1
|
Zhang L, Shen Z, Zeng Y, Li X, Zhang X. Insight into the Metal-Involving Chalcogen Bond in the Pd II/Pt II-Based Complexes: Comparison with the Conventional Chalcogen Bond. J Phys Chem A 2024; 128:5567-5577. [PMID: 39003760 DOI: 10.1021/acs.jpca.4c02723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The metal-involving Ch···M chalcogen bond and the conventional Ch···O chalcogen bond between ChX2 (Ch = Se, Te; X = CCH, CN) acting as a Lewis acid and M(acac)2 (M = Pd, Pt; Hacac = acetylacetone) acting as a Lewis base were studied by density functional theory calculations. It has been observed that the nucleophilicity of the PtII complexes is higher than that of the corresponding PdII complexes. As a result, the PtII complexes tend to exhibit a more negative interaction energy and larger orbital interaction. The strength of the chalcogen bond increases with the increase of the chalcogen atom and the electronegativity of the substituent on the Lewis acid and vice versa. The metal-involving chalcogen bond shows a typical weak closed-shell noncovalent interaction in the (HCC)2Ch···M(acac)2 complexes, while it exhibits a partially covalent nature in the (NC)2Ch···M(acac)2 complexes. The conventional Ch···O chalcogen bond displays the character of a weak noncovalent interaction, and its strength is generally weaker than that of metal-involving Ch···M interactions. It could be argued that the metal-involving chalcogen bond is primarily determined by the correlation term, whereas the conventional chalcogen bond is mainly governed by the electrostatic interaction.
Collapse
Affiliation(s)
- Lili Zhang
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Zixuan Shen
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Yanli Zeng
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
- Hebei Key Laboratory of Inorganic Nano-materials, Hebei Normal University, Shijiazhuang 050024, China
| | - Xiaoyan Li
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
- Hebei Key Laboratory of Inorganic Nano-materials, Hebei Normal University, Shijiazhuang 050024, China
| | - Xueying Zhang
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
- Hebei Key Laboratory of Inorganic Nano-materials, Hebei Normal University, Shijiazhuang 050024, China
| |
Collapse
|
2
|
Baykov SV, Katlenok EA, Baykova SO, Semenov AV, Bokach NA, Boyarskiy VP. Conformation-Associated C··· dz2-Pt II Tetrel Bonding: The Case of Cyclometallated Platinum(II) Complex with 4-Cyanopyridyl Urea Ligand. Int J Mol Sci 2024; 25:4052. [PMID: 38612862 PMCID: PMC11012616 DOI: 10.3390/ijms25074052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/30/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
The nucleophilic addition of 3-(4-cyanopyridin-2-yl)-1,1-dimethylurea (1) to cis-[Pt(CNXyl)2Cl2] (2) gave a new cyclometallated compound 3. It was characterized by NMR spectroscopy (1H, 13C, 195Pt) and high-resolution mass spectrometry, as well as crystallized to obtain two crystalline forms (3 and 3·2MeCN), whose structures were determined by X-ray diffraction. In the crystalline structure of 3, two conformers (3A and 3B) were identified, while the structure 3·2MeCN had only one conformer 3A. The conformers differed by orientation of the N,N-dimethylcarbamoyl moiety relative to the metallacycle plane. In both crystals 3 and 3·2MeCN, the molecules of the Pt(II) complex are associated into supramolecular dimers, either {3A}2 or {3B}2, via stacking interactions between the planes of two metal centers, which are additionally supported by hydrogen bonding. The theoretical consideration, utilizing a number of computational approaches, demonstrates that the C···dz2(Pt) interaction makes a significant contribution in the total stacking forces in the geometrically optimized dimer [3A]2 and reveals the dz2(Pt)→π*(PyCN) charge transfer (CT). The presence of such CT process allowed for marking the C···Pt contact as a new example of a rare studied phenomenon, namely, tetrel bonding, in which the metal site acts as a Lewis base (an acceptor of noncovalent interaction).
Collapse
Affiliation(s)
- Sergey V. Baykov
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., Saint Petersburg 199034, Russia; (E.A.K.); (A.V.S.); (V.P.B.)
| | | | | | | | - Nadezhda A. Bokach
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., Saint Petersburg 199034, Russia; (E.A.K.); (A.V.S.); (V.P.B.)
| | | |
Collapse
|
3
|
Li Y, Zhao C, Wang Z, Zeng Y. Halogen Bond Catalysis: A Physical Chemistry Perspective. J Phys Chem A 2024; 128:507-527. [PMID: 38214658 DOI: 10.1021/acs.jpca.3c06363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
As important noncovalent interactions, halogen bonds have been widely used in material science, supramolecular chemistry, medicinal chemistry, organocatalysis, and other fields. In the past 15 years, halogen bond catalysis has become a developed field in organocatalysis for the catalysts' advantages of being environmentally friendly, inexpensive, and recyclable. Halogen bonds can induce various organic reactions, and halogen bond catalysis has become a powerful alternative to the fully explored hydrogen bond catalysis. From a physical chemistry view, this perspective provides an overview of the latest progress and key examples of halogen bond catalysis via activation of the lone pair systems of organic functional group, π systems, and metal complexes. The research progresses in halogen bond catalysis by our group were also introduced.
