1
|
Watanabe K, Takayama S, Yamada T, Hashimoto M, Tadano J, Nakagawa T, Watanabe T, Fukusaki E, Miyawaki I, Shimma S. Novel mimetic tissue standards for precise quantitative mass spectrometry imaging of drug and neurotransmitter concentrations in rat brain tissues. Anal Bioanal Chem 2024; 416:5579-5593. [PMID: 39126505 PMCID: PMC11493812 DOI: 10.1007/s00216-024-05477-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/18/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024]
Abstract
Understanding the relationship between the concentration of a drug and its therapeutic efficacy or side effects is crucial in drug development, especially to understand therapeutic efficacy in central nervous system drug, quantifying drug-induced site-specific changes in the levels of endogenous metabolites, such as neurotransmitters. In recent times, evaluation of quantitative distribution of drugs and endogenous metabolites using matrix-assisted laser desorption/ionization (MALDI)-mass spectrometry imaging (MSI) has attracted much attention in drug discovery research. However, MALDI-MSI quantification (quantitative mass spectrometry imaging, QMSI) is an emerging technique, and needs to be further developed for practicable and convenient use in drug discovery research. In this study, we developed a reliable QMSI method for quantification of clozapine (antipsychotic drug) and dopamine and its metabolites in the rat brain using MALDI-MSI. An improved mimetic tissue model using powdered frozen tissue for QMSI was established as an alternative method, enabling the accurate quantification of clozapine levels in the rat brain. Furthermore, we used the improved method to evaluate drug-induced fluctuations in the concentrations of dopamine and its metabolites. This method can quantitatively evaluate drug localization in the brain and drug-induced changes in the concentration of endogenous metabolites, demonstrating the usefulness of QMSI.
Collapse
Affiliation(s)
- Kenichi Watanabe
- Preclinical Research Unit, Sumitomo Pharma Co., Ltd., Osaka, Japan
| | - Sayo Takayama
- Preclinical Research Unit, Sumitomo Pharma Co., Ltd., Osaka, Japan
| | - Toichiro Yamada
- Preclinical Research Unit, Sumitomo Pharma Co., Ltd., Osaka, Japan
| | - Masayo Hashimoto
- Preclinical Research Unit, Sumitomo Pharma Co., Ltd., Osaka, Japan
| | - Jun Tadano
- Research Planning & Coordination, Sumitomo Pharma Co., Ltd., Osaka, Japan
| | - Tetsuya Nakagawa
- Research Planning & Coordination, Sumitomo Pharma Co., Ltd., Osaka, Japan
| | - Takao Watanabe
- Drug Research Division, Sumitomo Pharma Co., Ltd., Osaka, Japan
| | - Eiichiro Fukusaki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, 565-0871, Japan
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
- Osaka University Shimadzu Omics Innovation Research Laboratory, Osaka University, Osaka, Japan
| | - Izuru Miyawaki
- Preclinical Research Unit, Sumitomo Pharma Co., Ltd., Osaka, Japan
| | - Shuichi Shimma
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, 565-0871, Japan.
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan.
- Osaka University Shimadzu Omics Innovation Research Laboratory, Osaka University, Osaka, Japan.
| |
Collapse
|
2
|
Bollhagen A, Bodenmiller B. Highly Multiplexed Tissue Imaging in Precision Oncology and Translational Cancer Research. Cancer Discov 2024; 14:2071-2088. [PMID: 39485249 PMCID: PMC11528208 DOI: 10.1158/2159-8290.cd-23-1165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 05/24/2024] [Accepted: 08/13/2024] [Indexed: 11/03/2024]
Abstract
Precision oncology tailors treatment strategies to a patient's molecular and health data. Despite the essential clinical value of current diagnostic methods, hematoxylin and eosin morphology, immunohistochemistry, and gene panel sequencing offer an incomplete characterization. In contrast, highly multiplexed tissue imaging allows spatial analysis of dozens of markers at single-cell resolution enabling analysis of complex tumor ecosystems; thereby it has the potential to advance our understanding of cancer biology and supports drug development, biomarker discovery, and patient stratification. We describe available highly multiplexed imaging modalities, discuss their advantages and disadvantages for clinical use, and potential paths to implement these into clinical practice. Significance: This review provides guidance on how high-resolution, multiplexed tissue imaging of patient samples can be integrated into clinical workflows. It systematically compares existing and emerging technologies and outlines potential applications in the field of precision oncology, thereby bridging the ever-evolving landscape of cancer research with practical implementation possibilities of highly multiplexed tissue imaging into routine clinical practice.
Collapse
Affiliation(s)
- Alina Bollhagen
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
- Life Science Zurich Graduate School, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Bernd Bodenmiller
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Sekera ER, Rosas L, Holbrook JH, Angeles-Lopez QD, Khaliullin T, Rojas M, Mora AL, Hummon AB. Single Cell MALDI-MSI Analysis of Lipids and Proteins within a Replicative Senescence Fibroblast Model. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024. [PMID: 39476364 DOI: 10.1021/jasms.4c00095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
In this study, we evaluate lipids and select proteins in human lung fibroblasts (hLFs) to interrogate changes occurring due to aging and senescence. To study single cell populations, a comparison of cells adhered onto slides using poly-d-lysine versus centrifugal force deposition was first analyzed to determine whether specific alterations were observed between preparations. The poly-d-lysine approach was then utilized to interrogate the lipidome of the cell populations and further evaluate potential applications of the MALDI-immunohistochemistry (IHC) platform for single-cell-level analyses. Two protein markers of senescence, vimentin and p21, were both observed within the fibroblast populations and quantified. Lipidomic analysis of the fibroblasts found 12 lipids significantly altered because of replicative senescence, including fatty acids, such as stearic acid, and ceramide phosphoethanolamine species (CerPE). Similar to previous reports, alterations were detected in putative fatty acid building blocks, ceramides, among other lipid species. Altogether, our results reveal the ability to detect lipids implicated in senescence and show alterations to protein expression between normal and senescent fibroblast populations, including differences between young and aged cells. This report is the first time that the MALDI-IHC system has been utilized at a single-cell level to analyze both protein expression and lipid profiles in cultured cells, with a particular focus on changes associated with aging and senescence.
Collapse
Affiliation(s)
- Emily R Sekera
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210 United States
| | - Lorena Rosas
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University, Columbus, Ohio 43210 United States
| | - Joseph H Holbrook
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210 United States
| | - Quetzalli D Angeles-Lopez
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University, Columbus, Ohio 43210 United States
| | - Timur Khaliullin
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University, Columbus, Ohio 43210 United States
| | - Mauricio Rojas
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University, Columbus, Ohio 43210 United States
| | - Ana L Mora
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University, Columbus, Ohio 43210 United States
| | - Amanda B Hummon
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210 United States
| |
Collapse
|
4
|
Xu Y, Lih TM, De Marzo AM, Li QK, Zhang H. SPOT: spatial proteomics through on-site tissue-protein-labeling. Clin Proteomics 2024; 21:60. [PMID: 39443867 PMCID: PMC11515502 DOI: 10.1186/s12014-024-09505-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 08/22/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Spatial proteomics seeks to understand the spatial organization of proteins in tissues or at different subcellular localization in their native environment. However, capturing the spatial organization of proteins is challenging. Here, we present an innovative approach termed Spatial Proteomics through On-site Tissue-protein-labeling (SPOT), which combines the direct labeling of tissue proteins in situ on a slide and quantitative mass spectrometry for the profiling of spatially-resolved proteomics. MATERIALS AND METHODS Efficacy of direct TMT labeling was investigated using seven types of sagittal mouse brain slides, including frozen tissues without staining, formalin-fixed paraffin-embedded (FFPE) tissues without staining, deparaffinized FFPE tissues, deparaffinized and decrosslinked FFPE tissues, and tissues with hematoxylin & eosin (H&E) staining, hematoxylin (H) staining, eosin (E) staining. The ability of SPOT to profile proteomes at a spatial resolution was further evaluated on a horizontal mouse brain slide with direct TMT labeling at eight different mouse brain regions. Finally, SPOT was applied to human prostate cancer tissues as well as a tissue microarray (TMA), where TMT tags were meticulously applied to confined regions based on the pathological annotations. After on-site direct tissue-protein-labeling, tissues were scraped off the slides and subject to standard TMT-based quantitative proteomics analysis. RESULTS Tissue proteins on different types of mouse brain slides could be directly labeled with TMT tags. Moreover, the versatility of our direct-labeling approach extended to discerning specific mouse brain regions based on quantitative outcomes. The SPOT was further applied on both frozen tissues on slides and FFPE tissues on TMAs from prostate cancer tissues, where a distinct proteomic profile was observed among the regions with different Gleason scores. CONCLUSIONS SPOT is a robust and versatile technique that allows comprehensive profiling of spatially-resolved proteomics across diverse types of tissue slides to advance our understanding of intricate molecular landscapes.
Collapse
Affiliation(s)
- Yuanwei Xu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - T Mamie Lih
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Angelo M De Marzo
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Cancer Center at Johns Hopkins Medical Institutions, Baltimore, MD, USA
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Qing Kay Li
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Oncology, Sidney Kimmel Cancer Center at Johns Hopkins Medical Institutions, Baltimore, MD, USA.
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Department of Oncology, Sidney Kimmel Cancer Center at Johns Hopkins Medical Institutions, Baltimore, MD, USA.
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
5
|
Nunes JB, Ijsselsteijn ME, Abdelaal T, Ursem R, van der Ploeg M, Giera M, Everts B, Mahfouz A, Heijs B, de Miranda NFCC. Integration of mass cytometry and mass spectrometry imaging for spatially resolved single-cell metabolic profiling. Nat Methods 2024; 21:1796-1800. [PMID: 39210066 PMCID: PMC11466816 DOI: 10.1038/s41592-024-02392-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 07/26/2024] [Indexed: 09/04/2024]
Abstract
The integration of spatial omics technologies can provide important insights into the biology of tissues. Here we combined mass spectrometry imaging-based metabolomics and imaging mass cytometry-based immunophenotyping on a single tissue section to reveal metabolic heterogeneity at single-cell resolution within tissues and its association with specific cell populations such as cancer cells or immune cells. This approach has the potential to greatly increase our understanding of tissue-level interplay between metabolic processes and their cellular components.
Collapse
Affiliation(s)
- Joana B Nunes
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Tamim Abdelaal
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- Systems and Biomedical Engineering Department, Faculty of Engineering Cairo University, Giza, Egypt
- Pattern Recognition and Bioinformatics, Delft University of Technology, Delft, The Netherlands
| | - Rick Ursem
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Manon van der Ploeg
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, The Netherlands
| | - Bart Everts
- Center of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Ahmed Mahfouz
- Pattern Recognition and Bioinformatics, Delft University of Technology, Delft, The Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Bram Heijs
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
6
|
Minnella A, McCusker KP, Amagata A, Trias B, Weetall M, Latham JC, O'Neill S, Wyse RK, Klein MB, Trimmer JK. Targeting ferroptosis with the lipoxygenase inhibitor PTC-041 as a therapeutic strategy for the treatment of Parkinson's disease. PLoS One 2024; 19:e0309893. [PMID: 39292705 PMCID: PMC11410249 DOI: 10.1371/journal.pone.0309893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 08/18/2024] [Indexed: 09/20/2024] Open
Abstract
Parkinson's disease is the second most common neurodegenerative disorder, affecting nearly 10 million people worldwide. Ferroptosis, a recently identified form of regulated cell death characterized by 15-lipoxygenase-mediated hydroperoxidation of membrane lipids, has been implicated in neurodegenerative disorders including amyotrophic lateral sclerosis and Parkinson's disease. Pharmacological inhibition of 15 -lipoxygenase to prevent iron- and lipid peroxidation-associated ferroptotic cell death is a rational strategy for the treatment of Parkinson's disease. We report here the characterization of PTC-041 as an anti-ferroptotic reductive lipoxygenase inhibitor developed for the treatment of Parkinson's disease. In these studies, PTC-041 potently protects primary human Parkinson's disease patient-derived fibroblasts from lipid peroxidation and subsequent ferroptotic cell death and prevents ferroptosis-related neuronal loss and astrogliosis in primary rat neuronal cultures. Additionally, PTC-041 prevents ferroptotic-mediated α-synuclein protein aggregation and nitrosylation in vitro, suggesting a potential role for anti-ferroptotic lipoxygenase inhibitors in mitigating pathogenic aspects of synucleinopathies such as Parkinson's disease. We further found that PTC-041 protects against synucleinopathy in vivo, demonstrating that PTC-041 treatment of Line 61 transgenic mice protects against α-synuclein aggregation and phosphorylation as well as prevents associated neuronal and non-neuronal cell death. Finally, we show that. PTC-041 protects against 6-hydroxydopamine-induced motor deficits in a hemiparkinsonian rat model, further validating the potential therapeutic benefits of lipoxygenase inhibitors in the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Angela Minnella
- PTC Therapeutics, Mountain View, California, United States of America
| | - Kevin P McCusker
- PTC Therapeutics, Mountain View, California, United States of America
| | - Akiko Amagata
- PTC Therapeutics, Mountain View, California, United States of America
| | - Beatrice Trias
- PTC Therapeutics, Warren, New Jersey, United States of America
| | - Marla Weetall
- PTC Therapeutics, Warren, New Jersey, United States of America
| | - Joey C Latham
- PTC Therapeutics, Mountain View, California, United States of America
| | - Sloane O'Neill
- PTC Therapeutics, Mountain View, California, United States of America
| | | | - Matthew B Klein
- PTC Therapeutics, Warren, New Jersey, United States of America
| | - Jeffrey K Trimmer
- PTC Therapeutics, Mountain View, California, United States of America
| |
Collapse
|
7
|
Sekera ER, Rosas L, Holbrook JH, Angeles-Lopez QD, Khaliullin T, Rojas M, Mora AL, Hummon AB. Single Cell MALDI-MSI Analysis of Lipids and Proteins within a Replicative Senescence Fibroblast Model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.13.584140. [PMID: 38559151 PMCID: PMC10980017 DOI: 10.1101/2024.03.13.584140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
In this study, we evaluate lipids and select proteins in human lung fibroblasts (hLFs) to interrogate changes occurring due to aging and senescence. To study single cell populations, a comparison of cells adhered onto slides using poly-D-lysine versus centrifugal force deposition was first analyzed to determine whether specific alterations were observed between preparations. The poly-D-lysine approach was than utilized to interrogate the lipidome of the cell populations and further evaluate potential applications of the MALDI-immunohistochemistry (IHC) platform for single-cell level analyses. Two protein markers of senescence, vimentin and p21, were both observed within the fibroblast populations and quantified. Lipidomic analysis of the fibroblasts found twelve lipids significantly altered because of replicative senescence, including fatty acids, such as stearic acid, and ceramide phosphoethanolamine species (CerPE). Similar to previous reports, alterations were detected in putative fatty acid building blocks, ceramides, among other lipid species. Altogether, our results reveal the ability to detect lipids implicated in senescence and show alterations to protein expression between normal and senescent fibroblast populations, including differences between young and aged cells. This report is the first time that the MALDI-IHC system has been utilized at a single-cell level to analyze both protein expression and lipid profiles in cultured cells, with a particular focus on changes associated with aging and senescence.
