1
|
Chai Y, Sun Y, Sheng Z, Zhu Y, Du T, Zhu B, Yu H, Dong B, Liu Y, Wang HY. Reversible pH-switchable NIR-II nano-photosensitizer for precise imaging and photodynamic therapy of tumors. Acta Biomater 2024; 188:315-328. [PMID: 39243836 DOI: 10.1016/j.actbio.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/18/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
Photodynamic therapy (PDT) has attracted widespread attention from researchers as an emerging cancer treatment method. There have been many reports on various types of NIR-II photosensitizers for imaging and treatment of tumor sites. However, there are few reports on the development of NIR-II organic small molecule photosensitizers that have intelligent response to the tumor microenvironment, precise imaging, real-time treatment, and high biocompatibility. In this work, we developed a series of NIR-II photosensitizers (RBTs) with near-infrared excitation, good photostability, and large Stokes shift. Among them, RBT-Br exhibited higher reactive oxygen species (ROS) generation efficiency due to the introduction of halogen heavy atoms to enhance intersystem crossing (ISC). It is noteworthy that RBT-Br can generate singlet oxygen (1O2) and superoxide anion radicals (•O2-) simultaneously under 730 nm laser. Subsequently, we used molecular engineering technology to construct three pH-responsive NIR-II photosensitizers (RBT-pHs) by utilizing the closure of the lactam ring, among which RBT-pH-1 (pKa = 6.78) is able to be directionally activated under the stimulation of tumor micro-acid environment, with its fluorescence emission window reaching 933 nm. Subsequently, RBT-pH-1 NPs encapsulated in DSPE-mPEG5k were applied for PDT treatment of mouse tumors. The results showed that RBT-pH-1 NPs were activated by the acidic tumor microenvironment and generated ROS under laser excitation, exhibiting precise tumor imaging and significant tumor growth inhibition. We look forward to these multifunctional NIR-II organic small molecule photosensitizers providing a more efficient approach for clinical treatment of tumors. STATEMENT OF SIGNIFICANCE: A reversible pH-switchable NIR-II nano-photosensitizer RBT-pH-1 NPs (pKa = 6.76) is developed for precise imaging and PDT therapy of mouse tumors, which can be effectively used for targeted enrichment and activation of tumor micro-acid environments. The results show that this NIR-II photosensitizer generates ROS through tumor micro-acid environment stimulation and laser triggering, showing precise tumor imaging guidance and significant tumor growth inhibition.
Collapse
Affiliation(s)
- Yun Chai
- School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Ye Sun
- School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Zhijia Sheng
- School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Yanyan Zhu
- School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Tianyou Du
- School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Bingjian Zhu
- School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Hui Yu
- School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Bin Dong
- School of Engineering, China Pharmaceutical University, Nanjing 211198, China.
| | - Yi Liu
- School of Engineering, China Pharmaceutical University, Nanjing 211198, China.
| | - Hai-Yan Wang
- School of Mechanical Engineering, Southeast University, Nanjing 211189, China.
| |
Collapse
|
2
|
Huang Y, Zhu B, Li Q, Baryshnikov G, Li C, Sha F, Wu XY, Ågren H, Xie Y. A Class of Heptaphyrins with NIR Absorption Modulated by Metal Coordination and Nucleophilic Substitution. Chem Asian J 2024; 19:e202400575. [PMID: 39031934 DOI: 10.1002/asia.202400575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/28/2024] [Accepted: 07/19/2024] [Indexed: 07/22/2024]
Abstract
The intensive interest in expanded porphyrins can be attributed to their appealing photoelectric and coordination behavior. In this work, an N-confused heptaphyrin 1 was synthesized by an acid-catalyzed [3+4] condensation reaction. The introduction of an N-confused pyrrolic unit into the heptaphyrin macrocycle led to the formation of a figure-eight-like conformation with nonsymmetrical "NNNN" and "NNNC" coordination cavities employable for bimetallic coordination. As a result, chelation of 1 with Zn(II) and Cu(II) afforded mono-Zn(II) complex 2 and bis-Cu(II) complex 3, respectively, with the metal atoms exhibiting distorted square-planar geometries. In complex 3, an oxygen atom is attached to the α-C atom of N-confused pyrrole D, and thus the N and C atoms of ring D participate in coordination within the two cavities. Interestingly, treatment of 1 with Cs2CO3 in MeOH resulted in regioselective substitution of all the seven para-F atoms in the meso-C6F5 groups as well as the α-H of ring D by eight methoxy moieties. Complex 3 displays a red-shifted absorption band edge of ca. 2200 nm, compared to that of ca. 1600 nm observed for 1. This work provides an example of incorporating an N-confused pyrrole to construct expanded porphyrins with distinctive coordination behavior and tunable NIR absorption.
Collapse
Affiliation(s)
- Yanping Huang
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Bin Zhu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Qizhao Li
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Glib Baryshnikov
- Department of Science and Technology, Institution Laboratory of Organic Electronics, Linköping University, Norrköping, SE-60174, Sweden
| | - Chengjie Li
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Feng Sha
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xin-Yan Wu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Hans Ågren
- Department of Physics and Astronomy, Uppsala University, Box 516, Uppsala, SE-75120, Sweden
| | - Yongshu Xie
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
3
|
Desmedt E, Casademont-Reig I, Monreal-Corona R, De Vleeschouwer F, Alonso M. Aromaticity in the Spectroscopic Spotlight of Hexaphyrins. Chemistry 2024; 30:e202401933. [PMID: 38889264 DOI: 10.1002/chem.202401933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/20/2024]
Abstract
Spectroscopic properties are commonly used in the experimental evaluation of ground- and excited-state aromaticity in expanded porphyrins. Herein, we investigate if the defining photophysical properties still hold for a diverse set of hexaphyrins with varying redox states, topologies, peripheral substitutions, and core-modifications. By combining TD-DFT calculations with several aromaticity descriptors and chemical compound space maps, the intricate interplay between structural planarity, aromaticity, and absorption spectra is elucidated. Our results emphasize that the general assumption that antiaromatic porphyrinoids exhibit significantly attenuated absorption bands as compared to aromatic counterparts does not hold even for the unsubstituted hexaphyrin macrocycles. To connect the spectroscopic properties to the hexaphyrins' aromaticity behaviour, we analyzed chemical compound space maps defined by the various aromaticity indices. The intensity of the Q-band is not well described by the macrocyclic aromaticity. Instead, the degeneracy of the frontier molecular orbitals, the HOMO-LUMO gap, and the |ΔHOMO-ΔLUMO|2 values appear to be better indicators to identify hexaphyrins with enhanced light-absorbing abilities in the near-infrared region. Regions with highly planar hexaphyrin structures, both aromatic and antiaromatic, are characterized by an intense B-band. Hence, we advise using a combination of global and local aromaticity descriptors rooted in different criteria to assess the aromaticity of expanded porphyrins instead of solely relying on the absorption spectra.
Collapse
Affiliation(s)
- Eline Desmedt
- Department of General Chemistry, Algemene Chemie (ALGC), Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussel, Belgium
| | - Irene Casademont-Reig
- Department of General Chemistry, Algemene Chemie (ALGC), Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussel, Belgium
| | - Roger Monreal-Corona
- Department of General Chemistry, Algemene Chemie (ALGC), Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussel, Belgium
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, C/Maria Aurèlia Capmany 69, 17003, Girona, Catalonia, Spain
| | - Freija De Vleeschouwer
- Department of General Chemistry, Algemene Chemie (ALGC), Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussel, Belgium
| | - Mercedes Alonso
- Department of General Chemistry, Algemene Chemie (ALGC), Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussel, Belgium
| |
Collapse
|
4
|
Ramezani P, De Smedt SC, Sauvage F. Supramolecular dye nanoassemblies for advanced diagnostics and therapies. Bioeng Transl Med 2024; 9:e10652. [PMID: 39036081 PMCID: PMC11256156 DOI: 10.1002/btm2.10652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/09/2024] [Accepted: 01/19/2024] [Indexed: 07/23/2024] Open
Abstract
Dyes have conventionally been used in medicine for staining cells, tissues, and organelles. Since these compounds are also known as photosensitizers (PSs) which exhibit photoresponsivity upon photon illumination, there is a high desire towards formulating these molecules into nanoparticles (NPs) to achieve improved delivery efficiency and enhanced stability for novel imaging and therapeutic applications. Furthermore, it has been shown that some of the photophysical properties of these molecules can be altered upon NP formation thereby playing a major role in the outcome of their application. In this review, we primarily focus on introducing dye categories, their formulation strategies and how these strategies affect their photophysical properties in the context of photothermal and non-photothermal applications. More specifically, the most recent progress showing the potential of dye supramolecular assemblies in modalities such as photoacoustic and fluorescence imaging, photothermal and photodynamic therapies as well as their employment in photoablation as a novel modality will be outlined. Aside from their photophysical activity, we delve shortly into the emerging application of dyes as drug stabilizing agents where these molecules are used together with aggregator molecules to form stable nanoparticles.
