |
Collapse
|
40
|
Bera KP, Kamal S, Inamdar AI, Sainbileg B, Lin HI, Liao YM, Ghosh R, Chang TJ, Lee YG, Cheng-Fu H, Hsu YT, Hayashi M, Hung CH, Luo TT, Lu KL, Chen YF. Intrinsic Ultralow-Threshold Laser Action from Rationally Molecular Design of Metal-Organic Framework Materials. ACS APPLIED MATERIALS & INTERFACES 2020; 12:36485-36495. [PMID: 32678568 DOI: 10.1021/acsami.0c07890] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Metal-organic frameworks (MOFs) are superior for multiple applications including drug delivery, sensing, and gas storage because of their tunable physiochemical properties and fascinating architectures. Optoelectronic application of MOFs is difficult because of their porous geometry and conductivity issues. Recently, a few optoelectronic devices have been fabricated by a suitable design of integrating MOFs with other materials. However, demonstration of laser action arising from MOFs as intrinsic gain media still remains challenging, even though some studies endeavor on encapsulating luminescence organic laser dyes into the porous skeleton of MOFs to achieve laser action. Unfortunately, the aggregation of such unstable laser dyes causes photoluminescence quenching and energy loss, which limits their practical application. In this research, unprecedently, we demonstrated ultralow-threshold (∼13 nJ/cm2) MOF laser action by a judicious choice of metal nodes and organic linkers during synthesis of MOFs. Importantly, we also demonstrated that the white random lasing from the beautiful microflowers of organic linkers possesses a porous network, which is utilized to synthesize the MOFs. The highly luminescent broad-band organic linker 1,4-NDC, which itself exhibits a strong white random laser, is used not only to achieve the stimulated emission in MOFs but also to reduce the lasing threshold. Such white lasing has multiple applications from bioimaging to the recently developed versatile Li-Fi technology. In addition, we showed that the smooth facets of MOF microcrystals can show Fabry-Perot resonant cavities having a high quality factor of ∼103 with excellent photostability. Our unique discovery of stable, nontoxic, high-performance MOF laser action will open up a new route for the development of new optoelectronic devices.
Collapse
Affiliation(s)
- Krishna Prasad Bera
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
- Nano-Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
| | - Saqib Kamal
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
- Molecular-Science and Technology Program,Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Department of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Arif I Inamdar
- Sustainable Chemical Science and Technology, Taiwan International Graduate Program, Academia Sinica, Taipei 106, Taiwan and Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Batjargal Sainbileg
- Center for Condensed Matter Sciences, National Taiwan University, Taipei 10617, Taiwan
- Center of Atomic Initiative for New Materials, National Taiwan University, Taipei 10617, Taiwan
| | - Hung-I Lin
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
| | - Yu-Ming Liao
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
- Nano-Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
| | - Rapti Ghosh
- Molecular-Science and Technology Program,Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
| | - Ting-Jia Chang
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
| | - Yen-Guang Lee
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
| | - Hou Cheng-Fu
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
- Nano-Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
| | - Yun-Tzu Hsu
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
| | - Michitoshi Hayashi
- Center for Condensed Matter Sciences, National Taiwan University, Taipei 10617, Taiwan
- Center of Atomic Initiative for New Materials, National Taiwan University, Taipei 10617, Taiwan
| | | | - Tzuoo-Tsair Luo
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan
| | - Kuang-Lieh Lu
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Yang-Fang Chen
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
41
|
Polymer Matrix Incorporated with ZIF-8 for Application in Nonlinear Optics. NANOMATERIALS 2020; 10:nano10061036. [PMID: 32481655 PMCID: PMC7352344 DOI: 10.3390/nano10061036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/24/2020] [Accepted: 05/25/2020] [Indexed: 11/16/2022]
Abstract
Polymers with embedded metal–organic frameworks (MOFs) have been of interest in research for advanced applications in gas separation, catalysis and sensing due to their high porosity and chemical selectivity. In this study, we utilize specific MOFs with high thermal stability and non-centrosymmetric crystal structures (zeolitic imidazolate framework, ZIF-8) in order to give an example of MOF–polymer composite applications in nonlinear optics. The synthesized MOF-based polymethyl methacrylate (PMMA) composite (ZIF-8–PMMA) demonstrates the possibility of the visualization of near-infrared laser beams in the research lab. The resulting ZIF-8–PMMA composite is exposed to a laser under extreme conditions and exhibits enhanced operating limits, much higher than that of the widely used inorganic materials in optics. Overall, our findings support the utilization of MOFs for synthesis of functional composites for optical application.