Collapse
|
8
|
Bialy N, Alber F, Andrews B, Angelo M, Beliveau B, Bintu L, Boettiger A, Boehm U, Brown CM, Maina MB, Chambers JJ, Cimini BA, Eliceiri K, Errington R, Faklaris O, Gaudreault N, Germain RN, Goscinski W, Grunwald D, Halter M, Hanein D, Hickey JW, Lacoste J, Laude A, Lundberg E, Ma J, Malacrida L, Moore J, Nelson G, Neumann EK, Nitschke R, Onami S, Pimentel JA, Plant AL, Radtke AJ, Sabata B, Schapiro D, Schöneberg J, Spraggins JM, Sudar D, Vierdag WMAM, Volkmann N, Wählby C, Wang SS, Yaniv Z, Strambio-De-Castillia C. Harmonizing the Generation and Pre-publication Stewardship of FAIR bioimage data. ARXIV 2024:arXiv:2401.13022v5. [PMID: 38351940 PMCID: PMC10862930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
Together with the molecular knowledge of genes and proteins, biological images promise to significantly enhance the scientific understanding of complex cellular systems and to advance predictive and personalized therapeutic products for human health. For this potential to be realized, quality-assured bioimage data must be shared among labs at a global scale to be compared, pooled, and reanalyzed, thus unleashing untold potential beyond the original purpose for which the data was generated. There are two broad sets of requirements to enable bioimage data sharing in the life sciences. One set of requirements is articulated in the companion White Paper entitled "Enabling Global Image Data Sharing in the Life Sciences," which is published in parallel and addresses the need to build the cyberinfrastructure for sharing bioimage data (arXiv:2401.13023 [q-bio.OT], https://doi.org/10.48550/arXiv.2401.13023). Here, we detail a broad set of requirements, which involves collecting, managing, presenting, and propagating contextual information essential to assess the quality, understand the content, interpret the scientific implications, and reuse bioimage data in the context of the experimental details. We start by providing an overview of the main lessons learned to date through international community activities, which have recently made generating community standard practices for imaging Quality Control (QC) and metadata (Faklaris et al., 2022; Hammer et al., 2021; Huisman et al., 2021; Microscopy Australia, 2016; Montero Llopis et al., 2021; Rigano et al., 2021; Sarkans et al., 2021). We then provide a clear set of recommendations for amplifying this work. The driving goal is to address remaining challenges and democratize access to common practices and tools for a spectrum of biomedical researchers, regardless of their expertise, access to resources, and geographical location.
Collapse
Affiliation(s)
- Nikki Bialy
- Morgridge Institute for Research, Madison, USA
| | | | | | | | | | | | | | | | | | | | | | - Beth A Cimini
- Broad Institute of MIT and Harvard, Imaging Platform, Cambridge, USA
| | - Kevin Eliceiri
- Morgridge Institute for Research, Madison, USA
- University of Wisconsin-Madison, Madison, USA
| | | | | | | | - Ronald N Germain
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, USA
| | | | | | - Michael Halter
- National Institute of Standards and Technology, Gaithersburg, USA
| | | | | | | | - Alex Laude
- Newcastle University, Newcastle upon Tyne, UK
| | - Emma Lundberg
- Stanford University, Palo Alto, USA
- SciLifeLab, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Jian Ma
- Carnegie Mellon University, Pittsburgh, USA
| | - Leonel Malacrida
- Institut Pasteur de Montevideo, & Universidad de la República, Montevideo, Uruguay
| | - Josh Moore
- German BioImaging-Gesellschaft für Mikroskopie und Bildanalyse e.V., Constance, Germany
| | - Glyn Nelson
- Newcastle University, Newcastle upon Tyne, UK
| | | | | | - Shuichi Onami
- RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | | | - Anne L Plant
- National Institute of Standards and Technology, Gaithersburg, USA
| | - Andrea J Radtke
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, USA
| | | | | | | | | | - Damir Sudar
- Quantitative Imaging Systems LLC, Portland, USA
| | | | | | | | | | - Ziv Yaniv
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, USA
| | | |
Collapse
|
9
|
Sarkar S, Zheng X, Clair GC, Kwon YM, You Y, Swensen AC, Webb-Robertson BJM, Nakayasu ES, Qian WJ, Metz TO. Exploring new frontiers in type 1 diabetes through advanced mass-spectrometry-based molecular measurements. Trends Mol Med 2024:S1471-4914(24)00195-3. [PMID: 39152082 DOI: 10.1016/j.molmed.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/19/2024]
Abstract
Type 1 diabetes (T1D) is a devastating autoimmune disease for which advanced mass spectrometry (MS) methods are increasingly used to identify new biomarkers and better understand underlying mechanisms. For example, integration of MS analysis and machine learning has identified multimolecular biomarker panels. In mechanistic studies, MS has contributed to the discovery of neoepitopes, and pathways involved in disease development and identifying therapeutic targets. However, challenges remain in understanding the role of tissue microenvironments, spatial heterogeneity, and environmental factors in disease pathogenesis. Recent advancements in MS, such as ultra-fast ion-mobility separations, and single-cell and spatial omics, can play a central role in addressing these challenges. Here, we review recent advancements in MS-based molecular measurements and their role in understanding T1D.
Collapse
Affiliation(s)
- Soumyadeep Sarkar
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Xueyun Zheng
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Geremy C Clair
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Yu Mi Kwon
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Youngki You
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Adam C Swensen
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | | | - Ernesto S Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Thomas O Metz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| |
Collapse
|
10
|
Rietjens RG, Wang G, van den Berg BM, Rabelink TJ. Spatial metabolomics in tissue injury and regeneration. Curr Opin Genet Dev 2024; 87:102223. [PMID: 38901101 DOI: 10.1016/j.gde.2024.102223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 06/22/2024]
Abstract
Tissue homeostasis is intricately linked to cellular metabolism and metabolite exchange within the tissue microenvironment. The orchestration of adaptive cellular responses during injury and repair depends critically upon metabolic adaptation. This adaptation, in turn, shapes cell fate decisions required for the restoration of tissue homeostasis. Understanding the nuances of metabolic processes within the tissue context and comprehending the intricate communication between cells is therefore imperative for unraveling the complexity of tissue homeostasis and the processes of injury and repair. In this review, we focus on mass spectrometry imaging as an advanced platform with the potential to provide such comprehensive insights into the metabolic instruction governing tissue function. Recent advances in this technology allow to decipher the intricate metabolic networks that determine cellular behavior in the context of tissue resilience, injury, and repair. These insights not only advance our fundamental understanding of tissue biology but also hold implications for therapeutic interventions by targeting metabolic pathways critical for maintaining tissue homeostasis.
Collapse
Affiliation(s)
- Rosalie Gj Rietjens
- Department of Internal Medicine (Nephrology) & Einthoven Laboratory of Vascular and Regenerative Medicine & The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, The Netherlands. https://twitter.com/@RietjensRosalie
| | - Gangqi Wang
- Department of Internal Medicine (Nephrology) & Einthoven Laboratory of Vascular and Regenerative Medicine & The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, The Netherlands. https://twitter.com/@GangqiW
| | - Bernard M van den Berg
- Department of Internal Medicine (Nephrology) & Einthoven Laboratory of Vascular and Regenerative Medicine & The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, The Netherlands
| | - Ton J Rabelink
- Department of Internal Medicine (Nephrology) & Einthoven Laboratory of Vascular and Regenerative Medicine & The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
11
|
Zhang H, Lu KH, Ebbini M, Huang P, Lu H, Li L. Mass spectrometry imaging for spatially resolved multi-omics molecular mapping. NPJ IMAGING 2024; 2:20. [PMID: 39036554 PMCID: PMC11254763 DOI: 10.1038/s44303-024-00025-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/21/2024] [Indexed: 07/23/2024]
Abstract
The recent upswing in the integration of spatial multi-omics for conducting multidimensional information measurements is opening a new chapter in biological research. Mapping the landscape of various biomolecules including metabolites, proteins, nucleic acids, etc., and even deciphering their functional interactions and pathways is believed to provide a more holistic and nuanced exploration of the molecular intricacies within living systems. Mass spectrometry imaging (MSI) stands as a forefront technique for spatially mapping the metabolome, lipidome, and proteome within diverse tissue and cell samples. In this review, we offer a systematic survey delineating different MSI techniques for spatially resolved multi-omics analysis, elucidating their principles, capabilities, and limitations. Particularly, we focus on the advancements in methodologies aimed at augmenting the molecular sensitivity and specificity of MSI; and depict the burgeoning integration of MSI-based spatial metabolomics, lipidomics, and proteomics, encompassing the synergy with other imaging modalities. Furthermore, we offer speculative insights into the potential trajectory of MSI technology in the future.
Collapse
Affiliation(s)
- Hua Zhang
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705 USA
| | - Kelly H. Lu
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Malik Ebbini
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705 USA
| | - Penghsuan Huang
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Haiyan Lu
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705 USA
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705 USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706 USA
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705 USA
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705 USA
| |
Collapse
|
12
|
Phulara NR, Seneviratne HK. Mass spectrometry imaging-based multi-omics approaches to understand drug metabolism and disposition. JOURNAL OF MASS SPECTROMETRY : JMS 2024; 59:e5042. [PMID: 38840330 DOI: 10.1002/jms.5042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/24/2024] [Accepted: 05/06/2024] [Indexed: 06/07/2024]
Affiliation(s)
- Nav Raj Phulara
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland, USA
| | - Herana Kamal Seneviratne
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland, USA
| |
Collapse
|
13
|
Chan YH, Pathmasiri KC, Pierre-Jacques D, Hibbard MC, Tao N, Fischer JL, Yang E, Cologna SM, Gao R. Gel-assisted mass spectrometry imaging enables sub-micrometer spatial lipidomics. Nat Commun 2024; 15:5036. [PMID: 38866734 PMCID: PMC11169460 DOI: 10.1038/s41467-024-49384-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 06/04/2024] [Indexed: 06/14/2024] Open
Abstract
A technique capable of label-free detection, mass spectrometry imaging (MSI) is a powerful tool for spatial investigation of native biomolecules in intact specimens. However, MSI has often been precluded from single-cell applications due to the spatial resolution limit set forth by the physical and instrumental constraints of the method. By taking advantage of the reversible interaction between the analytes and a superabsorbent hydrogel, we have developed a sample preparation and imaging workflow named Gel-Assisted Mass Spectrometry Imaging (GAMSI) to overcome the spatial resolution limits of modern mass spectrometers. With GAMSI, we show that the spatial resolution of MALDI-MSI can be enhanced ~3-6-fold to the sub-micrometer level without changing the existing mass spectrometry hardware or analysis pipeline. This approach will vastly enhance the accessibility of MSI-based spatial analysis at the cellular scale.
