1
|
Lasalo M, Jauffrais T, Georgel P, Matsui M. Marine Microorganism Molecules as Potential Anti-Inflammatory Therapeutics. Mar Drugs 2024; 22:405. [PMID: 39330286 PMCID: PMC11433570 DOI: 10.3390/md22090405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 09/28/2024] Open
Abstract
The marine environment represents a formidable source of biodiversity, is still largely unexplored, and has high pharmacological potential. Indeed, several bioactive marine natural products (MNPs), including immunomodulators, have been identified in the past decades. Here, we review how this reservoir of bioactive molecules could be mobilized to develop novel anti-inflammatory compounds specially produced by or derived from marine microorganisms. After a detailed description of the MNPs exerting immunomodulatory potential and their biological target, we will briefly discuss the challenges associated with discovering anti-inflammatory compounds from marine microorganisms.
Collapse
Affiliation(s)
- Malia Lasalo
- Group Bioactivities of Natural Compounds and Derivatives (BIONA), Institut Pasteur of New Caledonia, Member of the Pasteur Network, Noumea 98845, New Caledonia;
| | - Thierry Jauffrais
- Ifremer, Institut de Recherche pour le Développement (IRD), Centre Nationale de la Recherche Scientifique (CNRS), Université de la Réunion, Université de la Nouvelle-Calédonie, UMR 9220 ENTROPIE, 101 Promenade Roger Laroque, Noumea 98897, New Caledonia;
| | - Philippe Georgel
- Team Neuroimmunology and Peptide Therapy, Biotechnologie et Signalisation Cellulaire, UMR 7242, University of Strasbourg, 67085 Strasbourg, France;
| | - Mariko Matsui
- Group Bioactivities of Natural Compounds and Derivatives (BIONA), Institut Pasteur of New Caledonia, Member of the Pasteur Network, Noumea 98845, New Caledonia;
| |
Collapse
|
2
|
Liao W, Chen Y, Shan S, Chen Z, Wen Y, Chen W, Zhao C. Marine algae-derived characterized bioactive compounds as therapy for cancer: A review on their classification, mechanism of action, and future perspectives. Phytother Res 2024. [PMID: 38895929 DOI: 10.1002/ptr.8240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 06/21/2024]
Abstract
In 2022, there were around 20 million new cases and over 9.7 million cancer-related deaths worldwide. An increasing number of metabolites with anticancer activity in algae had been isolated and identified, which were promising candidates for cancer therapy. Red algae are well-known for the production of brominated metabolites, including terpenoids and phenols, which have the capacity to induce cell toxicity. Some non-toxic biological macromolecules, including polysaccharides, are distinct secondary metabolites found in many algae, particularly green algae. They possess anticancer activities by inhibiting tumor angiogenesis, stimulating the immune response, and inducing apoptosis. However, the structure-activity relationship between these components and antitumor activity, as well as certain taxa within the algae, remains relatively unstudied. This work is based on the reports published from 2003 to 2024 in PubMed and ISI Web of Science databases. A comprehensive review of the characterized algal anticancer active compounds, together with their structure and mechanism of action was performed. Also, their structure-activity relationship was preliminarily summarized to better assess their potential properties as a natural, safe bioactive product to be used as an alternative for the treatment of cancers, leading to new opportunities for drug discovery.
Collapse
Affiliation(s)
- Wei Liao
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yaobin Chen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuo Shan
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Zhengxin Chen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuxi Wen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Weichao Chen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chao Zhao
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
3
|
Corporeau C, Le Foll C, Cruciani-Guglielmacci C, Le Stunff H, Mithieux G, Magnan C, Delarue J. Fish oil minimises feed intake and improves insulin sensitivity in Zucker fa/fa rats. Br J Nutr 2024; 131:749-761. [PMID: 37877265 DOI: 10.1017/s0007114523002404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Long-chain n-3 PUFA (LC n-3 PUFA) prevent, in rodents, insulin resistance (IR) induced by a high-fat and/or fructose diet but not IR induced by glucocorticoids. In humans, contrasting effects have also been reported. We investigated their effects on insulin sensitivity, feed intake (FI) and body weight gain in genetically insulin resistant male obese (fa/fa) Zucker (ZO) rats during the development of obesity. ZO rats were fed a diet supplemented with 7 % fish oil (FO) + 1 % corn oil (CO) (wt/wt) (ZOFO), while the control group was fed a diet containing 8 % fat from CO (wt/wt) (ZOCO). Male lean Zucker (ZL) rats fed either FO (ZLFO) or CO (ZLCO) diet were used as controls. FO was a marine-derived TAG oil containing EPA 90 mg/g + DHA 430 mg/g. During an oral glucose tolerance test, glucose tolerance remained unaltered by FO while insulin response was reduced in ZOFO only. Liver insulin sensitivity (euglycaemic-hyperinsulinaemic clamp + 2 deoxyglucose) was improved in ZOFO rats, linked to changes in phosphoenolpyruvate carboxykinase expression, activity and glucose-6-phosphatase activity. FI in response to intra-carotid insulin/glucose infusion was decreased similarly in ZOFO and ZOCO. Hypothalamic ceramides levels were lower in ZOFO than in ZOCO. Our study demonstrates that LC n-3 PUFA can minimise weight gain, possibly by alleviating hypothalamic lipotoxicity, and liver IR in genetically obese Zucker rats.
Collapse
Affiliation(s)
- Charlotte Corporeau
- Department of Nutritional Sciences, Hospital University, Faculty of Medicine, University of Brest, Plouzané, France
- Present address: Ifremer, University of Brest, CNRS, IRD, LEMAR, F-29280 Plouzané, France
| | - Christelle Le Foll
- Department of Nutritional Sciences, Hospital University, Faculty of Medicine, University of Brest, Plouzané, France
- Present address: Institute of Veterinary Physiology, University of Zurich, CH-8057, Zurich, Switzerland
| | | | - Hervé Le Stunff
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
- Present address: Institut des Neurosciences Paris-Saclay-Université Paris-Saclay-CNRS UMR 9197, Gif-sur-Yvette, France
| | - Gilles Mithieux
- Inserm, U855, Lyon, F-69008, France
- University Lyon 1, Villeurbanne, F-69622, France
- University of Lyon, Lyon, F-69008, France
| | - Christophe Magnan
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | - Jacques Delarue
- Department of Nutritional Sciences, ER7479 SPURBO, Hospital University, Faculty of Medicine University of Brest, Plouzane, France
| |
Collapse
|
4
|
Conde T, Neves B, Couto D, Melo T, Lopes D, Pais R, Batista J, Cardoso H, Silva JL, Domingues P, Domingues MR. Polar Lipids of Marine Microalgae Nannochloropsis oceanica and Chlorococcum amblystomatis Mitigate the LPS-Induced Pro-Inflammatory Response in Macrophages. Mar Drugs 2023; 21:629. [PMID: 38132950 PMCID: PMC10745121 DOI: 10.3390/md21120629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/23/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
Microalgae are recognized as a relevant source of bioactive compounds. Among these bioactive products, lipids, mainly glycolipids, have been shown to present immunomodulatory properties with the potential to mitigate chronic inflammation. This study aimed to evaluate the anti-inflammatory effect of polar lipids isolated from Nannochloropsis oceanica and Chlorococcum amblystomatis. Three fractions enriched in (1) digalactosyldiacylglycerol (DGDG) and sulfoquinovosyldiacylglycerol (SQDG), (2) monogalactosyldiacylglycerol (MGDG), and (3) diacylglyceryl-trimethylhomoserine (DGTS) and phospholipids (PL) were obtained from the total lipid extracts (TE) of N. oceanica and C. amblystomatis, and their anti-inflammatory effect was assessed by analyzing their capacity to counteract nitric oxide (NO) production and transcription of pro-inflammatory genes Nos2, Ptgs2, Tnfa, and Il1b in lipopolysaccharide (LPS)-activated macrophages. For both microalgae, TE and Fractions 1 and 3 strongly inhibited NO production, although to different extents. A strong reduction in the LPS-induced transcription of Nos2, Ptgs2, Tnfa, and Il1b was observed for N. oceanica and C. amblystomatis lipids. The most active fractions were the DGTS-and-PL-enriched fraction from N. oceanica and the DGDG-and-SQDG-enriched fraction from C. amblystomatis. Our results reveal that microalgae lipids have strong anti-inflammatory capacity and may be explored as functional ingredients or nutraceuticals, offering a natural solution to tackle chronic inflammation-associated diseases.
Collapse
Affiliation(s)
- Tiago Conde
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (D.C.); (T.M.); (R.P.); (J.B.)
- CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (D.L.); (P.D.)
- Department of Medical Sciences and Institute of Biomedicine—iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Bruno Neves
- Department of Medical Sciences and Institute of Biomedicine—iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Daniela Couto
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (D.C.); (T.M.); (R.P.); (J.B.)
- CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (D.L.); (P.D.)
| | - Tânia Melo
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (D.C.); (T.M.); (R.P.); (J.B.)
- CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (D.L.); (P.D.)
| | - Diana Lopes
- CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (D.L.); (P.D.)
| | - Rita Pais
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (D.C.); (T.M.); (R.P.); (J.B.)
| | - Joana Batista
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (D.C.); (T.M.); (R.P.); (J.B.)
| | - Helena Cardoso
- R&D Department, Allmicroalgae—Natural Products S.A., Rua 25 de Abril s/n, 2445-413 Pataias, Portugal; (H.C.); (J.L.S.)
| | - Joana Laranjeira Silva
- R&D Department, Allmicroalgae—Natural Products S.A., Rua 25 de Abril s/n, 2445-413 Pataias, Portugal; (H.C.); (J.L.S.)
| | - Pedro Domingues
- CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (D.L.); (P.D.)
| | - M. Rosário Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (D.C.); (T.M.); (R.P.); (J.B.)
- CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (D.L.); (P.D.)
| |
Collapse
|
5
|
Stasiewicz A, Conde T, Gęgotek A, Domingues MR, Domingues P, Skrzydlewska E. Prevention of UVB Induced Metabolic Changes in Epidermal Cells by Lipid Extract from Microalgae Nannochloropsis oceanica. Int J Mol Sci 2023; 24:11302. [PMID: 37511067 PMCID: PMC10379835 DOI: 10.3390/ijms241411302] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/02/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
The exposure of skin cells to UV radiation leads to redox imbalances and inflammation. The present study investigates a lipid extract obtained from the microalga Nannochloropsis oceanica as a potential protector against UVB-induced disturbances in human keratinocytes. The findings of this study show that the Nannochloropsis oceanica extract significantly inhibits UVB-induced cell death while concurrently decreasing the activity of pro-oxidative enzymes (xanthine and NADPH oxidase) and reducing the levels of ROS. Furthermore, the extract augments the activity of antioxidant enzymes (superoxide dismutases and catalase), as well as glutathione/thioredoxin-dependent systems in UVB-irradiated cells. The expression of Nrf2 factor activators (p62, KAP1, p38) was significantly elevated, while no impact was observed on Nrf2 inhibitors (Keap1, Bach1). The antioxidant activity of the extract was accompanied by the silencing of overexpressed membrane transporters caused by UVB radiation. Furthermore, the Nannochloropsis oceanica extract exhibited anti-inflammatory effects in UVB-irradiated keratinocytes by decreasing the levels of TNFα, 8-iso prostaglandin F2, and 4-HNE-protein adducts. In conclusion, the lipid components of Nannochloropsis oceanica extract effectively prevent the pro-oxidative and pro-inflammatory effects of UVB radiation in keratinocytes, thereby stabilizing the natural metabolism of skin cells.
Collapse
Affiliation(s)
- Anna Stasiewicz
- Department of Analytical Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-069 Bialystok, Poland
| | - Tiago Conde
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
- CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Agnieszka Gęgotek
- Department of Analytical Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-069 Bialystok, Poland
| | - Maria Rosário Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
- CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Pedro Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-069 Bialystok, Poland
| |
Collapse
|
6
|
Tagliapietra BL, Clerici MTPS. Brown algae and their multiple applications as functional ingredient in food production. Food Res Int 2023; 167:112655. [PMID: 37087243 DOI: 10.1016/j.foodres.2023.112655] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 02/20/2023] [Accepted: 02/25/2023] [Indexed: 03/09/2023]
Abstract
Brown algae are considered one of the resources that can contribute to transforming our global food system by promoting healthier diets and reducing environmental impact. In this sense, this review article aims to provide up-to-date information on the nutritional and functional improvement of brown algae when they are applied to different food matrices. Brown algae present sulfated polysaccharides (alginates, fucoidans, and laminarins), proteins, minerals, vitamins, dietary fibers, fatty acids, pigments, and bioactive compounds that can positively contribute to the development of highly nutritious food products, as well as used reformulate products already existing, to remove, reduce, increase, add and/or replace different components and obtain products that confer health-promoting properties. This review demonstrates that there is a tendency to use seaweed for the production of functional foods and that the number of commercially produced products from seaweed is increasing, that is, seaweed is a sector whose global market is expanding.
Collapse
Affiliation(s)
- Bruna Lago Tagliapietra
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Cidade Universitária Zeferino Vaz, 80th Monteiro Lobato Street, CEP 13.083-870 Campinas, São Paulo, Brazil.
| | - Maria Teresa Pedrosa Silva Clerici
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Cidade Universitária Zeferino Vaz, 80th Monteiro Lobato Street, CEP 13.083-870 Campinas, São Paulo, Brazil.
| |
Collapse
|
7
|
Montuori E, Capalbo A, Lauritano C. Marine Compounds for Melanoma Treatment and Prevention. Int J Mol Sci 2022; 23:10284. [PMID: 36142196 PMCID: PMC9499452 DOI: 10.3390/ijms231810284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/11/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Melanoma is considered a multifactorial disease etiologically divided into melanomas related to sun exposure and those that are not, but also based on their mutational signatures, anatomic site, and epidemiology. The incidence of melanoma skin cancer has been increasing over the past decades with 132,000 cases occurring globally each year. Marine organisms have been shown to be an excellent source of natural compounds with possible bioactivities for human health applications. In this review, we report marine compounds from micro- and macro-organisms with activities in vitro and in vivo against melanoma, including the compound Marizomib, isolated from a marine bacterium, currently in phase III clinical trials for melanoma. When available, we also report active concentrations, cellular targets and mechanisms of action of the mentioned molecules. In addition, compounds used for UV protection and melanoma prevention from marine sources are discussed. This paper gives an overview of promising marine molecules which can be studied more deeply before clinical trials in the near future.
Collapse
Affiliation(s)
- Eleonora Montuori
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Acton 55, 80133 Napoli, Italy
| | - Anita Capalbo
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Acton 55, 80133 Napoli, Italy
| | - Chiara Lauritano
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Acton 55, 80133 Napoli, Italy
| |
Collapse
|
8
|
Shiels K, Tsoupras A, Lordan R, Zabetakis I, Murray P, Kumar Saha S. Anti-inflammatory and antithrombotic properties of polar lipid extracts, rich in unsaturated fatty acids, from the Irish marine cyanobacterium Spirulina subsalsa. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
9
|
A comprehensive review on natural occurrence, synthesis and biological activities of glycolipids. Carbohydr Res 2022; 516:108556. [DOI: 10.1016/j.carres.2022.108556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/30/2022] [Accepted: 04/05/2022] [Indexed: 01/10/2023]
|
10
|
Algal Lipids as Modulators of Skin Disease: A Critical Review. Metabolites 2022; 12:metabo12020096. [PMID: 35208171 PMCID: PMC8877676 DOI: 10.3390/metabo12020096] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 02/05/2023] Open
Abstract
The prevalence of inflammatory skin diseases continues to increase with a high incidence in children and adults. These diseases are triggered by environmental factors, such as UV radiation, certain chemical compounds, infectious agents, and in some cases, people with a genetic predisposition. The pathophysiology of inflammatory skin diseases such as psoriasis or atopic dermatitis, but also of skin cancers, is the result of the activation of inflammation-related metabolic pathways and the overproduction of pro-inflammatory cytokines observed in in vitro and in vivo studies. Inflammatory skin diseases are also associated with oxidative stress, overproduction of ROS, and impaired antioxidant defense, which affects the metabolism of immune cells and skin cells (keratinocytes and fibroblasts) in systemic and skin disorders. Lipids from algae have been scarcely applied to modulate skin diseases, but they are well known antioxidant and anti-inflammatory agents. They have shown scavenging activities and can modulate redox homeostasis enzymes. They can also downmodulate key inflammatory signaling pathways and transcription factors such as NF-κB, decreasing the expression of pro-inflammatory mediators. Thus, the exploitation of algae lipids as therapeutical agents for the treatment of inflammatory skin diseases is highly attractive, being critically reviewed in the present work.
Collapse
|
11
|
Januário AP, Félix R, Félix C, Reboleira J, Valentão P, Lemos MFL. Red Seaweed-Derived Compounds as a Potential New Approach for Acne Vulgaris Care. Pharmaceutics 2021; 13:pharmaceutics13111930. [PMID: 34834345 PMCID: PMC8623078 DOI: 10.3390/pharmaceutics13111930] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022] Open
Abstract
Acne vulgaris (AV) is a chronic skin disease of the pilosebaceous unit affecting both adolescents and adults. Its pathophysiology includes processes of inflammation, increased keratinization, sebum production, hormonal dysregulation, and bacterial Cutibacterium acnes proliferation. Common AV has been treated with antibiotics since the 1960s, but strain resistance has emerged and is of paramount concern. Macroalgae are known producers of substances with bioactive properties, including anti-viral, antibacterial, antioxidant, and anti-inflammatory properties, among several others. In particular, red algae are rich in bioactive compounds such as polysaccharides, phenolic compounds, lipids, sterols, alkaloids, and terpenoids, conferring them antioxidant, antimicrobial, and anti-inflammatory activities, among others. Thus, the exploration of compounds from marine resources can be an appealing approach to discover new treatment options against AV. The aim of this work is to provide an overview of the current knowledge of the potentialities of red macroalgae in the treatment of AV by reviewing the main therapeutic targets of this disease, and then the existence of compounds or extracts with bioactive properties against them.