Collapse
Affiliation(s)
- Ying Li
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Chang Zhao
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Zhuo Wang
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Yanli Zeng
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
| |
Collapse
|
4
|
Vainauskas J, Borchers TH, Arhangelskis M, McCormick McPherson LJ, Spilfogel TS, Hamzehpoor E, Topić F, Coles SJ, Perepichka DF, Barrett CJ, Friščić T. Halogen bonding with carbon: directional assembly of non-derivatised aromatic carbon systems into robust supramolecular ladder architectures. Chem Sci 2023; 14:13031-13041. [PMID: 38023516 PMCID: PMC10664517 DOI: 10.1039/d3sc04191c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Carbon, although the central element in organic chemistry, has been traditionally neglected as a target for directional supramolecular interactions. The design of supramolecular structures involving carbon-rich molecules, such as arene hydrocarbons, has been limited almost exclusively to non-directional π-stacking, or derivatisation with heteroatoms to introduce molecular assembly recognition sites. As a result, the predictable assembly of non-derivatised, carbon-only π-systems using directional non-covalent interactions remains an unsolved fundamental challenge of solid-state supramolecular chemistry. Here, we propose and validate a different paradigm for the reliable assembly of carbon-only aromatic systems into predictable supramolecular architectures: not through non-directional π-stacking, but via specific and directional halogen bonding. We present a systematic experimental, theoretical and database study of halogen bonds to carbon-only π-systems (C-I⋯πC bonds), focusing on the synthesis and structural analysis of cocrystals with diversely-sized and -shaped non-derivatised arenes, from one-ring (benzene) to 15-ring (dicoronylene) polycyclic atomatic hydrocarbons (PAHs), and fullerene C60, along with theoretical calculations and a systematic analysis of the Cambridge Structural Database. This study establishes C-I⋯πC bonds as directional interactions to arrange planar and curved carbon-only aromatic systems into predictable supramolecular motifs. In >90% of herein presented structures, the C-I⋯πC bonds to PAHs lead to a general ladder motif, in which the arenes act as the rungs and halogen bond donors as the rails, establishing a unique example of a supramolecular synthon based on carbon-only molecules. Besides fundamental importance in the solid-state and supramolecular chemistry of arenes, this synthon enables access to materials with exciting properties based on simple, non-derivatised aromatic systems, as seen from large red and blue shifts in solid-state luminescence and room-temperature phosphorescence upon cocrystallisation.
Collapse
Affiliation(s)
- Jogirdas Vainauskas
- School of Chemistry, University of Birmingham Edgbaston Birmingham B15 2TT UK
- Department of Chemistry, McGill University 801 Sherbrooke St. W. H3A 0B8 Montreal Canada
| | - Tristan H Borchers
- School of Chemistry, University of Birmingham Edgbaston Birmingham B15 2TT UK
- Department of Chemistry, McGill University 801 Sherbrooke St. W. H3A 0B8 Montreal Canada
| | - Mihails Arhangelskis
- Faculty of Chemistry, University of Warsaw 1 Pasteura Street Warsaw 02-093 Poland
| | - Laura J McCormick McPherson
- EPSRC National Crystallography Service, School of Chemistry, University of Southampton, Highfield Southampton UK
| | - Toni S Spilfogel
- Department of Chemistry, McGill University 801 Sherbrooke St. W. H3A 0B8 Montreal Canada
| | - Ehsan Hamzehpoor
- Department of Chemistry, McGill University 801 Sherbrooke St. W. H3A 0B8 Montreal Canada
| | - Filip Topić
- Department of Chemistry, McGill University 801 Sherbrooke St. W. H3A 0B8 Montreal Canada
| | - Simon J Coles
- EPSRC National Crystallography Service, School of Chemistry, University of Southampton, Highfield Southampton UK
| | - Dmytro F Perepichka
- Department of Chemistry, McGill University 801 Sherbrooke St. W. H3A 0B8 Montreal Canada
| | - Christopher J Barrett
- Department of Chemistry, McGill University 801 Sherbrooke St. W. H3A 0B8 Montreal Canada
| | - Tomislav Friščić
- School of Chemistry, University of Birmingham Edgbaston Birmingham B15 2TT UK
- Department of Chemistry, McGill University 801 Sherbrooke St. W. H3A 0B8 Montreal Canada
| |
Collapse
|
5
|
Radzhabov AD, Ledneva AI, Soldatova NS, Fedorova II, Ivanov DM, Ivanov AA, Yusubov MS, Kukushkin VY, Postnikov PS. Halogen Bond-Involving Self-Assembly of Iodonium Carboxylates: Adding a Dimension to Supramolecular Architecture. Int J Mol Sci 2023; 24:14642. [PMID: 37834088 PMCID: PMC10573078 DOI: 10.3390/ijms241914642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
We designed 0D, 1D, and 2D supramolecular assemblies made of diaryliodonium salts (functioning as double σ-hole donors) and carboxylates (as σ-hole acceptors). The association was based on two charge-supported halogen bonds (XB), which occurred between IIII sites of the iodonium cations and the carboxylate anions. The sequential introduction of the carboxylic groups in the aryl ring of the benzoic acid added a dimension to the 0D supramolecular organization of the benzoate, which furnished 1D-chained and 2D-layered structures when terephthalate and trimesate anions, correspondingly, were applied as XB acceptors. The structure-directing XB were studied using DFT calculations under periodic boundary conditions and were followed by the one-electron-potential analysis and the Bader atoms-in-molecules topological analysis of electron density. These theoretical methods confirmed the existence of the XB and verified the philicities of the interaction partners in the designed solid-state structures.