Collapse
Affiliation(s)
- Yat Ho Chan
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, USA
| | | | | | - Maddison C Hibbard
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, USA
| | | | | | | | - Stephanie M Cologna
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, USA
- Laboratory for Integrative Neuroscience, University of Illinois Chicago, Chicago, IL, USA
| | - Ruixuan Gao
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, USA.
- Laboratory for Integrative Neuroscience, University of Illinois Chicago, Chicago, IL, USA.
- Department of Biological Sciences, University of Illinois Chicago, Chicago, IL, USA.
| |
Collapse
|
14
|
Rahman MM, Islam A, Mamun MA, Afroz MS, Nabi MM, Sakamoto T, Sato T, Kahyo T, Takahashi Y, Okino A, Setou M. Low-Temperature Plasma Pretreatment Enhanced Cholesterol Detection in Brain by Desorption Electrospray Ionization-Mass Spectrometry Imaging. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1227-1236. [PMID: 38778699 DOI: 10.1021/jasms.4c00045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Cholesterol is a primary lipid molecule in the brain that contains one-fourth of the total body cholesterol. Abnormal cholesterol homeostasis is associated with neurodegenerative disorders. Mass spectrometry imaging (MSI) technique is a powerful tool for studying lipidomics and metabolomics. Among the MSI techniques, desorption electrospray ionization-MSI (DESI-MSI) has been used advantageously to study brain lipidomics due to its soft and ambient ionization nature. However, brain cholesterol is poorly ionized. To this end, we have developed a new method for detecting brain cholesterol by DESI-MSI using low-temperature plasma (LTP) pretreatment as an ionization enhancement. In this method, the brain sections were treated with LTP for 1 and 2 min prior to DESI-MSI analyses. Interestingly, the MS signal intensity of cholesterol (at m/z 369.35 [M + H - H2O]+) was more than 2-fold higher in the 1 min LTP-treated brain section compared to the untreated section. In addition, we detected cholesterol, more specifically excluding isomers by targeted-DESI-MSI in multiple reaction monitoring (MRM) mode and similar results were observed: the signal intensity of each cholesterol transition (m/z 369.4 → 95.1, 109.1, 135.1, 147.1, and 161.1) was increased by more than 2-fold due to 1 min LTP treatment. Cholesterol showed characteristic distributions in the fiber tract region, including the corpus callosum and anterior commissure, anterior part of the brain where LTP markedly (p < 0.001) enhanced the cholesterol intensity. In addition, the distributions of some unknown analytes were exclusively detected in the LTP-treated section. Our study revealed LTP pretreatment as a potential strategy to ionize molecules that show poor ionization efficiency in the MSI technique.
Collapse
Affiliation(s)
- Md Muedur Rahman
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka 431-3192, Japan
- Preppers Co., Ltd., Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Ariful Islam
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka 431-3192, Japan
- Preppers Co., Ltd., Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka 431-3192, Japan
- Department of Biochemistry and Microbiology, School of Health and Life Sciences, North South University, Bashundhara, Dhaka 1229, Bangladesh
| | - Md Al Mamun
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka 431-3192, Japan
- Preppers Co., Ltd., Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Mst Sayela Afroz
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Md Mahamodun Nabi
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Takumi Sakamoto
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka 431-3192, Japan
- Preppers Co., Ltd., Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Tomohito Sato
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Tomoaki Kahyo
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka 431-3192, Japan
- Quantum Imaging Laboratory, International Mass Imaging and Spatial Omics Center, Institute of Photonics Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Yutaka Takahashi
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka 431-3192, Japan
- Preppers Co., Ltd., Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Akitoshi Okino
- Laboratory for Future Interdisciplinary Research of Science and Technology, Institute of Innovative Research, Tokyo Institute of Technology, J2-32, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan
| | - Mitsutoshi Setou
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka 431-3192, Japan
- International Mass Imaging and Spatial Omics Center, Institute of Photonics Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka 431-3192, Japan
| |
Collapse
|
15
|
Stillger MN, Li MJ, Hönscheid P, von Neubeck C, Föll MC. Advancing rare cancer research by MALDI mass spectrometry imaging: Applications, challenges, and future perspectives in sarcoma. Proteomics 2024; 24:e2300001. [PMID: 38402423 DOI: 10.1002/pmic.202300001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 02/10/2024] [Accepted: 02/12/2024] [Indexed: 02/26/2024]
Abstract
MALDI mass spectrometry imaging (MALDI imaging) uniquely advances cancer research, by measuring spatial distribution of endogenous and exogenous molecules directly from tissue sections. These molecular maps provide valuable insights into basic and translational cancer research, including tumor biology, tumor microenvironment, biomarker identification, drug treatment, and patient stratification. Despite its advantages, MALDI imaging is underutilized in studying rare cancers. Sarcomas, a group of malignant mesenchymal tumors, pose unique challenges in medical research due to their complex heterogeneity and low incidence, resulting in understudied subtypes with suboptimal management and outcomes. In this review, we explore the applicability of MALDI imaging in sarcoma research, showcasing its value in understanding this highly heterogeneous and challenging rare cancer. We summarize all MALDI imaging studies in sarcoma to date, highlight their impact on key research fields, including molecular signatures, cancer heterogeneity, and drug studies. We address specific challenges encountered when employing MALDI imaging for sarcomas, and propose solutions, such as using formalin-fixed paraffin-embedded tissues, and multiplexed experiments, and considerations for multi-site studies and digital data sharing practices. Through this review, we aim to spark collaboration between MALDI imaging researchers and clinical colleagues, to deploy the unique capabilities of MALDI imaging in the context of sarcoma.
Collapse
Affiliation(s)
- Maren Nicole Stillger
- Institute for Surgical Pathology, Faculty of Medicine, University Medical Center, Freiburg, Germany
- Bioinformatics Group, Department of Computer Science, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Mujia Jenny Li
- Institute for Surgical Pathology, Faculty of Medicine, University Medical Center, Freiburg, Germany
- Institute for Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany
| | - Pia Hönscheid
- Institute of Pathology, Faculty of Medicine, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases, Partner Site Dresden, German Cancer Research Center Heidelberg, Dresden, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Cläre von Neubeck
- Department of Particle Therapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Melanie Christine Föll
- Institute for Surgical Pathology, Faculty of Medicine, University Medical Center, Freiburg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Khoury College of Computer Sciences, Northeastern University, Boston, USA
| |
Collapse
|
16
|
Pearce SM, Cross NA, Smith DP, Clench MR, Flint LE, Hamm G, Goodwin R, Langridge JI, Claude E, Cole LM. Multimodal Mass Spectrometry Imaging of an Osteosarcoma Multicellular Tumour Spheroid Model to Investigate Drug-Induced Response. Metabolites 2024; 14:315. [PMID: 38921450 PMCID: PMC11205347 DOI: 10.3390/metabo14060315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024] Open
Abstract
A multimodal mass spectrometry imaging (MSI) approach was used to investigate the chemotherapy drug-induced response of a Multicellular Tumour Spheroid (MCTS) 3D cell culture model of osteosarcoma (OS). The work addresses the critical demand for enhanced translatable early drug discovery approaches by demonstrating a robust spatially resolved molecular distribution analysis in tumour models following chemotherapeutic intervention. Advanced high-resolution techniques were employed, including desorption electrospray ionisation (DESI) mass spectrometry imaging (MSI), to assess the interplay between metabolic and cellular pathways in response to chemotherapeutic intervention. Endogenous metabolite distributions of the human OS tumour models were complemented with subcellularly resolved protein localisation by the detection of metal-tagged antibodies using Imaging Mass Cytometry (IMC). The first application of matrix-assisted laser desorption ionization-immunohistochemistry (MALDI-IHC) of 3D cell culture models is reported here. Protein localisation and expression following an acute dosage of the chemotherapy drug doxorubicin demonstrated novel indications for mechanisms of region-specific tumour survival and cell-cycle-specific drug-induced responses. Previously unknown doxorubicin-induced metabolite upregulation was revealed by DESI-MSI of MCTSs, which may be used to inform mechanisms of chemotherapeutic resistance. The demonstration of specific tumour survival mechanisms that are characteristic of those reported for in vivo tumours has underscored the increasing value of this approach as a tool to investigate drug resistance.
Collapse
Affiliation(s)
- Sophie M. Pearce
- Centre for Mass Spectrometry Imaging, Biomolecular Sciences Research Centre, Sheffield Hallam University, Howard Street, Sheffield S1 1WB, UK; (S.M.P.); (N.A.C.); (D.P.S.); (M.R.C.)
| | - Neil A. Cross
- Centre for Mass Spectrometry Imaging, Biomolecular Sciences Research Centre, Sheffield Hallam University, Howard Street, Sheffield S1 1WB, UK; (S.M.P.); (N.A.C.); (D.P.S.); (M.R.C.)
| | - David P. Smith
- Centre for Mass Spectrometry Imaging, Biomolecular Sciences Research Centre, Sheffield Hallam University, Howard Street, Sheffield S1 1WB, UK; (S.M.P.); (N.A.C.); (D.P.S.); (M.R.C.)
| | - Malcolm R. Clench
- Centre for Mass Spectrometry Imaging, Biomolecular Sciences Research Centre, Sheffield Hallam University, Howard Street, Sheffield S1 1WB, UK; (S.M.P.); (N.A.C.); (D.P.S.); (M.R.C.)
| | - Lucy E. Flint
- Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, The Discovery Centre (DISC), Biomedical Campus, 1 Francis Crick Ave, Trumpington, Cambridge CB2 0AA, UK; (L.E.F.); (G.H.); (R.G.)
| | - Gregory Hamm
- Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, The Discovery Centre (DISC), Biomedical Campus, 1 Francis Crick Ave, Trumpington, Cambridge CB2 0AA, UK; (L.E.F.); (G.H.); (R.G.)
| | - Richard Goodwin
- Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, The Discovery Centre (DISC), Biomedical Campus, 1 Francis Crick Ave, Trumpington, Cambridge CB2 0AA, UK; (L.E.F.); (G.H.); (R.G.)
| | - James I. Langridge
- Waters Corporation, Stamford Avenue, Altrincham Road, Wilmslow, Cheshire SK9 4AX, UK; (J.I.L.); (E.C.)
| | - Emmanuelle Claude
- Waters Corporation, Stamford Avenue, Altrincham Road, Wilmslow, Cheshire SK9 4AX, UK; (J.I.L.); (E.C.)
| | - Laura M. Cole
- Centre for Mass Spectrometry Imaging, Biomolecular Sciences Research Centre, Sheffield Hallam University, Howard Street, Sheffield S1 1WB, UK; (S.M.P.); (N.A.C.); (D.P.S.); (M.R.C.)
| |
Collapse
|
17
|
Santos AA, Delgado TC, Marques V, Ramirez-Moncayo C, Alonso C, Vidal-Puig A, Hall Z, Martínez-Chantar ML, Rodrigues CM. Spatial metabolomics and its application in the liver. Hepatology 2024; 79:1158-1179. [PMID: 36811413 PMCID: PMC11020039 DOI: 10.1097/hep.0000000000000341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/05/2023] [Indexed: 02/24/2023]
Abstract
Hepatocytes work in highly structured, repetitive hepatic lobules. Blood flow across the radial axis of the lobule generates oxygen, nutrient, and hormone gradients, which result in zoned spatial variability and functional diversity. This large heterogeneity suggests that hepatocytes in different lobule zones may have distinct gene expression profiles, metabolic features, regenerative capacity, and susceptibility to damage. Here, we describe the principles of liver zonation, introduce metabolomic approaches to study the spatial heterogeneity of the liver, and highlight the possibility of exploring the spatial metabolic profile, leading to a deeper understanding of the tissue metabolic organization. Spatial metabolomics can also reveal intercellular heterogeneity and its contribution to liver disease. These approaches facilitate the global characterization of liver metabolic function with high spatial resolution along physiological and pathological time scales. This review summarizes the state of the art for spatially resolved metabolomic analysis and the challenges that hinder the achievement of metabolome coverage at the single-cell level. We also discuss several major contributions to the understanding of liver spatial metabolism and conclude with our opinion on the future developments and applications of these exciting new technologies.
Collapse
Affiliation(s)
- André A. Santos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Teresa C. Delgado
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance, Derio, Bizkaia, Spain
- Congenital Metabolic Disorders, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Vanda Marques
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Carmen Ramirez-Moncayo
- Institute of Clinical Sciences, Imperial College London, London, UK
- MRC London Institute of Medical Sciences, London, UK
| | | | - Antonio Vidal-Puig
- MRC Metabolic Diseases Unit, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- Centro Investigation Principe Felipe, Valencia, Spain
| | - Zoe Hall
- Division of Systems Medicine, Imperial College London, London, UK
| | - María Luz Martínez-Chantar
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance, Derio, Bizkaia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain
| | - Cecilia M.P. Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
18
|
Prentice BM. Imaging with mass spectrometry: Which ionization technique is best? JOURNAL OF MASS SPECTROMETRY : JMS 2024; 59:e5016. [PMID: 38625003 DOI: 10.1002/jms.5016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/07/2024] [Accepted: 02/21/2024] [Indexed: 04/17/2024]
Abstract
The use of mass spectrometry (MS) to acquire molecular images of biological tissues and other substrates has developed into an indispensable analytical tool over the past 25 years. Imaging mass spectrometry technologies are widely used today to study the in situ spatial distributions for a variety of analytes. Early MS images were acquired using secondary ion mass spectrometry and matrix-assisted laser desorption/ionization. Researchers have also designed and developed other ionization techniques in recent years to probe surfaces and generate MS images, including desorption electrospray ionization (DESI), nanoDESI, laser ablation electrospray ionization, and infrared matrix-assisted laser desorption electrospray ionization. Investigators now have a plethora of ionization techniques to select from when performing imaging mass spectrometry experiments. This brief perspective will highlight the utility and relative figures of merit of these techniques within the context of their use in imaging mass spectrometry.