Collapse
|
42
|
Lv Y, Xiong Z, Dong H, Wei C, Yang Y, Ren A, Yao Z, Li Y, Xiang S, Zhang Z, Zhao YS. Pure Metal-Organic Framework Microlasers with Controlled Cavity Shapes. NANO LETTERS 2020; 20:2020-2025. [PMID: 32083875 DOI: 10.1021/acs.nanolett.9b05321] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Metal-organic frameworks (MOFs) are an emerging kind of laser material, yet they remain a challenge in the controlled fabrication of crystal nanostructures with desired morphology for tuning their optical microcavities. Herein, the shape-engineering of pure MOF microlasers was demonstrated based on the coordination-mode-tailored method. The one-dimensional (1D) microwires and 2D microplates were selectively fabricated through changing the HCl concentration to tailor the coordination modes. Both the single-crystalline microwires and microplates with strong optical confinement functioned as low-threshold MOF microlasers. Moreover, distinct lasing behaviors of 1D and 2D MOF microcrystals confirm a typical shape-dependent microcavity effect: 1D microwires serve as Fabry-Pérot (FP) resonators, and 2D microplates lead to the whispering-gallery-mode (WGM) microcavities. These results provide a special pathway for the exploitation of MOF-based micro/nanolasers with on-demand functions.
Collapse
Affiliation(s)
- Yuanchao Lv
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Zhile Xiong
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Haiyun Dong
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Cong Wei
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yisi Yang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Ang Ren
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zizhu Yao
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Yunbin Li
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Shengchang Xiang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Zhangjing Zhang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Yong Sheng Zhao
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
43
|
Chen Q, Liu Q, Zou Y, Wang L, Ma X, Zhang Z, Xiang S. Preparation and characterization of metal–organic frameworks and their composite Eu2O3@[Zn2(bdc)2dabco] (ZBDh) via pulsed laser ablation in a flowing liquid. CrystEngComm 2020. [DOI: 10.1039/d0ce00038h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The nanocomposites Eu2O3@[Zn2(bdc)2dabco] (ZBDh) synthesized by PLA in a flowing liquid can be used for the detection of methanol in fluorescence sensing.
Collapse
Affiliation(s)
- Qianhuo Chen
- Fujian Key Laboratory of Pollution Control & Resource Reuse
- College of Environmental Science and Engineering
- Fujian Normal University
- Fuzhou 350007
- China
| | - Qing Liu
- Fujian Provincial Key Laboratory of Polymer Materials
- College of Chemistry and Materials Science
- Fujian Normal University
- Fuzhou 350007
- China
| | - Yingbing Zou
- Fujian Key Laboratory of Pollution Control & Resource Reuse
- College of Environmental Science and Engineering
- Fujian Normal University
- Fuzhou 350007
- China
| | - Lihua Wang
- Fujian Provincial Key Laboratory of Polymer Materials
- College of Chemistry and Materials Science
- Fujian Normal University
- Fuzhou 350007
- China
| | - Xiuling Ma
- Fujian Provincial Key Laboratory of Polymer Materials
- College of Chemistry and Materials Science
- Fujian Normal University
- Fuzhou 350007
- China
| | - Zhangjing Zhang
- Fujian Provincial Key Laboratory of Polymer Materials
- College of Chemistry and Materials Science
- Fujian Normal University
- Fuzhou 350007
- China
| | - Shengchang Xiang
- Fujian Provincial Key Laboratory of Polymer Materials
- College of Chemistry and Materials Science
- Fujian Normal University
- Fuzhou 350007
- China
| |
Collapse
|
44
|
Guo Q, Ma T, Zhou L, Ma JX, Yang J, Yang Q. Efficient detection of Cr 3+ and Cr 2O 72− using a Zn( ii) luminescent metal–organic framework. NEW J CHEM 2020. [DOI: 10.1039/c9nj05999g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We constructed a new luminescent metal–organic framework, [Zn2(TCBPDC)0.5(H2O)2]n·G (G = guest molecules), and realized an efficiently luminescent sensing for Cr3+ and Cr2O72−.
Collapse
Affiliation(s)
- Qi Guo
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering and College of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan 750021
- China
| | - Tingting Ma
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering and College of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan 750021
- China
| | - Liuqing Zhou
- Department of Otorhinolaryngology
- People's Hospital of Ningxia Hui Autonomous Region
- Yinchuan 750002
- China
| | - Jing-xin Ma
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering and College of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan 750021
- China
| | - Jinhui Yang
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering and College of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan 750021
- China
| | - Qingfeng Yang
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering and College of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan 750021
- China
| |
Collapse
|