Collapse
Affiliation(s)
- Amirbek D. Radzhabov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russia (N.S.S.); (D.M.I.); (M.S.Y.)
| | - Alyona I. Ledneva
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russia (N.S.S.); (D.M.I.); (M.S.Y.)
| | - Natalia S. Soldatova
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russia (N.S.S.); (D.M.I.); (M.S.Y.)
| | - Irina I. Fedorova
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg 199034, Russia (V.Y.K.)
- Department of Mathematics and Mechanics, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - Daniil M. Ivanov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russia (N.S.S.); (D.M.I.); (M.S.Y.)
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg 199034, Russia (V.Y.K.)
| | - Alexey A. Ivanov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russia (N.S.S.); (D.M.I.); (M.S.Y.)
| | - Mekhman S. Yusubov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russia (N.S.S.); (D.M.I.); (M.S.Y.)
| | - Vadim Yu. Kukushkin
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg 199034, Russia (V.Y.K.)
- Institute of Chemistry and Pharmaceutical Technologies, Altai State University, Barnaul 656049, Russia
| | - Pavel S. Postnikov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russia (N.S.S.); (D.M.I.); (M.S.Y.)
- Department of Solid State Engineering, Institute of Chemical Technology, 16628 Prague, Czech Republic
| |
Collapse
|
6
|
Square Planar Pt(II) Ion as Electron Donor in Pnictogen Bonding Interactions. INORGANICS 2023. [DOI: 10.3390/inorganics11020080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
It has been proposed that late transition metals with low coordination numbers (square planar or linear) can act as nucleophiles and participate in σ-hole interactions as electron donors. This is due to the existence, in this type of metal complexes, of a pair of electrons located at high energy d-orbitals (dz2 or dx2-y2), which are adequate for interacting with antibonding σ-orbitals [σ*(X–Y)] where Y is usually an electron withdrawing element and X an element of the p-block. This type of d[M]→σ*(X–Y) interaction has been reported for metals of groups 9–11 in oxidation states +1 and +2 (d8 and d10) as electron donors and σ-holes located in halogen and chalcogen atoms as electron acceptors. To our knowledge, it has not been described for σ-holes located in pnictogen atoms. In this manuscript, evidence for the existence of pnictogen bonding involving the square planar Pt(II) metal as the electron donor and Sb as the electron acceptor is provided by using an X-ray structure retrieved from the Cambridge Structural Database (CSD) and theoretical calculations. In particular, the quantum theory of atoms in molecules (QTAIM), the noncovalent interaction plot (NCIPlot) and molecular electrostatic potential (MEP) methods were used. Moreover, to further confirm the nature of the Sb···Pt(II) contact, a recently developed method was used where the electron density (ED) and electrostatic potential (ESP) distribution were compared along the Sb···Pt(II) bond path.
Collapse
|
7
|
Majumdar D, Roy S, Frontera A. The importance of tetrel bonding interactions with carbon in two arrestive iso-structural Cd(ii)-Salen coordination complexes: a comprehensive DFT overview in crystal engineering. RSC Adv 2022; 12:35860-35872. [PMID: 36545098 PMCID: PMC9753102 DOI: 10.1039/d2ra07080d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
In this article, we describe the serendipitous synthesis of two remarkable iso-structural Cd(ii)-Salen complexes [L2Cd4(OAc)2(NCS)2] in the presence of H2L and NaSCN {where L = L1 (N,N'-bis(3-methoxysalicylidene)-1,2-diaminopropane) and L = L2 (N,N'-bis(3-methoxysalicylidene)-ethylenediamine) in 1 and 2, respectively}. The complexes were characterized by using elemental analysis, SEM-EDX, PXRD, spectroscopy, and X-ray crystallography. The X-ray crystal structure revealed that both complexes crystallize in the orthorhombic space group Pbcn, with unit cell parameters: a = 20.758(6), b = 11.022(3), c = 21.396(6) Å, V = 4895(2) Å3, and Z = 4. The inner N2O2 and outer O4 compartments are essentially occupied by two different Cd(ii) metal ions resulting from the de-protonated form of the ligand (L2-) with the Cd(1) metal ions adopting a capped octahedral geometry. At the same time, Cd(2) assumes a distorted trigonal prismatic geometry. The solid-state crystal structure involves various non-covalent supramolecular interactions delineated by Hirshfeld Surface and 2D fingerprint plot analysis. Noteworthily, interesting S⋯H, O⋯H, and N⋯H contacts were observed, which have identical percentages in both complexes. The sparse tetrel bonding interactions in the complex, involving the CH3 group, were evaluated in a new dimension of DFT. We observed this privileged bonding landscape that leads to the formation of self-assembled dimers in the crystal complexes. DFT-based MEP, RDG surface, NBO, and QTAIM/NCI plot investigation quantified such unique tetrel bonding interactions.