Collapse
Affiliation(s)
- Pouria Ramezani
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences Ghent University Ghent Belgium
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences Ghent University Ghent Belgium
| | - Félix Sauvage
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences Ghent University Ghent Belgium
| |
Collapse
|
5
|
Jiang W, Lin L, Wu P, Lin H, Sui J. Near-Infrared-II Nanomaterials for Activatable Photodiagnosis and Phototherapy. Chemistry 2024; 30:e202400816. [PMID: 38613472 DOI: 10.1002/chem.202400816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/15/2024]
Abstract
Near-Infrared-II (NIR-II) spans wavelengths between 1,000 to 1,700 nanometers, featuring deep tissue penetration and reduced tissue scattering and absorption characteristics, providing robust support for cancer treatment and tumor imaging research. This review explores the utilization of activatable NIR-II photodiagnosis and phototherapy based on tumor microenvironments (e. g., reactive oxygen species, pH, glutathione, hypoxia) and external stimulation (e. g., laser, ultrasound, photothermal) for precise tumor treatment and imaging. Special emphasis is placed on the advancements and advantages of activatable NIR-II nanomedicines in novel therapeutic modalities like photodynamic therapy, photothermal therapy, and photoacoustic imaging. This encompasses achieving deep tumor penetration, real-time monitoring of the treatment process, and obtaining high-resolution, high signal-to-noise ratio images even at low material concentrations. Lastly, from a clinical perspective, the challenges faced by activatable NIR-II phototherapy are discussed, alongside potential strategies to overcome these hurdles.
Collapse
Affiliation(s)
- Wanying Jiang
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education & Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, 350007, China
| | - Lisheng Lin
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education & Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, 350007, China
| | - Ping Wu
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education & Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, 350007, China
| | - Hongxin Lin
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education & Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, 350007, China
| | - Jian Sui
- Shengli Clinical Medical College of Fujian Medical University, Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, P. R. China
| |
Collapse
|
6
|
Xue S, Dong Y, Lv X, Qiu F, Wang Y, Furuta H, Teranishi T, Wu F. Stabilization of the Neutral [25]Hexaphyrin(1.0.1.0.1.0) Radical by Hetero-Bimetal-Coordination. Chemistry 2024; 30:e202400812. [PMID: 38533748 DOI: 10.1002/chem.202400812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 03/28/2024]
Abstract
Stabilization of hexaphyrin(1.0.1.0.1.0) (named "rosarin") in its 25π radical state is achieved using a hetero-bimetal-coordination strategy. The antiaromatic BF2 complex B-1 was first synthesized, and then rhodium ion was inserted into B-1 to produce the BF2/Rh(CO)2 mixed complex Rh-B-1 as a highly air-stable radical. The structures of B-1 and Rh-B-1 were determined by single-crystal X-ray diffractions, and the antiaromatic or radical character was identified by various spectroscopy evidence and theoretical calculations. Rh-B-1 exhibits excellent redox properties, enabling amphoteric aromatic-antiaromatic conversion to their 24/26π states. Compared to the 24/26π conjugation systems on the same skeleton, Rh-B-1 has the narrowest electrochemical and optical band gaps, with the longest absorption band at 1010 nm. The ring-current analysis reveals intense paratropic currents for B-1 and co-existing diatropic-paratropic currents for Rh-B-1. This hetero-bimetal-coordination system provides a novel platform for organic radical stabilization on porphyrinoids, showing the prospect of modulating ligand oxidation states through rational coordination design.
Collapse
Affiliation(s)
- Songlin Xue
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Normal University, Wuhu, Anhui, 241002, China
| | - Yuting Dong
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Xiaojuan Lv
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Fengxian Qiu
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Yue Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Hiroyuki Furuta
- Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, 525-8577, Japan
| | - Toshiharu Teranishi
- Graduate School of Science and Institute for Chemical Research, Kyoto University, Uji, 611-0011, Japan
| | - Fan Wu
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
7
|
Zhao H, Wang Y, Chen Q, Liu Y, Gao Y, Müllen K, Li S, Narita A. A Nanographene-Porphyrin Hybrid for Near-Infrared-Ii Phototheranostics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309131. [PMID: 38430537 PMCID: PMC11095198 DOI: 10.1002/advs.202309131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/20/2024] [Indexed: 03/04/2024]
Abstract
Photoacoustic imaging (PAI)-guided photothermal therapy (PTT) in the second near-infrared (NIR-II, 1000-1700 nm) window has been attracting attention as a promising cancer theranostic platform. Here, it is reported that the π-extended porphyrins fused with one or two nanographene units (NGP-1 and NGP-2) can serve as a new class of NIR-responsive organic agents, displaying absorption extending to ≈1000 and ≈1400 nm in the NIR-I and NIR-II windows, respectively. NGP-1 and NGP-2 are dispersed in water through encapsulation into self-assembled nanoparticles (NPs), achieving high photothermal conversion efficiency of 60% and 69%, respectively, under 808 and 1064 nm laser irradiation. Moreover, the NIR-II-active NGP-2-NPs demonstrated promising photoacoustic responses, along with high photostability and biocompatibility, enabling PAI and efficient NIR-II PTT of cancer in vivo.
Collapse
Affiliation(s)
- Hao Zhao
- Organic and Carbon Nanomaterials UnitOkinawa Institute of Science and Technology Graduate University1919‐1 Tancha, Onna‐son, Kunigami‐gunOkinawa904‐0495Japan
| | - Yu Wang
- College of Pharmaceutical SciencesSoochow UniversitySuzhou215123P. R. China
| | - Qiang Chen
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryOxfordOX1 3TAUK
- Present address:
Institute of Functional Nano & Soft Materials (FUNSOM)Soochow UniversitySuzhou215123P.R. China
| | - Ying Liu
- College of Pharmaceutical SciencesSoochow UniversitySuzhou215123P. R. China
| | - Yijian Gao
- College of Pharmaceutical SciencesSoochow UniversitySuzhou215123P. R. China
| | - Klaus Müllen
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Shengliang Li
- College of Pharmaceutical SciencesSoochow UniversitySuzhou215123P. R. China
| | - Akimitsu Narita
- Organic and Carbon Nanomaterials UnitOkinawa Institute of Science and Technology Graduate University1919‐1 Tancha, Onna‐son, Kunigami‐gunOkinawa904‐0495Japan
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| |
Collapse
|
8
|
Liu G, Li J, Wang X, Ren H, Zhang Y. An Activatable Dual Polymer Nanosystem for Photoimmunotherapy and Metabolic Modulation of Deep-Seated Tumors. Adv Healthc Mater 2024; 13:e2303305. [PMID: 38277491 DOI: 10.1002/adhm.202303305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/15/2024] [Indexed: 01/28/2024]
Abstract
Nanomedicine in combination with immunotherapy has shown great potential in the cancer treatment, but phototherapeutic nanomaterials that specifically activate the immunopharmacological effects in deep tumors have rarely been developed due to limited laser penetration depth and tumor immune microenvironment. Herein, this work reports a newly synthesized semiconducting polymer (SP) grafted with imiquimod R837 and indoxmid encapsulated micelle (SPRIN-micelle) with strong absorption in the second near infrared window (NIR-II) that can relieve tumor immunosuppression and enhance the photothermal immunotherapy and catabolic modulation on tumors. Immune agonists (Imiquimod R837) and immunometabolic modulators (indoxmid) are covalently attached to NIR-II SP sensors via a glutathione (GSH) responsive self-immolation linker and then loaded into Pluronic F127 (F127) micelles by a temperature-sensitive critical micelle concentration (CMC)-switching method. Using this method, photothermal effect of SPRIN-micelles in deep-seated tumors can be activated, leading to effective tumor ablation and immunogenic cell death (ICD). Meanwhile, imiquimod and indoxmid are tracelessly released in response to the tumor microenvironment, resulting in dendritic cell (DC) maturation by imiquimod R837 and inhibition of both indoleamine 2,3-dioxygenase (IDO) activity and Treg cell expression by indoxmid. Ultimately, cytotoxic T-lymphocyte infiltration and tumor metastasis inhibition in deep solid tumors (9 mm) are achieved. In summary, this work demonstrates a new strategy for the combination of photothermal immunotherapy and metabolic modulation by developing a dual functional polymer system including activable SP and temperature-sensitive F127 for the treatment of deep solid tumors.
Collapse
Affiliation(s)
- Gengqi Liu
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
| | - Jiexin Li
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
| | - Xiaojie Wang
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
| | - He Ren
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
| | - Yumiao Zhang
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
| |
Collapse
|
9
|
Lyu S, Lu S, Gui C, Guo C, Han J, Xiao Y, Zhang R, Hong X. A NIR-II Photoacoustic/NIR-IIa Fluorescent Probe for Targeted Imaging of Glioma under NIR-II Excitation. J Med Chem 2024; 67:1861-1871. [PMID: 38247270 DOI: 10.1021/acs.jmedchem.3c01515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Fluorescence and photoacoustic (PA) imaging in the second near-infrared (NIR-II, 1000-1700 nm) window has garnered massive interest owing to high maximum permissible exposure of light, reduced autofluorescence, and improved deep penetration. However, active targeted NIR-II photoacoustic/NIR-IIa fluorescence imaging of glioma under NIR-II excitation has been seldom reported, which is partly ascribable to the lack of suitable materials. In this study, a small-molecule-based αvβ3-targeted NIR-II photoacoustic/NIR-IIa fluorescent probe IR-32p was generated and subsequently evaluated in U87MG tumor-bearing mice excited with NIR-I and NIR-II light. Exceptional dual-modal imaging properties such as good tumor uptake, high targeting specificity, and high tumor contrast were achieved in an orthotopic glioma model under 1020/1064 nm excitation, exhibiting a superior imaging depth of glioma through the skull. Our study introduces an outstanding dual-modal contrast agent with NIR-II absorption and confirms the superiority of NIR-II excitation over NIR-I in in vivo NIR-II/PA imaging.
