1
|
Kumar G, Kumar M, Bhalla V. Dynamic Dance of Chirality and Morphology: Interplay of Solvent-Sensitive Self-Assembly in Topological Evolution and Chirality Amplification. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39481036 DOI: 10.1021/acsami.4c13524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
The building block Pyra-Chol has been designed and synthesized, which exhibits different achiral morphologies in good solvents, forming nanospheres in THF and nanoflowers in 1,4-dioxane. In the presence of water as a poor cosolvent, Pyra-Chol demonstrates an agnostic behavior, generating left-handed superhelices in the water:THF (80:20) solvent system. However, when the good solvent is switched to 1,4-dioxane, a change in chirality is observed in the water:1,4-dioxane (30:70) solvent system, resulting in the formation of fused nanospheres. Interestingly, when the poor cosolvent is changed from water to MCH in THF, the chiral pattern remains unchanged, but the morphology changes completely. Supported by the collective spectroscopic and microscopic analysis, the present study efficaciously demonstrates the remarkable control of hydrophobic building block over the chiral sense and also highlights the fascinating influence of good as well as poor cosolvent in supporting the distinct molecular packing.
Collapse
Affiliation(s)
- Gaurav Kumar
- Department of Chemistry, UGC Centre of Advance Study-II, Guru Nanak Dev University, Amritsar143005, Punjab , India
| | - Manoj Kumar
- Department of Chemistry, UGC Centre of Advance Study-II, Guru Nanak Dev University, Amritsar143005, Punjab , India
| | - Vandana Bhalla
- Department of Chemistry, UGC Centre of Advance Study-II, Guru Nanak Dev University, Amritsar143005, Punjab , India
| |
Collapse
|
2
|
Guo G, Li H, Yan Y, Zhao W, Gao Z, Cao H, Yan X, Li H, Xie G, Chen R, Tao Y, Huang W. A Dynamic H-Bonding Network Enables Stimuli-Responsive Color-Tunable Chiral Afterglow Polymer for 4D Encryption. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2412100. [PMID: 39370766 DOI: 10.1002/adma.202412100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/22/2024] [Indexed: 10/08/2024]
Abstract
The development of stimuli-responsive and color-tunable chiral organic afterglow materials has attracted great attention but remains a daunting challenge. Here, a simple yet effective strategy through the construction of a dynamic H-bonding network is proposed to explore the multi-color stimuli-responsive chiral afterglow by doping a self-designed chiral phosphorescent chromophore into a polyvinyl alcohol matrix. A stimuli-responsive deep blue chiral afterglow system with a lifetime of up to 3.35 s, quantum yield of 25.0%, and luminescent dissymmetry factor of up to 0.05 is achieved through reversible formation and breakdown of the H-bonding network upon thermal-heating and water-fumigating. Moreover, multi-color stimuli-responsive chiral afterglow can be obtained by chiral and afterglow energy transfer, allowing the establishment of afterglow information displays and high-level 4D encryption. This work not only offers a facile platform to develop advanced stimuli-responsive materials but also opens a new avenue for developing next-generation optical information technology with enhanced functionality and responsiveness.
Collapse
Affiliation(s)
- Guangyao Guo
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Huanhuan Li
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Yingmeng Yan
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Wei Zhao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Zhisheng Gao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Hengyu Cao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Xin Yan
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Hui Li
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Gaozhan Xie
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Runfeng Chen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Ye Tao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Wei Huang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| |
Collapse
|
3
|
Yang S, Hu F, Xu T, Lin F, Han J, Li F. Stacking Transformation-Triggered Circularly Polarized Luminescence Reversion in γ-Cyclodextrins-Pyrene Co-Assembly. Chemistry 2024; 30:e202402012. [PMID: 39072899 DOI: 10.1002/chem.202402012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 07/30/2024]
Abstract
Considerable attention has been directed towards cyclodextrins (CDs) in the creation of co-assembled CPL-active materials, owing to their intrinsic chiral host cavities and synergistic host-guest interactions. However, achieving reversed CPL emission regulation with single-handedness CDs moiety poses a significant challenge. In this study, we have devised a series of γ-CD-based host-guest complexes comprising dual pyrene imidazolium derivatives with multiple linkers, which exhibit reversed circularly polarized emission. We have uncovered that the transformation of excimer stacking within γ-CD/pyrene complexes contributes to the inverted CPL emissions originating from a single-handed chiral host. This research elucidates the phenomenon of (+)- and (-)-circularly polarized excimer emission (CPEE) within γ-CD, arising from right- and left-handed stacking conformations, respectively.
Collapse
Affiliation(s)
- Shijie Yang
- State Key Laboratory of Natural Medicines, College of Engineering, China Pharmaceutical University, Jiangning District, Nanjing, 211198, China
| | - Fengqing Hu
- State Key Laboratory of Natural Medicines, College of Engineering, China Pharmaceutical University, Jiangning District, Nanjing, 211198, China
| | - Tianjing Xu
- State Key Laboratory of Natural Medicines, College of Engineering, China Pharmaceutical University, Jiangning District, Nanjing, 211198, China
| | - Fanjie Lin
- State Key Laboratory of Natural Medicines, College of Engineering, China Pharmaceutical University, Jiangning District, Nanjing, 211198, China
| | - Jinsong Han
- State Key Laboratory of Natural Medicines, College of Engineering, China Pharmaceutical University, Jiangning District, Nanjing, 211198, China
| | - Fei Li
- State Key Laboratory of Natural Medicines, College of Engineering, China Pharmaceutical University, Jiangning District, Nanjing, 211198, China
| |
Collapse
|
4
|
Shi A, Wang H, Yang G, Gu C, Xiang C, Qian L, Lam JWY, Zhang T, Tang BZ. Multiple Chirality Switching of a Dye-Grafted Helical Polymer Film Driven by Acid & Base. Angew Chem Int Ed Engl 2024; 63:e202409782. [PMID: 38888844 DOI: 10.1002/anie.202409782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/20/2024]
Abstract
A stimuli-responsive multiple chirality switching material, which can regulate opposed chiral absorption characteristics, has great application value in the fields of optical modulation, information storage and encryption, etc. However, due to the rareness of effective functional systems and the complexity of material structures, developing this type of material remains an insurmountable challenge. Herein, a smart polymer film with multiple chirality inversion properties was fabricated efficiently based on a newly-designed acid & base-sensitive dye-grafted helical polymer. Benefited from the cooperative effects of various weak interactions (hydrogen bonds, electrostatic interaction, etc.) under the aggregated state, this polymer film exhibited a promising acid & base-driven multiple chirality inversion property containing record switchable chiral states (up to five while the solution showed three-state switching) and good reversibility. The creative exploration of such a multiple chirality switching material can not only promote the application progress of current chiroptical regulation technology, but also provide a significant guidance for the design and synthesis of future smart chiroptical switching materials and devices.
Collapse
Affiliation(s)
- Aiyan Shi
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Laboratory of Optoelectronic and Information Technology and Devices, Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Smart Materials for Architecture Research Lab Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314100, P. R. China
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Qianwan Institute of CNITECH, Ningbo, 315300, P. R. China
| | - Haoran Wang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, 999077, Hong Kong, P. R. China
| | - Guojian Yang
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Laboratory of Optoelectronic and Information Technology and Devices, Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Smart Materials for Architecture Research Lab Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314100, P. R. China
| | - Chang Gu
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Laboratory of Optoelectronic and Information Technology and Devices, Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Qianwan Institute of CNITECH, Ningbo, 315300, P. R. China
| | - Chaoyu Xiang
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Laboratory of Optoelectronic and Information Technology and Devices, Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Qianwan Institute of CNITECH, Ningbo, 315300, P. R. China
| | - Lei Qian
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Laboratory of Optoelectronic and Information Technology and Devices, Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Qianwan Institute of CNITECH, Ningbo, 315300, P. R. China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, 999077, Hong Kong, P. R. China
| | - Ting Zhang
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Laboratory of Optoelectronic and Information Technology and Devices, Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Qianwan Institute of CNITECH, Ningbo, 315300, P. R. China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, 999077, Hong Kong, P. R. China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), 518172, P. R. China
| |
Collapse
|
5
|
Geng Z, Wang Z, Zhu SE, Wang P, Yao K, Cheng Y, Chu B. Tunable circularly polarized luminescence behaviors caused by the structural symmetry of achiral pyrene-based emitters in chiral co-assembled systems. J Colloid Interface Sci 2024; 669:561-568. [PMID: 38729004 DOI: 10.1016/j.jcis.2024.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/14/2024] [Accepted: 05/04/2024] [Indexed: 05/12/2024]
Abstract
The regulation of circularly polarized luminescence (CPL) behavior is of great significance for practical applications. Herein, we deliberately designed three achiral pyrene derivatives (Py-1, Py-2, and Py-3) with different butoxy-phenyl substituents and the chiral binaphthyl-based inducer (R/S-B) with anchored dihedral angle to construct chiral co-assemblies, and explored their induced CPL behaviors. Interestingly, the resulting co-assemblies demonstrate tunable CPL emission behaviors caused by the structural symmetry effect of achiral pyrene-based emitters during the chiral co-assembly process. And in spin-coated films, the dissymmetry factor (gem) values were 9.1 × 10-3 for (R/S-B)1-(Py-1)10, 5.6 × 10-2 for (R/S-B)1-(Py-2)7, and 8.6 × 10-4 for (R/S-B)1-(Py-3)1, respectively. The strongest CPL emission (|gem| = 5.6 × 10-2, λem = 423 nm, QY = 34.8 %) was detected on (R/S-B)1-(Py-2)7 due to the formation of regular and ordered helical nanofibers through the strong π-π stacking interaction between the R/S-B and the achiral Py-2 emitter. The strategy presented here provides a creative approach for progressively regulating CPL emission behaviors in the chiral co-assembly process.
Collapse
Affiliation(s)
- Zhongxing Geng
- School of Energy, Materials and Chemical Engineering, Hefei University, Hefei, Anhui 230601, PR China
| | - Zhentan Wang
- School of Energy, Materials and Chemical Engineering, Hefei University, Hefei, Anhui 230601, PR China
| | - San-E Zhu
- School of Energy, Materials and Chemical Engineering, Hefei University, Hefei, Anhui 230601, PR China
| | - Peng Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| | - Kun Yao
- School of Chemical and Printing-Dyeing Engineering, Henan University of Engineering, Zhengzhou, Henan 450007, PR China.
| | - Yixiang Cheng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China.
| | - Benfa Chu
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, PR China.
| |
Collapse
|
6
|
Wen X, Wang F, Du S, Jiang Y, Zhang L, Liu M. Achiral Solvent Inversed Helical Pathway and Cosolvent Controlled Excited-State "Majority Rule" in Enantiomeric Dansulfonamide Assemblies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401954. [PMID: 38733233 DOI: 10.1002/smll.202401954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/26/2024] [Indexed: 05/13/2024]
Abstract
Achiral solvents are commonly utilized to induce the self-assembly of chiral molecules. This study demonstrates that achiral solvents can trigger helicity inversion in the assemblies of dansyl amphiphiles and control the excited-state "majority rule" in assemblies composed of pure enantiomers, through variation of the cosolvent ratio. Specifically, enantiomers of dansyl amphiphiles self-assemble into helical structures with opposite handedness in methanol (MeOH) and acetonitrile (MeCN), together with inversed circular dichroism and circularly polarized luminescence (CPL) signals. When a mixture of MeOH and MeCN is employed, the achiral cosolvents collectively affect the CPL of the assemblies in a way similar to that of "mixed enantiomers". The dominant cosolvent governs the CPL signal. As the cosolvent composition shifts from pure MeCN to MeOH, the CPL signals undergo a significant inversion and amplification, with two maxima observed at ≈20% MeOH and 20% MeCN. This study deepens the comprehension of how achiral solvents modulate helical nanostructures and their excited-state chiroptical properties.