Collapse
Affiliation(s)
- Dhrubajyoti Majumdar
- Department of Chemistry Tamralipta Mahavidyalaya Tamluk 721636 West Bengal India
| | - Sourav Roy
- Solid State and Structural Chemistry Unit, Indian Institute of Science Bangalore 560 012 India
| | - Antonio Frontera
- Department de Quimica, Universitat de les Illes Balears Cra. de Valldemossa km 7.5 Palma de Mallorca (Baleares) 07122 Spain
| |
Collapse
|
8
|
Sokolova E, Kinzhalov MA, Smirnov AS, Cheranyova AM, Ivanov DM, Kukushkin VY, Bokach NA. Polymorph-Dependent Phosphorescence of Cyclometalated Platinum(II) Complexes and Its Relation to Non-covalent Interactions. ACS OMEGA 2022; 7:34454-34462. [PMID: 36188282 PMCID: PMC9520548 DOI: 10.1021/acsomega.2c04110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023]
Abstract
Cyclometalated platinum(II) complexes [Pt(ppy)Cl(CNAr)] (ppy = 2-phenylpyridinato-C2,N; Ar = C6H4-2-I 1, C6H4-4-I 2, C6H3-2-F-4-I 3, and C6H3-2,4-I2 4) bearing ancillary isocyanide ligands were obtained by the bridge-splitting reaction between the dimer [Pt(ppy)(μ-Cl)]2 and 2 equiv any one of the corresponding CNAr. Complex 2 was crystallized in two polymorphic forms, namely, 2 I and 2 II, exhibiting green (emission quantum yield of 0.5%) and orange (emission quantum yield of 12%) phosphorescence, respectively. Structure-directing non-covalent contacts in these polymorphs were verified by a combination of experimental (X-ray diffraction) and theoretical methods (NCIplot analysis, combined electron localization function (ELF), and Bader quantum theory of atoms in molecules (QTAIM analysis)). A noticeable difference in the spectrum of non-covalent interactions of 2 I and 2 II is seen in the Pt···Pt interactions in 2 II and absence of these metallophilic contacts in 2 I. The other solid luminophores, namely, 1, 3 I-II, 4, and 4·CHCl3, exhibit green luminescence; their structures include intermolecular C-I···Cl-Pt halogen bonds as the structure-directing interactions. Crystals of 1, 2 I, 3 I, 3 II, 4, and 4·CHCl3 demonstrated a reversible mechanochromic color change achieved by mechanical grinding (green to orange) and solvent adsorption (orange to green).
Collapse
Affiliation(s)
- Elina
V. Sokolova
- Saint
Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
| | - Mikhail A. Kinzhalov
- Saint
Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
- Research
School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russian
Federation
| | - Andrey S. Smirnov
- Saint
Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
| | - Anna M. Cheranyova
- Saint
Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
| | - Daniil M. Ivanov
- Saint
Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
- Research
School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russian
Federation
| | - Vadim Yu. Kukushkin
- Saint
Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
- Institute
of Chemistry and Pharmaceutical Technologies, Altai State University, Barnaul 656049, Russian Federation
| | - Nadezhda A. Bokach
- Saint
Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
- Research
School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russian
Federation
| |
Collapse
|
9
|
Aliyarova IS, Tupikina EY, Soldatova NS, Ivanov DM, Postnikov PS, Yusubov M, Kukushkin VY. Halogen Bonding Involving Gold Nucleophiles in Different Oxidation States. Inorg Chem 2022; 61:15398-15407. [PMID: 36137295 DOI: 10.1021/acs.inorgchem.2c01858] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A single-crystal X-ray diffraction (XRD) study of diaryliodonium tetrachloroaurates (or, in the recent terminology, tetrachloridoaurates), [(p-XC6H4)2I][AuCl4] (X = Cl, 1; Br, 2), was performed for 1 (the structure is denoted as 1a to show similarity with the isomorphic structure 2a) and two polymorphs─2a (obtained from MeOH) and 2b (from 1,2-C2H4Cl2). Examination of the XRD data for these three structures revealed 2-center C-X···AuIII (X = Cl and Br) and 3-center bifurcated C-Br···(Cl-Au) halogen bonding (abbreviated as XB) between the p-Cl or p-Br atoms of the diaryliodonium cations and the gold(III) atom of [AuCl4]-. The noncovalent nature of AuIII-involving interactions, the nucleophilicity of the gold(III) atoms, and the electrophilic role of p-X atoms of the diaryliodonium cations in the XBs were studied by a set of complementary computational methods. Combined experimental and theoretical studies allowed the recognition of the d-nucleophilicity of the [d8AuIII] atom which, regardless of its rather substantial formal 3+ charge, can function as a d-nucleophilic partner of XB. This conclusion was also supported by theoretical calculations performed for the structures' refcodes BINXOM and ICSD 62511; the obtained data verified the nucleophilicity of AuIII toward a K+ ions or a σ-(Cl)-hole, respectively. All our results, together with consideration of relevant literature, indicate that gold atoms in the three oxidation states (0, I, and even III) exhibit nucleophilicity in XBs.
Collapse
Affiliation(s)
- Irina S Aliyarova
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation.,Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634034, Russian Federation
| | - Elena Yu Tupikina
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
| | - Natalia S Soldatova
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634034, Russian Federation
| | - Daniil M Ivanov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation.,Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634034, Russian Federation
| | - Pavel S Postnikov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634034, Russian Federation.,Department of Solid State Engineering, Institute of Chemical Technology, Prague 16628, Czech Republic
| | - Mekhman Yusubov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634034, Russian Federation
| | - Vadim Yu Kukushkin
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation.,Institute of Chemistry and Pharmaceutical Technologies, Altai State University, 656049 Barnaul, Russian Federation
| |
Collapse
|
10
|
|
11
|
García-Santos I, Castiñeiras A, Mahmoudi G, Babashkina MG, Zangrando E, Gomila RM, Frontera A, Safin DA. Supramolecular aggregation of lead(II) perchlorate and a thiosemicarbazide derivative linked by a myriad of non-covalent interactions. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Metal Coordination Enhances Chalcogen Bonds: CSD Survey and Theoretical Calculations. Int J Mol Sci 2022; 23:ijms23084188. [PMID: 35457005 PMCID: PMC9030556 DOI: 10.3390/ijms23084188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/02/2022] [Accepted: 04/07/2022] [Indexed: 12/03/2022] Open
Abstract
In this study the ability of metal coordinated Chalcogen (Ch) atoms to undergo Chalcogen bonding (ChB) interactions has been evaluated at the PBE0-D3/def2-TZVP level of theory. An initial CSD (Cambridge Structural Database) inspection revealed the presence of square planar Pd/Pt coordination complexes where divalent Ch atoms (Se/Te) were used as ligands. Interestingly, the coordination to the metal center enhanced the σ-hole donor ability of the Ch atom, which participates in ChBs with neighboring units present in the X-ray crystal structure, therefore dictating the solid state architecture. The X-ray analyses were complemented with a computational study (PBE0-D3/def2-TZVP level of theory), which shed light into the strength and directionality of the ChBs studied herein. Owing to the new possibilities that metal coordination offers to enhance or modulate the σ-hole donor ability of Chs, we believe that the findings presented herein are of remarkable importance for supramolecular chemists as well as for those scientists working in the field of solid state chemistry.