Collapse
Affiliation(s)
- Boone M Prentice
- Department of Chemistry, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
19
|
Hartig J, Young LEA, Grimsley G, Mehta AS, Ippolito JE, Leach RJ, Angel PM, Drake RR. The glycosylation landscape of prostate cancer tissues and biofluids. Adv Cancer Res 2024; 161:1-30. [PMID: 39032948 DOI: 10.1016/bs.acr.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
An overview of the role of glycosylation in prostate cancer (PCa) development and progression is presented, focusing on recent advancements in defining the N-glycome through glycomic profiling and glycoproteomic methodologies. Glycosylation is a common post-translational modification typified by oligosaccharides attached N-linked to asparagine or O-linked to serine or threonine on carrier proteins. These attached sugars have crucial roles in protein folding and cellular recognition processes, such that altered glycosylation is a hallmark of cancer pathogenesis and progression. In the past decade, advancements in N-glycan profiling workflows using Matrix Assisted Laser Desorption/Ionization Mass Spectrometry Imaging (MALDI-MSI) technology have been applied to define the spatial distribution of glycans in PCa tissues. Multiple studies applying N-glycan MALDI-MSI to pathology-defined PCa tissues have identified significant alterations in N-glycan profiles associated with PCa progression. N-glycan compositions progressively increase in number, and structural complexity due to increased fucosylation and sialylation. Additionally, significant progress has been made in defining the glycan and glycopeptide compositions of prostatic-derived glycoproteins like prostate-specific antigen in tissues and biofluids. The glycosyltransferases involved in these changes are potential drug targets for PCa, and new approaches in this area are summarized. These advancements will be discussed in the context of the further development of clinical diagnostics and therapeutics targeting glycans and glycoproteins associated with PCa progression. Integration of large scale spatial glycomic data for PCa with other spatial-omic methodologies is now feasible at the tissue and single-cell levels.
Collapse
Affiliation(s)
- Jordan Hartig
- Medical University of South Carolina, Charleston, SC, United States
| | | | - Grace Grimsley
- Medical University of South Carolina, Charleston, SC, United States
| | - Anand S Mehta
- Medical University of South Carolina, Charleston, SC, United States
| | - Joseph E Ippolito
- Washington University School of Medicine in Saint Louis, St. Louis, MO, United States
| | - Robin J Leach
- University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Peggi M Angel
- Medical University of South Carolina, Charleston, SC, United States
| | - Richard R Drake
- Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
20
|
Zirem Y, Ledoux L, Roussel L, Maurage CA, Tirilly P, Le Rhun É, Meresse B, Yagnik G, Lim MJ, Rothschild KJ, Duhamel M, Salzet M, Fournier I. Real-time glioblastoma tumor microenvironment assessment by SpiderMass for improved patient management. Cell Rep Med 2024; 5:101482. [PMID: 38552622 PMCID: PMC11031375 DOI: 10.1016/j.xcrm.2024.101482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/15/2024] [Accepted: 03/01/2024] [Indexed: 04/19/2024]
Abstract
Glioblastoma is a highly heterogeneous and infiltrative form of brain cancer associated with a poor outcome and limited therapeutic effectiveness. The extent of the surgery is related to survival. Reaching an accurate diagnosis and prognosis assessment by the time of the initial surgery is therefore paramount in the management of glioblastoma. To this end, we are studying the performance of SpiderMass, an ambient ionization mass spectrometry technology that can be used in vivo without invasiveness, coupled to our recently established artificial intelligence pipeline. We demonstrate that we can both stratify isocitrate dehydrogenase (IDH)-wild-type glioblastoma patients into molecular sub-groups and achieve an accurate diagnosis with over 90% accuracy after cross-validation. Interestingly, the developed method offers the same accuracy for prognosis. In addition, we are testing the potential of an immunoscoring strategy based on SpiderMass fingerprints, showing the association between prognosis and immune cell infiltration, to predict patient outcome.
Collapse
Affiliation(s)
- Yanis Zirem
- Université de Lille, Inserm, CHU Lille, U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, 59000 Lille, France
| | - Léa Ledoux
- Université de Lille, Inserm, CHU Lille, U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, 59000 Lille, France
| | - Lucas Roussel
- Université de Lille, Inserm, CHU Lille, U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, 59000 Lille, France
| | | | - Pierre Tirilly
- Université de Lille, CNRS, Centrale Lille, UMR 9189 CRIStAL, 59000 Lille, France
| | - Émilie Le Rhun
- Université de Lille, Inserm, CHU Lille, U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, 59000 Lille, France; Departments of Neurosurgery and Neurology, Clinical Neuroscience Center, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Bertrand Meresse
- Université de Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, 59000 Lille, France
| | | | | | - Kenneth J Rothschild
- AmberGen, Inc., Billerica, MA, USA; Department of Physics and Photonics Center, Boston University, Boston, MA, USA
| | - Marie Duhamel
- Université de Lille, Inserm, CHU Lille, U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, 59000 Lille, France
| | - Michel Salzet
- Université de Lille, Inserm, CHU Lille, U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, 59000 Lille, France; Institut Universitaire de France (IUF), Paris, France.
| | - Isabelle Fournier
- Université de Lille, Inserm, CHU Lille, U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, 59000 Lille, France; Institut Universitaire de France (IUF), Paris, France.
| |
Collapse
|
21
|
Duncan KD, Pětrošová H, Lum JJ, Goodlett DR. Mass spectrometry imaging methods for visualizing tumor heterogeneity. Curr Opin Biotechnol 2024; 86:103068. [PMID: 38310648 PMCID: PMC11520788 DOI: 10.1016/j.copbio.2024.103068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 02/06/2024]
Abstract
Profiling spatial distributions of lipids, metabolites, and proteins in tumors can reveal unique cellular microenvironments and provide molecular evidence for cancer cell dysfunction and proliferation. Mass spectrometry imaging (MSI) is a label-free technique that can be used to map biomolecules in tumors in situ. Here, we discuss current progress in applying MSI to uncover molecular heterogeneity in tumors. First, the analytical strategies to profile small molecules and proteins are outlined, and current methods for multimodal imaging to maximize biological information are highlighted. Second, we present and summarize biological insights obtained by MSI of tumor tissue. Finally, we discuss important considerations for designing MSI experiments and several current analytical challenges.
Collapse
Affiliation(s)
- Kyle D Duncan
- Department of Chemistry, Vancouver Island University, Nanaimo, British Columbia, Canada; Department of Chemistry, University of Victoria, Victoria, British Columbia, Canada.
| | - Helena Pětrošová
- University of Victoria Genome British Columbia Proteomics Center, University of Victoria, Victoria, British Columbia, Canada; Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada.
| | - Julian J Lum
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada; Trev and Joyce Deeley Research Centre, BC Cancer, Victoria, British Columbia, Canada
| | - David R Goodlett
- University of Victoria Genome British Columbia Proteomics Center, University of Victoria, Victoria, British Columbia, Canada; Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| |
Collapse
|
22
|
Na JG, Ji S, Kang H, Yeo WS. Preparation and evaluation of in situ photocleavable mass tags with facile mass variation for matrix-free laser desorption ionization mass spectrometry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024. [PMID: 38456738 DOI: 10.1039/d3ay02247a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Mass tags have been used for the precise identification, quantification, and characterization of macrobiomolecules and small organic molecules. Existing research has not yet demonstrated the preparation of a series of trityl-based photocleavable mass tags (PMTs) with similar structures but different molecular weights and mass variability. Herein, we introduce the design and synthesis of trityl-based in situ PMTs that generate heterolytic photocleavable cationic species upon laser irradiation. Mass variation of the PMTs was achieved via a simple conjugation reaction in the final step of synthesis. We prepared a series of PMTs with similar structures but different molecular weights and performed organic matrix-free laser desorption/ionization mass spectrometry (LDI MS) analysis. The practical applicability of the PMTs was evaluated by conjugating PMTs to oligonucleotides and utilizing them for detecting specific oligonucleotide targets combined with a mass signal amplification strategy. Quantitative aspects were also evaluated to verify the capability of the mass tags for multiplexed detection and the quantification of targets. The LDI MS analysis clearly demonstrated in situ heterolytic photocleavage that formed trityl cation peaks with high S/N ratios and high sensitivity. We strongly believe that the developed mass tags and LDI MS are useful alternatives to conventional signal transduction methods used for biosensors, such as surface plasmon resonance, electrochemical redox, and fluorescence.
Collapse
Affiliation(s)
- Jin-Gyu Na
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, 143-701, Seoul, Republic of Korea.
| | - Seokhwan Ji
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, 143-701, Seoul, Republic of Korea.
| | - Hyunook Kang
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, 143-701, Seoul, Republic of Korea.
| | - Woon-Seok Yeo
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, 143-701, Seoul, Republic of Korea.
| |
Collapse
|
23
|
de Souza N, Zhao S, Bodenmiller B. Multiplex protein imaging in tumour biology. Nat Rev Cancer 2024; 24:171-191. [PMID: 38316945 DOI: 10.1038/s41568-023-00657-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/08/2023] [Indexed: 02/07/2024]
Abstract
Tissue imaging has become much more colourful in the past decade. Advances in both experimental and analytical methods now make it possible to image protein markers in tissue samples in high multiplex. The ability to routinely image 40-50 markers simultaneously, at single-cell or subcellular resolution, has opened up new vistas in the study of tumour biology. Cellular phenotypes, interaction, communication and spatial organization have become amenable to molecular-level analysis, and application to patient cohorts has identified clinically relevant cellular and tissue features in several cancer types. Here, we review the use of multiplex protein imaging methods to study tumour biology, discuss ongoing attempts to combine these approaches with other forms of spatial omics, and highlight challenges in the field.
Collapse
Affiliation(s)
- Natalie de Souza
- University of Zurich, Department of Quantitative Biomedicine, Zurich, Switzerland
- ETH Zurich, Institute of Molecular Systems Biology, Zurich, Switzerland
- ETH Zurich, Institute of Molecular Health Sciences, Zurich, Switzerland
| | - Shan Zhao
- University of Zurich, Department of Quantitative Biomedicine, Zurich, Switzerland
- ETH Zurich, Institute of Molecular Health Sciences, Zurich, Switzerland
| | - Bernd Bodenmiller
- University of Zurich, Department of Quantitative Biomedicine, Zurich, Switzerland.
- ETH Zurich, Institute of Molecular Health Sciences, Zurich, Switzerland.
| |
Collapse
|
24
|
Macdonald JK, Mehta AS, Drake RR, Angel PM. Molecular analysis of the extracellular microenvironment: from form to function. FEBS Lett 2024; 598:602-620. [PMID: 38509768 PMCID: PMC11049795 DOI: 10.1002/1873-3468.14852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/22/2024]
Abstract
The extracellular matrix (ECM) proteome represents an important component of the tissue microenvironment that controls chemical flux and induces cell signaling through encoded structure. The analysis of the ECM represents an analytical challenge through high levels of post-translational modifications, protease-resistant structures, and crosslinked, insoluble proteins. This review provides a comprehensive overview of the analytical challenges involved in addressing the complexities of spatially profiling the extracellular matrix proteome. A synopsis of the process of synthesizing the ECM structure, detailing inherent chemical complexity, is included to present the scope of the analytical challenge. Current chromatographic and spatial techniques addressing these challenges are detailed. Capabilities for multimodal multiplexing with cellular populations are discussed with a perspective on developing a holistic view of disease processes that includes both the cellular and extracellular microenvironment.
Collapse
Affiliation(s)
- Jade K Macdonald
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC
| | - Anand S Mehta
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC
| | - Richard R Drake
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC
| | - Peggi M. Angel
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
25
|
Croslow SW, Trinklein TJ, Sweedler JV. Advances in multimodal mass spectrometry for single-cell analysis and imaging enhancement. FEBS Lett 2024; 598:591-601. [PMID: 38243373 PMCID: PMC10963143 DOI: 10.1002/1873-3468.14798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/11/2023] [Accepted: 12/18/2023] [Indexed: 01/21/2024]
Abstract
Multimodal mass spectrometry (MMS) incorporates an imaging modality with probe-based mass spectrometry (MS) to enable precise, targeted data acquisition and provide additional biological and chemical data not available by MS alone. Two categories of MMS are covered; in the first, an imaging modality guides the MS probe to target individual cells and to reduce acquisition time by automatically defining regions of interest. In the second category, imaging and MS data are coupled in the data analysis pipeline to increase the effective spatial resolution using a higher resolution imaging method, correct for tissue deformation, and incorporate fine morphological features in an MS imaging dataset. Recent methodological and computational developments are covered along with their application to single-cell and imaging analyses.