Collapse
Affiliation(s)
- Xin Wen
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences (CAS), ZhongGuanCun North First Street 2, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Fulin Wang
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences (CAS), ZhongGuanCun North First Street 2, Beijing, 100190, P. R. China
| | - Sifan Du
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences (CAS), ZhongGuanCun North First Street 2, Beijing, 100190, P. R. China
| | - Yuqian Jiang
- Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Li Zhang
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences (CAS), ZhongGuanCun North First Street 2, Beijing, 100190, P. R. China
| | - Minghua Liu
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences (CAS), ZhongGuanCun North First Street 2, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
7
|
Liu Y, Hao A, Xing P. A photoactivated chiral molecular clamp rotated by selective anion binding. Chem Sci 2024:d4sc04216f. [PMID: 39268215 PMCID: PMC11388084 DOI: 10.1039/d4sc04216f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Developing chiral molecular platforms that respond to external fields provides opportunities for designing smart chiroptical materials. Herein, we introduce a molecular clamp whose chiral properties can be turned on by photoactivation. Selective anion binding achieves rational tuning of the conformations and chiroptical properties of the clamp, including circular dichroism and circularly polarized luminescence. Cyanostilbene segments were conjugated to chiral amines with a rotatable axis. Negligible chiroptical signals were significantly enhanced through a light illumination-induced isomerization. Binding with halide ions (F-, Cl- and Br-) enables chiroptical inversion and subsequent amplification of the resulting opposite handedness state by photo treatment. In contrast, the larger I- and NO3 - ions failed to achieve chiroptical inversion. Also the handedness inversion was hampered in conformationally locked amines. Density-functional theory-based computational studies and experimental results reveal a structural transformation that proceeds from a butterfly-like open geometry to a closed V-shaped state initiated by four hydrogen bonds and the rotatable axis. This work illustrates design protocols for use in smart chiroptical molecular platforms mediated by photo treatment and anion binding.
Collapse
Affiliation(s)
- Yiping Liu
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 People's Republic of China
| | - Aiyou Hao
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 People's Republic of China
| | - Pengyao Xing
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 People's Republic of China
| |
Collapse
|
8
|
He J, Hara M, Ohnuki R, Yoshioka S, Ikai T, Takeoka Y. Circularly Polarized Luminescence Chirality Inversion and Dual Anticounterfeiting Labels Based on Fluorescent Cholesteric Liquid Crystal Particles. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43991-44003. [PMID: 39054591 DOI: 10.1021/acsami.4c08331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
The development of materials with circularly polarized luminescence (CPL) properties is a promising but challenging frontier in advanced materials science. Modulating the chiral properties of chiral polymers has also been a focus of research. Studies have been conducted to control the ground-state chirality of chiral polymers by adjusting the concentration of the chiral dopant. However, the chirality inversion of CPL of fluorescent liquid crystal particles by chiral dopant concentration has not been reported. Here, we report the preparation of fluorescent cholesteric liquid crystal (FCLC) particles that display polarizable structural color and CPL, demonstrating how varying the chiral dopant amount can reverse the CPL direction, leading to systems where the rotation directions of polarizable structural color and CPL either align or differ. This study confirmed the critical role played by the formation of the twist grain boundary phase in inducing the inversion of the ground-state chirality of FCLC particles and, subsequently, triggering the inversion process of CPL chirality. Furthermore, it leverages chiral structural color and fluorescence of FCLC particles to develop a sophisticated dual verification system. This system, utilizing both circularly polarized light and fluorescence, offers enhanced anticounterfeiting protection for high-value items.
Collapse
Affiliation(s)
- Jialei He
- Department of Molecular & Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Mitsuo Hara
- Department of Molecular & Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Ryosuke Ohnuki
- Department of Physics and Astronomy, Faculty of Science and Technology, Tokyo University of Science, Yamazaki, Noda 278-8510, Japan
| | - Shinya Yoshioka
- Department of Physics and Astronomy, Faculty of Science and Technology, Tokyo University of Science, Yamazaki, Noda 278-8510, Japan
| | - Tomoyuki Ikai
- Department of Molecular & Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Yukikazu Takeoka
- Department of Molecular & Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| |
Collapse
|
9
|
Li X, Xu WT, Xu XQ, Wang Y, Wang XQ, Yang HB, Wang W. Lighting Up Bispyrene-Functionalized Chiral Molecular Muscles with Switchable Circularly Polarized Excimer Emissions. Angew Chem Int Ed Engl 2024:e202412548. [PMID: 39136324 DOI: 10.1002/anie.202412548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Indexed: 10/29/2024]
Abstract
Aiming at the further extension of the application scope of traditional molecular muscles, a novel bispyrene-functionalized chiral molecular [c2]daisy chain was designed and synthesized. Taking advantage of the unique dimeric interlocked structure of molecular [c2]daisy chain, the resultant chiral molecular muscle emits strong circularly polarized luminescence (CPL) attributed to the pyrene excimer with a high dissymmetry factor (glum) value of 0.010. More importantly, along with the solvent- or anion- induced motions of the chiral molecular muscle, the precise regulation of the pyrene stacking within its skeleton results in the switching towards either "inversed" state with sign inversion and larger glum values or "down" state with maintained handedness and smaller glum values, making it a novel multistate CPL switch. As the first example of chiral molecular muscle-based CPL switch, this proof-of-concept study not only successfully widens the application scopes of molecular muscles, but also provides a promising platform for the construction of novel smart chiral luminescent materials for practical applications.
Collapse
Affiliation(s)
- Xue Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, China
| | - Wei-Tao Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, China
| | - Xiao-Qin Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, China
| | - Yu Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, China
| | - Xu-Qing Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, China
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, China
- State Key Laboratory of Petroleum Molecular and Process Engineering, Sinopec Research Institute of Petroleum Processing Co. LTD., Beijing, 100083, China
- East China Normal University, Shanghai, 200062, China
- Shanghai Center of Brain-inspired Intelligent Materials and Devices, East China Normal University, Shanghai, 200241, China
| | - Wei Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, China
| |
Collapse
|
10
|
Wang Q, Xu H, Qi Z, Mei J, Tian H, Qu DH. Dynamic Near-Infrared Circularly Polarized Luminescence Encoded by Transient Supramolecular Chiral Assemblies. Angew Chem Int Ed Engl 2024; 63:e202407385. [PMID: 38736176 DOI: 10.1002/anie.202407385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/10/2024] [Accepted: 05/10/2024] [Indexed: 05/14/2024]
Abstract
Circularly polarized luminescence (CPL) is promising for applications in many fields. However, most systems involving CPL are within the visible range; near-infrared (NIR) CPL-active materials, especially those that exhibit high glum values and can be controlled spatially and temporally, are rare. Herein, dynamic NIR-CPL with a glum value of 2.5×10-2 was achieved through supramolecular coassembly and energy-transfer strategies. The chiral assemblies formed by the coassembly between adenosine triphosphate (ATP) and a pyrene derivative exhibited a red CPL signal (glum of 10-3). The further introduction of sulfo-cyanine5 resulted in a energy-transfer process, which not only led to the NIR CPL but also increased the glum value to 10-2. Temporal control of these chiral assemblies was realized by introducing alkaline phosphatase to fabricate a biomimetic enzyme-catalyzed network, allowing the dynamic NIR CPL signal to be turned on. Based on these enzyme-regulated temporally controllable dynamic CPL-active chiral assemblies, a multilevel information encryption system was further developed. This study provides a pioneering example for the construction of dynamic NIR CPL materials with the ability to perform temporal control via the supramolecular assembly strategy, which is expected to aid in the design of supramolecular complex systems that more closely resemble natural biological systems.
Collapse
Affiliation(s)
- Qian Wang
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Hanren Xu
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Zhen Qi
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Ju Mei
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - He Tian
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
11
|
Shen P, Jiao S, Zhuang Z, Dong X, Song S, Li J, Tang BZ, Zhao Z. Switchable Dual Circularly Polarized Luminescence in Through-Space Conjugated Chiral Foldamers. Angew Chem Int Ed Engl 2024; 63:e202407605. [PMID: 38698703 DOI: 10.1002/anie.202407605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/02/2024] [Accepted: 05/02/2024] [Indexed: 05/05/2024]
Abstract
Organic materials with switchable dual circularly polarized luminescence (CPL) are highly desired because they can not only directly radiate tunable circularly polarized light themselves but also induce CPL for guests by providing a chiral environment in self-assembled structures or serving as the hosts for energy transfer systems. However, most organic molecules only exhibit single CPL and it remains challenging to develop organic molecules with dual CPL. Herein, novel through-space conjugated chiral foldamers are constructed by attaching two biphenyl arms to the 9,10-positions of phenanthrene, and switchable dual CPL with opposite signs at different emission wavelengths are successfully realized in the foldamers containing high-polarizability substitutes (cyano, methylthiol and methylsulfonyl). The combined experimental and computational results demonstrate that the intramolecular through-space conjugation has significant contributions to stabilizing the folded conformations. Upon photoexcitation in high-polar solvents, strong interactions between the biphenyl arms substituted with cyano, methylthio or methylsulfonyl and the polar environment induce conformation transformation for the foldamers, resulting in two transformable secondary structures of opposite chirality, accounting for the dual CPL with opposite signs. These findings highlight the important influence of the secondary structures on the chiroptical property of the foldamers and pave a new avenue towards efficient and tunable dual CPL materials.
Collapse
Affiliation(s)
- Pingchuan Shen
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Nanyang, 637371, Singapore
| | - Shaoshao Jiao
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Zeyan Zhuang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Nanyang, 637371, Singapore
| | - Xiaobin Dong
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Shaoxin Song
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Jinshi Li
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
12
|
Zhao C, Wang Y, Jiang Y, Wu N, Wang H, Li T, Ouyang G, Liu M. Handedness-Inverted and Stimuli-Responsive Circularly Polarized Luminescent Nano/Micromaterials Through Pathway-Dependent Chiral Supramolecular Polymorphism. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403329. [PMID: 38625749 DOI: 10.1002/adma.202403329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Indexed: 04/18/2024]
Abstract
The precise manipulation of supramolecular polymorphs has been widely applied to control the morphologies and functions of self-assemblies, but is rarely utilized for the fabrication of circularly polarized luminescence (CPL) materials with tailored properties. Here, this work reports that an amphiphilic naphthalene-histidine compound (NIHis) readily self-assembled into distinct chiral nanostructures through pathway-dependent supramolecular polymorphism, which shows opposite and multistimuli responsive CPL signals. Specifically, NIHis display assembly-induced CPL from the polymorphic keto tautomer, which become predominant during enol-keto tautomerization shifting controlled by a bulk solvent effect. Interestingly, chiral polymorphs of nanofiber and microbelt with inverted CPL signals can be prepared from the same NIHis monomer in exactly the same solvent compositions and concentrations by only changing the temperature. The tunable CPL performance of the solid microbelts is realized under multi external physical or chemical stimuli including grinding, acid fuming, and heating. In particular, an emission color and CPL on-off switch based on the microbelt polymorph by reversible heating-cooling protocol is developed. This work brings a new approach for developing smart CPL materials via supramolecular polymorphism engineering.