Collapse
|
13
|
Halogen Bonding and CO-Ligand Blue-Shift in Hybrid Organic—Organometallic Cocrystals [CpFe(CO)2X] (C2I4) (X = Cl, Br). CRYSTALS 2022. [DOI: 10.3390/cryst12030412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
This work is focused on the complex interplay of geometry of I⋯X halogen bonds (HaB) and intermolecular interaction energy in two isomorphic cocrystals [CpFe(CO)2X] (C2I4) (X = Cl (1), Br (2)). Their IR-spectroscopic measurements in solid state and solution demonstrate the blue-shift of CO vibration bands, resulting from I⋯X HaB. The reluctance of their iodide congener [CpFe(CO)2I] to form the expected cocrystal [CpFe(CO)2I] (C2I4) is discussed in terms of different molecular electrostatic potential (MEP) of the surface of iodide ligands, as compared with chloride and bromide, which dictate a different angular geometry of HaB around the metal-I and metal-Br/Cl HaB acceptors. This study also suggests C2I4 as a reliable HaB donor coformer for metal-halide HaB acceptors in the crystal engineering of hybrid metal–organic systems.
Collapse
|
14
|
Aliyarova IS, Tupikina EY, Ivanov DM, Kukushkin VY. Metal-Involving Halogen Bonding Including Gold(I) as a Nucleophilic Partner. The Case of Isomorphic Dichloroaurate(I)·Halomethane Cocrystals. Inorg Chem 2022; 61:2558-2567. [DOI: 10.1021/acs.inorgchem.1c03482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Irina S. Aliyarova
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
| | - Elena Yu. Tupikina
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
| | - Daniil M. Ivanov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
| | - Vadim Yu. Kukushkin
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
- Institute of Chemistry and Pharmaceutical Technologies, Altai State University, Barnaul 656049, Russian Federation
| |
Collapse
|
15
|
Benito I, Gomila RM, Frontera A. On the energetic stability of halogen bonds involving metals: implications in crystal engineering. CrystEngComm 2022. [DOI: 10.1039/d2ce00545j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work reports a combined computational and experimental analysis of the ability of square planar d8 transition metal complexes to establish unconventional halogen bonding interactions with chloro-, bromo- and iodopentafluorobenzene...
Collapse
|
16
|
Firdoos T, Kumar P, Radha A, Gomila RM, Frontera A, Sood P, Pandey SK. An insight into triel bonds in O, O′-diarylphosphorodithioates of thallium( i): experimental and theoretical investigations. NEW J CHEM 2022. [DOI: 10.1039/d1nj04852j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Two new thallium(i) compounds have been synthesized and structurally characterized. The existence of triel bonds in these compounds has been confirmed by HSA and DFT calculations using QTAIM and NCI plot index methods.
Collapse
Affiliation(s)
- Tahira Firdoos
- Post Graduate Department of Chemistry, University of Jammu, Baba Saheb Ambedkar Road, Jammu Tawi-180006, J&K, India
| | - Pretam Kumar
- Post Graduate Department of Chemistry, University of Jammu, Baba Saheb Ambedkar Road, Jammu Tawi-180006, J&K, India
| | - Anu Radha
- Post Graduate Department of Chemistry, University of Jammu, Baba Saheb Ambedkar Road, Jammu Tawi-180006, J&K, India
| | - Rosa M. Gomila
- Departament de Química, Universitat de les Illes Balears, Crta de Valldemossa km 7.5, 07122 Palma de Mallorca (Baleares), Spain
| | - Antonio Frontera
- Departament de Química, Universitat de les Illes Balears, Crta de Valldemossa km 7.5, 07122 Palma de Mallorca (Baleares), Spain
| | - Puneet Sood
- Advanced Materials Research Center, Indian Institute of Technology, Block-A2 Building, Kamand Campus, Mandi, Himachal Pradesh-175005, India
| | - Sushil K. Pandey
- Post Graduate Department of Chemistry, University of Jammu, Baba Saheb Ambedkar Road, Jammu Tawi-180006, J&K, India
| |
Collapse
|
17
|
Blasi D, Nicolai V, Gomila RM, Mercandelli P, Frontera A, Carlucci L. Unprecedented {dz2-CuIIO4}···π-hole interactions: the case of a cocrystal of Cu(II) bis-β-diketonate complex with 1,4-diiodotetrafluoro-benzene. Chem Commun (Camb) 2022; 58:9524-9527. [DOI: 10.1039/d2cc03457c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cocrystallization of bis[1-(4-pyridyl)butane-1,3-dionato]copper(II) (1) complex and 1,4-diiodoperfluorobenzene in the presence of pyridine yields to a 1:1 cocrystal where both the σ and π-holes of 1,4-diiodoperfluorobenzene play a role. The crystal...