Collapse
Affiliation(s)
- Seth W. Croslow
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Timothy J. Trinklein
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jonathan V. Sweedler
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
26
|
Piga I, Magni F, Smith A. The journey towards clinical adoption of MALDI-MS-based imaging proteomics: from current challenges to future expectations. FEBS Lett 2024; 598:621-634. [PMID: 38140823 DOI: 10.1002/1873-3468.14795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/06/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023]
Abstract
Among the spatial omics techniques available, mass spectrometry imaging (MSI) represents one of the most promising owing to its capability to map the distribution of hundreds of peptides and proteins, as well as other classes of biomolecules, within a complex sample background in a multiplexed and relatively high-throughput manner. In particular, matrix-assisted laser desorption/ionisation (MALDI-MSI) has come to the fore and established itself as the most widely used technique in clinical research. However, the march of this technique towards clinical utility has been hindered by issues related to method reproducibility, appropriate biocomputational tools, and data storage. Notwithstanding these challenges, significant progress has been achieved in recent years regarding multiple facets of the technology and has rendered it more suitable for a possible clinical role. As such, there is now more robust and extensive evidence to suggest that the technology has the potential to support clinical decision-making processes under appropriate circumstances. In this review, we will discuss some of the recent developments that have facilitated this progress and outline some of the more promising clinical proteomics applications which have been developed with a clear goal towards implementation in mind.
Collapse
Affiliation(s)
- Isabella Piga
- Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, Vedano al Lambro, Italy
| | - Fulvio Magni
- Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, Vedano al Lambro, Italy
| | - Andrew Smith
- Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, Vedano al Lambro, Italy
| |
Collapse
|
27
|
Holbrook JH, Kemper GE, Hummon AB. Quantitative mass spectrometry imaging: therapeutics & biomolecules. Chem Commun (Camb) 2024; 60:2137-2151. [PMID: 38284765 PMCID: PMC10878071 DOI: 10.1039/d3cc05988j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/22/2024] [Indexed: 01/30/2024]
Abstract
Mass spectrometry imaging (MSI) has become increasingly utilized in the analysis of biological molecules. MSI grants the ability to spatially map thousands of molecules within one experimental run in a label-free manner. While MSI is considered by most to be a qualitative method, recent advancements in instrumentation, sample preparation, and development of standards has made quantitative MSI (qMSI) more common. In this feature article, we present a tailored review of recent advancements in qMSI of therapeutics and biomolecules such as lipids and peptides/proteins. We also provide detailed experimental considerations for conducting qMSI studies on biological samples, aiming to advance the methodology.
Collapse
Affiliation(s)
- Joseph H Holbrook
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, USA.
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - Gabrielle E Kemper
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - Amanda B Hummon
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, USA.
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
28
|
Banerjee S, Hatimuria M, Sarkar K, Das J, Pabbathi A, Sil PC. Recent Contributions of Mass Spectrometry-Based "Omics" in the Studies of Breast Cancer. Chem Res Toxicol 2024; 37:137-180. [PMID: 38011513 DOI: 10.1021/acs.chemrestox.3c00223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Breast cancer (BC) is one of the most heterogeneous groups of cancer. As every biotype of BC is unique and presents a particular "omic" signature, they are increasingly characterized nowadays with novel mass spectrometry (MS) strategies. BC therapeutic approaches are primarily based on the two features of human epidermal growth factor receptor 2 (HER2) and estrogen receptor (ER) positivity. Various strategic MS implementations are reported in studies of BC also involving data independent acquisitions (DIAs) of MS which report novel differential proteomic, lipidomic, proteogenomic, phosphoproteomic, and metabolomic characterizations associated with the disease and its therapeutics. Recently many "omic" studies have aimed to identify distinct subsidiary biotypes for diagnosis, prognosis, and targets of treatment. Along with these, drug-induced-resistance phenotypes are characterized by "omic" changes. These identifying aspects of the disease may influence treatment outcomes in the near future. Drug quantifications and characterizations are also done regularly and have implications in therapeutic monitoring and in drug efficacy assessments. We report these studies, mentioning their implications toward the understanding of BC. We briefly provide the MS instrumentation principles that are adopted in such studies as an overview with a brief outlook on DIA-MS strategies. In all of these, we have chosen a model cancer for its revelations through MS-based "omics".
Collapse
Affiliation(s)
- Subhrajit Banerjee
- Department of Physiology, Surendranath College, University of Calcutta, Kolkata 700009, India
- Department of Microbiology, St. Xavier's College, Kolkata 700016, India
| | - Madushmita Hatimuria
- Department of Industrial Chemistry, School of Physical Sciences, Mizoram University, Aizawl 796004, Mizoram India
| | - Kasturi Sarkar
- Department of Microbiology, St. Xavier's College, Kolkata 700016, India
| | - Joydeep Das
- Department of Chemistry, School of Physical Sciences, Mizoram University, Aizawl 796004, Mizoram, India
| | - Ashok Pabbathi
- Department of Industrial Chemistry, School of Physical Sciences, Mizoram University, Aizawl 796004, Mizoram India
| | - Parames C Sil
- Department of Molecular Medicine Bose Institute, Kolkata 700054, India
| |
Collapse
|
29
|
Young LEA, Nietert PJ, Stubler R, Kittrell CG, Grimsley G, Lewin DN, Mehta AS, Hajar C, Wang K, O’Quinn EC, Angel PM, Wallace K, Drake RR. Utilizing multimodal mass spectrometry imaging for profiling immune cell composition and N-glycosylation across colorectal carcinoma disease progression. Front Pharmacol 2024; 14:1337319. [PMID: 38273829 PMCID: PMC10808565 DOI: 10.3389/fphar.2023.1337319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
Colorectal cancer (CRC) stands as a leading cause of death worldwide, often arising from specific genetic mutations, progressing from pre-cancerous adenomas to adenocarcinomas. Early detection through regular screening can result in a 90% 5-year survival rate for patients. However, unfortunately, only a fraction of CRC cases are identified at pre-invasive stages, allowing progression to occur silently over 10-15 years. The intricate interplay between the immune system and tumor cells within the tumor microenvironment plays a pivotal role in the progression of CRC. Immune cell clusters can either inhibit or facilitate tumor initiation, growth, and metastasis. To gain a better understanding of this relationship, we conducted N-glycomic profiling using matrix-assisted laser desorption-ionization mass spectrometry imaging (MALDI-MSI). We detected nearly 100 N-glycan species across all samples, revealing a shift in N-glycome profiles from normal to cancerous tissues, marked by a decrease in high mannose N-glycans. Further analysis of precancerous to invasive carcinomas showed an increase in pauci-mannose biantennary, and tetraantennary N-glycans with disease progression. Moreover, a distinct stratification in the N-glycome profile was observed between non-mucinous and mucinous CRC tissues, driven by pauci-mannose, high mannose, and bisecting N-glycans. Notably, we identified immune clusters of CD20+ B cells and CD3/CD44+ T cells distinctive and predictive with signature profiles of bisecting and branched N-glycans. These spatial N-glycan profiles offer potential biomarkers and therapeutic targets throughout the progression of CRC.
Collapse
Affiliation(s)
- Lyndsay E. A. Young
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, College of Medicine, Medical University of South Carolina, Charleston, SC, United States
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Paul J. Nietert
- Translational Science Laboratory, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Rachel Stubler
- Department of Public Health Sciences, College of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Caroline G. Kittrell
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, College of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Grace Grimsley
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, College of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - David N. Lewin
- Department of Regenerative Medicine and Cell Biology, College of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Anand S. Mehta
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, College of Medicine, Medical University of South Carolina, Charleston, SC, United States
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Chadi Hajar
- Department of Regenerative Medicine and Cell Biology, College of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Katherine Wang
- Department of Regenerative Medicine and Cell Biology, College of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Elizabeth C. O’Quinn
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
- Department of Regenerative Medicine and Cell Biology, College of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Peggi M. Angel
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, College of Medicine, Medical University of South Carolina, Charleston, SC, United States
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Kristin Wallace
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
- Translational Science Laboratory, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Richard R. Drake
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, College of Medicine, Medical University of South Carolina, Charleston, SC, United States
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
30
|
Rajbhandari P, Neelakantan TV, Hosny N, Stockwell BR. Spatial pharmacology using mass spectrometry imaging. Trends Pharmacol Sci 2024; 45:67-80. [PMID: 38103980 PMCID: PMC10842749 DOI: 10.1016/j.tips.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/07/2023] [Accepted: 11/11/2023] [Indexed: 12/19/2023]
Abstract
The emerging and powerful field of spatial pharmacology can map the spatial distribution of drugs and their metabolites, as well as their effects on endogenous biomolecules including metabolites, lipids, proteins, peptides, and glycans, without the need for labeling. This is enabled by mass spectrometry imaging (MSI) that provides previously inaccessible information in diverse phases of drug discovery and development. We provide a perspective on how MSI technologies and computational tools can be implemented to reveal quantitative spatial drug pharmacokinetics and toxicology, tissue subtyping, and associated biomarkers. We also highlight the emerging potential of comprehensive spatial pharmacology through integration of multimodal MSI data with other spatial technologies. Finally, we describe how to overcome challenges including improving reproducibility and compound annotation to generate robust conclusions that will improve drug discovery and development processes.
Collapse
Affiliation(s)
- Presha Rajbhandari
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | | | - Noreen Hosny
- Irving Institute for Cancer Dynamics, Columbia University, New York, NY, USA; Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Brent R Stockwell
- Department of Biological Sciences, Columbia University, New York, NY, USA; Department of Chemistry, Columbia University, New York, NY, USA; Irving Institute for Cancer Dynamics, Columbia University, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA; Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
31
|
Di Tucci C, Muzii L. Chronic Pelvic Pain, Vulvar Pain Disorders, and Proteomics Profiles: New Discoveries, New Hopes. Biomedicines 2023; 12:1. [PMID: 38275362 PMCID: PMC10813718 DOI: 10.3390/biomedicines12010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 01/27/2024] Open
Abstract
Chronic pelvic pain (CPP) is generally defined as non-cyclic pain perceived in the pelvic area that has persisted from three to six months or longer and is unrelated to pregnancy. The etiology of CPP is complex, multifactorial, with heterogeneous presentation, and includes several diseases such as endometriosis, adenomyosis, and interstitial cystitis/bladder pain syndrome. It may also be associated with sexual dysfunction, musculoskeletal disorders, and comorbid psychiatric symptoms. Vulvar pain disorders (VPDs) are typically categorized separately from chronic pelvic pain; among all VPDs, vulvodynia is a chronic vulvar pain of unknown etiology, lasting at least 3 months and that might be associated with other potentially linked factors. Proteomics represents a useful approach to study the proteome profiles of clinical samples. In this review, we have considered a selection of articles that have analyzed the protein abundance and novel protein species from various biological samples, including eutopic/ectopic endometrium, urine, serum, follicular, peritoneal fluid, and cervical mucus, potentially involved in the pathogenesis and progression of CPP and VPDs. These findings could represent valuable targets for paving the way for the differential diagnosis and therapeutic management of CPP and VDPs, thereby optimizing both the prevention and treatment of these conditions.
Collapse
Affiliation(s)
- Chiara Di Tucci
- Department of Obstetrics and Gynecology, “Sapienza” University, 00185 Rome, Italy;
| | | |
Collapse
|
32
|
Duivenvoorden AM, Claes BSR, van der Vloet L, Lubbers T, Glunde K, Olde Damink SWM, Heeren RMA, Lenaerts K. Lipidomic Phenotyping Of Human Small Intestinal Organoids Using Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging. Anal Chem 2023; 95:18443-18450. [PMID: 38060464 PMCID: PMC10733903 DOI: 10.1021/acs.analchem.3c03543] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/29/2023] [Accepted: 11/06/2023] [Indexed: 12/20/2023]
Abstract
In the past decade, interest in organoids for biomedical research has surged, resulting in a higher demand for advanced imaging techniques. Traditional specimen embedding methods pose challenges, such as analyte delocalization and histological assessment. Here, we present an optimized sample preparation approach utilizing an Epredia M-1 cellulose-based embedding matrix, which preserves the structural integrity of fragile small intestinal organoids (SIOs). Additionally, background interference (delocalization of analytes, nonspecific (histological) staining, matrix ion clusters) was minimized, and we demonstrate the compatibility with matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). With our approach, we can conduct label-free lipid imaging at the single-cell level, thereby yielding insights into the spatial distribution of lipids in both positive and negative ion modes. Moreover, M-1 embedding allows for an improved coregistration with histological and immunohistochemical (IHC) stainings, including MALDI-IHC, facilitating combined untargeted and targeted spatial information. Applying this approach, we successfully phenotyped crypt-like (CL) and villus-like (VL) SIOs, revealing that PE 36:2 [M - H]- (m/z 742.5) and PI 38:4 [M - H]- (m/z 885.5) display higher abundance in CL organoids, whereas PI 36:1 [M - H]- (m/z 863.6) was more prevalent in VL organoids. Our findings demonstrate the utility of M-1 embedding for advancing organoid research and unraveling intricate biological processes within these in vitro models.