Collapse
Affiliation(s)
- Shuxin Lyu
- The Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan 030032, China
- Department of Cardiology, Clinic Trial Center, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Siyu Lu
- Department of Cardiology, Clinic Trial Center, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| | - Conghao Gui
- Department of Cardiology, Clinic Trial Center, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Tibet University, Lhasa 850000, China
- Key Laboratory of Virology and Biosafety (CAS), Wuhan University Shenzhen Research Institute, Shenzhen 518057, China
| | - Chunyan Guo
- The Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan 030032, China
| | - Juanjuan Han
- The Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan 030032, China
| | - Yuling Xiao
- Department of Cardiology, Clinic Trial Center, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| | - Ruiping Zhang
- The Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan 030032, China
| | - Xuechuan Hong
- Department of Cardiology, Clinic Trial Center, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Tibet University, Lhasa 850000, China
- Key Laboratory of Virology and Biosafety (CAS), Wuhan University Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
10
|
Sun M, Xie Y, Baryshnikov G, Li C, Sha F, Wu X, Ågren H, Li S, Li Q. Mono- and bis-Pd(ii) complexes of N-confused dithiahexaphyrin(1.1.1.1.1.0) with the absorption and aromaticity modulated by Pd(ii) coordination, macrocycle contraction and ancillary ligands. Chem Sci 2024; 15:2047-2054. [PMID: 38332829 PMCID: PMC10848665 DOI: 10.1039/d3sc05473j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/02/2024] [Indexed: 02/10/2024] Open
Abstract
To further enrich the coordination chemistry of hexaphyrins and probe the underlying property-structural correlations, N-confused dithiahexaphyrin(1.1.1.1.1.0) (1) with 26 π-electron Hückel aromaticity was synthesized. Based on its unprecedented two unsymmetrical cavities, five palladium complexes 2, 3, 4-Ph, 4-Cl and 5 have been successfully synthesized under various coordinations. Thus, two mono-Pd(ii) complexes 2 and 3 with the Pd(ii) atom coordinated in the two different cavities were obtained by treating 1 with palladium reagents PdCl2, and (PPh3)2PdCl2 respectively. On this basis, bis-Pd(ii) complexes 4-Ph and 4-Cl were synthesized by treating 2 and 3 with (PPh3)2PdCl2 and PdCl2, respectively. As a result, both 4-Ph and 4-Cl contain two Pd(ii) atoms coordinated within the two cavities, with one of the Pd(ii) atoms further coordinated to a triphenylphosphine ligand in addition to an anionic ancillary ligand of Ph- and Cl-, respectively. Notably, a further contracted mono-Pd(ii) complex 5 was synthesized by treating 1 with Pd(PPh3)4 by eliminating one of the meso-carbon atoms together with the corresponding C6F5 moiety. These complexes present tunable 26 π aromaticity and NIR absorption up to 1060 nm. This work provides an effective approach for developing distinctive porphyrinoid Pd(ii) complexes from a single porphyrinoid, without resorting to tedious syntheses of a series of porphyrinoid ligands.
Collapse
Affiliation(s)
- Meng Sun
- Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Yongshu Xie
- Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 China
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University Hangzhou 311121 China
| | - Glib Baryshnikov
- Department of Science and Technology, Laboratory of Organic Electronics, Linköping University SE-601 74 Norrköping Sweden
| | - Chengjie Li
- Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Feng Sha
- Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Xinyan Wu
- Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Hans Ågren
- Department of Physics and Astronomy, Uppsala University SE-751 20 Uppsala Sweden
| | - Shijun Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University Hangzhou 311121 China
| | - Qizhao Li
- Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
11
|
Li C, Pang Y, Xu Y, Lu M, Tu L, Li Q, Sharma A, Guo Z, Li X, Sun Y. Near-infrared metal agents assisting precision medicine: from strategic design to bioimaging and therapeutic applications. Chem Soc Rev 2023. [PMID: 37334831 DOI: 10.1039/d3cs00227f] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Metal agents have made incredible strides in preclinical research and clinical applications in recent years, but their short emission/absorption wavelengths continue to be a barrier to their distribution, therapeutic action, visual tracking, and efficacy evaluation. Nowadays, the near-infrared window (NIR, 650-1700 nm) provides a more accurate imaging and treatment option. Thus, there has been ongoing research focusing on developing multifunctional NIR metal agents for imaging and therapy that have deeper tissue penetration. The design, characteristics, bioimaging, and therapy of NIR metal agents are covered in this overview of papers and reports published to date. To start with, we focus on describing the structure, design strategies, and photophysical properties of metal agents from the NIR-I (650-1000 nm) to NIR-II (1000-1700 nm) region, in order of molecular metal complexes (MMCs), metal-organic complexes (MOCs), and metal-organic frameworks (MOFs). Next, the biomedical applications brought by these superior photophysical and chemical properties for more accurate imaging and therapy are discussed. Finally, we explore the challenges and prospects of each type of NIR metal agent for future biomedical research and clinical translation.
Collapse
Affiliation(s)
- Chonglu Li
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China.
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Yida Pang
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Yuling Xu
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Mengjiao Lu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China.
| | - Le Tu
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Qian Li
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Amit Sharma
- CSIR-Central Scientific Instruments Organisation, Sector-30C, Chandigarh 160030, India
| | - Zhenzhong Guo
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Xiangyang Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China.
| | - Yao Sun
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| |
Collapse
|
12
|
Sun Y, Wu F, Gao H, Zhi X, Zhao Y, Shen Z. Copper naphthoporphyrin showing enhanced water-solubility by nano-encapsulation and efficient photoacoustic response. Supramol Chem 2023. [DOI: 10.1080/10610278.2023.2175678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Affiliation(s)
- Yufen Sun
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
| | - Fan Wu
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
| | - Hu Gao
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
| | - Xu Zhi
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
| | - Zhen Shen
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
13
|
Sheng W, Guo X, Tang B, Bu W, Zhang F, Hao E, Jiao L. Hybridization of triphenylamine to BODIPY dyes at the 3,5,8-positions: A facile strategy to construct near infra-red aggregation-induced emission luminogens with intramolecular charge transfer for cellular imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 285:121902. [PMID: 36208580 DOI: 10.1016/j.saa.2022.121902] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
A series of five BODIPY derivatives with triarylamine (TPA) moieties on their 3-, 5-, or 8-positions were reported, which showed wide-range fluorescence emissions across red and near infrared regions in their aggregation states. The influences of numbers and substituted positions of TPA groups on the optical and aggregation-induced emission (AIE) properties of these BODIPYs as well as organelle-specific imaging in live cells were investigated. The TPA groups installed at 3-/5-positions of BODIPY could effectively enlarge the conjugated system and red-shift the absorption and emission bands (λemmax up to 815 nm). In contrast, the TPA group linked to 8-position of BODIPY core has little contribution to decrease the HOMO-LUMO energy gap. Importantly, regardless the substitution positions of TPA groups, all these TPA-substituted BODIPYs (BTs) showed remarkable AIE performance and possessed high molar extinction absorption (up to ∼ 63000 M-1 cm-1), two-photon absorption (up to 171 GM at 870 nm), and large Stokes shifts. The BODIPY with one TPA group (BT1 and FBT1) showed lipid droplets-specific localization while BODIPY with two and three TPA groups (BT2, BT3 and FBT2) preferred to enrich in lysosomes. These BODIPYs all have been successfully used in tracking the dynamic behaviors of lipid droplets or lysosomes in living cells. Furthermore, BT1 and FBT1 can quantitatively detect the overexpression of lipid droplets, and BT3 has been successfully used to observe lysosomes behaviors of lipophagy process in living cells. This work systematically studied the influence of the number and position of TPA units on the optical properties and AIE-activities of BODIPYs, which not only enriched the BODIPY-based AIE NIR probes for organelle-specific imaging in live cells, but also provided a practical strategy for the effective construction of organic dyes with NIR AIE activity.
Collapse
Affiliation(s)
- Wanle Sheng
- Department of Chemistry, BengBu Medical College, Bengbu 233030, China.
| | - Xing Guo
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Bing Tang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Weibin Bu
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Fan Zhang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Erhong Hao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| | - Lijuan Jiao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| |
Collapse
|
14
|
Li R, Ren J, Zhang D, Lv M, Wang Z, Wang H, Zhang S, Du J, Jiang XD, Wang G. Attachment of −tBu groups to aza-BODIPY core at 3,5-sites with ultra-large Stokes shift to enhance photothermal therapy through apoptosis mechanism. Mater Today Bio 2022; 16:100446. [PMID: 36199559 PMCID: PMC9527945 DOI: 10.1016/j.mtbio.2022.100446] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022]
Abstract
By the introduction of the −tBu groups into aza-BODIPY core, di-tert-butyl-substituted aza-BODIPYs at 3,5-sites (tBuazaBDPs) were prepared for the first time. Based on the X-ray analysis of CN-tBuazaBDP, this molecular structure is twisted. Near-infrared dye SMe-tBuazaBDP has the ultra-large Stokes shift (152 nm) in aza-BODIPY system, combining with the twisted intramolecular charge transfer and the free rotation of the −tBu groups at 3,5-sites. Although the barrier-free rotors of the distal −tBu groups in SMe-tBuazaBDP result in low fluorescence quantum yield, the photothermal conversion efficiency is markedly enhanced. SMe-tBuazaBDP nanoparticles with low power laser irradiation were proven to block cancer cell cycle, inhibit cancer cell proliferation, and induce cancer cell apoptosis in photothermal therapy (PTT). The strategy of “direct attachment of −tBu groups to aza-BODIPY core” gives a new design platform for a photothermal therapy agent. Di-tert-butyl-substituted aza-BODIPYs at 3,5-sites (tBuazaBDPs) were prepared for the first time. Near-infrared dye SMe-tBuazaBDP has the ultra-large Stokes shift (152 nm) in aza-BODIPY system. SMe-tBuazaBDP nanoparticles can photothermally induce apoptosis as a potential photothermal therapy agent.