Collapse
|
18
|
Gomila RM, Bauza A, Frontera A. Enhancing chalcogen bonding by metal coordination. Dalton Trans 2022; 51:5977-5982. [DOI: 10.1039/d2dt00796g] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This manuscript shows that chalcogen bonding (ChB) interaction is enhanced by the coordination of the chalcogen atom to metal centers, as evidenced using DFT calculations (PBE0-D3/def2-TZVP level of theory). X-ray...
Collapse
|
19
|
Zelenkov LE, Eliseeva AA, Baykov S, Ivanov DM, Sumina AI, Gomila RM, Frontera A, Kukushkin VY, Bokach NA. Inorganic–Organic {dz2-MIIS4}···π-Hole Stacking in Reverse Sandwich Structures. The Case of Cocrystals of Group 10 Metal Dithiocarbamates with Electron-deficient Arenes. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00438k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cocrystallization of the dithiocarbamate complexes [M(S2CNEt2)2] (M = Ni 1, Pd 2, Pt 3) and X-substituted perfluoroarenes (X = I, Br; 1,2-dibromoperfluorobenzene FBrB and 1,2-diiodoperfluorobenzene FIB) gives isomorphous cocrystals of...
Collapse
|
20
|
Kinzhalov MA, Ivanov DM, Melekhova AA, Bokach NA, Gomila RM, Frontera A, Kukushkin VY. Chameleonic Metal-bound Isocyanides: π-Donating CuI-center Imparts a Nucleophilicity to the Isocyanide Carbon toward Halogen Bonding. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00034b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the structures of the isostructural cocrystals [CuI3(CNXyl)3]·CHX3 (X = Br, I), two adjacent CuI-bound isocyanide groups, whose carbon lone pairs are blocked by the ligation, exhibit nucleophilic properties induced...
Collapse
|
21
|
On the Importance of Halogen Bonding Interactions in Two X-ray Structures Containing All Four (F, Cl, Br, I) Halogen Atoms. CRYSTALS 2021. [DOI: 10.3390/cryst11111406] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This manuscript reports the synthesis and X-ray characterization of two octahydro-1H-4,6-epoxycyclopenta[c]pyridin-1-one derivatives that contain the four most abundant halogen atoms (Ha) in the structure with the aim of studying the formation of Ha···Ha halogen bonding interactions. The anisotropy of electron density at the heavier halogen atoms provokes the formation of multiple Ha···Ha contacts in the solid state. That is, the heavier Ha-atoms exhibit a region of positive electrostatic potential (σ-hole) along the C–Ha bond and a belt of negative electrostatic potential (σ-lumps) around the atoms. The halogen bonding assemblies in both compounds were analyzed using density functional theory (DFT) calculations, molecular electrostatic potential (MEP) surfaces, the quantum theory of “atom-in-molecules” (QTAIM), the noncovalent interaction plot (NCIplot), and the electron localization function (ELF).
Collapse
|
22
|
Ivanov DM, Bokach NA, Yu Kukushkin V, Frontera A. Metal Centers as Nucleophiles: Oxymoron of Halogen Bond-Involving Crystal Engineering. Chemistry 2021; 28:e202103173. [PMID: 34623005 PMCID: PMC9298210 DOI: 10.1002/chem.202103173] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Indexed: 02/06/2023]
Abstract
This review highlights recent studies discovering unconventional halogen bonding (HaB) that involves positively charged metal centers. These centers provide their filled d‐orbitals for HaB, and thus behave as nucleophilic components toward the noncovalent interaction. This role of some electron‐rich transition metal centers can be considered an oxymoron in the sense that the metal is, in most cases, formally cationic; consequently, its electron donor function is unexpected. The importance of Ha⋅⋅⋅d‐[M] (Ha=halogen; M is Group 9 (Rh, Ir), 10 (Ni, Pd, Pt), or 11 (Cu, Au)) interactions in crystal engineering is emphasized by showing remarkable examples (reported and uncovered by our processing of the Cambridge Structural Database), where this Ha⋅⋅⋅d‐[M] directional interaction guides the formation of solid supramolecular assemblies of different dimensionalities.
Collapse
Affiliation(s)
- Daniil M Ivanov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg, 199034, Russian Federation
| | - Nadezhda A Bokach
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg, 199034, Russian Federation
| | - Vadim Yu Kukushkin
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg, 199034, Russian Federation.,Institute of Chemistry and Pharmaceutical Technologies, Altai State University, Barnaul, 656049, Russian Federation
| | - Antonio Frontera
- Department of Chemistry, Universitat de les Illes Balears, Palma de Mallorca (Baleares), 07122, Spain
| |
Collapse
|
23
|
Abstract
Elements from groups 14–18 and periods 3–6 commonly behave as Lewis acids, which are involved in directional noncovalent interactions (NCI) with electron-rich species (lone pair donors), π systems (aromatic rings, triple and double bonds) as well as nonnucleophilic anions (BF4−, PF6−, ClO4−, etc.). Moreover, elements of groups 15 to 17 are also able to act as Lewis bases (from one to three available lone pairs, respectively), thus presenting a dual character. These emerging NCIs where the main group element behaves as Lewis base, belong to the σ–hole family of interactions. Particularly (i) tetrel bonding for elements belonging to group 14, (ii) pnictogen bonding for group 15, (iii) chalcogen bonding for group 16, (iv) halogen bonding for group 17, and (v) noble gas bondings for group 18. In general, σ–hole interactions exhibit different features when moving along the same group (offering larger and more positive σ–holes) or the same row (presenting a different number of available σ–holes and directionality) of the periodic table. This is illustrated in this review by using several examples retrieved from the Cambridge Structural Database (CSD), especially focused on σ–hole interactions, complemented with molecular electrostatic potential surfaces of model systems.