Collapse
Affiliation(s)
- Adriana P. Januário
- MARE—Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, 2520-641 Peniche, Portugal; (R.F.); (C.F.); (J.R.)
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal;
- Correspondence: (A.P.J.); (M.F.L.L.)
| | - Rafael Félix
- MARE—Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, 2520-641 Peniche, Portugal; (R.F.); (C.F.); (J.R.)
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal;
| | - Carina Félix
- MARE—Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, 2520-641 Peniche, Portugal; (R.F.); (C.F.); (J.R.)
| | - João Reboleira
- MARE—Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, 2520-641 Peniche, Portugal; (R.F.); (C.F.); (J.R.)
| | - Patrícia Valentão
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal;
| | - Marco F. L. Lemos
- MARE—Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, 2520-641 Peniche, Portugal; (R.F.); (C.F.); (J.R.)
- Correspondence: (A.P.J.); (M.F.L.L.)
| |
Collapse
|
12
|
Conde TA, Zabetakis I, Tsoupras A, Medina I, Costa M, Silva J, Neves B, Domingues P, Domingues MR. Microalgal Lipid Extracts Have Potential to Modulate the Inflammatory Response: A Critical Review. Int J Mol Sci 2021; 22:9825. [PMID: 34576003 PMCID: PMC8471354 DOI: 10.3390/ijms22189825] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/01/2021] [Accepted: 09/08/2021] [Indexed: 12/24/2022] Open
Abstract
Noncommunicable diseases (NCD) and age-associated diseases (AAD) are some of the gravest health concerns worldwide, accounting for up to 70% of total deaths globally. NCD and AAD, such as diabetes, obesity, cardiovascular disease, and cancer, are associated with low-grade chronic inflammation and poor dietary habits. Modulation of the inflammatory status through dietary components is a very appellative approach to fight these diseases and is supported by increasing evidence of natural and dietary components with strong anti-inflammatory activities. The consumption of bioactive lipids has a positive impact on preventing chronic inflammation and consequently NCD and AAD. Thus, new sources of bioactive lipids have been sought out. Microalgae are rich sources of bioactive lipids such as omega-6 and -3 polyunsaturated fatty acids (PUFA) and polar lipids with associated anti-inflammatory activity. PUFAs are enzymatically and non-enzymatically catalyzed to oxylipins and have a significant role in anti and pro-resolving inflammatory responses. Therefore, a large and rapidly growing body of research has been conducted in vivo and in vitro, investigating the potential anti-inflammatory activities of microalgae lipids. This review sought to summarize and critically analyze recent evidence of the anti-inflammatory potential of microalgae lipids and their possible use to prevent or mitigate chronic inflammation.
Collapse
Affiliation(s)
- Tiago Alexandre Conde
- CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal;
- Mass Spectrometry Centre, LAQV REQUIMTE, Department of Chemistry, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal;
- Department of Medical Sciences, Institute of Biomedicine–iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Ioannis Zabetakis
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland; (I.Z.); (A.T.)
- Health Research Institute (HRI), University of Limerick, V94 T9PX Limerick, Ireland
- Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Alexandros Tsoupras
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland; (I.Z.); (A.T.)
- Health Research Institute (HRI), University of Limerick, V94 T9PX Limerick, Ireland
- Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Isabel Medina
- Instituto de Investigaciones Marinas-Consejo Superior de Investigaciones Científicas (IIM-CSIC), Eduardo Cabello 6, E-36208 Vigo, Spain;
| | - Margarida Costa
- R&D Department, Allmicroalgae Natural Products SAA, Rua 25 de Abril 1974, 2445-287 Pataias, Portugal; (M.C.); (J.S.)
| | - Joana Silva
- R&D Department, Allmicroalgae Natural Products SAA, Rua 25 de Abril 1974, 2445-287 Pataias, Portugal; (M.C.); (J.S.)
| | - Bruno Neves
- Department of Medical Sciences, Institute of Biomedicine–iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Pedro Domingues
- Mass Spectrometry Centre, LAQV REQUIMTE, Department of Chemistry, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - M. Rosário Domingues
- CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal;
- Mass Spectrometry Centre, LAQV REQUIMTE, Department of Chemistry, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal;
| |
Collapse
|
13
|
A Glycolipid Glycosyltransferase with Broad Substrate Specificity from the Marine Bacterium " Candidatus Pelagibacter sp." Strain HTCC7211. Appl Environ Microbiol 2021; 87:e0032621. [PMID: 33931419 PMCID: PMC8231724 DOI: 10.1128/aem.00326-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
In the marine environment, phosphorus availability significantly affects the lipid composition in many cosmopolitan marine heterotrophic bacteria, including members of the SAR11 clade and the Roseobacter clade. Under phosphorus stress conditions, nonphosphorus sugar-containing glycoglycerolipids are substitutes for phospholipids in these bacteria. Although these glycoglycerolipids play an important role as surrogates for phospholipids under phosphate deprivation, glycoglycerolipid synthases in marine microbes are poorly studied. In the present study, we biochemically characterized a glycolipid glycosyltransferase (GTcp) from the marine bacterium “Candidatus Pelagibacter sp.” strain HTCC7211, a member of the SAR11 clade. Our results showed that GTcp is able to act as a multifunctional enzyme by synthesizing different glycoglycerolipids with UDP-glucose, UDP-galactose, or UDP-glucuronic acid as sugar donors and diacylglycerol (DAG) as the acceptor. Analyses of enzyme kinetic parameters demonstrated that Mg2+ notably changes the enzyme’s affinity for UDP-glucose, which improves its catalytic efficiency. Homology modeling and mutational analyses revealed binding sites for the sugar donor and the diacylglycerol lipid acceptor, which provided insights into the retaining mechanism of GTcp with its GT-B fold. A phylogenetic analysis showed that GTcp and its homologs form a group in the GT4 glycosyltransferase family. These results not only provide new insights into the glycoglycerolipid synthesis mechanism in lipid remodeling but also describe an efficient enzymatic tool for the future synthesis of bioactive molecules. IMPORTANCE The bilayer formed by membrane lipids serves as the containment unit for living microbial cells. In the marine environment, it has been firmly established that phytoplankton and heterotrophic bacteria can replace phospholipids with nonphosphorus sugar-containing glycoglycerolipids in response to phosphorus limitation. However, little is known about how these glycoglycerolipids are synthesized. Here, we determined the biochemical characteristics of a glycolipid glycosyltransferase (GTcp) from the marine bacterium “Candidatus Pelagibacter sp.” strain HTCC7211. GTcp and its homologs form a group in the GT4 glycosyltransferase family and can synthesize neutral glycolipids (monoglucosyl-1,2-diacyl-sn-glycerol [MGlc-DAG] and monogalactosyl [MGal]-DAG) and monoglucuronic acid diacylglycerol (MGlcA-DAG). We also uncovered the key residues for DAG binding through molecular docking, site-direct mutagenesis, and subsequent enzyme activity assays. Our data provide new insights into the glycoglycerolipid synthesis mechanism in lipid remodeling.
Collapse
|
14
|
Unlocking the Health Potential of Microalgae as Sustainable Sources of Bioactive Compounds. Int J Mol Sci 2021; 22:ijms22094383. [PMID: 33922258 PMCID: PMC8122763 DOI: 10.3390/ijms22094383] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/14/2021] [Accepted: 04/18/2021] [Indexed: 12/15/2022] Open
Abstract
Microalgae are known to produce a plethora of compounds derived from the primary and secondary metabolism. Different studies have shown that these compounds may have allelopathic, antimicrobial, and antipredator activities. In addition, in vitro and in vivo screenings have shown that several compounds have interesting bioactivities (such as antioxidant, anti-inflammatory, anticancer, and antimicrobial) for the possible prevention and treatment of human pathologies. Additionally, the enzymatic pathways responsible for the synthesis of these compounds, and the targets and mechanisms of their action have also been investigated for a few species. However, further research is necessary for their full exploitation and possible pharmaceutical and other industrial applications. Here, we review the current knowledge on the chemical characteristics, biological activities, mechanism of action, and the enzymes involved in the synthesis of microalgal metabolites with potential benefits for human health.