Collapse
Affiliation(s)
- Chenyang Zhao
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 North First Street, Zhongguancun, Beijing, 100190, China
| | - Yuan Wang
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 North First Street, Zhongguancun, Beijing, 100190, China
| | - Yuqian Jiang
- Key Laboratory of Nanosystem and Hierarchical Fabrication, Chinese Academy of Sciences, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Ningning Wu
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 North First Street, Zhongguancun, Beijing, 100190, China
| | - Hanxiao Wang
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 North First Street, Zhongguancun, Beijing, 100190, China
| | - Tiejun Li
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 North First Street, Zhongguancun, Beijing, 100190, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing, 100049, China
| | - Guanghui Ouyang
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 North First Street, Zhongguancun, Beijing, 100190, China
| | - Minghua Liu
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 North First Street, Zhongguancun, Beijing, 100190, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing, 100049, China
| |
Collapse
|
13
|
Chen JF, Gao QX, Yao H, Shi B, Zhang YM, Wei TB, Lin Q. Recent advances in circularly polarized luminescence of planar chiral organic compounds. Chem Commun (Camb) 2024; 60:6728-6740. [PMID: 38884278 DOI: 10.1039/d4cc01698j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Circularly polarized luminescence (CPL), as an important chiroptical phenomenon, can not only directly characterize excited-state structural information about chiroptical materials but also has great application prospects in 3D optical displays, information storage, biological probes, CPL lasers and so forth. Recently, chiral organic small molecules with CPL have attracted a lot of research interest because of their excellent luminescence efficiency, clear molecular structures, unique flexibility and easy functionalization. Planar chiral organic compounds make up an important class of chiral organic small molecular materials and often have rigid macrocyclic skeletons, which have important research value in the field of chiral supramolecular chemistry (e.g., chiral self-assembly and chiral host-guest chemistry). Therefore, research into planar chiral organic compounds has become a hotspot for CPL. It is time to summarize the recent developments in CPL-active compounds based on planar chirality. In this feature article, we summarize various types of CPL-active compounds based on planar chirality. Meanwhile, we overview recent research in the field of planar chiral CPL-active compounds in terms of optoelectronic devices, asymmetric catalysis, and chiroptical sensing. Finally, we discuss their future research prospects in the field of CPL-active materials. We hope that this review will be helpful to research work related to planar chiral luminescent materials and promote the development of chiral macrocyclic chemistry.
Collapse
Affiliation(s)
- Jin-Fa Chen
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China.
| | - Qing-Xiu Gao
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China.
| | - Hong Yao
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China.
| | - Bingbing Shi
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China.
| | - You-Ming Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China.
| | - Tai-Bao Wei
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China.
| | - Qi Lin
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China.
| |
Collapse
|
14
|
Yang Y, Yang C, Zhu X, Zhang L, Liu M. Interfacial self-assembly of a chiral pyrene exciplex into a superhelix with enhanced circularly polarized luminescence. Chem Commun (Camb) 2024; 60:6631-6634. [PMID: 38853589 DOI: 10.1039/d4cc01820f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
We found that the interfacially confined self-assembly of pyrene and phenanthrene glutamides can form strong exciplexes and amorphous superhelices, which show intensity-enhanced and sign-inverted CPL activity with improved quantum yield compared to a pyrene excimer. This work unveils the predominant role of supramolecular nanostructures over molecular configurations on CPL performance.
Collapse
Affiliation(s)
- Yang Yang
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450052, China
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
| | - Chenchen Yang
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xuefeng Zhu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
| | - Li Zhang
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
| | - Minghua Liu
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450052, China
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
15
|
Yang YH, Wei JJ, Zhang L. Water-Regulated Evolution of Inversion, Reinversion, and Amplification of Circularly Polarized Luminescence of Supramolecular Organogels Based on Glutamide-Cyanostilbene Amphiphile. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:11548-11557. [PMID: 38780514 DOI: 10.1021/acs.langmuir.4c00652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Water incorporated with supramolecular building blocks in organic solvents can play a key role in the circularly polarized luminescence (CPL) inversion and amplification of supramolecular assemblies. Herein, we demonstrate that fine-tuning the water content regulated the assembly structure evolution and made the circular dichroism and CPL sign of the system undergo intriguing inversion, reinversion, and amplification processes based on a unique and interesting glutamide-cyanostilbene system, as supported by morphology, spectroscopic observations, and time-dependent density functional theory calculation.
Collapse
Affiliation(s)
- Yun-Han Yang
- IGCME, PCFM Lab, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jin-Jian Wei
- IGCME, PCFM Lab, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Ling Zhang
- IGCME, PCFM Lab, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
16
|
Chu B, Song F, Wang P, Cheng Y, Geng Z. Amplified Circularly Polarized Luminescence Behavior in Chiral Co-assembled Liquid Crystal Polymer Films via the Strategic Manipulation of Chiral Inducers. ACS APPLIED MATERIALS & INTERFACES 2024; 16:26604-26612. [PMID: 38723622 DOI: 10.1021/acsami.4c04268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
One of the most important factors for the future application of circularly polarized luminescence (CPL) materials is their high dissymmetry factors (gem), and more and more studies are working tirelessly to focus on increasing the gem value. Herein, we chose an achiral liquid crystal polymer (LC-P) and two chiral binaphthyl-based inducers (R/S-3 and R/S-6) with different substitution positions (3,3' positions for R/S-3 and 6,6' positions for R/S-6) to construct chiral co-assemblies and explored their induced amplification CPL behaviors. Interestingly, after the thermal annealing treatment, this kind of chiral co-assembly (R/S-3)0.05-(LC-P)0.95 can emit a superior CPL signal (|gem| = 0.31 and λem = 424 nm), which achieves about 13-fold signal amplification in the spin-coated film, compared to (R/S-6)0.1-(LC-P)0.9 (|gem| = 0.023 and λem = 424 nm). This is because (R/S-3)0.05-(LC-P)0.95 could further co-assemble to form a more ordered arrangement LC state and generate regular helix nanofibers than that of (R/S-6)0.1-(LC-P)0.9. This work provides an efficient method for synthesizing high-quality CPL-active materials through the strategic manipulation of the structure of chiral binaphthyl-based inducers in chiral co-assembled LCP systems.
Collapse
Affiliation(s)
- Benfa Chu
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, People's Republic of China
| | - Feiyang Song
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, People's Republic of China
| | - Peng Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China
| | - Yixiang Cheng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China
| | - Zhongxing Geng
- School of Energy, Materials and Chemical Engineering, Hefei University, Hefei, Anhui 230601, People's Republic of China
| |
Collapse
|
17
|
Wang F, Lai L, Liu M, Zhou Q, Lin S. Achiral substituent- and stoichiometry-controlled inversion of supramolecular chirality and circularly polarized luminescence in ternary co-assemblies. NANOSCALE 2024; 16:8563-8572. [PMID: 38600859 DOI: 10.1039/d4nr00392f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Handedness inversion of supramolecular chirality and circularly polarized luminescence (CPL) in assembled systems containing more than two components with higher complexity is of prominent importance to simulate biological multicomponent species and design advanced chiral materials, but it remains a considerable challenge. Herein, we have successfully developed ternary co-assembly systems based on aromatic amino acids, vinylnaphthalene derivatives and 1,2,4,5-tetracyanobenzene with effective chirality transfer. Notably, the handedness of supramolecular chirality and CPL can be readily inverted by changing the residues of amino acids, the substituents of achiral vinylnaphthalene derivatives, or by adjusting the stoichiometric ratio. The hydrogen bonds, charge transfer interactions, and steric hindrance are proved to be the crucial factors for the chirality inversion. This flexible control over chirality not only offers insights into developing multicomponent chiral materials with desirable handedness from simple molecular building blocks, but also is of practical value for use in chiroptics, chiral sensing, and photoelectric devices.
Collapse
Affiliation(s)
- Fang Wang
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Liyun Lai
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Min Liu
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Quan Zhou
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Shaoliang Lin
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
18
|
Zhang T, Zhang Y, He Z, Yang T, Hu X, Zhu T, Zhang Y, Tang Y, Jiao J. Recent Advances of Chiral Isolated and Small Organic Molecules: Structure and Properties for Circularly Polarized Luminescence. Chem Asian J 2024; 19:e202400049. [PMID: 38450996 DOI: 10.1002/asia.202400049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/08/2024]
Abstract
This paper explores recent advancements in the field of circularly polarized luminescence (CPL) exhibited by small and isolated organic molecules. The development and application of small CPL molecule are systematically reviewed through eight different chiral skeleton sections. Investigating the intricate interplay between molecular structure and CPL properties, the paper aims at providing and enlighting novel strategies for CPL-based applications.
Collapse
Affiliation(s)
- Tingwei Zhang
- School of Chemistry and Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Yue Zhang
- School of Chemistry and Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Zhiyuan He
- School of Chemistry and Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Tingjun Yang
- School of Chemistry and Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Xu Hu
- School of Chemistry and Chemical Engineering at, Shaanxi Normal University, Xi'an, 710062, P.R. China
| | - Tengfei Zhu
- Engineering Research Center of Oil and Gas Field Chemistry, Xi'an Shiyou University, Xi'an, 710065, China
| | - Yanfeng Zhang
- School of Chemistry and Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Yuhai Tang
- School of Chemistry and Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Jiao Jiao
- School of Chemistry and Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| |
Collapse
|
19
|
Chen X, Zhu R, Zhang B, Zhang X, Cheng A, Liu H, Gao R, Zhang X, Chen B, Ye S, Jiang J, Zhang G. Rapid room-temperature phosphorescence chiral recognition of natural amino acids. Nat Commun 2024; 15:3314. [PMID: 38632229 PMCID: PMC11024135 DOI: 10.1038/s41467-024-47648-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 04/09/2024] [Indexed: 04/19/2024] Open
Abstract
Chiral recognition of amino acids is very important in both chemical and life sciences. Although chiral recognition with luminescence has many advantages such as being inexpensive, it is usually slow and lacks generality as the recognition module relies on structural complementarity. Here, we show that one single molecular-solid sensor, L-phenylalanine derived benzamide, can manifest the structural difference between the natural, left-handed amino acid and its right-handed counterpart via the difference of room-temperature phosphorescence (RTP) irrespective of the specific chemical structure. To realize rapid and reliable sensing, the doped samples are obtained as nanocrystals from evaporation of the tetrahydrofuran solutions, which allows for efficient triplet-triplet energy transfer to the chiral analytes generated in situ from chiral amino acids. The results show that L-analytes induce strong RTP, whereas the unnatural D-analytes produce barely any afterglow. The method expands the scope of luminescence chiral sensing by lessening the requirement for specific molecular structures.
Collapse
Affiliation(s)
- Xiaoyu Chen
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Anhui, 230026, Hefei, China
| | - Renlong Zhu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Anhui, 230026, Hefei, China
| | - Baicheng Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Anhui, 230026, Hefei, China
| | - Xiaolong Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Anhui, 230026, Hefei, China
| | - Aoyuan Cheng
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Anhui, 230026, Hefei, China
| | - Hongping Liu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Anhui, 230026, Hefei, China
| | - Ruiying Gao
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xuepeng Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Anhui, 230026, Hefei, China
| | - Biao Chen
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Anhui, 230026, Hefei, China.
| | - Shuji Ye
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Anhui, 230026, Hefei, China
| | - Jun Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Anhui, 230026, Hefei, China
| | - Guoqing Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Anhui, 230026, Hefei, China.
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui, 230094, China.
| |
Collapse
|
20
|
Takaishi K, Yoshinami F, Sato Y, Ema T. Temperature-Induced Sign Inversion of Circularly Polarized Luminescence of Binaphthyl-Bridged Tetrathiapyrenophanes. Chemistry 2024:e202400866. [PMID: 38567834 DOI: 10.1002/chem.202400866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Indexed: 04/30/2024]
Abstract
D2-symmetric (R)-binaphthyl-bridged pyrenophanes containing thioether bonds were synthesized. The pyrenophanes exhibited the temperature-induced sign inversion of circularly polarized luminescence (CPL) while maintaining the emission wavelength and reversibility. The Δglum value reached 0.02, and the FL quenching by heat was negligible. The sign inversion of CPL originates from the inversion of intramolecular excimer chirality associated with excitation dynamics. The two pyrenes form a kinetically trapped left-handed twist excimer at low temperatures, while they form a thermodynamically favored right-handed twist excimer at high temperatures. The thioether linkers can impart flexibility suitable for the inversion of chirality of the excimers.