Collapse
|
24
|
Rozhkov AV, Katlenok EA, Zhmykhova MV, Ivanov AY, Kuznetsov ML, Bokach NA, Kukushkin VY. Metal-Involving Chalcogen Bond. The Case of Platinum(II) Interaction with Se/Te-Based σ-Hole Donors. J Am Chem Soc 2021; 143:15701-15710. [PMID: 34529411 DOI: 10.1021/jacs.1c06498] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Platinum(II) complexes exhibiting an expressed dz2-nucleophilicity of the positively charged metal centers, namely, [Pt(ppy)(acac)] (1; acacH is acetylacetone; ppyH is 2-Ph-pyridine) and [Pt(ppy)(tmhd)] (2; tmhdH is 2,2,6,6-tetramethylheptanedione-3,5), were cocrystallized with the chalcogen bond donors (4-NC5F4)2Ch (Ch = Se, Te) to form two isostructural cocrystals 1·1/2(4-NC5F4)2Ch, and 2·2/3(4-NC5F4)2Se and 2·(4-NC5F4)2Te. The X-ray data for these cocrystals and appropriate theoretical DFT calculations (PBE0-D3BJ) allowed the recognition of the metal-involving chalcogen bond, namely, Ch···dz2-PtII (its energy spans from -7 to -12 kcal/mol). In 1·1/2(4-NC5F4)2Ch, Ch···dz2-PtII bonding is accompanied by the C···dz2-PtII interaction, representing a three-center bifurcate, whereas in 2·(4-NC5F4)2Te the chalcogen bond Te···dz2-PtII is purely two-centered and is stronger than that in 1·1/2(4-NC5F4)2Ch because of more efficient orbital overlap. The association of 2 with (4-NC5F4)2Te and the structure of the formed adduct in CDCl3 solutions was studied by using 1H, 13C, 19F, 195Pt, 125Te NMR, 19F-1H HOESY, and diffusion NMR methods. The 195Pt and 125Te NMR titration and the isothermal titration calorimetry results revealed a 1:1 association of 2 with (4-NC5F4)2Te.
Collapse
Affiliation(s)
- Anton V Rozhkov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation
| | - Eugene A Katlenok
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation
| | - Margarita V Zhmykhova
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation
| | - Alexander Yu Ivanov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation
| | - Maxim L Kuznetsov
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Nadezhda A Bokach
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation
| | - Vadim Yu Kukushkin
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation.,Institute of Chemistry and Pharmaceutical Technologies, Altai State University, 656049 Barnaul, Russian Federation
| |
Collapse
|
25
|
Bulatova M, Ivanov DM, Rautiainen JM, Kinzhalov MA, Truong KN, Lahtinen M, Haukka M. Studies of Nature of Uncommon Bifurcated I-I···( I- M) Metal-Involving Noncovalent Interaction in Palladium(II) and Platinum(II) Isocyanide Cocrystals. Inorg Chem 2021; 60:13200-13211. [PMID: 34357775 PMCID: PMC8424624 DOI: 10.1021/acs.inorgchem.1c01591] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Indexed: 12/03/2022]
Abstract
Two isostructural trans-[MI2(CNXyl)2]·I2 (M = Pd or Pt; CNXyl = 2,6-dimethylphenyl isocyanide) metallopolymeric cocrystals containing uncommon bifurcated iodine···(metal-iodide) contact were obtained. In addition to classical halogen bonding, single-crystal X-ray diffraction analysis revealed a rare type of metal-involved stabilizing contact in both cocrystals. The nature of the noncovalent contact was studied computationally (via DFT, electrostatic surface potential, electron localization function, quantum theory of atoms in molecules, and noncovalent interactions plot methods). Studies confirmed that the I···I halogen bond is the strongest noncovalent interaction in the systems, followed by weaker I···M interaction. The electrophilic and nucleophilic nature of atoms participating in I···M interaction was studied with ED/ESP minima analysis. In trans-[PtI2(CNXyl)2]·I2 cocrystal, Pt atoms act as weak nucleophiles in I···Pt interaction. In the case of trans-[PdI2(CNXyl)2]·I2 cocrystal, electrophilic/nucleophilic roles of Pd and I are not clear, and thus the quasimetallophilic nature of the I···Pd interaction was suggested.
Collapse
Affiliation(s)
- Margarita Bulatova
- Department
of Chemistry, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
| | - Daniil M. Ivanov
- Institute
of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
| | - J. Mikko Rautiainen
- Department
of Chemistry, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
| | - Mikhail A. Kinzhalov
- Institute
of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
| | - Khai-Nghi Truong
- Department
of Chemistry, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
| | - Manu Lahtinen
- Department
of Chemistry, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
| | - Matti Haukka
- Department
of Chemistry, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
| |
Collapse
|
26
|
Tetrabromoethane as σ-Hole Donor toward Bromide Ligands: Halogen Bonding between C2H2Br4 and Bromide Dialkylcyanamide Platinum(II) Complexes. CRYSTALS 2021. [DOI: 10.3390/cryst11070835] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The complexes trans-[PtBr2(NCNR2)2] (R2 = Me21, (CH2)52) were cocrystallized with 1,1,2,2-tetrabromoethane (tbe) in CH2Cl2 forming solvates 1·tbe and 2·tbe, respectively. In both solvates, tbe involved halogen bonding, viz. the C–Br···Br–Pt interactions, were detected by single-crystal X-ray diffractions experiments. Appropriate density functional theory calculations (M06/def2-TZVP) performed for isolated molecules and complex-tbe clusters, where the existence of the interactions and their noncovalent nature were confirmed by electrostatic potential surfaces (ρ = 0.001 a.u.) for isolated molecules, topology analysis of electron density, electron localization function and HOMO-LUMO overlap projections for clusters.