Collapse
|
15
|
Hu X, Ha E, Ai F, Huang X, Yan L, He S, Ruan S, Hu J. Stimulus-responsive inorganic semiconductor nanomaterials for tumor-specific theranostics. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Boosting near-infrared photothermal/photoacoustic conversion performance of anthracene-fused porphyrin via paramagnetic ion coordination strategy. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1409-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
17
|
Toganoh M, Furuta H. Creation from Confusion and Fusion in the Porphyrin World─The Last Three Decades of N-Confused Porphyrinoid Chemistry. Chem Rev 2022; 122:8313-8437. [PMID: 35230807 DOI: 10.1021/acs.chemrev.1c00065] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Confusion is a novel concept of isomerism in porphyrin chemistry, delivering a steady stream of new chemistry since the discovery of N-confused porphyrin, a porphyrin mutant, in 1994. These days, the number of confused porphyrinoids is increasing, and confusion and associated fusion are found in various fields such as supramolecular chemistry, materials chemistry, biological chemistry, and catalysts. In this review, the birth and growth of confused porphyrinoids in the last three decades are described.
Collapse
Affiliation(s)
- Motoki Toganoh
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hiroyuki Furuta
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
18
|
Ishida M. Synthesis of Near-Infrared Light-responsive Dyes Based on N-Confused Porphyrinoids. J SYN ORG CHEM JPN 2022. [DOI: 10.5059/yukigoseikyokaishi.80.139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Masatoshi Ishida
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University
| |
Collapse
|
19
|
Zhou W, Sarma T, Su Y, Lei C, Sessler JL. Kinetic trapping of a cobalt(ii) metallocage using a carbazole-containing expanded carbaporphyrinoid ligand. Chem Sci 2022; 13:692-697. [PMID: 35173933 PMCID: PMC8768885 DOI: 10.1039/d1sc06514a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/19/2021] [Indexed: 11/21/2022] Open
Abstract
The meso-unsubstituted expanded porphyrinoid 3, incorporating two carbazole moieties, acts as an effective ligand for Co(ii) and permits the isolation and X-ray diffraction-based characterization of a 6 : 3 metal-to-ligand metallocage complex that converts spontaneously to the constituent 2 : 1 metal-to-ligand metalloring species in chloroform solution. The discrete metalloring is formed directly when the Co(ii) complex is crystallized from supersaturated solutions, whereas crystallization from more dilute solutions favors the metallocage. Studies with two other test cations, Pd(ii) and Zn(ii), revealed exclusive formation of the monomeric metalloring complexes with no evidence of higher order species being formed. Structural, electrochemical and UV-vis-NIR absorption spectral studies provide support for the conclusion that the Pd(ii) complex is less distorted and more effectively conjugated than its Co(ii) and Zn(ii) congeners, an inference further supported by TD-DFT calculations. The findings reported here underscore how expanded porphyrins can support coordination modes, including bimetallic complexes and self-assembled cage structures, that are not necessarily easy to access using more traditional ligand systems. Carbazole containing expanded carbaporphyrinoid ligand supports the formation of 2 : 1 metal-to-ligand complexes with Pd, Co, and Zn. Solid-state studies also revealed formation of a 6 : 3 metal-to-ligand metallocage in the case of Co complexation.![]()
Collapse
Affiliation(s)
- Weinan Zhou
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China
| | - Tridib Sarma
- Department of Chemistry, Cotton University, Guwahati 781001, Assam, India
| | - Yonghuan Su
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China
| | - Chuanhu Lei
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China
| | - Jonathan L. Sessler
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712-1224, USA
| |
Collapse
|
20
|
Desmedt E, Woller T, Teunissen JL, De Vleeschouwer F, Alonso M. Fine-Tuning of Nonlinear Optical Contrasts of Hexaphyrin-Based Molecular Switches Using Inverse Design. Front Chem 2021; 9:786036. [PMID: 34926405 PMCID: PMC8677951 DOI: 10.3389/fchem.2021.786036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/28/2021] [Indexed: 11/13/2022] Open
Abstract
In the search for new nonlinear optical (NLO) switching devices, expanded porphyrins have emerged as ideal candidates thanks to their tunable chemical and photophysical properties. Introducing meso-substituents to these macrocycles is a successful strategy to enhance the NLO contrasts. Despite its potential, the influence of meso-substitution on their structural and geometrical properties has been scarcely investigated. In this work, we pursue to grasp the underlying pivotal concepts for the fine-tuning of the NLO contrasts of hexaphyrin-based molecular switches, with a particular focus on the first hyperpolarizability related to the hyper-Rayleigh scattering (βHRS). Building further on these concepts, we also aim to develop a rational design protocol. Starting from the (un)substituted hexaphyrins with various π-conjugation topologies and redox states, structure-property relationships are established linking aromaticity, photophysical properties and βHRS responses. Ultimately, inverse molecular design using the best-first search algorithm is applied on the most favorable switches with the aim to further explore the combinatorial chemical compound space of meso-substituted hexaphyrins in search of high-contrast NLO switches. Two definitions of the figure-of-merit of the switch performance were used as target objectives in the optimization problem. Several meso-substitution patterns and their underlying characteristics are identified, uncovering molecular symmetry and the electronic nature of the substituents as the key players for fine-tuning the βHRS values and NLO contrasts of hexaphyrin-based switches.
Collapse
Affiliation(s)
- Eline Desmedt
- General Chemistry - Eenheid Algemene Chemie (ALGC), Department of Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| | - Tatiana Woller
- General Chemistry - Eenheid Algemene Chemie (ALGC), Department of Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jos L Teunissen
- General Chemistry - Eenheid Algemene Chemie (ALGC), Department of Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| | - Freija De Vleeschouwer
- General Chemistry - Eenheid Algemene Chemie (ALGC), Department of Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| | - Mercedes Alonso
- General Chemistry - Eenheid Algemene Chemie (ALGC), Department of Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
21
|
Rathnamalala CSL, Pino NW, Herring BS, Hooper M, Gwaltney SR, Chan J, Scott CN. Thienylpiperidine Donor NIR Xanthene-Based Dye for Photoacoustic Imaging. Org Lett 2021; 23:7640-7644. [PMID: 34550707 DOI: 10.1021/acs.orglett.1c02862] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Few xanthene-based near-infrared (NIR) photoacoustic (PA) dyes with absorbance >800 nm exist. As accessibility to these dyes requires long and tedious synthetic steps, we designed a NIR dye (XanthCR-880) with thienylpiperidine donors and a xanthene acceptor that is accessible in 3-4 synthetic steps. The dye boasts a strong PA signal at 880 nm with good biological compatibility and photostability, yields multiplexed imaging with an aza-BODIPY reference dye, and is detected at a depth of 4 cm.
Collapse
Affiliation(s)
| | - Nicholas W Pino
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Bailey S Herring
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Mattea Hooper
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Steven R Gwaltney
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Jefferson Chan
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Colleen N Scott
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
| |
Collapse
|
22
|
Chen QC, Fridman N, Tumanskii B, Gross Z. A chromophore-supported structural and functional model of dinuclear copper enzymes, for facilitating mechanism of action studies. Chem Sci 2021; 12:12445-12450. [PMID: 34603675 PMCID: PMC8480325 DOI: 10.1039/d1sc02593g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/09/2021] [Indexed: 11/25/2022] Open
Abstract
Type III dicopper centres are the heart of the reactive sites of enzymes that catalyze the oxidation of catechols. Numerous synthetic model complexes have been prepared to uncover the fundamental chemistry involved in these processes, but progress is still lagging much behind that for heme enzymes. One reason is that the latter gain very much from the informative spectroscopic features of their porphyrin-based metal-chelating ligand. We now introduce sapphyrin-chelated dicopper complexes and show that they may be isolated in different oxidation states and coordination geometries, with distinctive colors and electronic spectra due to the heme-like ligands. The dicopper(i) complex 1-Cu2 was characterized by 1H and 19F NMR spectroscopy of the metal-chelating sapphyrin, the oxygenated dicopper(ii) complex 1-Cu2O2 by EPR, and crystallographic data was obtained for the tetracopper(ii)-bis-sapphyrin complex [1-Cu2O2]2. This uncovered a non-heme [Cu4(OH)4]4− cluster, held together with the aid of two sapphyrin ligands, with structural features reminiscent of those of catechol oxidase. Biomimetic activity was demonstrated by the 1-Cu2O2 catalyzed aerobic oxidation of catechol to quinone; the sapphyrin ligand aided very much in gaining information about reactive intermediates and the rate-limiting step of the reaction. Di-copper chelation by sapphyrin facilitates reaction mechanism investigations and characterization of reactive intermediates regarding biomimetic catechol oxidation.![]()
Collapse
Affiliation(s)
- Qiu-Cheng Chen
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology Haifa 32000 Israel
| | - Natalia Fridman
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology Haifa 32000 Israel
| | - Boris Tumanskii
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology Haifa 32000 Israel
| | - Zeev Gross
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology Haifa 32000 Israel
| |
Collapse
|
23
|
Chen J, Sedgwick AC, Sen S, Ren Y, Sun Q, Chau C, Arambula JF, Sarma T, Song L, Sessler JL, Liu C. Expanded porphyrins: functional photoacoustic imaging agents that operate in the NIR-II region. Chem Sci 2021; 12:9916-9921. [PMID: 34377389 PMCID: PMC8317656 DOI: 10.1039/d1sc01591e] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/22/2021] [Indexed: 12/19/2022] Open
Abstract
Photoacoustic imaging (PAI) relies on the use of contrast agents with high molar absorptivity in the NIR-I/NIR-II region. Expanded porphyrins, synthetic analogues of natural tetrapyrrolic pigments (e.g. heme and chlorophyll), constitute as potentially attractive platforms due to their NIR-II absorptivity and their ability to respond to stimuli. Here, we evaluate two expanded porphyrins, naphthorosarin (1) and octaphyrin (4), as stimuli responsive PA contrast agents for functional PAI. Both undergo proton-coupled electron transfer to produce species that absorb well in the NIR-II region. Octaphyrin (4) was successfully encapsulated into 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-poly(ethylene glycol) (DSPE-PEG2000) nanoparticles to afford OctaNPs. In combination with PAI, OctaNPs allowed changes in the acidic environment of the stomach to be visualized and cancerous versus healthy tissues to be discriminated.