Collapse
|
15
|
Ferdous UT, Yusof ZNB. Medicinal Prospects of Antioxidants From Algal Sources in Cancer Therapy. Front Pharmacol 2021; 12:593116. [PMID: 33746748 PMCID: PMC7973026 DOI: 10.3389/fphar.2021.593116] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 01/19/2021] [Indexed: 12/20/2022] Open
Abstract
Though cancer therapeutics can successfully eradicate cancerous cells, the effectiveness of these medications is mostly restricted to several deleterious side effects. Therefore, to alleviate these side effects, antioxidant supplementation is often warranted, reducing reactive species levels and mitigating persistent oxidative damage. Thus, it can impede the growth of cancer cells while protecting the normal cells simultaneously. Moreover, antioxidant supplementation alone or in combination with chemotherapeutics hinders further tumor development, prevents chemoresistance by improving the response to chemotherapy drugs, and enhances cancer patients' quality of life by alleviating side effects. Preclinical and clinical studies have been revealed the efficacy of using phytochemical and dietary antioxidants from different sources in treating chemo and radiation therapy-induced toxicities and enhancing treatment effectiveness. In this context, algae, both micro and macro, can be considered as alternative natural sources of antioxidants. Algae possess antioxidants from diverse groups, which can be exploited in the pharmaceutical industry. Despite having nutritional benefits, investigation and utilization of algal antioxidants are still in their infancy. This review article summarizes the prospective anticancer effect of twenty-three antioxidants from microalgae and their potential mechanism of action in cancer cells, as well as usage in cancer therapy. In addition, antioxidants from seaweeds, especially from edible species, are outlined, as well.
Collapse
Affiliation(s)
- Umme Tamanna Ferdous
- Aquatic Animal Health and Therapeutics Laboratory (AquaHealth), Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
| | - Zetty Norhana Balia Yusof
- Aquatic Animal Health and Therapeutics Laboratory (AquaHealth), Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
- Faculty of Biotechnology and Biomolecular Sciences, Department of Biochemistry, Universiti Putra Malaysia, Selangor, Malaysia
- Bioprocessing and Biomanufacturing Research Center, Universiti Putra Malaysia, Selangor, Malaysia
| |
Collapse
|
16
|
Conde TA, Couto D, Melo T, Costa M, Silva J, Domingues MR, Domingues P. Polar lipidomic profile shows Chlorococcum amblystomatis as a promising source of value-added lipids. Sci Rep 2021; 11:4355. [PMID: 33623097 PMCID: PMC7902829 DOI: 10.1038/s41598-021-83455-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/03/2021] [Indexed: 01/31/2023] Open
Abstract
There is a growing trend to explore microalgae as an alternative resource for the food, feed, pharmaceutical, cosmetic and fuel industry. Moreover, the polar lipidome of microalgae is interesting because of the reports of bioactive polar lipids which could foster new applications for microalgae. In this work, we identified for the first time the Chlorococcum amblystomatis lipidome using hydrophilic interaction liquid chromatography-high resolution electrospray ionization- tandem mass spectrometry (HILIC-HR-ESI-MS/MS). The Chlorococcum amblystomatis strain had a lipid content of 20.77% and the fatty acid profile, determined by gas chromatography-mass spectrometry, has shown that this microalga contains high amounts of omega-3 polyunsaturated fatty acids (PUFAs). The lipidome identified included 245 molecular ions and 350 lipid species comprising 15 different classes of glycolipids (6), phospholipids (7) and betaine lipids (2). Of these, 157 lipid species and the main lipid species of each class were esterified with omega-3 PUFAs. The lipid extract has shown antioxidant activity and anti-inflammatory potential. Lipid extracts also had low values of atherogenic (0.54) and thrombogenic index (0.27). In conclusion, the lipid extracts of Chlorococcum amblystomatis have been found to be a source of lipids rich in omega-3 PUFAs for of great value for the food, feed, cosmetic, nutraceutical and pharmaceutical industries.
Collapse
Affiliation(s)
- Tiago A. Conde
- grid.7311.40000000123236065Department of Chemistry, Mass Spectrometry Centre, LAQV REQUIMTE, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Daniela Couto
- grid.7311.40000000123236065Department of Chemistry, Mass Spectrometry Centre, LAQV REQUIMTE, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal ,grid.7311.40000000123236065Department of Chemistry, CESAM-Centre for Environmental and Marine Studies, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Tânia Melo
- grid.7311.40000000123236065Department of Chemistry, Mass Spectrometry Centre, LAQV REQUIMTE, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal ,grid.7311.40000000123236065Department of Chemistry, CESAM-Centre for Environmental and Marine Studies, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Margarida Costa
- R&D Department, Allmicroalgae Natural Products S.A., Rua 25 de Abril 19, 2445-287 Pataias, Portugal
| | - Joana Silva
- R&D Department, Allmicroalgae Natural Products S.A., Rua 25 de Abril 19, 2445-287 Pataias, Portugal
| | - M. Rosário Domingues
- grid.7311.40000000123236065Department of Chemistry, Mass Spectrometry Centre, LAQV REQUIMTE, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal ,grid.7311.40000000123236065Department of Chemistry, CESAM-Centre for Environmental and Marine Studies, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Pedro Domingues
- grid.7311.40000000123236065Department of Chemistry, Mass Spectrometry Centre, LAQV REQUIMTE, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| |
Collapse
|
17
|
Capriotti AL, Cerrato A, Aita SE, Montone CM, Piovesana S, Laganà A, Cavaliere C. Degradation of the polar lipid and fatty acid molecular species in extra virgin olive oil during storage based on shotgun lipidomics. J Chromatogr A 2021; 1639:461881. [PMID: 33486446 DOI: 10.1016/j.chroma.2021.461881] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/17/2020] [Accepted: 01/02/2021] [Indexed: 12/15/2022]
Abstract
Among the bioactive compounds present in extra-virgin olive oil, polar lipids and free fatty acids are minor compounds with well-known nutritional values and have been studied for traceability and adulteration investigations as well. In the present paper, the simultaneous characterization of polar lipids and free fatty acids in a pool of fifteen EVOO samples was achieved by means of reversed phase C18 analysis coupled to negative polarity high-resolution mass spectrometry. A total of 24 polar lipids, comprising 19 phospholipids and 5 sulfolipids, and 27 free fatty acids were tentatively identified, including several odd-chain and very long-chain fatty acids at trace levels. Moreover, a one-month study of lipid degradation on simulated storage conditions was carried out thanks to the set-up of a dedicated approach for degradation product analysis which was implemented of Compound Discoverer software. By virtue of the customized data processing workflow, more than forty compounds were tentatively identified, including compounds deriving from hydrolysis and oxidation reactions. Finally, by analysis of peak area trends, phosphoester hydrolyses of polar heads of phospholipids emerged as the fastest reactions, followed by glycerol ester hydrolyses and oxidative processes.
Collapse
Affiliation(s)
- Anna Laura Capriotti
- Department of Chemistry, Università di Roma "La Sapienza", Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Andrea Cerrato
- Department of Chemistry, Università di Roma "La Sapienza", Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Sara Elsa Aita
- Department of Chemistry, Università di Roma "La Sapienza", Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Carmela Maria Montone
- Department of Chemistry, Università di Roma "La Sapienza", Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Susy Piovesana
- Department of Chemistry, Università di Roma "La Sapienza", Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Aldo Laganà
- Department of Chemistry, Università di Roma "La Sapienza", Piazzale Aldo Moro 5, Rome 00185, Italy; CNR NANOTEC, Campus Ecotekne, University of Salento, Via Monteroni, Lecce 73100, Italy.
| | - Chiara Cavaliere
- Department of Chemistry, Università di Roma "La Sapienza", Piazzale Aldo Moro 5, Rome 00185, Italy
| |
Collapse
|
18
|
Abedin MR, Barua S. Isolation and purification of glycoglycerolipids to induce apoptosis in breast cancer cells. Sci Rep 2021; 11:1298. [PMID: 33446783 PMCID: PMC7809038 DOI: 10.1038/s41598-020-80484-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 12/17/2020] [Indexed: 01/03/2023] Open
Abstract
Monogalactosyldiacylglycerol (MGDG) is the most abundant type of glycoglycerolipid found in the plant cell membrane and mostly in the chloroplast thylakoid membrane. The amphiphilic nature of MGDG is attractive in pharmaceutical fields for interaction with other biological molecules and hence exerting therapeutic anti-cancer, anti-viral, and anti-inflammatory activities. In this study, we investigated the therapeutic efficacy of cyanobacteria derived MGDG to inhibit breast cancer cell growth. MGDG was extracted from a cyanobacteria Synechocystis sp. PCC 6803 followed by a subsequent fractionation by column chromatographic technique. The purity and molecular structure of MGDG were analyzed by nuclear magnetic resonance (NMR) spectroscopy analysis. The presence of MGDG in the extracted fraction was further confirmed and quantified by high-performance liquid chromatography (HPLC). The anti-proliferation activity of the extracted MGDG molecule was tested against BT-474 and MDA-MB-231 breast cancer cell lines. The in vitro study showed that MGDG extracted from Synechocystis sp. PCC 6803 induced apoptosis in (70 ± 8) % of BT-474 (p < 0.001) and (58 ± 5) % of MDA-MB-231 cells (p < 0.001) using ~ 60 and 200 ng/ml of concentrations, respectively. The half-maximal inhibitory concentration, IC50 of MGDG extracted from Synechocystis sp. PCC 6803 were (27.2 ± 7.6) and (150 ± 70) ng/ml in BT-474 and MDA-MB-231 cell lines, respectively. Quantification of caspase-3/7 activity using flow cytometry showed (3.0 ± 0.4) and (2.1 ± 0.04)-fold (p < 0.001) higher protein expressions in the MGDG treated BT-474 and MDA-MB-231 cells, respectively than untreated controls conferring to the caspase-dependent apoptosis. The MGDG did not show any significant cytotoxic side effects in human dermal fibroblasts cells. A commercially available MGDG control did not induce any apoptotic cell death in cancer cells substantiating the potential of the MGDG extracted from Synechocystis sp. PCC 6803 for the treatment of breast cancer cells through the apoptosis-mediated pathway.