Collapse
|
27
|
The Isocyanide Complexes cis-[MCl2(CNC6H4-4-X)2] (M = Pd, Pt; X = Cl, Br) as Tectons in Crystal Engineering Involving Halogen Bonds. CRYSTALS 2021. [DOI: 10.3390/cryst11070799] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The isocyanide complexes cis-[MCl2(CNC6H4-4-X)2] (M = Pd; X = Cl, Br; M = Pt; X = Br) form isomorphous crystal structures exhibiting the Cl/Br and Pd/Pt exchanges featuring 1D chains upon crystallisation. Crystal packing is supported by the C–X···X–C halogen bonds (HaBs), C–H···X–C hydrogen bonds (HB), X···M semicoordination, and C···C contacts between the C atoms of aryl isocyanide ligands. The results of DFT calculations and topological analysis indicate that all the above contact types belong to attractive noncovalent interactions. A projection of the electron localization function (ELF) and an inspection of the electron density (ED) and the electrostatic potential (ESP) reveal the amphiphilic nature of X atoms playing the role of HaB donors, HaB and HB acceptors, and a nucleophilic partner in X···M semicoordination.
Collapse
|
28
|
Abstract
We systematically investigated iodine–metal and iodine–iodine bonding in van Koten’s pincer complex and 19 modifications changing substituents and/or the transition metal with a PBE0–D3(BJ)/aug–cc–pVTZ/PP(M,I) model chemistry. As a novel tool for the quantitative assessment of the iodine–metal and iodine–iodine bond strength in these complexes we used the local mode analysis, originally introduced by Konkoli and Cremer, complemented with NBO and Bader’s QTAIM analyses. Our study reveals the major electronic effects in the catalytic activity of the M–I–I non-classical three-center bond of the pincer complex, which is involved in the oxidative addition of molecular iodine I2 to the metal center. According to our investigations the charge transfer from the metal to the σ* antibonding orbital of the I–I bond changes the 3c–4e character of the M–I–I three-center bond, which leads to weakening of the iodine I–I bond and strengthening of the metal–iodine M–I bond, facilitating in this way the oxidative addition of I2 to the metal. The charge transfer can be systematically modified by substitution at different places of the pincer complex and by different transition metals, changing the strength of both the M–I and the I2 bonds. We also modeled for the original pincer complex how solvents with different polarity influence the 3c–4e character of the M–I–I bond. Our results provide new guidelines for the design of pincer complexes with specific iodine–metal bond strengths and introduce the local vibrational mode analysis as an efficient tool to assess the bond strength in complexes.
Collapse
|
29
|
Mondal I, Frontera A, Chattopadhyay S. On the importance of RH 3C⋯N tetrel bonding interactions in the solid state of a dinuclear zinc complex with a tetradentate Schiff base ligand. CrystEngComm 2021. [DOI: 10.1039/d0ce01864c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The tetrel bonding and π-stacking interactions in a new dinuclear zinc complex using a tetradentate N2O2 donor Schiff base have been analysed energetically using DFT calculations and several computational tools.
Collapse
Affiliation(s)
- Ipsita Mondal
- Department of Chemistry
- Inorganic Section
- Jadavpur University
- Kolkata - 700032
- India
| | - Antonio Frontera
- Departament de Quimica
- Universitat de les Illes Balears
- 07122 Palma de Mallorca
- Spain
| | | |
Collapse
|
30
|
Torubaev YV, Skabitsky IV, Rozhkov AV, Galmés B, Frontera A, Kukushkin VY. Highly polar stacking interactions wrap inorganics in organics: lone-pair–π-hole interactions between the PdO 4 core and electron-deficient arenes. Inorg Chem Front 2021. [DOI: 10.1039/d1qi01067k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Each PdO4 plane of Pd3(OAc)6 behaved as a 5-center nucleophile (O lone pairs and the dz2-PdII orbital) that interacts with π-donating arenes to afford highly polar circular stacking, where organics wrapped inorganics.
Collapse
Affiliation(s)
- Yury V. Torubaev
- N. S. Kurnakov Institute of General and Inorganic Chemistry, of Russian Academy of Sciences, Moscow, 119991 Russian Federation
| | - Ivan V. Skabitsky
- N. S. Kurnakov Institute of General and Inorganic Chemistry, of Russian Academy of Sciences, Moscow, 119991 Russian Federation
| | - Anton V. Rozhkov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg, 199034 Russian Federation
| | - Bartomeu Galmés
- Department of Chemistry, Universitat de les IllesBalears, 07122 Palma de Mallorca, Baleares, Spain
| | - Antonio Frontera
- Department of Chemistry, Universitat de les IllesBalears, 07122 Palma de Mallorca, Baleares, Spain
| | - Vadim Yu. Kukushkin
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg, 199034 Russian Federation
- Institute of Chemistry and Pharmaceutical Technologies, Altai State University, 656049 Barnaul, Russian Federation
| |
Collapse
|