Collapse
Affiliation(s)
- Kazuto Takaishi
- Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Tsushima, Okayama, 700-8530, Japan
| | - Fumiya Yoshinami
- Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Tsushima, Okayama, 700-8530, Japan
| | - Yoshihiro Sato
- Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Tsushima, Okayama, 700-8530, Japan
| | - Tadashi Ema
- Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Tsushima, Okayama, 700-8530, Japan
| |
Collapse
|
21
|
Shioukhi I, Batchu H, Schwartz G, Minion L, Deree Y, Bogoslavsky B, Shimon LJW, Wade J, Hoffman R, Fuchter MJ, Markovich G, Gidron O. Helitwistacenes-Combining Lateral and Longitudinal Helicity Results in Solvent-Induced Inversion of Circularly Polarized Light. Angew Chem Int Ed Engl 2024; 63:e202319318. [PMID: 38224528 PMCID: PMC11497310 DOI: 10.1002/anie.202319318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/17/2024]
Abstract
Helicity is expressed differently in ortho- and para-fused acenes-helicenes and twistacenes, respectively. While the extent of helicity is constant in helicenes, it can be tuned in twistacenes, and the handedness of flexible twistacenes is often determined by more rigid helicenes. Here, we combine helicenes with rigid twistacenes consisting of a tunable degree of twisting, forming helitwistacenes. While the X-ray structures reveal that the connection does not affect the helicity of each moiety, their electronic circular dichroism (ECD) and circularly polarized luminescence (CPL) spectra are strongly affected by the helicity of the twistacene unit, resulting in solvent-induced sign inversion. ROESY NMR and TD-DFT calculations support this observation, which is explained by differences in the relative orientation of the helicene and twistacene moieties.
Collapse
Affiliation(s)
- Israa Shioukhi
- Institute of Chemistry and the Center for Nanoscience and NanotechnologyThe Hebrew University of JerusalemEdmond J. Safra Campus9190401JerusalemIsrael
| | - Harikrishna Batchu
- Institute of Chemistry and the Center for Nanoscience and NanotechnologyThe Hebrew University of JerusalemEdmond J. Safra Campus9190401JerusalemIsrael
| | - Gal Schwartz
- School of ChemistryRaymond and Beverly Sackler Faculty of Exact SciencesTel Aviv University6997801Tel AvivIsrael
| | - Louis Minion
- Molecular Sciences Research HubDepartment of ChemistryImperial College LondonWhite City Campus, 82 Wood LaneW12 0BZLondonU.K.
| | - Yinon Deree
- Institute of Chemistry and the Center for Nanoscience and NanotechnologyThe Hebrew University of JerusalemEdmond J. Safra Campus9190401JerusalemIsrael
| | - Benny Bogoslavsky
- Institute of Chemistry and the Center for Nanoscience and NanotechnologyThe Hebrew University of JerusalemEdmond J. Safra Campus9190401JerusalemIsrael
| | - Linda J. W. Shimon
- Chemical Research Support UnitWeizmann Institute of Science76100RehovotIsrael
| | - Jessica Wade
- Molecular Sciences Research HubDepartment of ChemistryImperial College LondonWhite City Campus, 82 Wood LaneW12 0BZLondonU.K.
- Department of MaterialsRoyal School of MinesImperial College LondonSW7 2AZLondonU.K.
| | - Roy Hoffman
- Institute of Chemistry and the Center for Nanoscience and NanotechnologyThe Hebrew University of JerusalemEdmond J. Safra Campus9190401JerusalemIsrael
| | - Matthew J. Fuchter
- Molecular Sciences Research HubDepartment of ChemistryImperial College LondonWhite City Campus, 82 Wood LaneW12 0BZLondonU.K.
| | - Gil Markovich
- School of ChemistryRaymond and Beverly Sackler Faculty of Exact SciencesTel Aviv University6997801Tel AvivIsrael
| | - Ori Gidron
- Institute of Chemistry and the Center for Nanoscience and NanotechnologyThe Hebrew University of JerusalemEdmond J. Safra Campus9190401JerusalemIsrael
| |
Collapse
|
22
|
Huang W, Zhu Y, Zhou K, Chen L, Zhao Z, Zhao E, He Z. Boosting Circularly Polarized Luminescence from Alkyl-Locked Axial Chirality Scaffold by Restriction of Molecular Motions. Chemistry 2024; 30:e202303667. [PMID: 38057693 DOI: 10.1002/chem.202303667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 12/08/2023]
Abstract
Boosting the circularly polarized luminescence of small organic molecules has been a stubborn challenge because of weak structure rigidity and dynamic molecular motions. To investigate and eliminate these factors, here, we carried out the structure-property relationship studies on a newly-developed axial chiral scaffold of bidibenzo[b,d]furan. The molecular rigidity was finely tuned by gradually reducing the alkyl-chain length. The environmental factors were considered in solution, crystal, and polymer matrix at different temperatures. As a result, a significant amplification of the dissymmetry factor glum from 10-4 to 10-1 was achieved, corresponding to the situation from (R)-4C in solution to (R)-1C in polymer film at room temperature. A synergistic strategy of increasing the intramolecular rigidity and enhancing the intermolecular interaction to restrict the molecular motions was thus proposed to improve circularly polarized luminescence. The though-out demonstrated relationship will be of great importance for the development of high-performance small organic chiroptical systems in the future.
Collapse
Affiliation(s)
- Wenbin Huang
- School of Science, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Yuxin Zhu
- School of Science, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Kang Zhou
- Hoffman Institute of Advanced Materials, Shenzhen Polytechnic, Shenzhen, 518055, China
| | - Letian Chen
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Zujin Zhao
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Engui Zhao
- School of Science, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Zikai He
- School of Science, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| |
Collapse
|
23
|
Ikai T, Mishima N, Matsumoto T, Miyoshi S, Oki K, Yashima E. 2,2'-Tethered Binaphthyl-Embedded One-Handed Helical Ladder Polymers: Impact of the Tether Length on Helical Geometry and Chiroptical Property. Angew Chem Int Ed Engl 2024; 63:e202318712. [PMID: 38253965 DOI: 10.1002/anie.202318712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 01/24/2024]
Abstract
Synthetic breakthroughs diversify the molecules and polymers available to chemists. We now report the first successful synthesis of a series of optically-pure 2,2'-tethered binaphthyl-embedded helical ladder polymers based on quantitative and chemoselective ladderization by the modified alkyne benzannulations using the 4-alkoxy-2,6-dimethylphenylethynyl group as the alkyne source, inaccessible by the conventional approach lacking the 2,6-dimethyl substituents. Due to the defect-free helix formation, the circular dichroism signal increased by more than 6 times the previously reported value. The resulting helical secondary structure can be fine-tuned by controlling the binaphthyl dihedral angle in the repeating unit with variations in the 2,2'-alkylenedioxy tethering groups by one carbon atom at a time. The optimization of the helical ladder structures led to a strong circularly polarized luminescence with a high fluorescence quantum yield (28 %) and luminescence dissymmetry factor (2.6×10-3 ).
Collapse
Affiliation(s)
- Tomoyuki Ikai
- Department of Molecular and Macromolecular Chemistry Graduate School of Engineering, Nagoya University Chikusa-ku, Nagoya, 464-8603, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST) Kawaguchi, Saitama, 332-0012, Japan
| | - Namiki Mishima
- Department of Molecular and Macromolecular Chemistry Graduate School of Engineering, Nagoya University Chikusa-ku, Nagoya, 464-8603, Japan
| | - Takehiro Matsumoto
- Department of Molecular and Macromolecular Chemistry Graduate School of Engineering, Nagoya University Chikusa-ku, Nagoya, 464-8603, Japan
| | - Sayaka Miyoshi
- Department of Molecular and Macromolecular Chemistry Graduate School of Engineering, Nagoya University Chikusa-ku, Nagoya, 464-8603, Japan
| | - Kosuke Oki
- Department of Molecular and Macromolecular Chemistry Graduate School of Engineering, Nagoya University Chikusa-ku, Nagoya, 464-8603, Japan
| | - Eiji Yashima
- Department of Molecular and Macromolecular Chemistry Graduate School of Engineering, Nagoya University Chikusa-ku, Nagoya, 464-8603, Japan
| |
Collapse
|
24
|
Lian Z, Liu L, He J, Fan S, Guo S, Li X, Liu G, Fan Y, Chen X, Li M, Chen C, Jiang H. Structurally Diverse Pyrene-decorated Planar Chiral [2,2]Paracyclophanes with Tunable Circularly Polarized Luminescence between Monomer and Excimer. Chemistry 2024; 30:e202303819. [PMID: 37997515 DOI: 10.1002/chem.202303819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 11/23/2023] [Accepted: 11/23/2023] [Indexed: 11/25/2023]
Abstract
We reported the synthesis of a series of structurally diverse CPL-active molecules, in which pyrene units were installed to chiral pm/po-[2,2]PCP scaffolds either with or without a triple bond spacer for pm/po-PCP-P1 and pm/po-PCP-P2, respectively. The X-ray crystallographic analyses revealed that these pyrene-based [2,2]PCP derivatives exhibited diverse structures and crystal packings in the solid phases. The pyrene-based [2,2]PCP derivatives exhibit various (chir)optical properties in organic solutions, depending on their respective structures. In a mixture of dioxane and water, pm/po-PCP-P1 emit green excimer fluorescence, whereas pm/po-PCP-P2 emit blue one. The chiroptical investigation demonstrated that Rp-pm-PCP-P1 and Rp-pm-PCP-P2 exhibited completely opposite CD and CPL signals even they possess the same chiral Rp-[2,2]PCP core. The same argument also holds for other chiral pyrene-based [2,2]PCP derivatives. The theoretical calculation revealed that these unusual phenomena were attributed to different orientation between transition electric dipole moments and the magnetic dipole moments originating from the presence or absence of a triple bond spacer. These pyrene-based [2,2]PCP derivatives display various colours and fluorescence emissions in the solid state and PMMA films, possibly due to the different packings as observed in the crystal structure. Moreover, these compounds also can interact with perylene diimide through π-π interactions, leading to near-white fluorescence.
Collapse
Affiliation(s)
- Zhe Lian
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Lin Liu
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Jing He
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Shimin Fan
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Shengzhu Guo
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Xiaonan Li
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Guoqin Liu
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Yanqing Fan
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Xuebo Chen
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Meng Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Chuanfeng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Hua Jiang
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| |
Collapse
|
25
|
Li F, Sun Y, Sun X, Hu Y. Self-assembled bamboo-like carbon nanotubes based on chiral H 8BINOL sensors to recognize cinchonidine efficiently by diastereoisomer complexes. RSC Adv 2024; 14:1134-1140. [PMID: 38174240 PMCID: PMC10759310 DOI: 10.1039/d3ra08143e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
Fluorescence recognition for the antimalarial cinchonidine could be achieved efficiently and rapidly through bamboo-like carbon nanotubes based on chiral conjugated H8BINOL derivatives. Herein, it was proved that the chiral fluorescence probe H8BINOL exhibited excellent fluorescence identification ability for cinchonidine. The structure and size of the S-1 (S-(3,3'-phenyl)-5,5'6,6',7',8,8'-octahydro-[1,1'-dinaphthalene]-2,2'-diol) and R-1 (R-(3,3'-phenyl)-5,5'6,6',7',8,8'-octahydro-[1,1'-dinaphthalene]-2,2'-diol) were studied by using the DLS, TEM, and SEM spectra, which exhibited a self-assembled bamboo-like carbon nanotube structure. In the CD (circular dichroism) test, cinchonidine was added to a pair of enantiomers of H8BINOL derivatives. The different configurations of H8BINOL derivatives showed significantly different Cotton effects for cinchonidine, indicating that cinchonidine formed diastereoisomer π-π complexes with different configurations of H8BINOL derivatives. From the AFM tests, it was revealed that cinchonidine could effectively quench the fluorescent spot of the probes quickly. The fluorescence titration tests demonstrated that 6.4 × 10-7 mol of cinchonidine could completely quench the fluorescence sensor of S-1 (2 × 10-5 M, 2 mL) through the formation of a 1 : 1 complex. The limit of detection (LOD) of S-1 was calculated to be 6.08 × 10-10, which indicates that S-1 has a high sensitivity and can be applied effectively to the practice of identifying cinchonidine. Meanwhile, the fluorescence sensor R-1 also exhibited the same sensibility with a low limit of detection (7.60 × 10-10).