Collapse
Affiliation(s)
- Jingqin Chen
- Research Center for Biomedical Optics and Molecular Imaging, Shenzhen Institute of Advanced Technology, CAS Key Laboratory of Health Informatics, Chinese Academy of Sciences Shenzhen 518055 China
| | - Adam C. Sedgwick
- Department of Chemistry, University of Texas at Austin105 East 24th Street A5300AustinTexas 78712-1224USA
| | - Sajal Sen
- Department of Chemistry, University of Texas at Austin 105 East 24th Street A5300 Austin Texas 78712-1224 USA
| | - Yaguang Ren
- Research Center for Biomedical Optics and Molecular Imaging, Shenzhen Institute of Advanced Technology, CAS Key Laboratory of Health Informatics, Chinese Academy of Sciences Shenzhen 518055 China
| | - Qinchao Sun
- Research Center for Biomedical Optics and Molecular Imaging, Shenzhen Institute of Advanced Technology, CAS Key Laboratory of Health Informatics, Chinese Academy of Sciences Shenzhen 518055 China
| | - Calvin Chau
- Department of Chemistry, University of Texas at Austin 105 East 24th Street A5300 Austin Texas 78712-1224 USA
| | - Jonathan F. Arambula
- Department of Chemistry, University of Texas at Austin105 East 24th Street A5300AustinTexas 78712-1224USA
| | - Tridib Sarma
- Department of Chemistry, University of Texas at Austin 105 East 24th Street A5300 Austin Texas 78712-1224 USA
| | - Liang Song
- Research Center for Biomedical Optics and Molecular Imaging, Shenzhen Institute of Advanced Technology, CAS Key Laboratory of Health Informatics, Chinese Academy of Sciences Shenzhen 518055 China
| | - Jonathan L. Sessler
- Department of Chemistry, University of Texas at Austin105 East 24th Street A5300AustinTexas 78712-1224USA
| | - Chengbo Liu
- Research Center for Biomedical Optics and Molecular Imaging, Shenzhen Institute of Advanced Technology, CAS Key Laboratory of Health Informatics, Chinese Academy of Sciences Shenzhen 518055 China
| |
Collapse
|
24
|
Li C, Liu C, Fan Y, Ma X, Zhan Y, Lu X, Sun Y. Recent development of near-infrared photoacoustic probes based on small-molecule organic dye. RSC Chem Biol 2021; 2:743-758. [PMID: 34458809 PMCID: PMC8341990 DOI: 10.1039/d0cb00225a] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 03/07/2021] [Indexed: 12/22/2022] Open
Abstract
Photoacoustic imaging (PAI), which integrates the higher spatial resolution of optical imaging and the deeper penetration depth of ultrasound imaging, has attracted great attention. Various photoacoustic probes including inorganic and organic agents have been well fabricated in last decades. Among them, small-molecule based agents are most promising candidates for preclinical/clinical applications due to their favorite in vivo features and facile functionalization. In recent years, PAI, in the near-infrared region (NIR, 700-1700 nm) has developed rapidly and has made remarkable achievements in the biomedical field. Compared with the visible light region (400-700 nm), it can significantly reduce light scattering and meanwhile provide deeper tissue penetration. In this review, we discuss the recent developments of near-infrared photoacoustic probes based on small molecule dyes, which focus on their "always on" and "activatable" form in biomedicine. Further, we also suggest current challenges and perspectives.
Collapse
Affiliation(s)
- Chonglu Li
- School of Chemistry and Chemical Engineering, Hubei Polytechnic University Huangshi 435003 China
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Nanjing University of Information Science & Technology Nanjing 210044 China
| | - Chang Liu
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Nanjing University of Information Science & Technology Nanjing 210044 China
- Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, Center of Chemical Biology, College of Chemistry, Central China Normal University Wuhan 430079 China
| | - Yifan Fan
- Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, Center of Chemical Biology, College of Chemistry, Central China Normal University Wuhan 430079 China
| | - Xin Ma
- Guangdong Provincial Key Laboratory of Radioactive and Rare Resource Utilization Shaoguan 512026 China
| | - Yibei Zhan
- School of Chemistry and Chemical Engineering, Hubei Polytechnic University Huangshi 435003 China
| | - Xiaoju Lu
- School of Chemistry and Chemical Engineering, Hubei Polytechnic University Huangshi 435003 China
| | - Yao Sun
- Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, Center of Chemical Biology, College of Chemistry, Central China Normal University Wuhan 430079 China
| |
Collapse
|
25
|
Zhu M, Zhang H, Ran G, Mangel DN, Yao Y, Zhang R, Tan J, Zhang W, Song J, Sessler JL, Zhang JL. Metal Modulation: An Easy-to-Implement Tactic for Tuning Lanthanide Phototheranostics. J Am Chem Soc 2021; 143:7541-7552. [PMID: 33973784 DOI: 10.1021/jacs.1c03041] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Phototheranostics constitute an emerging cancer treatment wherein the core diagnostic and therapeutic functions are integrated into a single photosensitizer (PS). Achieving the full potential of this modality requires being able to tune the photosensitizing properties of the PS in question. Structural modification of the organic framework represents a time-honored strategy for tuning the photophysical features of a given PS system. Here we report an easy-to-implement metal selection approach that allows for fine-tuning of excited-state energy dissipation and phototheranostics functions as exemplified by a set of lanthanide (Ln = Gd, Yb, Er) carbazole-containing porphyrinoid complexes. Femto- and nanosecond time-resolved spectroscopic studies, in conjunction with density functional theory calculations, revealed that the energy dissipation pathways for this set of PSs are highly dependent on the energy gap between the lowest triplet excited state of the ligand and the excited states of the coordinated Ln ions. The Yb complex displayed a balance of deactivation mechanisms that made it attractive as a potential combined photoacoustic imaging and photothermal/photodynamic therapy agent. It was encapsulated into mesoporous silica nanoparticles (MSN) to provide a biocompatible construct, YbL@MSN, which displays a high photothermal conversion efficiency (η = 45%) and a decent singlet oxygen quantum yield (ΦΔ = 31%). Mouse model studies revealed that YbL@MSN allows for both photoacoustic imaging and synergistic photothermal- and photodynamic-therapy-based tumor reduction in vivo. Our results lead us to suggest that metal selection represents a promising approach to fine-tuning the excited state properties and functional features of phototheranostics.
Collapse
Affiliation(s)
- Mengliang Zhu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Hang Zhang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Guangliu Ran
- Center for Advanced Quantum Studies, Department of Physics and Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875, China
| | - Daniel N Mangel
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, United States
| | - Yuhang Yao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ruijing Zhang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jiao Tan
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| | - Wenkai Zhang
- Center for Advanced Quantum Studies, Department of Physics and Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875, China
| | - JianXin Song
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, United States
| | - Jun-Long Zhang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.,Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, China
| |
Collapse
|
26
|
Yamasumi K, Mori S, Tanaka T, Ishida M, Furuta H. Metal complexes of 5,10,15-tris(pentafluorophenyl)-20-pyrrolyl N-confused porphyrin and its meso-pyrrolyl-bridged dimers: Synthesis and optical properties. J PORPHYR PHTHALOCYA 2021. [DOI: 10.1142/s1088424621500255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Inner- and peripheral-metal complexation behaviors of 5,10,15-tris(pentafluorophenyl)-20-pyrrolyl N-confused porphyrin (5) and its meso-pyrrolyl-bridged dimers (6-Ni and 7-Ni) were studied in this work. The resulting inner-Ag and peripheral-BF2 complex (5-AgBF[Formula: see text] exhibited the bathochromically shifted absorption feature ([Formula: see text]772 nm), which was attributed to the BF2 complexation. Furthermore, the bis-Ag/Ni complexes of dimer (6-Ag[Formula: see text]Ni and 7-Ag[Formula: see text]Ni) revealed remarkably lower energy bands in the deeper near-infrared ([Formula: see text] NIR-II) region ([Formula: see text] = 1226 and 1042 nm, respectively) through strong interchromophore interactions.