Collapse
Affiliation(s)
- Annet
A. M. Duivenvoorden
- Department
of Surgery, NUTRIM School of Nutrition and Translational Research
in Metabolism, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Britt S. R. Claes
- The
Maastricht MultiModal Molecular Imaging (M4i) Institute, Division
of Imaging Mass Spectrometry (IMS), Maastricht
University, 6229 ER Maastricht, The Netherlands
| | - Laura van der Vloet
- The
Maastricht MultiModal Molecular Imaging (M4i) Institute, Division
of Imaging Mass Spectrometry (IMS), Maastricht
University, 6229 ER Maastricht, The Netherlands
| | - Tim Lubbers
- Department
of Surgery, Maastricht University Medical
Center+ (MUMC+), 6229 HX Maastricht, The Netherlands
- GROW
– School for Oncology and Developmental Biology, Maastricht University Medical Center+ (MUMC+), 6229 HX Maastricht, The Netherlands
| | - Kristine Glunde
- The
Russell H. Morgan Department of Radiology and Radiological Science,
Division of Cancer Imaging Research, The
Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
- The
Sidney
Kimmel Comprehensive Cancer Center, The
Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
- Department
of Biological Chemistry, The Johns Hopkins
School of Medicine, Baltimore, Maryland 21205, United States
| | - Steven W. M. Olde Damink
- Department
of Surgery, NUTRIM School of Nutrition and Translational Research
in Metabolism, Maastricht University, 6229 ER Maastricht, The Netherlands
- Department
of Surgery, Maastricht University Medical
Center+ (MUMC+), 6229 HX Maastricht, The Netherlands
- Department
of General, Gastrointestinal, Hepatobiliary and Transplant Surgery, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Ron M. A. Heeren
- The
Maastricht MultiModal Molecular Imaging (M4i) Institute, Division
of Imaging Mass Spectrometry (IMS), Maastricht
University, 6229 ER Maastricht, The Netherlands
| | - Kaatje Lenaerts
- Department
of Surgery, NUTRIM School of Nutrition and Translational Research
in Metabolism, Maastricht University, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
33
|
Abstract
Imaging mass spectrometry is a well-established technology that can easily and succinctly communicate the spatial localization of molecules within samples. This review communicates the recent advances in the field, with a specific focus on matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) applied on tissues. The general sample preparation strategies for different analyte classes are explored, including special considerations for sample types (fresh frozen or formalin-fixed,) strategies for various analytes (lipids, metabolites, proteins, peptides, and glycans) and how multimodal imaging strategies can leverage the strengths of each approach is mentioned. This work explores appropriate experimental design approaches and standardization of processes needed for successful studies, as well as the various data analysis platforms available to analyze data and their strengths. The review concludes with applications of imaging mass spectrometry in various fields, with a focus on medical research, and some examples from plant biology and microbe metabolism are mentioned, to illustrate the breadth and depth of MALDI IMS.
Collapse
Affiliation(s)
- Jessica L Moore
- Department of Proteomics, Discovery Life Sciences, Huntsville, Alabama 35806, United States
| | - Georgia Charkoftaki
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
34
|
Dunne J, Griner J, Romeo M, Macdonald J, Krieg C, Lim M, Yagnik G, Rothschild KJ, Drake RR, Mehta AS, Angel PM. Evaluation of antibody-based single cell type imaging techniques coupled to multiplexed imaging of N-glycans and collagen peptides by matrix-assisted laser desorption/ionization mass spectrometry imaging. Anal Bioanal Chem 2023; 415:7011-7024. [PMID: 37843548 PMCID: PMC10632234 DOI: 10.1007/s00216-023-04983-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 10/17/2023]
Abstract
The integration of matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) with single cell spatial omics methods allows for a comprehensive investigation of single cell spatial information and matrisomal N-glycan and extracellular matrix protein imaging. Here, the performance of the antibody-directed single cell workflows coupled with MALDI-MSI are evaluated. Miralys™ photocleavable mass-tagged antibody probes (MALDI-IHC, AmberGen, Inc.), GeoMx DSP® (NanoString, Inc.), and Imaging Mass Cytometry (IMC, Standard BioTools Inc.) were used in series with MALDI-MSI of N-glycans and extracellular matrix peptides on formalin-fixed paraffin-embedded tissues. Single cell omics protocols were performed before and after MALDI-MSI. The data suggests that for each modality combination, there is an optimal order for performing both techniques on the same tissue section. An overall conclusion is that MALDI-MSI studies may be completed on the same tissue section as used for antibody-directed single cell modalities. This work increases access to combined cellular and extracellular information within the tissue microenvironment to enhance research on the pathological origins of disease.
Collapse
Affiliation(s)
- Jaclyn Dunne
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Avenue BSB 358, Charleston, SC, 29425, USA
| | - Jake Griner
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Avenue BSB 358, Charleston, SC, 29425, USA
| | - Martin Romeo
- Translational Science Laboratory, Hollings Cancer Center, Charleston, SC, 29425, USA
| | - Jade Macdonald
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Avenue BSB 358, Charleston, SC, 29425, USA
| | - Carsten Krieg
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Mark Lim
- AmberGen, Inc, 44 Manning Road, Billerica, MA, 01821, USA
| | - Gargey Yagnik
- AmberGen, Inc, 44 Manning Road, Billerica, MA, 01821, USA
| | - Kenneth J Rothschild
- AmberGen, Inc, 44 Manning Road, Billerica, MA, 01821, USA
- Department of Physics and Photonics Center, Boston University, Boston, MA, 02215, USA
| | - Richard R Drake
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Avenue BSB 358, Charleston, SC, 29425, USA
| | - Anand S Mehta
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Avenue BSB 358, Charleston, SC, 29425, USA
| | - Peggi M Angel
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Avenue BSB 358, Charleston, SC, 29425, USA.
| |
Collapse
|
35
|
Phipps WS, Kilgore MR, Kennedy JJ, Whiteaker JR, Hoofnagle AN, Paulovich AG. Clinical Proteomics for Solid Organ Tissues. Mol Cell Proteomics 2023; 22:100648. [PMID: 37730181 PMCID: PMC10692389 DOI: 10.1016/j.mcpro.2023.100648] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 09/22/2023] Open
Abstract
The evaluation of biopsied solid organ tissue has long relied on visual examination using a microscope. Immunohistochemistry is critical in this process, labeling and detecting cell lineage markers and therapeutic targets. However, while the practice of immunohistochemistry has reshaped diagnostic pathology and facilitated improvements in cancer treatment, it has also been subject to pervasive challenges with respect to standardization and reproducibility. Efforts are ongoing to improve immunohistochemistry, but for some applications, the benefit of such initiatives could be impeded by its reliance on monospecific antibody-protein reagents and limited multiplexing capacity. This perspective surveys the relevant challenges facing traditional immunohistochemistry and describes how mass spectrometry, particularly liquid chromatography-tandem mass spectrometry, could help alleviate problems. In particular, targeted mass spectrometry assays could facilitate measurements of individual proteins or analyte panels, using internal standards for more robust quantification and improved interlaboratory reproducibility. Meanwhile, untargeted mass spectrometry, showcased to date clinically in the form of amyloid typing, is inherently multiplexed, facilitating the detection and crude quantification of 100s to 1000s of proteins in a single analysis. Further, data-independent acquisition has yet to be applied in clinical practice, but offers particular strengths that could appeal to clinical users. Finally, we discuss the guidance that is needed to facilitate broader utilization in clinical environments and achieve standardization.
Collapse
Affiliation(s)
- William S Phipps
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Mark R Kilgore
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Jacob J Kennedy
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Jeffrey R Whiteaker
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Andrew N Hoofnagle
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA; Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA.
| | - Amanda G Paulovich
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA; Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA.
| |
Collapse
|
36
|
Hale O, Cooper HJ, Marty MT. High-Throughput Deconvolution of Native Protein Mass Spectrometry Imaging Data Sets for Mass Domain Analysis. Anal Chem 2023; 95:14009-14015. [PMID: 37672655 PMCID: PMC10515104 DOI: 10.1021/acs.analchem.3c02616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/22/2023] [Indexed: 09/08/2023]
Abstract
Protein mass spectrometry imaging (MSI) with electrospray-based ambient ionization techniques, such as nanospray desorption electrospray ionization (nano-DESI), generates data sets in which each pixel corresponds to a mass spectrum populated by peaks corresponding to multiply charged protein ions. Importantly, the signal associated with each protein is split among multiple charge states. These peaks can be transformed into the mass domain by spectral deconvolution. When proteins are imaged under native/non-denaturing conditions to retain non-covalent interactions, deconvolution is particularly valuable in helping interpret the data. To improve the acquisition speed, signal-to-noise ratio, and sensitivity, native MSI is usually performed using mass resolving powers that do not provide isotopic resolution, and conventional algorithms for deconvolution of lower-resolution data are not suitable for these large data sets. UniDec was originally developed to enable rapid deconvolution of complex protein mass spectra. Here, we developed an updated feature set harnessing the high-throughput module, MetaUniDec, to deconvolve each pixel of native MSI data sets and transform m/z-domain image files to the mass domain. New tools enable the reading, processing, and output of open format .imzML files for downstream analysis. Transformation of data into the mass domain also provides greater accessibility, with mass information readily interpretable by users of established protein biology tools such as sodium dodecyl sulfate polyacrylamide gel electrophoresis.
Collapse
Affiliation(s)
- Oliver
J. Hale
- School
of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - Helen J. Cooper
- School
of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - Michael T. Marty
- Department
of Chemistry and Biochemistry and Bio5 Institute, University of Arizona, 1306 E University Blvd Tucson, Arizona 85721, United States
| |
Collapse
|
37
|
Tan Y, Lin H, Cheng JX. Profiling single cancer cell metabolism via high-content SRS imaging with chemical sparsity. SCIENCE ADVANCES 2023; 9:eadg6061. [PMID: 37585522 PMCID: PMC10431717 DOI: 10.1126/sciadv.adg6061] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 07/14/2023] [Indexed: 08/18/2023]
Abstract
Metabolic reprogramming in a subpopulation of cancer cells is a hallmark of tumor chemoresistance. However, single-cell metabolic profiling is difficult because of the lack of a method that can simultaneously detect multiple metabolites at the single-cell level. In this study, through hyperspectral stimulated Raman scattering (hSRS) imaging in the carbon-hydrogen (C-H) window and sparsity-driven hyperspectral image decomposition, we demonstrate a high-content hSRS (h2SRS) imaging approach that enables the simultaneous mapping of five major biomolecules, including proteins, carbohydrates, fatty acids, cholesterol, and nucleic acids at the single-cell level. h2SRS imaging of brain and pancreatic cancer cells under chemotherapy revealed acute and adapted chemotherapy-induced metabolic reprogramming and the unique metabolic features of chemoresistance. Our approach is expected to facilitate the discovery of therapeutic targets to combat chemoresistance. This study illustrates a high-content, label-free chemical imaging approach that measures metabolic profiles at the single-cell level and warrants further research on cellular metabolism.
Collapse
Affiliation(s)
- Yuying Tan
- Biomedical Engineering, Boston University, Boston, MA 02155, USA
| | - Haonan Lin
- Biomedical Engineering, Boston University, Boston, MA 02155, USA
| | - Ji-Xin Cheng
- Biomedical Engineering, Boston University, Boston, MA 02155, USA
- Electrical and Computer Engineering, Boston University, Boston, MA 02155, USA
- Photonics Center, Boston University, Boston, MA 02155, USA
| |
Collapse
|
38
|
Oyler BL, Valencia-Dávila JA, Moysi E, Molyvdas A, Ioannidou K, March K, Ambrozak D, De Leval L, Fabozzi G, Woods AS, Koup RA, Petrovas C. Multilevel human secondary lymphoid immune system compartmentalization revealed by complementary imaging approaches. iScience 2023; 26:107261. [PMID: 37520703 PMCID: PMC10371825 DOI: 10.1016/j.isci.2023.107261] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 04/12/2023] [Accepted: 06/27/2023] [Indexed: 08/01/2023] Open
Abstract
Secondary human lymphoid tissue immune reactions take place in a highly coordinated environment with compartmentalization representing a fundamental feature of this organization. In situ profiling methodologies are indispensable for the understanding of this compartmentalization. Here, we propose a complementary experimental approach aiming to reveal different aspects of this process. The analysis of human tonsils, using a combination of single cell phenotypic analysis based on flow cytometry and multiplex imaging and mass spectrometry-based methodologies, revealed a compartmentalized organization at the cellular and molecular levels. More specifically, the skewed distribution of highly specialized immune cell subsets and relevant soluble mediators was accompanied by a compartmentalized localization of several lipids across different anatomical areas of the tonsillar tissue. The performance of such combinatorial experimental approaches could lead to the identification of novel in situ interactions and molecular targets for the in vivo manipulation of lymphoid organ, particularly the germinal center, immune reactions.