Collapse
Affiliation(s)
- Fangxiu Li
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University Nanchang 330013 China
| | - Yue Sun
- College of Chemistry, Nanchang University Nanchang China
| | - Xiaoxia Sun
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University Nanchang 330013 China
| | - Yu Hu
- College of Chemistry, Nanchang University Nanchang China
| |
Collapse
|
26
|
Dai Y, Zhang Z, Wang D, Li T, Ren Y, Chen J, Feng L. Machine-Learning-Driven G-Quartet-Based Circularly Polarized Luminescence Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310455. [PMID: 37983564 DOI: 10.1002/adma.202310455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/12/2023] [Indexed: 11/22/2023]
Abstract
Circularly polarized luminescence (CPL) materials have garnered significant interest due to their potential applications in chiral functional devices. Synthesizing CPL materials with a high dissymmetry factor (glum ) remains a significant challenge. Inspired by efficient machine learning (ML) applications in scientific research, this work demonstrates ML-based techniques for the first time to guide the synthesis of G-quartet-based CPL gels with high glum values and multiple chiral regulation strategies. Employing an "experiment-prediction-verification" approach, this work devises a ML classification and regression model for the solvothermal synthesis of G-quartet gels in deep eutectic solvents. This process illustrates the relationship between various synthesis parameters and the glum value. The decision tree algorithm demonstrates superior performance across six ML models, with model accuracy and determination coefficients amounting to 0.97 and 0.96, respectively. The screened CPL gels exhibiting a glum value up to 0.15 are obtained through combined ML guidance and experimental verification, among the highest ones reported till now for biomolecule-based CPL systems. These findings indicate that ML can streamline the rational design of chiral nanomaterials, thereby expediting their further development.
Collapse
Affiliation(s)
- Yankai Dai
- Materials Genome Institute, Shanghai University, Shanghai, 200444, China
| | - Zhiwei Zhang
- Materials Genome Institute, Shanghai University, Shanghai, 200444, China
| | - Dong Wang
- Materials Genome Institute, Shanghai University, Shanghai, 200444, China
| | - Tianliang Li
- Materials Genome Institute, Shanghai University, Shanghai, 200444, China
| | - Yuze Ren
- Materials Genome Institute, Shanghai University, Shanghai, 200444, China
| | - Jingqi Chen
- Materials Genome Institute, Shanghai University, Shanghai, 200444, China
| | - Lingyan Feng
- Materials Genome Institute, Shanghai University, Shanghai, 200444, China
- Shanghai Engineering Research Center of Organ Repair, ShanghaiUniversity, Shanghai, 200444, China
- QianWeichang College, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
27
|
Dong X, Wang Z, Zhang P, Liu Y, Ji L, Wang Y, Zhou X, Ma K, Yu H. Substituent alkyl-chain-dependent supramolecular chirality, tunable chiroptical property, and dye adsorption in azobenzene-glutamide-amphiphile based hydrogel. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123018. [PMID: 37392534 DOI: 10.1016/j.saa.2023.123018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 07/03/2023]
Abstract
Controlling the supramolecular chirality of a self-assembly system by molecular structure design and external stimuli in aqueous solution is significant but challenging. Here, we design and synthesize several glutamide-azobenzene-based amphiphiles with different length alkyl chains. The amphiphiles can form self-assemblies in aqueous solution and show CD signals. As the number of the alkyl chain of amphiphiles increases, the CD signals of the assemblies can be enhanced. However, the long alkyl chains conversely restrict the isomerization of the azobenzene and the corresponding chiroptical property. Moreover, the alkyl length can determine the nanostructure of the assemblies and exert critical influence on the dye adsorption efficiency. This work exhibits some insights into the tunable chiroptical property of the self-assembly by delicate molecular design and external stimuli, and emphasizes the molecular structure can determine the corresponding application.
Collapse
Affiliation(s)
- Xuan Dong
- School of Materials Science and Engineering, Henan Joint International Research Laboratory of Nanocomposite Sensing Materials, Anyang Institute of Technology, Anyang 455000, China; Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Zhixia Wang
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Penghui Zhang
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Yiran Liu
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Lukang Ji
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei, 050024, China.
| | - Yuanyuan Wang
- Department of Pharmacology, College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Xiaoqin Zhou
- School of Chemistry and Chemical Engineering Institute of Physical Chemistry, Lingnan Normal University, Development Centre for New Materials Engineering & Technology in Universities of Guangdong Zhanjiang 524048, PR China
| | - Kai Ma
- School of Materials Science and Engineering, Henan Joint International Research Laboratory of Nanocomposite Sensing Materials, Anyang Institute of Technology, Anyang 455000, China.
| | - Haitao Yu
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei, 050024, China.
| |
Collapse
|
28
|
Jena S, Thayyil Muhammed Munthasir A, Pradhan S, Kitahara M, Seika S, Imai Y, Thilagar P. Single Molecular Persistent Room-Temperature Phosphorescence and Circularly Polarized Luminescence from Binaphthol-Decorated Optically Innocent Cyclotriphosphazenes. Chemistry 2023; 29:e202301924. [PMID: 37503754 DOI: 10.1002/chem.202301924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 07/29/2023]
Abstract
Circularly polarized luminescence (CPL) features of BINOL-decorated cyclotriphosphazenes (CPs) are reported for the first time. The luminescence dissymmetry factor (glum ) of these compounds in chloroform solutions and polymethyl methacrylate (PMMA) thin films with wt 1 % doping concentrations are found to be 1.0×10-3 , and 2.9×10-3 , respectively. However, no CPL signal is observed for the pristine solids. The enantiomers (CP-(R)/CP-(S)) show ultraviolet photoluminescence (~350-360 nm) in solution and the solid state. These compounds show ~10 times larger absolute photoluminescence quantum yield (PLQY) than the simple BINOLs in the solutions state. In the solid state, CP-(R) shows larger PLQY than binaphthol-(R); in contrast, the S enantiomer shows lower PLQY than binaphthol-(S); this indicates that the isomer-dependent solid-state packing of these compounds plays a crucial role in controlling the PL. Thin films with more than 1 % doping concentration and pristine solids of these compounds do not show persistent room-temperature phosphorescence (pRTP) due to concentration-caused quenching. However, thin films with wt 1 % of these chiral emitters exhibit pRTP characteristics with a ~159-343 ms lifetime under vacuum. Theoretical calculations reveal that the cyclophosphazene acts as an optically innocent dendritic core, and the optical features of these compounds are dictated by the pendent BINOL chromophore.
Collapse
Affiliation(s)
- Satyam Jena
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | | | - Sambit Pradhan
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Maho Kitahara
- Department of Applied Chemistry, Kindai University, Higashi-Osaka, Osaka, 577-8502, Japan
| | - Suzuki Seika
- Department of Applied Chemistry, Kindai University, Higashi-Osaka, Osaka, 577-8502, Japan
| | - Yoshitane Imai
- Department of Applied Chemistry, Kindai University, Higashi-Osaka, Osaka, 577-8502, Japan
| | - Pakkirisamy Thilagar
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
29
|
Wakako S, Hori Y, Kinoshita T, Saiki T, Qi X, Hasegawa K, Imai Y, Mori T, Nakagawa K, Fukuhara G. Pressure-Responsive Polymer Chemosensors for Hydrostatic-Pressure-Signal Detection: Poly-l-Lysine-Pyrene Conjugates. ACS Macro Lett 2023; 12:1389-1395. [PMID: 37782005 DOI: 10.1021/acsmacrolett.3c00427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Stimulus-responsive polymer materials are an attractive alternative to conventional supramolecular and polymer assemblies for applications in sensing, imaging, and drug-delivery systems. Herein, we synthesized a series of pyrene-labeled α- and ε-poly-l-lysine conjugates with varying degrees of substitution (DSs). Hydrostatic-pressure-UV/vis, fluorescence, and excitation spectroscopies and fluorescence lifetime measurements revealed ground-state conformers and excited-state ensembles emitting fluorescence with variable intensities. The polylysine-based chemosensors demonstrated diverse ratiometric responses to hydrostatic pressure through adjustments in polar solvents, DSs, and polymer backbones. Additionally, the fluorescence chemosensor exhibited a promising glum value of 3.2 × 10-3, indicating potential applications in chiral fluorescent materials. This study offers valuable insights into the development of smart hydrostatic-pressure-responsive polymer materials.
Collapse
Affiliation(s)
- Soshi Wakako
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Yumiko Hori
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Tomokazu Kinoshita
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Takao Saiki
- Department of Precision Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Xinyi Qi
- Department of Bioengineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Koki Hasegawa
- Graduate School of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Yoshitane Imai
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Tadashi Mori
- Department of Applied Chemistry, Osaka University, 2-1 Yamada-oka, Suita 565-0871, Japan
| | - Keiichi Nakagawa
- Department of Precision Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Bioengineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Gaku Fukuhara
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| |
Collapse
|
30
|
Feng X, Wang X, Redshaw C, Tang BZ. Aggregation behaviour of pyrene-based luminescent materials, from molecular design and optical properties to application. Chem Soc Rev 2023; 52:6715-6753. [PMID: 37694728 DOI: 10.1039/d3cs00251a] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Molecular aggregates are self-assembled from multiple molecules via weak intermolecular interactions, and new chemical and physical properties can emerge compared to their individual molecule. With the development of aggregate science, much research has focused on the study of the luminescence behaviour of aggregates rather than single molecules. Pyrene as a classical fluorophore has attracted great attention due to its diverse luminescence behavior depending on the solution state, molecular packing pattern as well as morphology, resulting in wide potential applications. For example, pyrene prefers to emit monomer emission in dilute solution but tends to form a dimer via π-π stacking in the aggregation state, resulting in red-shifted emission with quenched fluorescence and quantum yield. Over the past two decades, much effort has been devoted to developing novel pyrene-based fluorescent molecules and determining the luminescence mechanism for potential applications. Since the concept of "aggregation-induced emission (AIE)" was proposed by Tang et al. in 2001, aggregate science has been established, and the aggregated luminescence behaviour of pyrene-based materials has been extensively investigated. New pyrene-based emitters have been designed and synthesized not only to investigate the relationships between the molecular structure and properties and advanced applications but also to examine the effect of the aggregate morphology on their optical and electronic properties. Indeed, new aggregated pyrene-based molecules have emerged with unique properties, such as circularly polarized luminescence, excellent fluorescence and phosphorescence and electroluminescence, ultra-high mobility, etc. These properties are independent of their molecular constituents and allow for a number of cutting-edge technological applications, such as chemosensors, organic light-emitting diodes, organic field effect transistors, organic solar cells, Li-batteries, etc. Reviews published to-date have mainly concentrated on summarizing the molecular design and multi-functional applications of pyrene-based fluorophores, whereas the aggregation behaviour of pyrene-based luminescent materials has received very little attention. The majority of the multi-functional applications of pyrene molecules are not only closely related to their molecular structures, but also to the packing model they adopt in the aggregated state. In this review, we will summarize the intriguing optoelectronic properties of pyrene-based luminescent materials boosted by aggregation behaviour, and systematically establish the relationship between the molecular structure, aggregation states, and optoelectronic properties. This review will provide a new perspective for understanding the luminescence and electronic transition mechanism of pyrene-based materials and will facilitate further development of pyrene chemistry.
Collapse
Affiliation(s)
- Xing Feng
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Material and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
| | - Xiaohui Wang
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Material and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
| | - Carl Redshaw
- Chemistry, School of Natural Sciences, University of Hull, Hull, Yorkshire HU6 7RX, UK.