Collapse
Affiliation(s)
- Kazuhisa Yamasumi
- Department of Chemistry and Biochemistry, Graduate School of Engineering and Center for Molecular Systems, Kyushu University, Fukuoka 819-0395, Japan
| | - Shigeki Mori
- Advanced Research Support Center, Ehime University, Matsuyama 790-8577, Japan
| | - Takayuki Tanaka
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Masatoshi Ishida
- Department of Chemistry and Biochemistry, Graduate School of Engineering and Center for Molecular Systems, Kyushu University, Fukuoka 819-0395, Japan
| | - Hiroyuki Furuta
- Department of Chemistry and Biochemistry, Graduate School of Engineering and Center for Molecular Systems, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
27
|
Wei D, Yu Y, Huang Y, Jiang Y, Zhao Y, Nie Z, Wang F, Ma W, Yu Z, Huang Y, Zhang XD, Liu ZQ, Zhang X, Xiao H. A Near-Infrared-II Polymer with Tandem Fluorophores Demonstrates Superior Biodegradability for Simultaneous Drug Tracking and Treatment Efficacy Feedback. ACS NANO 2021; 15:5428-5438. [PMID: 33689300 DOI: 10.1021/acsnano.1c00076] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
NIR-II (1000-1700 nm) fluorescence imaging is continually attracting strong research interest. However, current NIR-II imaging materials are limited to small molecules with fast blood clearance and inorganic nanomaterials and organic conjugated polymers of poor biodegradability and low biocompatibility. Here, we report a highly biodegradable polyester carrying tandem NIR-II fluorophores as a promising alternative. The polymer encapsulated a platinum intercalator (56MESS, (5,6-dimethyl-1,10-phenanthroline) (1S,2S-diaminocyclohexane) platinum(II)) and was conjugated with both a cell-targeting RGD peptide and a caspase-3 cleavable peptide probe to form nanoparticles for simultaneous NIR-II and apoptosis imaging. In vitro, the nanoparticles were approximately 4-1000- and 1.5-10-fold more potent than cisplatin and 56MESS, respectively. Moreover, in vivo, they significantly inhibited tumor growth on a multidrug-resistant patient-derived mouse model (PDXMDR). Finally, through label-free laser desorption-ionization mass spectrometry imaging (MALDI-MSI), in situ 56MESS release in the deeper tumors was observed. This work highlighted the use of biodegradable NIR-II polymers for monitoring drugs in vivo and therapeutic effect feedback in real-time.
Collapse
Affiliation(s)
- Dengshuai Wei
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingjie Yu
- Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518039, China
| | - Yun Huang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
| | - Yuming Jiang
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
| | - Yao Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
| | - Zongxiu Nie
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
| | - Fuyi Wang
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
| | - Wen Ma
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhiqiang Yu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yuanyu Huang
- Advanced Research Institute of Multidisciplinary Science; School of Life Science; Key Laboratory of Molecular Medicine and Biotherapy; Beijing Institute of Technology, Beijing 100081, China
| | - Xiao-Dong Zhang
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology School of Science, Tianjin University, Tianjin 300354, China
| | - Zhao-Qian Liu
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital Central South University, Changsha 410008, China
| | - Xingcai Zhang
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
28
|
Ariga K, Shionoya M. Nanoarchitectonics for Coordination Asymmetry and Related Chemistry. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200362] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Katsuhiko Ariga
- World Premier International (WPI) Research Centre for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Mitsuhiko Shionoya
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
29
|
Choi J, Ahn M, Lee JH, Ahn DS, Ki H, Oh I, Ahn CW, Choi EH, Lee Y, Lee S, Kim J, Cho DW, Wee KR, Ihee H. Ultrafast excited state relaxation dynamics in a heteroleptic Ir( iii) complex, fac-Ir(ppy) 2(ppz), revealed by femtosecond X-ray transient absorption spectroscopy. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01510e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The experimental and calculation results demonstrate that the 3MLppzCT state generated by the spin-forbidden transition rapidly relaxes to 3MLppyCT through internal conversion process with a time constant of ∼450 fs.
Collapse
|
30
|
Guo X, Wen C, Xu Q, Ruan C, Shen XC, Liang H. A full-spectrum responsive B-TiO2@SiO2–HA nanotheranostic system for NIR-II photoacoustic imaging-guided cancer phototherapy. J Mater Chem B 2021; 9:2042-2053. [DOI: 10.1039/d0tb02952a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A full-spectrum responsive B-TiO2@SiO2–HA nanotheranostic system has been successfully fabricated for second near-infrared photoacoustic imaging-guided synergistic cancer targeting phototherapy.
Collapse
Affiliation(s)
- Xiaolu Guo
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- College of Chemistry and Pharmaceutical Science
- Guangxi Normal University
- Guilin
- P. R. China
| | - Changchun Wen
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- College of Chemistry and Pharmaceutical Science
- Guangxi Normal University
- Guilin
- P. R. China
| | - Qianxin Xu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- College of Chemistry and Pharmaceutical Science
- Guangxi Normal University
- Guilin
- P. R. China
| | - Changping Ruan
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- College of Chemistry and Pharmaceutical Science
- Guangxi Normal University
- Guilin
- P. R. China
| | - Xing-Can Shen
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- College of Chemistry and Pharmaceutical Science
- Guangxi Normal University
- Guilin
- P. R. China
| | - Hong Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- College of Chemistry and Pharmaceutical Science
- Guangxi Normal University
- Guilin
- P. R. China
| |
Collapse
|
31
|
Du Y, Zhu B, Li Q, Baryshnikov G, Wei C, Lin Y, Su G, Li C, Ågren H, Xie Y. N-Confused Hexapyrrolic Phlorinoid with NIR Absorption: Synthesis, Fusion, Oxidation, and Copper(II) Coordination. Org Lett 2020; 22:9648-9652. [DOI: 10.1021/acs.orglett.0c03710] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yu Du
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, State Key Laboratory of Bioreactor Engineering, Laboratory of Pharmaceutical Crystal Engineering & Technology, School of Pharmacy, East China University of Science & Technology, 200237, Shanghai, China
| | - Bin Zhu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, State Key Laboratory of Bioreactor Engineering, Laboratory of Pharmaceutical Crystal Engineering & Technology, School of Pharmacy, East China University of Science & Technology, 200237, Shanghai, China
| | - Qizhao Li
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, State Key Laboratory of Bioreactor Engineering, Laboratory of Pharmaceutical Crystal Engineering & Technology, School of Pharmacy, East China University of Science & Technology, 200237, Shanghai, China
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, 410081, Changsha, China
| | - Glib Baryshnikov
- Key Department of Theoretical Chemistry and Biology, School of Biotechnology, KTH Royal Institute of Technology, SE-10691, Stockholm, Sweden
| | - Chuanwan Wei
- School of Chemistry and Chemical Engineering, University of South China, 421001, Hengyang, China
| | - Yingwu Lin
- School of Chemistry and Chemical Engineering, University of South China, 421001, Hengyang, China
| | - Guangxian Su
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, State Key Laboratory of Bioreactor Engineering, Laboratory of Pharmaceutical Crystal Engineering & Technology, School of Pharmacy, East China University of Science & Technology, 200237, Shanghai, China
| | - Chengjie Li
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, State Key Laboratory of Bioreactor Engineering, Laboratory of Pharmaceutical Crystal Engineering & Technology, School of Pharmacy, East China University of Science & Technology, 200237, Shanghai, China
| | - Hans Ågren
- Key Department of Theoretical Chemistry and Biology, School of Biotechnology, KTH Royal Institute of Technology, SE-10691, Stockholm, Sweden
| | - Yongshu Xie
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, State Key Laboratory of Bioreactor Engineering, Laboratory of Pharmaceutical Crystal Engineering & Technology, School of Pharmacy, East China University of Science & Technology, 200237, Shanghai, China
| |
Collapse
|
32
|
Yamasumi K, Notsuka Y, Yamaoka Y, Mori S, Ishida M, Furuta H. Synthesis of Helically π‐Extended N‐Confused Porphyrin Dimer via
meso
‐Bipyrrole‐Bridge with Near‐Infrared‐II Absorption Capability. Chemistry 2020; 26:13590-13594. [DOI: 10.1002/chem.202002406] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Kazuhisa Yamasumi
- Department of Chemistry and Biochemistry Graduate School of Engineering Center for Molecular Systems Kyushu University Fukuoka 819-0395 Japan
| | - Yusuke Notsuka
- Graduate School of Advanced Health Sciences Saga University Saga 840-8502 Japan
| | - Yoshihisa Yamaoka
- Graduate School of Advanced Health Sciences Saga University Saga 840-8502 Japan
| | - Shigeki Mori
- Advanced Research Support Center Ehime University Matsuyama 790-8577 Japan
| | - Masatoshi Ishida
- Department of Chemistry and Biochemistry Graduate School of Engineering Center for Molecular Systems Kyushu University Fukuoka 819-0395 Japan
| | - Hiroyuki Furuta
- Department of Chemistry and Biochemistry Graduate School of Engineering Center for Molecular Systems Kyushu University Fukuoka 819-0395 Japan
| |
Collapse
|
33
|
Wu Q, Kang Z, Gong Q, Guo X, Wang H, Wang D, Jiao L, Hao E. Strategic Construction of Ethene-Bridged BODIPY Arrays with Absorption Bands Reaching the Near-Infrared II Region. Org Lett 2020; 22:7513-7517. [PMID: 32969229 DOI: 10.1021/acs.orglett.0c02704] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An efficient strategy for the controllable synthesis of BODIPY arrays based on the Stille cross-coupling reaction has been developed, from which a family of well-defined ethene-bridged BODIPY arrays from dimer to hexamer was synthesized. These arrays showed strong absorptions reaching the near-infrared II (NIR II, 1000-1700 nm) region with maxima tunable from 702 nm (dimer) to 1114 nm (hexamer) and possessed efficient light-harvesting capabilities, excellent photostability, and good photothermal conversion abilities under NIR light irradiation.