Collapse
Affiliation(s)
- Benjamin L. Oyler
- Tissue Analysis Core, Immunology Laboratory, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | | | - Eirini Moysi
- Tissue Analysis Core, Immunology Laboratory, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | - Adam Molyvdas
- Tissue Analysis Core, Immunology Laboratory, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | - Kalliopi Ioannidou
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Kylie March
- Tissue Analysis Core, Immunology Laboratory, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | - David Ambrozak
- Tissue Analysis Core, Immunology Laboratory, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | - Laurence De Leval
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Giulia Fabozzi
- Tissue Analysis Core, Immunology Laboratory, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | - Amina S. Woods
- Tissue Analysis Core, Immunology Laboratory, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | - Richard A. Koup
- Tissue Analysis Core, Immunology Laboratory, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | - Constantinos Petrovas
- Tissue Analysis Core, Immunology Laboratory, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| |
Collapse
|
39
|
Vandereyken K, Sifrim A, Thienpont B, Voet T. Methods and applications for single-cell and spatial multi-omics. Nat Rev Genet 2023; 24:494-515. [PMID: 36864178 PMCID: PMC9979144 DOI: 10.1038/s41576-023-00580-2] [Citation(s) in RCA: 277] [Impact Index Per Article: 277.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2023] [Indexed: 03/04/2023]
Abstract
The joint analysis of the genome, epigenome, transcriptome, proteome and/or metabolome from single cells is transforming our understanding of cell biology in health and disease. In less than a decade, the field has seen tremendous technological revolutions that enable crucial new insights into the interplay between intracellular and intercellular molecular mechanisms that govern development, physiology and pathogenesis. In this Review, we highlight advances in the fast-developing field of single-cell and spatial multi-omics technologies (also known as multimodal omics approaches), and the computational strategies needed to integrate information across these molecular layers. We demonstrate their impact on fundamental cell biology and translational research, discuss current challenges and provide an outlook to the future.
Collapse
Affiliation(s)
- Katy Vandereyken
- KU Leuven Institute for Single Cell Omics (LISCO), University of Leuven, KU Leuven, Leuven, Belgium
- Department of Human Genetics, University of Leuven, KU Leuven, Leuven, Belgium
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Alejandro Sifrim
- KU Leuven Institute for Single Cell Omics (LISCO), University of Leuven, KU Leuven, Leuven, Belgium
- Department of Human Genetics, University of Leuven, KU Leuven, Leuven, Belgium
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Bernard Thienpont
- KU Leuven Institute for Single Cell Omics (LISCO), University of Leuven, KU Leuven, Leuven, Belgium
- Department of Human Genetics, University of Leuven, KU Leuven, Leuven, Belgium
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Thierry Voet
- KU Leuven Institute for Single Cell Omics (LISCO), University of Leuven, KU Leuven, Leuven, Belgium.
- Department of Human Genetics, University of Leuven, KU Leuven, Leuven, Belgium.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
40
|
Bai Y, Zhu B, Oliveria JP, Cannon BJ, Feyaerts D, Bosse M, Vijayaragavan K, Greenwald NF, Phillips D, Schürch CM, Naik SM, Ganio EA, Gaudilliere B, Rodig SJ, Miller MB, Angelo M, Bendall SC, Rovira-Clavé X, Nolan GP, Jiang S. Expanded vacuum-stable gels for multiplexed high-resolution spatial histopathology. Nat Commun 2023; 14:4013. [PMID: 37419873 PMCID: PMC10329015 DOI: 10.1038/s41467-023-39616-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/16/2023] [Indexed: 07/09/2023] Open
Abstract
Cellular organization and functions encompass multiple scales in vivo. Emerging high-plex imaging technologies are limited in resolving subcellular biomolecular features. Expansion Microscopy (ExM) and related techniques physically expand samples for enhanced spatial resolution, but are challenging to be combined with high-plex imaging technologies to enable integrative multiscaled tissue biology insights. Here, we introduce Expand and comPRESS hydrOgels (ExPRESSO), an ExM framework that allows high-plex protein staining, physical expansion, and removal of water, while retaining the lateral tissue expansion. We demonstrate ExPRESSO imaging of archival clinical tissue samples on Multiplexed Ion Beam Imaging and Imaging Mass Cytometry platforms, with detection capabilities of > 40 markers. Application of ExPRESSO on archival human lymphoid and brain tissues resolved tissue architecture at the subcellular level, particularly that of the blood-brain barrier. ExPRESSO hence provides a platform for extending the analysis compatibility of hydrogel-expanded biospecimens to mass spectrometry, with minimal modifications to protocols and instrumentation.
Collapse
Affiliation(s)
- Yunhao Bai
- Department of Pathology, Stanford University, Stanford, CA, USA
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Bokai Zhu
- Department of Pathology, Stanford University, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - John-Paul Oliveria
- Department of Translational Medicine, Genentech, Inc., South San Francisco, CA, USA
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Bryan J Cannon
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Dorien Feyaerts
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, USA
| | - Marc Bosse
- Department of Pathology, Stanford University, Stanford, CA, USA
| | | | | | - Darci Phillips
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Christian M Schürch
- Department of Pathology, Stanford University, Stanford, CA, USA
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany
| | - Samuel M Naik
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Edward A Ganio
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, USA
| | - Brice Gaudilliere
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, USA
| | - Scott J Rodig
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael B Miller
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Michael Angelo
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Sean C Bendall
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Xavier Rovira-Clavé
- Department of Pathology, Stanford University, Stanford, CA, USA.
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA.
| | - Garry P Nolan
- Department of Pathology, Stanford University, Stanford, CA, USA.
| | - Sizun Jiang
- Department of Pathology, Stanford University, Stanford, CA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA.
- Department of Pathology, Dana Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
41
|
Piga I, L'Imperio V, Capitoli G, Denti V, Smith A, Magni F, Pagni F. Paving the path toward multi-omics approaches in the diagnostic challenges faced in thyroid pathology. Expert Rev Proteomics 2023; 20:419-437. [PMID: 38000782 DOI: 10.1080/14789450.2023.2288222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/22/2023] [Indexed: 11/26/2023]
Abstract
INTRODUCTION Despite advancements in diagnostic methods, the classification of indeterminate thyroid nodules still poses diagnostic challenges not only in pre-surgical evaluation but even after histological evaluation of surgical specimens. Proteomics, aided by mass spectrometry and integrated with artificial intelligence and machine learning algorithms, shows great promise in identifying diagnostic markers for thyroid lesions. AREAS COVERED This review provides in-depth exploration of how proteomics has contributed to the understanding of thyroid pathology. It discusses the technical advancements related to immunohistochemistry, genetic and proteomic techniques, such as mass spectrometry, which have greatly improved sensitivity and spatial resolution up to single-cell level. These improvements allowed the identification of specific protein signatures associated with different types of thyroid lesions. EXPERT COMMENTARY Among all the proteomics approaches, spatial proteomics stands out due to its unique ability to capture the spatial context of proteins in both cytological and tissue thyroid samples. The integration of multi-layers of molecular information combining spatial proteomics, genomics, immunohistochemistry or metabolomics and the implementation of artificial intelligence and machine learning approaches, represent hugely promising steps forward toward the possibility to uncover intricate relationships and interactions among various molecular components, providing a complete picture of the biological landscape whilst fostering thyroid nodule diagnosis.
Collapse
Affiliation(s)
- Isabella Piga
- Department of Medicine and Surgery, Clinical Proteomics and Metabolomics Unit, University of Milano - Bicocca, Monza, Italy
| | - Vincenzo L'Imperio
- Department of Medicine and Surgery, Pathology, Fondazione IRCCS San Gerardo dei Tintori, University of Milan-Bicocca, Monza, Italy
| | - Giulia Capitoli
- Department of Medicine and Surgery, Bicocca Bioinformatics Biostatistics and Bioimaging B4 Center, University of Milan - Bicocca (UNIMIB), Monza, Italy
| | - Vanna Denti
- Department of Medicine and Surgery, Clinical Proteomics and Metabolomics Unit, University of Milano - Bicocca, Monza, Italy
| | - Andrew Smith
- Department of Medicine and Surgery, Clinical Proteomics and Metabolomics Unit, University of Milano - Bicocca, Monza, Italy
| | - Fulvio Magni
- Department of Medicine and Surgery, Clinical Proteomics and Metabolomics Unit, University of Milano - Bicocca, Monza, Italy
| | - Fabio Pagni
- Department of Medicine and Surgery, Pathology, Fondazione IRCCS San Gerardo dei Tintori, University of Milan-Bicocca, Monza, Italy
| |
Collapse
|
42
|
Chan YH, Pathmasiri KC, Pierre-Jacques D, Cologna SM, Gao R. Gel-assisted mass spectrometry imaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.02.543480. [PMID: 37398444 PMCID: PMC10312618 DOI: 10.1101/2023.06.02.543480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Compatible with label-free detection and quantification, mass spectrometry imaging (MSI) is a powerful tool for spatial investigation of biomolecules in intact specimens. Yet, the spatial resolution of MSI is limited by the method's physical and instrumental constraints, which often preclude it from single-cell and subcellular applications. By taking advantage of the reversible interaction of analytes with superabsorbent hydrogels, we developed a sample preparation and imaging workflow named Gel-Assisted Mass Spectrometry Imaging (GAMSI) to overcome these limits. With GAMSI, the spatial resolution of lipid and protein MALDI-MSI can be enhanced severalfold without changing the existing mass spectrometry hardware and analysis pipeline. This approach will further enhance the accessibility to (sub)cellular-scale MALDI-MSI-based spatial omics.
Collapse
Affiliation(s)
- Yat Ho Chan
- Department of Chemistry, University of Illinois Chicago; Chicago, IL 60607, USA
| | | | | | - Stephanie M. Cologna
- Department of Chemistry, University of Illinois Chicago; Chicago, IL 60607, USA
- Laboratory for Integrative Neuroscience, University of Illinois at Chicago; Chicago, IL 60607, USA
| | - Ruixuan Gao
- Department of Chemistry, University of Illinois Chicago; Chicago, IL 60607, USA
- Laboratory for Integrative Neuroscience, University of Illinois at Chicago; Chicago, IL 60607, USA
- Department of Biological Sciences, University of Illinois Chicago; Chicago, IL 60607, USA
| |
Collapse
|
43
|
Brožová K, Hantusch B, Kenner L, Kratochwill K. Spatial Proteomics for the Molecular Characterization of Breast Cancer. Proteomes 2023; 11:17. [PMID: 37218922 PMCID: PMC10204503 DOI: 10.3390/proteomes11020017] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/30/2023] [Accepted: 04/23/2023] [Indexed: 05/24/2023] Open
Abstract
Breast cancer (BC) is a major global health issue, affecting a significant proportion of the female population and contributing to high rates of mortality. One of the primary challenges in the treatment of BC is the disease's heterogeneity, which can lead to ineffective therapies and poor patient outcomes. Spatial proteomics, which involves the study of protein localization within cells, offers a promising approach for understanding the biological processes that contribute to cellular heterogeneity within BC tissue. To fully leverage the potential of spatial proteomics, it is critical to identify early diagnostic biomarkers and therapeutic targets, and to understand protein expression levels and modifications. The subcellular localization of proteins is a key factor in their physiological function, making the study of subcellular localization a major challenge in cell biology. Achieving high resolution at the cellular and subcellular level is essential for obtaining an accurate spatial distribution of proteins, which in turn can enable the application of proteomics in clinical research. In this review, we present a comparison of current methods of spatial proteomics in BC, including untargeted and targeted strategies. Untargeted strategies enable the detection and analysis of proteins and peptides without a predetermined molecular focus, whereas targeted strategies allow the investigation of a predefined set of proteins or peptides of interest, overcoming the limitations associated with the stochastic nature of untargeted proteomics. By directly comparing these methods, we aim to provide insights into their strengths and limitations and their potential applications in BC research.