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China.
| |
Collapse
|
31
|
Naranjo C, Doncel-Giménez A, Gómez R, Aragó J, Ortí E, Sánchez L. Solvent-dependent self-assembly of N-annulated perylene diimides. From dimers to supramolecular polymers. Chem Sci 2023; 14:9900-9909. [PMID: 37736635 PMCID: PMC10510848 DOI: 10.1039/d3sc03372d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/28/2023] [Indexed: 09/23/2023] Open
Abstract
The synthesis and self-assembling features of the N-annulated perylene diimide (NPBI) 1 in different solvents are reported. Compound 1 possesses two chiral linkers, derived from (S)-(+)-alaninol, that connect the central aromatic NPBI segment and the peripheral trialkoxybenzamide units. The Ala-based linker has been demonstrated to strongly favor the formation of intramolecularly H-bonded seven-membered pseudocycles. NPBI 1 shows a strong tendency to self-assemble even in a good solvent like CHCl3 and the formation of chiral dimers is detected in this good solvent. Both experimental techniques and theoretical calculations reveal that the intramolecular H-bonded pseudocycles are very robust and the formation of chiral dimers is driven by the π-stacking of two units of the NPBI core. Unexpectedly, an efficient transfer of the asymmetry of the point chirality at the linker to the aromatic moiety is observed in the molecularly dissolved state. Changing the solvent to more apolar methylcyclohexane modifies the self-assembly process and the formation of chiral supramolecular polymers is detected. The supramolecular polymerization of 1 is demonstrated to follow an isodesmic mechanism unlike previous referable systems. In the formation of the supramolecular polymers of 1, the combination of experimental and computational data indicates that the H-bonded pseudocycles are also present in the aggregated state and the rope-like, columnar aggregates formed by the self-assembly of 1 rely on the π-stacking of the NPBI backbones.
Collapse
Affiliation(s)
- Cristina Naranjo
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid 28040 Madrid Spain
| | - Azahara Doncel-Giménez
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia C/Catedrático José Beltrán, 2 46980 Paterna Spain
| | - Rafael Gómez
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid 28040 Madrid Spain
| | - Juan Aragó
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia C/Catedrático José Beltrán, 2 46980 Paterna Spain
| | - Enrique Ortí
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia C/Catedrático José Beltrán, 2 46980 Paterna Spain
| | - Luis Sánchez
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid 28040 Madrid Spain
| |
Collapse
|
32
|
Wu Y, Li M, Zheng ZG, Yu ZQ, Zhu WH. Liquid Crystal Assembly for Ultra-dissymmetric Circularly Polarized Luminescence and Beyond. J Am Chem Soc 2023. [PMID: 37276078 DOI: 10.1021/jacs.3c01122] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Circularly polarized luminescence (CPL) is attracting much interest because it can carry extensive optical information. CPL shows left- or right-handedness and can be regarded as part of high-level visual perception to supply an extra dimension of information with regard to regular light. A key to meeting the needs for practical applications is to develop the emerging field of ultra-dissymmetric CPL. Chiral liquid crystal (LC) assemblies─otherwise referred to as cholesteric liquid crystals (CLCs)─are essentially organized helical superstructures with a highly ordered one-dimensional orientation, and distinctly superior to regular helical supramolecules. CLCs can achieve a perfect equilibrium of molecular short-range interaction and long-range orientational order, enabling molecule-scale chirality on a helical pitch and observable scale. LC assembly could be an ideal strategy for amplifying chirality, making it accessible to ultra-dissymmetric CPL. Herein, we focused on some basic but important issues regarding CPL: (i) How can CPL be created from chiral dyes? (ii) Is the chirality of luminescent dyes an essential factor for the generation of CPL? That is, can all chiral dyes emit CPL and vice versa? (iii) How can CPL be transferred within intermolecular systems, and what principles of CPL transmission should be followed? Given these queries and our work, in this Perspective we discuss the generation, transmission, and modulation of CPL with chiral LC assembly, aiming to design and build up novel chiroptical materials. Recent applications of CPL-active LC microstructures in three-dimensional displays, circularly polarized lasers, and asymmetric catalysis are also discussed.
Collapse
Affiliation(s)
- Yue Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Shanghai Key Laboratory of Functional Materials Chemistry, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518037, China
| | - Mengqi Li
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Shanghai Key Laboratory of Functional Materials Chemistry, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhi-Gang Zheng
- School of Physics, East China University of Science and Technology, Shanghai 200237, China
| | - Zhen-Qiang Yu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518037, China
| | - Wei-Hong Zhu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Shanghai Key Laboratory of Functional Materials Chemistry, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
33
|
Xu H, Ma CS, Yu CY, Tong F, Qu DH. Reversible Inversion of Circularly Polarized Luminescence in a Coassembly Supramolecular Structure with Achiral Sulforhodamine B Dyes. ACS APPLIED MATERIALS & INTERFACES 2023; 15:25201-25211. [PMID: 37014285 DOI: 10.1021/acsami.2c22349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The dynamic control of circularly polarized luminescence (CPL) has far-reaching significance in optoelectronics, information storage, and data encryption. Herein, we reported the reversible inversion of CPL in a coassembly supramolecular system consisting of chiral molecules L4, which contain two positively charged viologen units, and achiral ionic surfactant sodium dodecyl sulfate (SDS) by introducing achiral sulforhodamine B (SRB) dye molecules. The chirality of CPL in the coassemblies can be efficiently regulated and inverted by simply adjusting the amount of SRB. A series of experimental characterization, including optical spectroscopy, electron microscope, 1H NMR, and X-ray scattering measurements, suggested that SRB could coassemble with L4/SDS to establish a new stable L4/SDS/SRB supramolecular structure through electrostatic interactions. Moreover, the negative-sign CPL could revert to the positive-sign CPL if titanium dioxide (TiO2) nanoparticles were used to decompose SRB molecules. The evolution of the CPL inversion process could be cycled at least 5 times without a significant decline in CPL signals when SRB was refueled to the system. Our results provide a facile approach to dynamically regulating the handedness of CPL in a multiple-component supramolecular system via achiral species.
Collapse
Affiliation(s)
- Hui Xu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Chang-Shun Ma
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Cheng-Yuan Yu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Fei Tong
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
34
|
Luo D, Yuan ZJ, Ping LJ, Zhu XW, Zheng J, Zhou CW, Zhou XC, Zhou XP, Li D. Tailor-Made Pd n L 2n Metal-Organic Cages through Covalent Post-Synthetic Modification. Angew Chem Int Ed Engl 2023; 62:e202216977. [PMID: 36753392 DOI: 10.1002/anie.202216977] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/09/2023]
Abstract
Post-synthetic modification (PSM) is an effective approach for the tailored functionalization of metal-organic architectures, but its generalizability remains challenging. Herein we report a general covalent PSM strategy to functionalize Pdn L2n metal-organic cages (MOCs, n=2, 12) through an efficient Diels-Alder cycloaddition between peripheral anthracene substituents and various functional motifs bearing a maleimide group. As expected, the solubility of functionalized Pd12 L24 in common solvents can be greatly improved. Interestingly, concentration-dependent circular dichroism and aggregation-induced emission are achieved with chiral binaphthol (BINOL)- and tetraphenylethylene-modified Pd12 L24 , respectively. Furthermore, Pd12 L24 can be introduced with two different functional groups (e.g., chiral BINOL and achiral pyrene) through a step-by-step PSM route to obtain chirality-induced circularly polarized luminescence. Moreover, similar results are readily observed with a smaller Pd2 L4 system.
Collapse
Affiliation(s)
- Dong Luo
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Zi-Jun Yuan
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Lin-Jie Ping
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Xiao-Wei Zhu
- School of Chemistry and Environment, Guangdong Engineering Technology Developing Center of High-Performance CCL, Jiaying University, Meizhou, Guangdong, 514015, P. R. China
| | - Ji Zheng
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Chuang-Wei Zhou
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Xian-Chao Zhou
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Xiao-Ping Zhou
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Dan Li
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| |
Collapse
|
35
|
Yao L, Fu K, Wang X, He M, Zhang W, Liu PY, He YP, Liu G. Metallophilic Interaction-Mediated Hierarchical Assembly and Temporal-Controlled Dynamic Chirality Inversion of Metal-Organic Supramolecular Polymers. ACS NANO 2023; 17:2159-2169. [PMID: 36648130 DOI: 10.1021/acsnano.2c08315] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The study of dynamic supramolecular chirality inversion (SMCI) not only helps to deepen the understanding of chiral transfer and amplification in both living organizations and artificially chemical self-assembly systems but also is useful for the development of smart chiral nanomaterials. However, it is still challenging to achieve the dynamic SMCI of the self-aggregation of metal-organic supramolecular polymers with great potential in asymmetric synthesis, chiroptical switches, and circular polarized luminescence. Here, we successfully developed a hierarchical coassembly system based on the mPAzPCC and various metal ions with effective chirality transfer and temporal-controlled SMCI. Due to the dynamic self-assembly and hierarchical chirality transfer of the Ag+/mPAzPCC complex driven by metallophilic interaction and coordination, morphological transition with nanoribbons, helical nanoribbons, and chiral nanotubules was successively obtained. Interestingly, the SMCI of chiral nanoaggregates was precisely regulated by solvents and metal ions in the Cu2+/mPAzPCC and Mn2+/mPAzPCC system. Besides, temporal-controlled dynamic SMCI switching from helix to bundled helix was clearly revealed in the aggregation of Cu2+/mPAzPCC, Mn2+/mPAzPCC, and Bi3+/mPAzPCC systems. This work provides a metallophilic interaction-mediated helical assembly pathway to dynamically modulate the chirality of metal-organic complex-based assemblies and deepen the understanding of the hierarchically dynamic self-assembly process, which would be of great potential in metal ion-mediated supramolecular asymmetric catalysis and bioinspired chiral sensing.
Collapse
Affiliation(s)
- Longfei Yao
- School of Chemical Science and Engineering, Advanced Research Institute, Tongji University, Shanghai 200092, People's Republic of China
| | - Kuo Fu
- School of Chemical Science and Engineering, Advanced Research Institute, Tongji University, Shanghai 200092, People's Republic of China
| | - Xuejuan Wang
- School of Chemical Science and Engineering, Advanced Research Institute, Tongji University, Shanghai 200092, People's Republic of China
| | - Menglu He
- School of Chemical Science and Engineering, Advanced Research Institute, Tongji University, Shanghai 200092, People's Republic of China
| | - Wannian Zhang
- State Key Laboratory of Fine Chemicals, Ningbo Institute of Dalian University of Technology, No. 26 Yucai Road, Ningbo 315016, People's Republic of China
| | - Peng-Yu Liu
- State Key Laboratory of Fine Chemicals, Ningbo Institute of Dalian University of Technology, No. 26 Yucai Road, Ningbo 315016, People's Republic of China
| | - Yu-Peng He
- State Key Laboratory of Fine Chemicals, Ningbo Institute of Dalian University of Technology, No. 26 Yucai Road, Ningbo 315016, People's Republic of China
| | - Guofeng Liu
- School of Chemical Science and Engineering, Advanced Research Institute, Tongji University, Shanghai 200092, People's Republic of China
| |
Collapse
|
36
|
He S, Zhang Y, Zhao C, Wang X, Baddi S, Wu B, Dou X, Feng C. Assembly of Helical Nanostructures: Solvent-Induced Morphology Transition and Its Effect on Cell Adhesion. Chemistry 2023; 29:e202202735. [PMID: 36404280 DOI: 10.1002/chem.202202735] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/08/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022]
Abstract
Being able to precisely manipulate both the morphology and chiroptical signals of supramolecular assemblies will help to better understand the natural biological self-assembly mechanism. Two simple l/d-phenylalanine-based derivatives (L/DPFM) have been designed, and their solvent-dependent morphology evolutions are illustrated. It was found that, as the content of H2 O in aqueous ethanol solutions was increased, LPFM self-assembles first into right-handed nanofibers, then flat fibrous structures, and finally inversed left-handed nanofibers. Assemblies in ethanol and H2 O exhibit opposite conformations and circular dichroism (CD) signals even though they are constructed from the same molecules. Thus, the morphology-dependent cell adhesion and proliferation behaviors are further characterized. Left-handed nanofibers are found to be more favorable for cell adhesion than right-handed nanostructures. Quantitative AFM analysis showed that the L929 cell adhesion force on left-handed LPFM fibers is much higher than that on structures with inversed handedness. Moreover, the value of cell Young's modulus is lower for left-handed nanofibrous films, which indicates better flexibility. The difference in cell-substrate interactions might lead to different effects on cell behavior.