Collapse
Affiliation(s)
- Muhammad Raisul Abedin
- Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, 110 Bertelsmeyer Hall, 1101 N. State Street, Rolla, MO, 65409-1230, USA
| | - Sutapa Barua
- Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, 110 Bertelsmeyer Hall, 1101 N. State Street, Rolla, MO, 65409-1230, USA.
| |
Collapse
|
19
|
Bioactive Lipids of Marine Microalga Chlorococcum sp. SABC 012504 with Anti-Inflammatory and Anti-Thrombotic Activities. Mar Drugs 2021; 19:md19010028. [PMID: 33435162 PMCID: PMC7827044 DOI: 10.3390/md19010028] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 02/07/2023] Open
Abstract
Microalgae are at the start of the food chain, and many are known producers of a significant amount of lipids with essential fatty acids. However, the bioactivity of microalgal lipids for anti-inflammatory and antithrombotic activities have rarely been investigated. Therefore, for a sustainable source of the above bioactive lipids, the present study was undertaken. The total lipids of microalga Chlorococcum sp., isolated from the Irish coast, were fractionated into neutral-, glyco-, and phospho-lipids, and were tested in vitro for their anti-inflammatory and antithrombotic activities. All tested lipid fractions showed strong anti-platelet-activating factor (PAF) and antithrombin activities in human platelets (half maximal inhibitory concentration (IC50) values ranging ~25–200 μg of lipid) with the highest activities in glyco- and phospho-lipid fractions. The structural analysis of the bioactive lipid fraction-2 revealed the presence of specific sulfoquinovosyl diacylglycerols (SQDG) bioactive molecules and the HexCer-t36:2 (t18:1/18:1 and 18:2/18:0) cerebrosides with a phytosphingosine (4-hydrosphinganine) base, while fraction-3 contained bioactive phosphatidylcholine (PC) and phosphatidylethanolamine (PE) molecules. These novel bioactive lipids of Chlorococcum sp. with putative health benefits may indicate that marine microalgae can be a sustainable alternative source for bioactive lipids production for food supplements and nutraceutical applications. However, further studies are required towards the commercial technology pathways development and biosafety analysis for the use of the microalga.
Collapse
|
20
|
Pradhan B, Nayak R, Patra S, Jit BP, Ragusa A, Jena M. Bioactive Metabolites from Marine Algae as Potent Pharmacophores against Oxidative Stress-Associated Human Diseases: A Comprehensive Review. Molecules 2020; 26:E37. [PMID: 33374738 PMCID: PMC7793479 DOI: 10.3390/molecules26010037] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 12/13/2022] Open
Abstract
In addition to cancer and diabetes, inflammatory and ROS-related diseases represent one of the major health problems worldwide. Currently, several synthetic drugs are used to reduce oxidative stress; nevertheless, these approaches often have side effects. Therefore, to overcome these issues, the search for alternative therapies has gained importance in recent times. Natural bioactive compounds have represented, and they still do, an important source of drugs with high therapeutic efficacy. In the ''synthetic'' era, terrestrial and aquatic photosynthetic organisms have been shown to be an essential source of natural compounds, some of which might play a leading role in pharmaceutical drug development. Marine organisms constitute nearly half of the worldwide biodiversity. In the marine environment, algae, seaweeds, and seagrasses are the first reported sources of marine natural products for discovering novel pharmacophores. The algal bioactive compounds are a potential source of novel antioxidant and anticancer (through modulation of the cell cycle, metastasis, and apoptosis) compounds. Secondary metabolites in marine Algae, such as phenolic acids, flavonoids, and tannins, could have great therapeutic implications against several diseases. In this context, this review focuses on the diversity of functional compounds extracted from algae and their potential beneficial effects in fighting cancer, diabetes, and inflammatory diseases.
Collapse
Affiliation(s)
- Biswajita Pradhan
- Algal Biotechnology and Molecular Systematic Laboratory, Post Graduate Department of Botany, Berhampur University, Brahmapur 760007, India; (B.P.); (R.N.)
| | - Rabindra Nayak
- Algal Biotechnology and Molecular Systematic Laboratory, Post Graduate Department of Botany, Berhampur University, Brahmapur 760007, India; (B.P.); (R.N.)
| | - Srimanta Patra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela 769001, India;
| | - Bimal Prasad Jit
- Department of Biochemistry, All India Institute of Medical Science, Ansari Nagar, New Delhi 110023, India;
| | - Andrea Ragusa
- Department of Biological and Environmental Sciences and Technologies, Campus Ecotekne, University of Salento, via Monteroni, 73100 Lecce, Italy
- CNR-Nanotec, Institute of Nanotechnology, via Monteroni, 73100 Lecce, Italy
| | - Mrutyunjay Jena
- Algal Biotechnology and Molecular Systematic Laboratory, Post Graduate Department of Botany, Berhampur University, Brahmapur 760007, India; (B.P.); (R.N.)
| |
Collapse
|
21
|
Biochemical Composition and Phycoerythrin Extraction from Red Microalgae: A Comparative Study Using Green Extraction Technologies. Processes (Basel) 2020. [DOI: 10.3390/pr8121628] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Porphyridium spp. is a debated family that produces phycoerythrin (PE) for use in multiple industrial applications. We compared the differences in the biochemical composition and phycoerythrin yield of P. cruentum and P. purpureum by conventional and green extraction technologies. The protein content in P. cruentum was 42.90 ±1.84% w/w. The omega-3 fatty acid (FA) was highlighted by eicosapentaenoic acid (EPA, C20:5, ω-3, ~9.74 ± 0.27% FA) and arachidonic acid (ARA, C20:4, ω-6, ~18.02 ± 0.81% FA) represented the major omega-6 fatty acid. Conversely, P. purpureum demonstrated a higher lipid content (17.34 ± 1.35% w/w) and an FA profile more saturated in palmitic (C16:0, 29.01 ± 0.94% FA) and stearic acids (C18:0, 50.02 ± 1.72% FA). Maceration and freeze/thaw were the conventional methods, whereas microwave (MW) and ultrasound (US) served as green procedures for PE extraction under the factorial-design methodology. Aqueous solvents, extraction-time and power were the main factors in the statistical extraction designs based on Response-Surface Methodology (RSM). Overall, the PE extraction yield was higher (2-to 6-fold) in P. cruentum than in P. purpureum. Moreover, green technologies (US > MW) improved the PE recovery in comparison with the conventional methods for both of the microalgae. The maximum PE yield (33.85 mg/g) was obtained under optimal US conditions (15 min and buffer solvent (PBS)) for P. cruentum. Finally, we proved the biochemical differences between the red microalgae and ratified the advantages of using green extraction for PE because it reduced the processing times and costs and increased the economic and functional-applications of bioactive compounds in the industry.
Collapse
|
22
|
Konishi K, Du L, Francius G, Linder M, Sugawara T, Kurihara H, Takahashi K. Lipid Composition of Liposomal Membrane Largely Affects Its Transport and Uptake through Small Intestinal Epithelial Cell Models. Lipids 2020; 55:671-682. [PMID: 32770855 DOI: 10.1002/lipd.12269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/24/2020] [Accepted: 07/01/2020] [Indexed: 12/14/2022]
Abstract
Lipid composition of liposomal bilayer should alter the cell response for permeability, transport, and uptake in small intestine. This work was done to investigate the transport and uptake of liposomes composed of docosahexaenoic acid-enriched phosphatidylcholine (PtdCho), phosphatidylserine (PtdSer), and sulfoquinovosyl diacylglycerol (SQDG) derived from marine products on multilamellar vesicles (MLV) in small intestinal epithelial cell models. The results showed that addition of PtdSer and SQDG as liposomal bilayer could improve the efficiency entrapment of liposomes. The liposomes containing PtdSer showed higher transport and uptake through both Caco-2 cell and M cell monolayers as compared to PtdCho-MLV. SQDG-containing liposomes exhibited only higher transport through M cell monolayer, while its uptake effect was higher both in Caco-2 cell and M cell monolayers. The results of experiments done with endocytosis inhibitors indicated that PtdCho-MLV must be transported via macropinocytosis and uptaken by phagocytosis in M cell monolayer model. PtdCho/PtdSer-MLV and PtdCho/SQDG-MLV might be transported and uptaken through M cell monolayer by phagocytosis. The result also indicated that PtdCho/SQDG-MLV could open the tight junction of small intestinal epithelial cell monolayers. Furthermore, our findings demonstrated that the surface status of cholesterol-containing liposomes were smooth, but they did not affect their transport and uptake through Caco-2 cell and M cell monolayers.