Collapse
Affiliation(s)
- Klára Brožová
- Core Facility Proteomics, Medical University of Vienna, 1090 Vienna, Austria
- Department of Pathology, Medical University of Vienna, 1090 Vienna, Austria
- Division of Molecular and Structural Preclinical Imaging, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1210 Vienna, Austria
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine, 1090 Vienna, Austria
| | - Brigitte Hantusch
- Department of Pathology, Medical University of Vienna, 1090 Vienna, Austria
| | - Lukas Kenner
- Department of Pathology, Medical University of Vienna, 1090 Vienna, Austria
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine, 1090 Vienna, Austria
- CBmed GmbH—Center for Biomarker Research in Medicine, 8010 Graz, Austria
- Christian Doppler Laboratory for Applied Metabolomics, Medical University of Vienna, 1090 Vienna, Austria
| | - Klaus Kratochwill
- Core Facility Proteomics, Medical University of Vienna, 1090 Vienna, Austria
- Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, 1090 Vienna, Austria
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
44
|
Yang M, Unsihuay D, Hu H, Meke FN, Qu Z, Zhang ZY, Laskin J. Nano-DESI Mass Spectrometry Imaging of Proteoforms in Biological Tissues with High Spatial Resolution. Anal Chem 2023; 95:5214-5222. [PMID: 36917636 PMCID: PMC11330692 DOI: 10.1021/acs.analchem.2c04795] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Mass spectrometry imaging (MSI) is a powerful tool for label-free mapping of the spatial distribution of proteins in biological tissues. We have previously demonstrated imaging of individual proteoforms in biological tissues using nanospray desorption electrospray ionization (nano-DESI), an ambient liquid extraction-based MSI technique. Nano-DESI MSI generates multiply charged protein ions, which is advantageous for their identification using top-down proteomics analysis. In this study, we demonstrate proteoform mapping in biological tissues with a spatial resolution down to 7 μm using nano-DESI MSI. A substantial decrease in protein signals observed in high-spatial-resolution MSI makes these experiments challenging. We have enhanced the sensitivity of nano-DESI MSI experiments by optimizing the design of the capillary-based probe and the thickness of the tissue section. In addition, we demonstrate that oversampling may be used to further improve spatial resolution at little or no expense to sensitivity. These developments represent a new step in MSI-based spatial proteomics, which complements targeted imaging modalities widely used for studying biological systems.
Collapse
Affiliation(s)
- Manxi Yang
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Daisy Unsihuay
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Hang Hu
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Frederick Nguele Meke
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA
| | - Zihan Qu
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA
| | - Zhong-Yin Zhang
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA
| | - Julia Laskin
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
45
|
Zhang H, Delafield DG, Li L. Mass spectrometry imaging: the rise of spatially resolved single-cell omics. Nat Methods 2023; 20:327-330. [PMID: 36899158 DOI: 10.1038/s41592-023-01774-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Affiliation(s)
- Hua Zhang
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Daniel G Delafield
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA.
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| |
Collapse
|
46
|
McDowell CT, Lu X, Mehta AS, Angel PM, Drake RR. Applications and continued evolution of glycan imaging mass spectrometry. MASS SPECTROMETRY REVIEWS 2023; 42:674-705. [PMID: 34392557 PMCID: PMC8946722 DOI: 10.1002/mas.21725] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/16/2021] [Accepted: 08/03/2021] [Indexed: 05/03/2023]
Abstract
Glycosylation is an important posttranslational modifier of proteins and lipid conjugates critical for the stability and function of these macromolecules. Particularly important are N-linked glycans attached to asparagine residues in proteins. N-glycans have well-defined roles in protein folding, cellular trafficking and signal transduction, and alterations to them are implicated in a variety of diseases. However, the non-template driven biosynthesis of these N-glycans leads to significant structural diversity, making it challenging to identify the most biologically and clinically relevant species using conventional analyses. Advances in mass spectrometry instrumentation and data acquisition, as well as in enzymatic and chemical sample preparation strategies, have positioned mass spectrometry approaches as powerful analytical tools for the characterization of glycosylation in health and disease. Imaging mass spectrometry expands upon these strategies by capturing the spatial component of a glycan's distribution in-situ, lending additional insight into the organization and function of these molecules. Herein we review the ongoing evolution of glycan imaging mass spectrometry beginning with widely adopted tissue imaging approaches and expanding to other matrices and sample types with potential research and clinical implications. Adaptations of these techniques, along with their applications to various states of disease, are discussed. Collectively, glycan imaging mass spectrometry analyses broaden our understanding of the biological and clinical relevance of N-glycosylation to human disease.
Collapse
Affiliation(s)
- Colin T. McDowell
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Xiaowei Lu
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Anand S. Mehta
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Peggi M. Angel
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Richard R. Drake
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| |
Collapse
|
47
|
Claes BR, Krestensen KK, Yagnik G, Grgic A, Kuik C, Lim MJ, Rothschild KJ, Vandenbosch M, Heeren RMA. MALDI-IHC-Guided In-Depth Spatial Proteomics: Targeted and Untargeted MSI Combined. Anal Chem 2023; 95:2329-2338. [PMID: 36638208 PMCID: PMC9893213 DOI: 10.1021/acs.analchem.2c04220] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Recently, a novel technology was published, utilizing the strengths of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) and immunohistochemistry (IHC), achieving highly multiplexed, targeted imaging of biomolecules in tissue. This new technique, called MALDI-IHC, opened up workflows to target molecules of interest using MALDI-MSI that are usually targeted by standard IHC. In this paper, the utility of targeted MALDI-IHC and its complementarity with untargeted on-tissue bottom-up spatial proteomics is explored using breast cancer tissue. Furthermore, the MALDI-2 effect was investigated and demonstrated to improve MALDI-IHC. Formalin-fixed paraffin-embedded (FFPE) human breast cancer tissue sections were stained for multiplex MALDI-IHC with six photocleavable mass-tagged (PC-MT) antibodies constituting a breast cancer antibody panel (CD20, actin-αSM, HER2, CD68, vimentin, and panCK). K-means spatial clusters were created based on the MALDI-IHC images and cut out using laser-capture microdissection (LMD) for further untargeted LC-MS-based bottom-up proteomics analyses. Numerous peptides could be tentatively assigned to multiple proteins, of which three proteins were also part of the antibody panel (vimentin, keratins, and actin). Post-ionization with MALDI-2 showed an increased intensity of the PC-MTs and suggests options for the development of new mass-tags. Although the on-tissue digestion covered a wider range of proteins, the MALDI-IHC allowed for easy and straightforward identification of proteins that were not detected in untargeted approaches. The combination of the multiplexed MALDI-IHC with image-guided proteomics showed great potential to further investigate diseases by providing complementary information from the same tissue section and without the need for customized instrumentation.
Collapse
Affiliation(s)
- Britt
S. R. Claes
- The
Maastricht MultiModal Molecular Imaging (M4I) institute, Division
of Imaging Mass Spectrometry (IMS), Maastricht
University, 6229 ER Maastricht, The Netherlands
| | - Kasper K. Krestensen
- The
Maastricht MultiModal Molecular Imaging (M4I) institute, Division
of Imaging Mass Spectrometry (IMS), Maastricht
University, 6229 ER Maastricht, The Netherlands
| | - Gargey Yagnik
- AmberGen,
Inc., 44 Manning Road, Billerica, Massachusetts 01821, United States
| | - Andrej Grgic
- The
Maastricht MultiModal Molecular Imaging (M4I) institute, Division
of Imaging Mass Spectrometry (IMS), Maastricht
University, 6229 ER Maastricht, The Netherlands
| | - Christel Kuik
- The
Maastricht MultiModal Molecular Imaging (M4I) institute, Division
of Imaging Mass Spectrometry (IMS), Maastricht
University, 6229 ER Maastricht, The Netherlands
| | - Mark J. Lim
- AmberGen,
Inc., 44 Manning Road, Billerica, Massachusetts 01821, United States
| | - Kenneth J. Rothschild
- AmberGen,
Inc., 44 Manning Road, Billerica, Massachusetts 01821, United States,Molecular
Biophysics Laboratory, Department of Physics and Photonics Center, Boston University, Boston, Massachusetts 02215, United States
| | - Michiel Vandenbosch
- The
Maastricht MultiModal Molecular Imaging (M4I) institute, Division
of Imaging Mass Spectrometry (IMS), Maastricht
University, 6229 ER Maastricht, The Netherlands
| | - Ron M. A. Heeren
- The
Maastricht MultiModal Molecular Imaging (M4I) institute, Division
of Imaging Mass Spectrometry (IMS), Maastricht
University, 6229 ER Maastricht, The Netherlands,
| |
Collapse
|
48
|
Lim MJ, Yagnik G, Henkel C, Frost SF, Bien T, Rothschild KJ. MALDI HiPLEX-IHC: multiomic and multimodal imaging of targeted intact proteins in tissues. Front Chem 2023; 11:1182404. [PMID: 37201132 PMCID: PMC10187789 DOI: 10.3389/fchem.2023.1182404] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/14/2023] [Indexed: 05/20/2023] Open
Abstract
Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) is one of the most widely used methods for imaging the spatial distribution of unlabeled small molecules such as metabolites, lipids and drugs in tissues. Recent progress has enabled many improvements including the ability to achieve single cell spatial resolution, 3D-tissue image reconstruction, and the precise identification of different isomeric and isobaric molecules. However, MALDI-MSI of high molecular weight intact proteins in biospecimens has thus far been difficult to achieve. Conventional methods normally require in situ proteolysis and peptide mass fingerprinting, have low spatial resolution, and typically detect only the most highly abundant proteins in an untargeted manner. In addition, MSI-based multiomic and multimodal workflows are needed which can image both small molecules and intact proteins from the same tissue. Such a capability can provide a more comprehensive understanding of the vast complexity of biological systems at the organ, tissue, and cellular levels of both normal and pathological function. A recently introduced top-down spatial imaging approach known as MALDI HiPLEX-IHC (MALDI-IHC for short) provides a basis for achieving this high-information content imaging of tissues and even individual cells. Based on novel photocleavable mass-tags conjugated to antibody probes, high-plex, multimodal and multiomic MALDI-based workflows have been developed to image both small molecules and intact proteins on the same tissue sample. Dual-labeled antibody probes enable multimodal mass spectrometry and fluorescent imaging of targeted intact proteins. A similar approach using the same photocleavable mass-tags can be applied to lectin and other probes. We detail here several examples of MALDI-IHC workflows designed to enable high-plex, multiomic and multimodal imaging of tissues at a spatial resolution as low as 5 µm. This approach is compared to other existing high-plex methods such as imaging mass cytometry, MIBI-TOF, GeoMx and CODEX. Finally, future applications of MALDI-IHC are discussed.
Collapse
Affiliation(s)
- Mark J. Lim
- AmberGen, Inc., Billerica, MA, United States
- *Correspondence: Mark J. Lim, ; Kenneth J. Rothschild,
| | | | | | | | - Tanja Bien
- Bruker Daltonics GmbH & Co. KG, Bremen, Germany
| | - Kenneth J. Rothschild
- AmberGen, Inc., Billerica, MA, United States
- Department of Physics and Photonics Center, Boston University, Boston, MA, United States
- *Correspondence: Mark J. Lim, ; Kenneth J. Rothschild,
| |
Collapse
|
49
|
Clench MR, Cole LM. Perspective: Mass Spectrometry Imaging - The Next 5 Years. Methods Mol Biol 2023; 2688:203-210. [PMID: 37410295 DOI: 10.1007/978-1-0716-3319-9_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
In order to achieve even more widespread adoption over the next 5 years, a number of issues in mass spectrometry imaging need to be addressed. These are non-observation of compounds (due to ionization suppression), sample throughput, imaging of low-abundant species, and how to extract information from the large volumes of data generated. In this article, how current research indicates that these issues will be resolved along with potential application areas that MSI could look to exploit is discussed.
Collapse
Affiliation(s)
- Malcolm R Clench
- Centre for Mass Spectrometry Imaging, Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK.
| | - Laura M Cole
- Centre for Mass Spectrometry Imaging, Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| |
Collapse
|
50
|
Proteomics-Based Identification of Dysregulated Proteins in Breast Cancer. Proteomes 2022; 10:proteomes10040035. [PMID: 36278695 PMCID: PMC9590004 DOI: 10.3390/proteomes10040035] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/10/2022] [Accepted: 10/18/2022] [Indexed: 11/18/2022] Open
Abstract
Immunohistochemistry (IHC) is still widely used as a morphology-based assay for in situ analysis of target proteins as specific tumor antigens. However, as a very heterogeneous collection of neoplastic diseases, breast cancer (BC) requires an accurate identification and characterization of larger panels of candidate biomarkers, beyond ER, PR, and HER2 proteins, for diagnosis and personalized treatment, without the limited availability of antibodies that are required to identify specific proteins. Top-down, middle-down, and bottom-up mass spectrometry (MS)-based proteomics approaches complement traditional histopathological tissue analysis to examine expression, modification, and interaction of hundreds to thousands of proteins simultaneously. In this review, we discuss the proteomics-based identification of dysregulated proteins in BC that are essential for the following issues: discovery and validation of new biomarkers by analysis of solid and liquid/non-invasive biopsies, cell lines, organoids and xenograft models; identification of panels of biomarkers for early detection and accurate discrimination between cancer, benign and normal tissues; identification of subtype-specific and stage-specific protein expression profiles in BC grading and measurement of disease progression; characterization of new subtypes of BC; characterization and quantitation of post-translational modifications (PTMs) and aberrant protein-protein interactions (PPI) involved in tumor development; characterization of the global remodeling of BC tissue homeostasis, diagnosis and prognostic information; and deciphering of molecular functions, biological processes and mechanisms through which the dysregulated proteins cause tumor initiation, invasion, and treatment resistance.
Collapse
|