Collapse
Affiliation(s)
- Sijia He
- State Key Lab of Metal Matrix Composites School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P.R. China
| | - Yaqian Zhang
- State Key Lab of Metal Matrix Composites School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P.R. China
| | - Changli Zhao
- State Key Lab of Metal Matrix Composites School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P.R. China
| | - Xueqian Wang
- State Key Lab of Metal Matrix Composites School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P.R. China
| | - Sravan Baddi
- State Key Lab of Metal Matrix Composites School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P.R. China
| | - Beibei Wu
- State Key Lab of Metal Matrix Composites School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P.R. China
| | - Xiaoqiu Dou
- State Key Lab of Metal Matrix Composites School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P.R. China
| | - Chuanliang Feng
- State Key Lab of Metal Matrix Composites School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P.R. China
| |
Collapse
|
37
|
Takaishi K, Maeda C, Ema T. Circularly polarized luminescence in molecular recognition systems: Recent achievements. Chirality 2023; 35:92-103. [PMID: 36477924 DOI: 10.1002/chir.23522] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022]
Abstract
Circularly polarized luminescence (CPL) dyes are recognized to be new generation materials and have been actively developed. Molecular recognition systems provide nice approaches to novel CPL materials, such as stimuli-responsive switches and chemical sensing materials. CPL may be induced simply by mixing chiral or achiral, luminescent or nonluminescent host and guest; there are several combinations. Molecular recognition can potentially save time and effort to construct well-ordered chiral structures with noncovalent attractive interactions as compared with the multi-step synthesis of covalently bonded dyes. It is a challenging subject to engage molecular recognition events with CPL, and it is important and interesting to see how it is achieved. In fact, simple molecular recognition systems can even enable the fine adjustment of CPL performance and detailed conformational/configurational analysis of the excited state. Here we overview the recent achievements of simple host-guest complexes capable of exhibiting CPL, summarizing concisely the host/guest structures, CPL intensities, and characteristics.
Collapse
Affiliation(s)
- Kazuto Takaishi
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Chihiro Maeda
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Tadashi Ema
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| |
Collapse
|
38
|
Geng Z, Liu Z, Li H, Zhang Y, Zheng W, Quan Y, Cheng Y. Inverted and Amplified CP-EL Behavior Promoted by AIE-Active Chiral Co-Assembled Helical Nanofibers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209495. [PMID: 36479735 DOI: 10.1002/adma.202209495] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/30/2022] [Indexed: 06/17/2023]
Abstract
It is well-known that high-performance circularly polarized organic light-emitting diodes (CP-OLEDs) remain a formidable challenge to the future application of circularly polarized luminescent (CPL)-active materials. Herein, the design of a pair of AIE-active chiral enantiomers (L/D-HP) is described to construct chiral co-assemblies with an achiral naphthalimide dye (NTi). The resulting co-assemblies emit an inverted CPL signal compared with that from the L/D-HP enantiomers. After thermal annealing at 120 °C, the inverted CPL signal of this kind of L/D-HP-NTi with a 1:1 molar ratio shows regular and ordered helical nanofibers arranged through intermolecularly ordered layered packing and is accompanied with a further amplified effect (|gem | = 0.032, λem = 535 nm). Significantly, non-doped CP-OLEDs based on a device emitting layer (EML) of L/D-HP-NTi exhibits a low turn-on voltage (Von ) of 4.7 V, a high maximum brightness (Lmax ) of 2001 cd m-2 , and moderate maximum external quantum efficiency (EQEmax ) of 2.3%, as well as excellent circularly polarized electroluminescence (CP-EL) (|gEL | = 0.023, λem = 533 nm).
Collapse
Affiliation(s)
- Zhongxing Geng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Zheng Liu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Hang Li
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Yu Zhang
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Wenhua Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Yiwu Quan
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Yixiang Cheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
39
|
Chen JF, Gao QX, Liu L, Chen P, Wei TB. A pillar[5]arene-based planar chiral charge-transfer dye with enhanced circularly polarized luminescence and multiple responsive chiroptical changes. Chem Sci 2023; 14:987-993. [PMID: 36755718 PMCID: PMC9890741 DOI: 10.1039/d2sc06000k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 01/02/2023] [Indexed: 01/04/2023] Open
Abstract
The fabrication of circularly polarized luminescent (CPL) organic dyes based on macrocyclic architecture has become an importantly studied topic in recent years because it is of great importance to both chiral science and supramolecular chemistry, where pillar[n]arenes are emerging as a promising class of planar chiral macrocyclic hosts for CPL. We herein synthesized an unusual planar chiral charge-transfer dye (P5BB) by covalent coupling of triarylborane (Ar3B) as an electron acceptor to parent pillar[5]arene as an electron donor. The intramolecular charge transfer (ICT) nature of P5BB not only caused a thermally responsive emission but also boosted the luminescence dissymmetry factor (g lum). Interestingly, the specific binding of fluoride ions changed the photophysical properties of P5BB, including absorption, fluorescence, circular dichroism (CD), and CPL, which could be exploited as an optical probe for multi-channel detection of fluoride ions. Furthermore, the chiroptical changes were observed upon addition of 1,4-dibromobutane as an achiral guest.
Collapse
Affiliation(s)
- Jin-Fa Chen
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University Lanzhou Gansu 730070 P. R. China +86 9317973191 +86 9317973191
| | - Qing-Xiu Gao
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University Lanzhou Gansu 730070 P. R. China +86 9317973191 +86 9317973191
| | - Lijie Liu
- College of Science, Henan Agricultural University Zhengzhou Henan 450002 P. R. China
| | - Pangkuan Chen
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China Beijing 102488 P. R. China
| | - Tai-Bao Wei
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University Lanzhou Gansu 730070 P. R. China +86 9317973191 +86 9317973191
| |
Collapse
|
40
|
Pecorari D, Giuliani E, Mazzanti A, Stagni S, Fiorini V, Vigarani G, Zinna F, Pescitelli G, Mancinelli M. Synthesis and Stereodynamic and Emission Properties of Dissymmetric Bis-Aryl Carbazole Boranes and Identification of a CPL-Active B-C Atropisomeric Compound. J Org Chem 2023; 88:871-881. [PMID: 36599041 PMCID: PMC9872089 DOI: 10.1021/acs.joc.2c02209] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We synthesized bis-aryl carbazole borane derivatives having emissive properties and axial chirality. The resolution of a thermally stable atropisomeric pair (compound 1b), due to a B-C chiral axis, was achieved by chiral stationary-phase high-performance liquid chromatography (CSP-HPLC). Complete photophysical properties of all compounds were measured and simulated by time-dependent density functional theory (TD-DFT) calculations of the complete fluorescence cycle, and circularly polarized luminescence spectra were obtained for the atropisomers of compound 1b, whose absolute configuration was derived using a TD-DFT simulation of the electronic circular dichroism (ECD) spectra.
Collapse
Affiliation(s)
- Daniel Pecorari
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Emanuele Giuliani
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Andrea Mazzanti
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Stefano Stagni
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Valentina Fiorini
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Giulia Vigarani
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Francesco Zinna
- Department
of Chemistry and Industrial Chemistry, University
of Pisa, Via Moruzzi 13, 56124 Pisa, Italy
| | - Gennaro Pescitelli
- Department
of Chemistry and Industrial Chemistry, University
of Pisa, Via Moruzzi 13, 56124 Pisa, Italy
| | - Michele Mancinelli
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy,
| |
Collapse
|
41
|
Huang Z, He Z, Ding B, Tian H, Ma X. Photoprogrammable circularly polarized phosphorescence switching of chiral helical polyacetylene thin films. Nat Commun 2022; 13:7841. [PMID: 36543785 PMCID: PMC9772410 DOI: 10.1038/s41467-022-35625-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
The developments of pure organic room-temperature phosphorescence (RTP) materials with circularly polarized luminescence (CPL) have significantly facilitated the future integration and systemization of luminescent material in fundamental science and technological applications. Here, a type of photoinduced circularly polarized RTP materials are constructed by homogeneously dispersing phosphorescent chiral helical substituted polyacetylenes into a processable poly(methyl methacrylate) (PMMA) matrix. These substituted polyacetylenes play vital roles in the propagation of CPL and present prominently optical characteristics with high absorption and luminescent dissymmetric factors up to 0.029 (gabs) and 0.019 (glum). The oxygen consumption properties of the films under UV light irradiation endow materials with dynamic chiro-optical functionality, which can leverage of light to precisely control and manipulate the circularly polarized RTP properties with the remarkable advantages of being contactless, wireless and fatigue-resistant. Significantly, the distinct materials with dynamic properties can be used as anti-counterfeiting materials involving photoprogrammability.
Collapse
Affiliation(s)
- Zizhao Huang
- grid.28056.390000 0001 2163 4895Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237 P. R. China
| | - Zhenyi He
- grid.28056.390000 0001 2163 4895Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237 P. R. China
| | - Bingbing Ding
- grid.28056.390000 0001 2163 4895Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237 P. R. China
| | - He Tian
- grid.28056.390000 0001 2163 4895Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237 P. R. China
| | - Xiang Ma
- grid.28056.390000 0001 2163 4895Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237 P. R. China
| |
Collapse
|
42
|
Ikeshita M, He H, Kitahara M, Imai Y, Tsuno T. External environment sensitive circularly polarized luminescence properties of a chiral boron difluoride complex. RSC Adv 2022; 12:34790-34796. [PMID: 36540273 PMCID: PMC9724127 DOI: 10.1039/d2ra07386b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 08/23/2024] Open
Abstract
A chiral Schiff-base boron difluoride complex bearing a diethylamino group was synthesized. Its photophysical properties were investigated and compared with those of its non-substituted analogue. The complex was found to exhibit solvatofluorochromism with bluish-white emission in moderately polar solvents and intense blue emission in nonpolar solvent. Circularly polarized luminescence (CPL) properties were also examined and it was found that the absolute value of the luminescence dissymmetry factor (g lum) increases significantly in the KBr-dispersed pellet state compared to the solution state. Notably, CPL intensity of the complex enhanced approximately three times upon addition of CH3SO3H in CH2Cl2. Density functional theory (DFT) calculations were conducted to further understand the photophysical properties.