Collapse
Affiliation(s)
- Qinghua Wu
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Zhengxin Kang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Qingbao Gong
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Xing Guo
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Hua Wang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Dandan Wang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Lijuan Jiao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Erhong Hao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| |
Collapse
|
34
|
Ren Y, Sedgwick AC, Chen J, Thiabaud G, Chau CV, An J, Arambula JF, He XP, Kim JS, Sessler JL, Liu C. Manganese(II) Texaphyrin: A Paramagnetic Photoacoustic Contrast Agent Activated by Near-IR Light. J Am Chem Soc 2020; 142:16156-16160. [PMID: 32914968 DOI: 10.1021/jacs.0c04387] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The NIR absorptivity of the metallotexaphyrin derivatives MMn, MGd, and MLu for photoacoustic (PA)-based imaging is explored in this study. All three complexes demonstrated excellent photostabilities; however, MMn provided the greatest PA signal intensities in both doubly distilled water and RAW 264.7 cells. In vivo experiments using a prostate tumor mouse model were performed. MMn displayed no adverse toxicity to major organs as inferred from hematoxylin and eosin (H&E) staining and cell blood count testing. MMn also allowed for PA-based imaging of tumors with excellent in vivo stability to provide 3D tumor diagnostic information. Based on the present findings and previous magnetic resonance imaging (MRI) studies, we believe MMn may have a role to play either as a stand-alone PA contrast agent or as a single molecule dual modal (PA and MR) imaging agent for tumor diagnosis.
Collapse
Affiliation(s)
- Yaguang Ren
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, CAS Key Laboratory of Health Informatics, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Adam C Sedgwick
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street-A5300, Austin, Texas 78712-1224, United States
| | - Jingqin Chen
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, CAS Key Laboratory of Health Informatics, Chinese Academy of Sciences, Shenzhen 518055, China
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street-A5300, Austin, Texas 78712-1224, United States
| | - Gregory Thiabaud
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street-A5300, Austin, Texas 78712-1224, United States
| | - Calvin V Chau
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street-A5300, Austin, Texas 78712-1224, United States
| | - Jusung An
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Jonathan F Arambula
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street-A5300, Austin, Texas 78712-1224, United States
- OncoTEX, Inc., Austin, Texas 78701, United States
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street-A5300, Austin, Texas 78712-1224, United States
| | - Chengbo Liu
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, CAS Key Laboratory of Health Informatics, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
35
|
Dong L, Li W, Sun L, Yu L, Chen Y, Hong G. Energy-converting biomaterials for cancer therapy: Category, efficiency, and biosafety. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1663. [PMID: 32808464 DOI: 10.1002/wnan.1663] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 12/24/2022]
Abstract
Energy-converting biomaterials (ECBs)-mediated cancer-therapeutic modalities have been extensively explored, which have achieved remarkable benefits to overwhelm the obstacles of traditional cancer-treatment modalities. Energy-driven cancer-therapeutic modalities feature their distinctive merits, including noninvasiveness, low mammalian toxicity, adequate therapeutic outcome, and optimistical synergistic therapeutics. In this advanced review, the prevailing mainstream ECBs can be divided into two sections: Reactive oxygen species (ROS)-associated energy-converting biomaterials (ROS-ECBs) and hyperthermia-related energy-converting biomaterials (H-ECBs). On the one hand, ROS-ECBs can transfer exogenous or endogenous energy (such as light, radiation, ultrasound, or chemical) to generate and release highly toxic ROS for inducing tumor cell apoptosis/necrosis, including photo-driven ROS-ECBs for photodynamic therapy, radiation-driven ROS-ECBs for radiotherapy, ultrasound-driven ROS-ECBs for sonodynamic therapy, and chemical-driven ROS-ECBs for chemodynamic therapy. On the other hand, H-ECBs could translate the external energy (such as light and magnetic) into heat for killing tumor cells, including photo-converted H-ECBs for photothermal therapy and magnetic-converted H-ECBs for magnetic hyperthermia therapy. Additionally, the biosafety issues of ECBs are expounded preliminarily, guaranteeing the ever-stringent requirements of clinical translation. Finally, we discussed the prospects and facing challenges for constructing the new-generation ECBs for establishing intriguing energy-driven cancer-therapeutic modalities. This article is categorized under: Nanotechnology Approaches to Biology >Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Lile Dong
- Department of Radiology, The Fifth Affiliated Hospital Sun Yat-sen University, Zhuhai, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Wenjuan Li
- Department of Radiology, The Fifth Affiliated Hospital Sun Yat-sen University, Zhuhai, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Lining Sun
- Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai, China
| | - Luodan Yu
- School of Life Sciences, Shanghai University, Shanghai, China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
| | - Yu Chen
- School of Life Sciences, Shanghai University, Shanghai, China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
| | - Guobin Hong
- Department of Radiology, The Fifth Affiliated Hospital Sun Yat-sen University, Zhuhai, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
| |
Collapse
|
36
|
Lopes SMM, Pineiro M, Pinho e Melo TMVD. Corroles and Hexaphyrins: Synthesis and Application in Cancer Photodynamic Therapy. Molecules 2020; 25:E3450. [PMID: 32751215 PMCID: PMC7435872 DOI: 10.3390/molecules25153450] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 11/21/2022] Open
Abstract
Corroles and hexaphyrins are porphyrinoids with great potential for diverse applications. Like porphyrins, many of their applications are based on their unique capability to interact with light, i.e., based on their photophysical properties. Corroles have intense absorptions in the low-energy region of the uv-vis, while hexaphyrins have the capability to absorb light in the near-infrared (NIR) region, presenting photophysical features which are complementary to those of porphyrins. Despite the increasing interest in corroles and hexaphyrins in recent years, the full potential of both classes of compounds, regarding biological applications, has been hampered by their challenging synthesis. Herein, recent developments in the synthesis of corroles and hexaphyrins are reviewed, highlighting their potential application in photodynamic therapy.
Collapse
Affiliation(s)
| | | | - Teresa M. V. D. Pinho e Melo
- Coimbra Chemistry Centre and Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal; (S.M.M.L.); (M.P.)
| |
Collapse
|
37
|
Wang Y, Ogasahara K, Tomihama D, Mysliborski R, Ishida M, Hong Y, Notsuka Y, Yamaoka Y, Murayama T, Muranaka A, Uchiyama M, Mori S, Yasutake Y, Fukatsu S, Kim D, Furuta H. Near‐Infrared‐III‐Absorbing and ‐Emitting Dyes: Energy‐Gap Engineering of Expanded Porphyrinoids via Metallation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yue Wang
- Department of Chemistry and Biochemistry Graduate School of Engineering the Center for Molecular Systems Kyushu University Fukuoka 819-0395 Japan
| | - Koki Ogasahara
- Department of Chemistry and Biochemistry Graduate School of Engineering the Center for Molecular Systems Kyushu University Fukuoka 819-0395 Japan
| | - Daisuke Tomihama
- Department of Chemistry and Biochemistry Graduate School of Engineering the Center for Molecular Systems Kyushu University Fukuoka 819-0395 Japan
| | - Radomir Mysliborski
- Department of Chemistry and Biochemistry Graduate School of Engineering the Center for Molecular Systems Kyushu University Fukuoka 819-0395 Japan
| | - Masatoshi Ishida
- Department of Chemistry and Biochemistry Graduate School of Engineering the Center for Molecular Systems Kyushu University Fukuoka 819-0395 Japan
| | - Yongseok Hong
- Department of Chemistry and Spectroscopy for Functional π-Electronic Systems Yonsei University Seoul 03722 Korea
| | - Yusuke Notsuka
- Graduate School of Advanced Health Sciences Saga University Saga 840-8502 Japan
| | - Yoshihisa Yamaoka
- Graduate School of Advanced Health Sciences Saga University Saga 840-8502 Japan
| | - Tomotaka Murayama
- Graduate School of Pharmaceutical Sciences The University of Tokyo Tokyo 113-0033 Japan
| | - Atsuya Muranaka
- Cluster for Pioneering Research (CPR) Advanced Elements Chemistry Laboratory RIKEN Saitama 351-0198 Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences The University of Tokyo Tokyo 113-0033 Japan
- Cluster for Pioneering Research (CPR) Advanced Elements Chemistry Laboratory RIKEN Saitama 351-0198 Japan
| | - Shigeki Mori
- Advanced Research Support Center Ehime University Matsuyama 790-8577 Japan
| | - Yuhsuke Yasutake
- Graduate School of Arts and Sciences The University of Tokyo Tokyo 153-8902 Japan
| | - Susumu Fukatsu
- Graduate School of Arts and Sciences The University of Tokyo Tokyo 153-8902 Japan
| | - Dongho Kim
- Department of Chemistry and Spectroscopy for Functional π-Electronic Systems Yonsei University Seoul 03722 Korea
| | - Hiroyuki Furuta
- Department of Chemistry and Biochemistry Graduate School of Engineering the Center for Molecular Systems Kyushu University Fukuoka 819-0395 Japan
| |
Collapse
|
38
|
Wang Y, Ogasahara K, Tomihama D, Mysliborski R, Ishida M, Hong Y, Notsuka Y, Yamaoka Y, Murayama T, Muranaka A, Uchiyama M, Mori S, Yasutake Y, Fukatsu S, Kim D, Furuta H. Near-Infrared-III-Absorbing and -Emitting Dyes: Energy-Gap Engineering of Expanded Porphyrinoids via Metallation. Angew Chem Int Ed Engl 2020; 59:16161-16166. [PMID: 32469135 DOI: 10.1002/anie.202006026] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Indexed: 11/07/2022]
Abstract
The synthesis of organometallic complexes of modified 26π-conjugated hexaphyrins with absorption and emission capabilities in the third near-infrared region (NIR-III) is described. Symmetry alteration of the frontier molecular orbitals (MOs) of bis-PdII and bis-PtII complexes of hexaphyrin via N-confusion modification led to substantial metal dπ -pπ interactions. This MO mixing, in turn, resulted in a significantly narrower HOMO-LUMO energy gap. A remarkable long-wavelength shift of the lowest S0 →S1 absorption beyond 1700 nm was achieved with the bis-PtII complex, t-Pt2 -3. The emergence of photoacoustic (PA) signals maximized at 1700 nm makes t-Pt2 -3 potentially useful as a NIR-III PA contrast agent. The rigid bis-PdII complexes, t-Pd2 -3 and c-Pd2 -3, are rare examples of NIR emitters beyond 1500 nm. The current study provides new insight into the design of stable, expanded porphyrinic dyes possessing NIR-III-emissive and photoacoustic-response capabilities.