Collapse
Affiliation(s)
- Keisuke Konishi
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate, Hokkaido, 041-8611, Japan
| | - Lei Du
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, No.44 Wenhuaxi Road, Jinan, Shandong, 250012, China
| | - Grégory Francius
- Laboratoire de Chimie Physique et Microbiologie pour l'Environnement, Université de Lorraine, UMR 7564, Villers-lès-Nancy, 54600, France
| | - Michel Linder
- Laboratoire d'Ingénierie des biomolécules, Université de Lorraine, 2 avenue de la Foêt de Haye, Vandoeuvre-lès-Nancy, 54505, France
| | - Tomoaki Sugawara
- Hokkaido Industrial Technology Center, 379 Kikyo-cho, Hakodate, Hokkaido, 041-0801, Japan
| | - Hideyuki Kurihara
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate, Hokkaido, 041-8611, Japan
| | - Koretaro Takahashi
- Faculty of Engineering, Kitami Institute of Technology, 165 Koen-cho, Kitami, Hokkaido, 090-8507, Japan
| |
Collapse
|
23
|
Koukouraki P, Tsoupras A, Sotiroudis G, Demopoulos CA, Sotiroudis TG. Antithrombotic properties of Spirulina extracts against platelet-activating factor and thrombin. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100686] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
Ruiz-Torres V, Rodríguez-Pérez C, Herranz-López M, Martín-García B, Gómez-Caravaca AM, Arráez-Román D, Segura-Carretero A, Barrajón-Catalán E, Micol V. Marine Invertebrate Extracts Induce Colon Cancer Cell Death via ROS-Mediated DNA Oxidative Damage and Mitochondrial Impairment. Biomolecules 2019; 9:biom9120771. [PMID: 31771155 PMCID: PMC6995635 DOI: 10.3390/biom9120771] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/23/2019] [Accepted: 10/29/2019] [Indexed: 12/29/2022] Open
Abstract
Marine compounds are a potential source of new anticancer drugs. In this study, the antiproliferative effects of 20 invertebrate marine extracts on three colon cancer cell models (HGUE-C-1, HT-29, and SW-480) were evaluated. Extracts from two nudibranchs (Phyllidia varicosa, NA and Dolabella auricularia, NB), a holothurian (Pseudocol ochirus violaceus, PS), and a soft coral (Carotalcyon sp., CR) were selected due to their potent cytotoxic capacities. The four marine extracts exhibited strong antiproliferative effects and induced cell cycle arrest at the G2/M transition, which evolved into early apoptosis in the case of the CR, NA, and NB extracts and necrotic cell death in the case of the PS extract. All the extracts induced, to some extent, intracellular ROS accumulation, mitochondrial depolarization, caspase activation, and DNA damage. The compositions of the four extracts were fully characterized via HPLC-ESI-TOF-MS analysis, which identified up to 98 compounds. We propose that, among the most abundant compounds identified in each extract, diterpenes, steroids, and sesqui- and seterterpenes (CR); cembranolides (PS); diterpenes, polyketides, and indole terpenes (NA); and porphyrin, drimenyl cyclohexanone, and polar steroids (NB) might be candidates for the observed activity. We postulate that reactive oxygen species (ROS) accumulation is responsible for the subsequent DNA damage, mitochondrial depolarization, and cell cycle arrest, ultimately inducing cell death by either apoptosis or necrosis.
Collapse
Affiliation(s)
- Verónica Ruiz-Torres
- Instituto de Biología Molecular y Celular (IBMC) and Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández (UMH), 03202 Elche, Spain; (V.R.-T.); (M.H.-L.); (V.M.)
| | - Celia Rodríguez-Pérez
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, 18071 Granada, Spain (D.A.-R.); (A.S.-C.)
- Research and Development of Functional Food Centre (CIDAF), PTS Granada, Edificio BioRegion, 18016 Granada, Spain
| | - María Herranz-López
- Instituto de Biología Molecular y Celular (IBMC) and Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández (UMH), 03202 Elche, Spain; (V.R.-T.); (M.H.-L.); (V.M.)
| | - Beatriz Martín-García
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, 18071 Granada, Spain (D.A.-R.); (A.S.-C.)
- Research and Development of Functional Food Centre (CIDAF), PTS Granada, Edificio BioRegion, 18016 Granada, Spain
| | - Ana-María Gómez-Caravaca
- Research and Development of Functional Food Centre (CIDAF), PTS Granada, Edificio BioRegion, 18016 Granada, Spain
| | - David Arráez-Román
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, 18071 Granada, Spain (D.A.-R.); (A.S.-C.)
- Research and Development of Functional Food Centre (CIDAF), PTS Granada, Edificio BioRegion, 18016 Granada, Spain
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, 18071 Granada, Spain (D.A.-R.); (A.S.-C.)
- Research and Development of Functional Food Centre (CIDAF), PTS Granada, Edificio BioRegion, 18016 Granada, Spain
| | - Enrique Barrajón-Catalán
- Instituto de Biología Molecular y Celular (IBMC) and Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández (UMH), 03202 Elche, Spain; (V.R.-T.); (M.H.-L.); (V.M.)
- Correspondence: ; Tel.: +34-965-222-586
| | - Vicente Micol
- Instituto de Biología Molecular y Celular (IBMC) and Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández (UMH), 03202 Elche, Spain; (V.R.-T.); (M.H.-L.); (V.M.)
- CIBER, Fisiopatología de la Obesidad y la Nutrición, CIBERobn, Instituto de Salud Carlos III., Palma de Mallorca 07122, Spain
| |
Collapse
|
25
|
Xu A, He F, Yu C, Qu Y, Zhang Q, Lv J, Zhang X, Ran Y, Wei C, Wu J. The Development of Small Molecule Inhibitors of Glutaminyl Cyclase and Isoglutaminyl Cyclase for Alzheimer's Disease. ChemistrySelect 2019. [DOI: 10.1002/slct.201902852] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ana Xu
- College of PharmacyShanDong University, 4 4 West WenHua Road JiNan 250012 China
| | - Feng He
- College of PharmacyShanDong University, 4 4 West WenHua Road JiNan 250012 China
| | - Chenggong Yu
- College of PharmacyShanDong University, 4 4 West WenHua Road JiNan 250012 China
| | - Ying Qu
- College of PharmacyShanDong University, 4 4 West WenHua Road JiNan 250012 China
| | - Qiuqiong Zhang
- College of PharmacyShanDong University, 4 4 West WenHua Road JiNan 250012 China
| | - Jiahui Lv
- College of PharmacyShanDong University, 4 4 West WenHua Road JiNan 250012 China
| | - Xiangna Zhang
- College of PharmacyShanDong University, 4 4 West WenHua Road JiNan 250012 China
| | - Yingying Ran
- College of PharmacyShanDong University, 4 4 West WenHua Road JiNan 250012 China
| | - Chao Wei
- College of PharmacyShanDong University, 4 4 West WenHua Road JiNan 250012 China
| | - Jingde Wu
- College of PharmacyShanDong University, 4 4 West WenHua Road JiNan 250012 China
| |
Collapse
|
26
|
Enrichment procedure based on graphitized carbon black and liquid chromatography-high resolution mass spectrometry for elucidating sulfolipids composition of microalgae. Talanta 2019; 205:120162. [PMID: 31450465 DOI: 10.1016/j.talanta.2019.120162] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/15/2019] [Accepted: 07/17/2019] [Indexed: 01/03/2023]
Abstract
Microalgae have recently become a popular functional food due to their health benefits. Sulfolipids, a class of substances abundant in this matrix, have been reported to have interesting bioactivities, such as anti-carcinogenic activity. However, despite the potential interest in sulfolipids, a dedicated analytical method for their characterization is currently lacking but would significantly increase the coverage of sulfolipids with respect to the direct lipidomic analysis. To achieve this goal, in this work a procedure, based on graphitized carbon black solid phase extraction, was developed for clean-up and enrichment of sulfolipids (sulfoquinovosyldiacylglycerols and sulfoquinovosylmonoacylglycerols) and it was applied to spirulina (Arthrospira platensis) microalgae. A careful study of the solid phase extraction conditions was performed, first to maximize the recovery of reference standards, then to increase the total number of identified sulfolipids from the spirulina lipid extract. All samples were analysed by ultra-high performance liquid chromatography coupled to high resolution mass spectrometry and lipids were tentatively identified by Lipostar, for a reliable lipid structure assignment. The developed method was compared to the direct lipidomic analysis without enrichment, to establish the enrichment efficiency in terms of number of identifications. From the comparison, the enrichment procedure proved better and allowed the tentative identification of 199 sulfolipids, which is the largest number reported so far for the Arthrospira platensis species. The described method was validated in terms of precision, accuracy, recovery, limit of quantitation and detection for two sulfolipids. Finally, a relative lipid quantitation based on peak area was carried out on the microalgae sample, which indicated nine abundant sulfolipids as representing ca. 60% of sulfolipids in spirulina microalgae.