Collapse
Affiliation(s)
- Masahiro Ikeshita
- Department of Applied Molecular Chemistry, College of Industrial Technology, Nihon University Narashino Chiba 275-8575 Japan
| | - Hongxi He
- Department of Applied Molecular Chemistry, College of Industrial Technology, Nihon University Narashino Chiba 275-8575 Japan
| | - Maho Kitahara
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University 3-4-1 Kowakae Higashi-Osaka Osaka 577-8502 Japan
| | - Yoshitane Imai
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University 3-4-1 Kowakae Higashi-Osaka Osaka 577-8502 Japan
| | - Takashi Tsuno
- Department of Applied Molecular Chemistry, College of Industrial Technology, Nihon University Narashino Chiba 275-8575 Japan
| |
Collapse
|
43
|
Usui K, Narita N, Eto R, Suzuki S, Yokoo A, Yamamoto K, Igawa K, Iizuka N, Mimura Y, Umeno T, Matsumoto S, Hasegawa M, Tomooka K, Imai Y, Karasawa S. Oxidation of an Internal‐Edge‐Substituted [5]Helicene‐Derived Phosphine Synchronously Enhances Circularly Polarized Luminescence. Chemistry 2022; 28:e202202922. [DOI: 10.1002/chem.202202922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Indexed: 11/23/2022]
Affiliation(s)
- Kazuteru Usui
- Faculty of Pharmaceutical Sciences Showa Pharmaceutical University Higashi-Tamagawagakuen, Machida Tokyo 194-8543 Japan
- Graduate School of Pharmaceutical Sciences Kyushu University Maidashi Higashi-ku Fukuoka 812-8582 Japan
| | - Nozomi Narita
- Faculty of Pharmaceutical Sciences Showa Pharmaceutical University Higashi-Tamagawagakuen, Machida Tokyo 194-8543 Japan
| | - Ryosuke Eto
- Faculty of Pharmaceutical Sciences Showa Pharmaceutical University Higashi-Tamagawagakuen, Machida Tokyo 194-8543 Japan
| | - Seika Suzuki
- Department of Applied Chemistry, Faculty of Science and Engineering Kindai University Higashi-Osaka Osaka 577-8502 Japan
| | - Atsushi Yokoo
- Graduate School of Pharmaceutical Sciences Kyushu University Maidashi Higashi-ku Fukuoka 812-8582 Japan
| | - Kosuke Yamamoto
- Graduate School of Pharmaceutical Sciences Kyushu University Maidashi Higashi-ku Fukuoka 812-8582 Japan
| | - Kazunobu Igawa
- Department of Chemistry, Faculty of Advanced Science and Technology Kumamoto University Kurokami 2–39-1 Kumamoto 860-8555 Japan
| | - Naoko Iizuka
- Faculty of Pharmaceutical Sciences Showa Pharmaceutical University Higashi-Tamagawagakuen, Machida Tokyo 194-8543 Japan
| | - Yuki Mimura
- Department of Applied Chemistry, Faculty of Science and Engineering Kindai University Higashi-Osaka Osaka 577-8502 Japan
| | - Tomohiro Umeno
- Faculty of Pharmaceutical Sciences Showa Pharmaceutical University Higashi-Tamagawagakuen, Machida Tokyo 194-8543 Japan
| | - Shota Matsumoto
- Faculty of Pharmaceutical Sciences Showa Pharmaceutical University Higashi-Tamagawagakuen, Machida Tokyo 194-8543 Japan
| | - Masashi Hasegawa
- Graduate School of Science Kitasato University Sagamihara Kanagawa 252-0373 Japan
| | - Katsuhiko Tomooka
- Institute for Materials Chemistry and Engineering Kyushu University Kasuga Fukuoka 816-8580 Japan
| | - Yoshitane Imai
- Department of Applied Chemistry, Faculty of Science and Engineering Kindai University Higashi-Osaka Osaka 577-8502 Japan
| | - Satoru Karasawa
- Faculty of Pharmaceutical Sciences Showa Pharmaceutical University Higashi-Tamagawagakuen, Machida Tokyo 194-8543 Japan
| |
Collapse
|
44
|
López-Gandul L, Naranjo C, Sánchez C, Rodríguez R, Gómez R, Crassous J, Sánchez L. Stereomutation and chiroptical bias in the kinetically controlled supramolecular polymerization of cyano-luminogens. Chem Sci 2022; 13:11577-11584. [PMID: 36320383 PMCID: PMC9555562 DOI: 10.1039/d2sc03449b] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/06/2022] [Indexed: 10/13/2023] Open
Abstract
The synthesis of two pairs of enantiomeric cyano-luminogens 1 and 2, in which the central chromophore is a p-phenylene or a 2,5-dithienylbenzene moiety, respectively, is described and their supramolecular polymerization under kinetic and thermodynamic control investigated. Compounds 1 and 2 form supramolecular polymers by quadruple H-bonding arrays between the amide groups and the π-stacking of the central aromatic moieties. In addition, the peripheral benzamide units are able to form intramolecularly H-bonded pseudocycles that behave as metastable monomer M* thus affording kinetically and thermodynamically controlled aggregated species AggI and AggII. The chiroptical and emissive features of compounds 1 and 2 strongly depend on the aggregation state and the nature of the central aromatic unit. Compounds 1 exhibit a bisignated dichroic response of different intensity but with similar sign for both AggI1 and AggII1 species, which suggests the formation of helical aggregates. In fact, these helical supramolecular polymers can be visualized by AFM imaging. Furthermore, both AggI and AggII species formed by the self-assembly of compounds 1 show CPL (circularly polarized light) activity of opposite sign depending on the aggregation state. Thienyl-derivatives 2 display dissimilar chiroptical, morphological and emissive characteristics for the corresponding kinetically and thermodynamically controlled aggregated species AggI and AggII in comparison to those registered for compounds 1. Thus, a stereomutation phenomenon is observed in the AggI2 → AggII2 conversion. In addition, AggI2 is arranged into nanoparticles that evolve to helical aggregates to afford AggII2. The dissimilar chiroptical and morphological features of AggI2 and AggII2 are also appreciated in the emissive properties. Thus, whilst AggI2 experiences a clear AIE (aggregation induced emission) process and CPL activity, the thermodynamically controlled AggII2 undergoes an ACQ (aggregation caused quenching) process in which the CPL activity is cancelled.
Collapse
Affiliation(s)
- Lucía López-Gandul
- Departamento de Química Orgánica, Facultad; de Ciencias Químicas, Universidad Complutense de Madrid 28040 Madrid Spain
| | - Cristina Naranjo
- Departamento de Química Orgánica, Facultad; de Ciencias Químicas, Universidad Complutense de Madrid 28040 Madrid Spain
| | - Cecilia Sánchez
- Departamento de Química Orgánica, Facultad; de Ciencias Químicas, Universidad Complutense de Madrid 28040 Madrid Spain
| | - Rafael Rodríguez
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226 F-35000 Rennes France
| | - Rafael Gómez
- Departamento de Química Orgánica, Facultad; de Ciencias Químicas, Universidad Complutense de Madrid 28040 Madrid Spain
| | - Jeanne Crassous
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226 F-35000 Rennes France
| | - Luis Sánchez
- Departamento de Química Orgánica, Facultad; de Ciencias Químicas, Universidad Complutense de Madrid 28040 Madrid Spain
| |
Collapse
|
45
|
Liu Y, Zhang P, Zhang L, Wang Y, Li J, Liu Y, Ji L, Yu H. Controlled helicity inversion, selective enantiomer release, and methanol recognition in azobenzene gel. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
46
|
Okayasu Y, Wakabayashi K, Yuasa J. Anion-Driven Circularly Polarized Luminescence Inversion of Unsymmetrical Europium(III) Complexes for Target Identifiable Sensing. Inorg Chem 2022; 61:15108-15115. [PMID: 36106989 PMCID: PMC9516667 DOI: 10.1021/acs.inorgchem.2c02202] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Indexed: 11/29/2022]
Abstract
Anion-responsive sign inversion of circularly polarized luminescence (CPL) was successfully achieved by N3O6-type nona-coordinated europium(III) (Eu3+) complexes [(R)-1 and (S)-1] composed of a less-hindered unsymmetrical N3-tridentate ligand (a chiral bis(oxazoline) ligand) and three O2-chelating (β-diketonate) ligands. Here, (R)-1 exhibited a positive CPL signal (IL - IR > 0) at the 5D0 → 7F1 transition of Eu3+, which can be changed to a negative sign (i.e., IL - IR > 0 → IL - IR < 0) by the coordination of trifluoroacetic anions (CF3COO-) to the Eu3+ center. However, (R)-1 preserved the original positive CPL signal (i.e., IL - IR > 0 → IL - IR > 0) in the presence of a wide range of competing anions (Cl-, Br-, I-, BF4-, ClO4-, ReO4-, PF6-, OTf-, and SbF6-). Thus, (R)-1 acts as a smart target identifiable probe, where the CPL measurement (IL - IR) can distinguish the signals from the competing anions (i.e., IL - IR < 0 vs IL - IR > 0) and eliminate the background emission (i.e., IL - IR = 0) from the background emitter (achiral luminescent compounds). The presented approach is also promising in terms of bio-inspired optical methodology because it enables nature's developed chiral sensitivity to use circularly polarized light for object identification (i.e., IL - IR = 0 vs | IL - IR | > 0).
Collapse
Affiliation(s)
- Yoshinori Okayasu
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Kota Wakabayashi
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Junpei Yuasa
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| |
Collapse
|
47
|
Harada K, Sekiya R, Haino T. Chirality Induction on a Coordination Capsule for Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2022; 61:e202209340. [DOI: 10.1002/anie.202209340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Kentaro Harada
- Department of Chemistry Graduate School of Advanced Science and Engineering Hiroshima University 1-3-1 Kagamiyama, Higashi-Hiroshima Hiroshima 739-8526 Japan
| | - Ryo Sekiya
- Department of Chemistry Graduate School of Advanced Science and Engineering Hiroshima University 1-3-1 Kagamiyama, Higashi-Hiroshima Hiroshima 739-8526 Japan
| | - Takeharu Haino
- Department of Chemistry Graduate School of Advanced Science and Engineering Hiroshima University 1-3-1 Kagamiyama, Higashi-Hiroshima Hiroshima 739-8526 Japan
| |
Collapse
|
48
|
Li J, Peng X, Hou C, Shi S, Ma J, Qi Q, Lai W. Discriminating Chiral Supramolecular Motions by Circularly Polarized Luminescence. Chemistry 2022; 28:e202202336. [DOI: 10.1002/chem.202202336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Junfeng Li
- State Key Laboratory of Organic Electronics and Information Displays (KLOEID) Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Xuelei Peng
- State Key Laboratory of Organic Electronics and Information Displays (KLOEID) Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Chenxi Hou
- State Key Laboratory of Organic Electronics and Information Displays (KLOEID) Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Shunan Shi
- State Key Laboratory of Organic Electronics and Information Displays (KLOEID) Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Jiamian Ma
- State Key Laboratory of Organic Electronics and Information Displays (KLOEID) Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Qi Qi
- School of Chemistry and Chemical Engineering Southeast University No.2 SEU Road Nanjing 211189 China
| | - Wen‐Yong Lai
- State Key Laboratory of Organic Electronics and Information Displays (KLOEID) Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 China
- Frontiers Science Center for Flexible Electronics (FSCFE) MIIT Key Laboratory of Flexible Electronics (KLoFE) Northwestern Polytechnical University Xi'an 710072 China
| |
Collapse
|
49
|
Wang Y, Gong J, Wang X, Li W, Wang X, He X, Wang W, Yang H. Multistate Circularly Polarized Luminescence Switching through Stimuli‐Induced Co‐Conformation Regulations of Pyrene‐Functionalized Topologically Chiral [2]Catenane. Angew Chem Int Ed Engl 2022; 61:e202210542. [DOI: 10.1002/anie.202210542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Yu Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Shanghai Frontiers Science Center of Molecule Intelligent Syntheses & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 China
| | - Jiacheng Gong
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Shanghai Frontiers Science Center of Molecule Intelligent Syntheses & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 China
| | - Xianwei Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Shanghai Frontiers Science Center of Molecule Intelligent Syntheses & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 China
| | - Wei‐Jian Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Shanghai Frontiers Science Center of Molecule Intelligent Syntheses & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 China
| | - Xu‐Qing Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Shanghai Frontiers Science Center of Molecule Intelligent Syntheses & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 China
| | - Xiao He
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Shanghai Frontiers Science Center of Molecule Intelligent Syntheses & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 China
| | - Wei Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Shanghai Frontiers Science Center of Molecule Intelligent Syntheses & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 China
| | - Hai‐Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Shanghai Frontiers Science Center of Molecule Intelligent Syntheses & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 China
- Institute of Eco-Chongming Shanghai 202162 China
| |
Collapse
|
50
|
Song X, Zhu X, Qiu S, Tian W, Liu M. Self‐Assembly of Adaptive Chiral [1]Rotaxane for Thermo‐Rulable Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2022; 61:e202208574. [DOI: 10.1002/anie.202208574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Xin Song
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
- Shaanxi Key Laboratory of Macromolecular Science and Technology MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions School of Chemistry and Chemical Engineering Northwestern Polytechnical University Xi'an 710072, Shaanxi P. R. China
| | - Xuefeng Zhu
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
| | - Shuai Qiu
- Shaanxi Key Laboratory of Macromolecular Science and Technology MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions School of Chemistry and Chemical Engineering Northwestern Polytechnical University Xi'an 710072, Shaanxi P. R. China
| | - Wei Tian
- Shaanxi Key Laboratory of Macromolecular Science and Technology MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions School of Chemistry and Chemical Engineering Northwestern Polytechnical University Xi'an 710072, Shaanxi P. R. China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|