Collapse
Affiliation(s)
- Yue Wang
- Department of Chemistry and Biochemistry, Graduate School of Engineering, the Center for Molecular Systems, Kyushu University, Fukuoka, 819-0395, Japan
| | - Koki Ogasahara
- Department of Chemistry and Biochemistry, Graduate School of Engineering, the Center for Molecular Systems, Kyushu University, Fukuoka, 819-0395, Japan
| | - Daisuke Tomihama
- Department of Chemistry and Biochemistry, Graduate School of Engineering, the Center for Molecular Systems, Kyushu University, Fukuoka, 819-0395, Japan
| | - Radomir Mysliborski
- Department of Chemistry and Biochemistry, Graduate School of Engineering, the Center for Molecular Systems, Kyushu University, Fukuoka, 819-0395, Japan
| | - Masatoshi Ishida
- Department of Chemistry and Biochemistry, Graduate School of Engineering, the Center for Molecular Systems, Kyushu University, Fukuoka, 819-0395, Japan
| | - Yongseok Hong
- Department of Chemistry and Spectroscopy for Functional π-Electronic Systems, Yonsei University, Seoul, 03722, Korea
| | - Yusuke Notsuka
- Graduate School of Advanced Health Sciences, Saga University, Saga, 840-8502, Japan
| | - Yoshihisa Yamaoka
- Graduate School of Advanced Health Sciences, Saga University, Saga, 840-8502, Japan
| | - Tomotaka Murayama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Atsuya Muranaka
- Cluster for Pioneering Research (CPR), Advanced Elements Chemistry Laboratory, RIKEN, Saitama, 351-0198, Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan.,Cluster for Pioneering Research (CPR), Advanced Elements Chemistry Laboratory, RIKEN, Saitama, 351-0198, Japan
| | - Shigeki Mori
- Advanced Research Support Center, Ehime University, Matsuyama, 790-8577, Japan
| | - Yuhsuke Yasutake
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan
| | - Susumu Fukatsu
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan
| | - Dongho Kim
- Department of Chemistry and Spectroscopy for Functional π-Electronic Systems, Yonsei University, Seoul, 03722, Korea
| | - Hiroyuki Furuta
- Department of Chemistry and Biochemistry, Graduate School of Engineering, the Center for Molecular Systems, Kyushu University, Fukuoka, 819-0395, Japan
| |
Collapse
|
39
|
Photoacoustic Imaging Probes Based on Tetrapyrroles and Related Compounds. Int J Mol Sci 2020; 21:ijms21093082. [PMID: 32349297 PMCID: PMC7247687 DOI: 10.3390/ijms21093082] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 12/11/2022] Open
Abstract
Photoacoustic imaging (PAI) is a rapidly evolving field in molecular imaging that enables imaging in the depths of ultrasound and with the sensitivity of optical modalities. PAI bases on the photoexcitation of a chromophore, which converts the absorbed light into thermal energy, causing an acoustic pressure wave that can be captured with ultrasound transducers, in generating an image. For in vivo imaging, chromophores strongly absorbing in the near-infrared range (NIR; > 680 nm) are required. As tetrapyrroles have a long history in biomedical applications, novel tetrapyrroles and inspired mimics have been pursued as potentially suitable contrast agents for PAI. The goal of this review is to summarize the current state of the art in PAI applications using tetrapyrroles and related macrocycles inspired by it, highlighting those compounds exhibiting strong NIR-absorption. Furthermore, we discuss the current developments of other absorbers for in vivo photoacoustic (PA) applications.
Collapse
|
40
|
Synthesis and Characterization of a Binuclear Copper(II)-dipyriamethyrin Complex: [Cu 2(dipyriamethyrin)(μ 2-1,1-acetato) 2]. MOLECULES (BASEL, SWITZERLAND) 2020; 25:molecules25061446. [PMID: 32210058 PMCID: PMC7145289 DOI: 10.3390/molecules25061446] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/19/2020] [Accepted: 03/21/2020] [Indexed: 12/13/2022]
Abstract
The reaction between dipyriamethyrin and copper(II) acetate [Cu(OAc)2] afforded what is, to our knowledge, the first transition metal-dipyriamethyrin complex. Molecular and electronic characterization of this binuclear Cu(II) complex via EPR, UV-vis, and single crystal X-ray diffraction analysis revealed marked differences between the present constructs and previously reported binuclear copper(II) hexaphyrin species. UV-vis titration analyses provided evidence for a homotropic positive allosteric effect, wherein the binuclear species is formed without significant intermediacy of a monomeric complex.
Collapse
|
41
|
Wang Y, Kai H, Ishida M, Gokulnath S, Mori S, Murayama T, Muranaka A, Uchiyama M, Yasutake Y, Fukatsu S, Notsuka Y, Yamaoka Y, Hanafusa M, Yoshizawa M, Kim G, Kim D, Furuta H. Synthesis of a Black Dye with Absorption Capabilities Across the Visible-to-Near-Infrared Region: A MO-Mixing Approach via Heterometal Coordination of Expanded Porphyrinoid. J Am Chem Soc 2020; 142:6807-6813. [DOI: 10.1021/jacs.0c01824] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yue Wang
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Hiroto Kai
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Masatoshi Ishida
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Sabapathi Gokulnath
- Indian Institute of Science Education and Research (IISER), Thiruvananthapuram, Kerala 695581, India
| | - Shigeki Mori
- Advanced Research Support Center (ADRES), Ehime University, Matsuyama 790-8577, Japan
| | - Tomotaka Murayama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Atsuya Muranaka
- Cluster for Pioneering Research (CPR), Advanced Elements Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Cluster for Pioneering Research (CPR), Advanced Elements Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Yuhsuke Yasutake
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Susumu Fukatsu
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Yusuke Notsuka
- Graduate School of Advanced Health Sciences, Saga University, Saga 840-8502, Japan
| | - Yoshihisa Yamaoka
- Graduate School of Advanced Health Sciences, Saga University, Saga 840-8502, Japan
| | - Mamiko Hanafusa
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Michito Yoshizawa
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Gakhyun Kim
- Department of Chemistry and Spectroscopy Laboratory for Functional π-Electronic Systems, Yonsei University, Seoul 03722, Korea
| | - Dongho Kim
- Department of Chemistry and Spectroscopy Laboratory for Functional π-Electronic Systems, Yonsei University, Seoul 03722, Korea
| | - Hiroyuki Furuta
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
42
|
Guo X, Li M, Wu H, Sheng W, Feng Y, Yu C, Jiao L, Hao E. Near-IR absorbing J-aggregates of a phenanthrene-fused BODIPY as a highly efficient photothermal nanoagent. Chem Commun (Camb) 2020; 56:14709-14712. [DOI: 10.1039/d0cc06014c] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A phenanthrene-[b]-fused BODIPY exhibited well-defined J-aggregates in both pure hydrocarbon solution and aqueous solution, and was developed as a highly efficient photothermal nanoagent.
Collapse
Affiliation(s)
- Xing Guo
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- School of Chemistry and Materials Science
- Anhui Normal University
- Wuhu
| | - Mao Li
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- School of Chemistry and Materials Science
- Anhui Normal University
- Wuhu
| | - Hao Wu
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- School of Chemistry and Materials Science
- Anhui Normal University
- Wuhu
| | - Wanle Sheng
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- School of Chemistry and Materials Science
- Anhui Normal University
- Wuhu
| | - Yuanmei Feng
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- School of Chemistry and Materials Science
- Anhui Normal University
- Wuhu
| | - Changjiang Yu
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- School of Chemistry and Materials Science
- Anhui Normal University
- Wuhu
| | - Lijuan Jiao
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- School of Chemistry and Materials Science
- Anhui Normal University
- Wuhu
| | - Erhong Hao
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- School of Chemistry and Materials Science
- Anhui Normal University
- Wuhu
| |
Collapse
|