Collapse
|
27
|
Antioxidant, anti-inflammatory and anticancer potential of natural bioactive compounds from seaweeds. BIOACTIVE NATURAL PRODUCTS 2019. [DOI: 10.1016/b978-0-12-817901-7.00005-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
28
|
Huang JJH, Xu WW, Lin SL, Cheung PCK. Phytochemical profiles of marine phytoplanktons: an evaluation of their in vitro antioxidant and anti-proliferative activities. Food Funct 2018; 7:5002-5017. [PMID: 27872932 DOI: 10.1039/c6fo01033d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Marine microorganisms such as phytoplanktons are a rich resource of bioactive components with antioxidant and anti-proliferative activities that can act as novel functional food ingredients. In this study, the pigment profiles, total mycosporine-like amino acids (MAAs) and total phenolic contents (TPCs) in solvent extracts including 90% acetone and methanol from five marine phytoplanktons including Nitzschia closterium (Bacillariophyta), Isochrysis zhangjiangensis (Haptophyta), Platymonas subcordiformis (Chlorophyta), Porphyridium cruentum (Rhodophyta) and Synechocystis pevalekii (Cyanobacteria) were analyzed. Each phytoplankton from different phyla had its unique compositions of carotenoids and chlorophylls. The 90% acetone extract from I. zhangjiangensis had the highest MAA content (508.30 μg per g DW) while the methanol extract from N. closterium had the highest level of TPCs (6.15 mg GAE per g DW) among all the phytoplanktons investigated. The amounts of total carotenoids in all the 90% acetone extracts from the five phytoplanktons as well as total MAAs in those from within the four microalgae except S. pevalekii were found to be strongly correlated with their antioxidant activities evaluated by the DPPH, TEAC and FRAP assays. Only the level of total carotenoids in the phytoplanktons was correlated with their anti-proliferative activities assessed by the MTT assays using MCF-7 cells. Therefore, individual carotenoid pigments seemed to be mainly responsible for the antioxidant and anti-proliferative (or anticancer) activities found in the solvent extracts of the five phytoplanktons. Hence these phytoplanktons have the potential as novel sources of natural food antioxidants and anticancer agents to be used as active ingredients in functional food products.
Collapse
Affiliation(s)
- Jim Jun-Hui Huang
- Food and Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong S.A.R., People's Republic of China. and Marine Biology Institute, Shantou University, No. 243, Daxue Road, Shantou 515063, Guangdong Province, People's Republic of China and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117597, Republic of Singapore
| | - Wen-Wen Xu
- Institute of Tumor Pharmacology, College of Pharmacy, Jinan University, 601 West Huangpu Blvd, Guangzhou 510632, People's Republic of China
| | - Shao-Ling Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, People's Republic of China
| | - Peter Chi-Keung Cheung
- Food and Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong S.A.R., People's Republic of China.
| |
Collapse
|
29
|
|
30
|
Pragna Lakshmi T, Vajravijayan S, Moumita M, Sakthivel N, Gunasekaran K, Krishna R. A novel guaiane sesquiterpene derivative, guai-2-en-10α-ol, from Ulva fasciata Delile inhibits EGFR/PI3K/Akt signaling and induces cytotoxicity in triple-negative breast cancer cells. Mol Cell Biochem 2017; 438:123-139. [DOI: 10.1007/s11010-017-3119-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/15/2017] [Indexed: 12/22/2022]
|
31
|
da Costa E, Melo T, Moreira ASP, Bernardo C, Helguero L, Ferreira I, Cruz MT, Rego AM, Domingues P, Calado R, Abreu MH, Domingues MR. Valorization of Lipids from Gracilaria sp. through Lipidomics and Decoding of Antiproliferative and Anti-Inflammatory Activity. Mar Drugs 2017; 15:E62. [PMID: 28257116 PMCID: PMC5367019 DOI: 10.3390/md15030062] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 02/11/2017] [Accepted: 02/13/2017] [Indexed: 01/15/2023] Open
Abstract
The lipidome of the red seaweed Gracilaria sp., cultivated on land-based integrated multitrophic aquaculture (IMTA) system, was assessed for the first time using hydrophilic interaction liquid chromatography-mass spectrometry and tandem mass spectrometry (HILIC-MS and MS/MS). One hundred and forty-seven molecular species were identified in the lipidome of the Gracilaria genus and distributed between the glycolipids classes monogalactosyl diacylglyceride (MGDG), digalactosyl diacylglyceride (DGDG), sulfoquinovosyl monoacylglyceride (SQMG), sulfoquinovosyl diacylglyceride (SQDG), the phospholipids phosphatidylcholine (PC), lyso-PC, phosphatidylglycerol (PG), lyso-PG, phosphatidylinositol (PI), phosphatidylethanolamine (PE), phosphatic acid (PA), inositolphosphoceramide (IPC), and betaine lipids monoacylglyceryl- and diacylglyceryl-N,N,N-trimethyl homoserine (MGTS and DGTS). Antiproliferative and anti-inflammatory effects promoted by lipid extract of Gracilaria sp. were evaluated by monitoring cell viability in human cancer lines and by using murine macrophages, respectively. The lipid extract decreased cell viability of human T-47D breast cancer cells and of 5637 human bladder cancer cells (estimated half-maximal inhibitory concentration (IC50) of 12.2 μg/mL and 12.9 μg/mL, respectively) and inhibited the production of nitric oxide (NO) evoked by the Toll-like receptor 4 agonist lipopolysaccharide (LPS) on the macrophage cell line RAW 264.7 (35% inhibition at a concentration of 100 μg/mL). These findings contribute to increase the ranking in the value-chain of Gracilaria sp. biomass cultivated under controlled conditions on IMTA systems.
Collapse
Affiliation(s)
- Elisabete da Costa
- Centro de Espectrometria de Massa, Departamento de Química & QOPNA, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Tânia Melo
- Centro de Espectrometria de Massa, Departamento de Química & QOPNA, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Ana S P Moreira
- Centro de Espectrometria de Massa, Departamento de Química & QOPNA, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Carina Bernardo
- Instituto de Biomedicina (IBIMED), Departamento de Ciências Médicas, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| | - Luisa Helguero
- Instituto de Biomedicina (IBIMED), Departamento de Ciências Médicas, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| | - Isabel Ferreira
- Centro de Neurociências e Biologia Celular (CNC), Universidade de Coimbra, 3004-517 Coimbra & Faculdade de Farmácia, Universidade de Coimbra, 3000-548 Coimbra, Portugal.
| | - Maria Teresa Cruz
- Centro de Neurociências e Biologia Celular (CNC), Universidade de Coimbra, 3004-517 Coimbra & Faculdade de Farmácia, Universidade de Coimbra, 3000-548 Coimbra, Portugal.
| | - Andreia M Rego
- ALGAplus-Produção e Comercialização de Algas e seus Derivados, Lda., 3830-196 Ílhavo, Portugal.
| | - Pedro Domingues
- Centro de Espectrometria de Massa, Departamento de Química & QOPNA, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Ricardo Calado
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Maria H Abreu
- ALGAplus-Produção e Comercialização de Algas e seus Derivados, Lda., 3830-196 Ílhavo, Portugal.
| | - Maria Rosário Domingues
- Centro de Espectrometria de Massa, Departamento de Química & QOPNA, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
32
|
Coward T, Fuentes-Grünewald C, Silkina A, Oatley-Radcliffe DL, Llewellyn G, Lovitt RW. Utilising light-emitting diodes of specific narrow wavelengths for the optimization and co-production of multiple high-value compounds in Porphyridium purpureum. BIORESOURCE TECHNOLOGY 2016; 221:607-615. [PMID: 27693726 DOI: 10.1016/j.biortech.2016.09.093] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/21/2016] [Accepted: 09/22/2016] [Indexed: 06/06/2023]
Abstract
The effect of specific narrow light-emitting diode (LED) wavelengths (red, green, blue) and a combination of LED wavelengths (red, green and blue - RGB) on biomass composition produced by Porphyridium purpureum is studied. Phycobiliprotein, fatty acids, exopolysaccharides, pigment content, and the main macromolecules composition were analysed to determine the effect of wavelength on multiple compounds of commercial interest. The results demonstrate that green light plays a significant role in the growth of rhodophyta, due to phycobiliproteins being able to harvest green wavelengths where chlorophyll pigments absorb poorly. However, under multi-chromatic LED wavelengths, P. purpureum biomass accumulated the highest yield of valuable products such as eicosapentaenoic acid (∼2.9% DW), zeaxanthin (∼586μgg-1DW), β-carotene (397μgg-1DW), exopolysaccharides (2.05g/L-1), and phycobiliproteins (∼4.8% DW). This increased accumulation is likely to be the combination of both photo-adaption and photo-protection, under the combined specific wavelengths employed.
Collapse
Affiliation(s)
- Thea Coward
- Centre for Complex Fluids Processing (CCFP), College of Engineering, Swansea University, Bay Campus, Swansea SA1 8EN, United Kingdom
| | - Claudio Fuentes-Grünewald
- Centre for Complex Fluids Processing (CCFP), College of Engineering, Swansea University, Bay Campus, Swansea SA1 8EN, United Kingdom
| | - Alla Silkina
- Centre for Sustainable Aquatic Research (CSAR), Swansea University, Swansea SA2 8PP, United Kingdom
| | - Darren L Oatley-Radcliffe
- Energy Safety Research Institute (ESRI), College of Engineering, Swansea University, Bay Campus, Swansea SA1 8EN, United Kingdom.
| | - Gareth Llewellyn
- EPSRC UK National Mass Spectrometry Facility, Grove Building, Swansea University, Swansea SA2 8PP, United Kingdom
| | - Robert W Lovitt
- Centre for Complex Fluids Processing (CCFP), College of Engineering, Swansea University, Bay Campus, Swansea SA1 8EN, United Kingdom
| |
Collapse
|
33
|
Hielscher-Michael S, Griehl C, Buchholz M, Demuth HU, Arnold N, Wessjohann LA. Natural Products from Microalgae with Potential against Alzheimer's Disease: Sulfolipids Are Potent Glutaminyl Cyclase Inhibitors. Mar Drugs 2016; 14:md14110203. [PMID: 27827845 PMCID: PMC5128746 DOI: 10.3390/md14110203] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 10/20/2016] [Accepted: 10/25/2016] [Indexed: 12/30/2022] Open
Abstract
In recent years, many new enzymes, like glutaminyl cyclase (QC), could be associated with pathophysiological processes and represent targets for many diseases, so that enzyme-inhibiting properties of natural substances are becoming increasingly important. In different studies, the pathophysiology connection of QC to various diseases including Alzheimer's disease (AD) was described. Algae are known for the ability to synthesize complex and highly-diverse compounds with specific enzyme inhibition properties. Therefore, we screened different algae species for the presence of QC inhibiting metabolites using a new "Reverse Metabolomics" technique including an Activity-correlation Analysis (AcorA), which is based on the correlation of bioactivities to mass spectral data with the aid of mathematic informatics deconvolution. Thus, three QC inhibiting compounds from microalgae belonging to the family of sulfolipids were identified. The compounds showed a QC inhibition of 81% and 76% at concentrations of 0.25 mg/mL and 0.025 mg/mL, respectively. Thus, for the first time, sulfolipids are identified as QC inhibiting compounds and possess substructures with the required pharmacophore qualities. They represent a new lead structure for QC inhibitors.
Collapse
Affiliation(s)
- Stephanie Hielscher-Michael
- Group Algae Biotechnology, Department of Applied Biosciences and Process Technology, Anhalt University of Applied Sciences, 06366 Köthen, Germany.
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany.
| | - Carola Griehl
- Group Algae Biotechnology, Department of Applied Biosciences and Process Technology, Anhalt University of Applied Sciences, 06366 Köthen, Germany.
| | - Mirko Buchholz
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology IZI, 06120 Halle (Saale), Germany.
| | - Hans-Ulrich Demuth
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology IZI, 06120 Halle (Saale), Germany.
| | - Norbert Arnold
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology IZI, 06120 Halle (Saale), Germany.
| | - Ludger A Wessjohann
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany.
| |
Collapse
|
34
|
Synthesis and Anti-Influenza A Virus Activity of 6'-amino-6'-deoxy-glucoglycerolipids Analogs. Mar Drugs 2016; 14:md14060116. [PMID: 27322292 PMCID: PMC4926075 DOI: 10.3390/md14060116] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/02/2016] [Accepted: 06/03/2016] [Indexed: 01/13/2023] Open
Abstract
A series of aminoglucoglycerolipids derivatives had been synthesized, including 6'-acylamido-glucoglycerolipids 1a-1f and corresponding 2'-acylamido-glucoglycerolipids 2a-2c bearing different fatty acids, glucosyl diglycerides 3a-3e bearing different functional groups at C-6' and ether-linked glucoglycerolipids 4a-4c with double-tailed alkyl alcohol. The anti-influenza A virus (IAV) activity was evaluated by the cytopathic effects (CPE) inhibition assay. The results indicated that the integral structure of the aminoglycoglycerolipid was essential for the inhibition of IAV in MDCK cells. Furthermore, oral administration of compound 1d was able to significantly improve survival and decrease pulmonary viral titers in IAV-infected mice, which suggested that compound 1d merited further investigation as a novel anti-IAV candidate in the future.
Collapse
|
35
|
The antioxidant, immunomodulatory, and anti-inflammatory activities of Spirulina: an overview. Arch Toxicol 2016; 90:1817-40. [PMID: 27259333 DOI: 10.1007/s00204-016-1744-5] [Citation(s) in RCA: 283] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 05/24/2016] [Indexed: 12/15/2022]
Abstract
Spirulina is a species of filamentous cyanobacteria that has long been used as a food supplement. In particular, Spirulina platensis and Spirulina maxima are the most important. Thanks to a high protein and vitamin content, Spirulina is used as a nutraceutical food supplement, although its other potential health benefits have attracted much attention. Oxidative stress and dysfunctional immunity cause many diseases in humans, including atherosclerosis, cardiac hypertrophy, heart failure, and hypertension. Thus, the antioxidant, immunomodulatory, and anti-inflammatory activities of these microalgae may play an important role in human health. Here, we discuss the antioxidant, immunomodulatory, and anti-inflammatory activities of Spirulina in both animals and humans, along with the underlying mechanisms. In addition, its commercial and regulatory status in different countries is discussed as well. Spirulina activates cellular antioxidant enzymes, inhibits lipid peroxidation and DNA damage, scavenges free radicals, and increases the activity of superoxide dismutase and catalase. Notably, there appears to be a threshold level above which Spirulina will taper off the antioxidant activity. Clinical trials show that Spirulina prevents skeletal muscle damage under conditions of exercise-induced oxidative stress and can stimulate the production of antibodies and up- or downregulate the expression of cytokine-encoding genes to induce immunomodulatory and anti-inflammatory responses. The molecular mechanism(s) by which Spirulina induces these activities is unclear, but phycocyanin and β-carotene are important molecules. Moreover, Spirulina effectively regulates the ERK1/2, JNK, p38, and IκB pathways. This review provides new insight into the potential therapeutic applications of Spirulina and may provide new ideas for future studies.
Collapse
|
36
|
da Costa E, Silva J, Mendonça SH, Abreu MH, Domingues MR. Lipidomic Approaches towards Deciphering Glycolipids from Microalgae as a Reservoir of Bioactive Lipids. Mar Drugs 2016; 14:md14050101. [PMID: 27213410 PMCID: PMC4882575 DOI: 10.3390/md14050101] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 05/09/2016] [Accepted: 05/12/2016] [Indexed: 12/31/2022] Open
Abstract
In recent years, noteworthy research has been performed around lipids from microalgae. Among lipids, glycolipids (GLs) are quite abundant in microalgae and are considered an important source of fatty acids (FAs). GLs are rich in 16- and 18-carbon saturated and unsaturated fatty acids and often contain polyunsaturated fatty acids (PUFAs) like n-3 α-linolenic (ALA 18:3), eicosapentaenoic (EPA, 20:5) and docosahexaenoic (DHA, 22:6). GLs comprise three major classes: monogalactosyldiacyl glycerolipids (MGDGs), digalactosyl diacylglycerolipids (DGDGs) and sulfoquinovosyl diacylglycerolipids (SQDGs), whose composition in FA directly depends on the growth conditions. Some of these lipids are high value-added compounds with antitumoral, antimicrobial and anti-inflammatory activities and also with important nutritional significance. To fully explore GLs’ bioactive properties it is necessary to fully characterize their structure and to understand the relation between the structure and their biological properties, which can be addressed using modern mass spectrometry (MS)-based lipidomic approaches. This review will focus on the up-to-date FA composition of GLs identified by MS-based lipidomics and their potential as phytochemicals.
Collapse
Affiliation(s)
- Elisabete da Costa
- Centro de Espectrometria de Massa, Departamento de Química & QOPNA, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Joana Silva
- Allmicroalgae-Natural Products S.A., Avenida das Forças Armadas, 125, 7º piso, 1600-079 Lisboa, Portugal.
| | - Sofia Hoffman Mendonça
- Allmicroalgae-Natural Products S.A., Avenida das Forças Armadas, 125, 7º piso, 1600-079 Lisboa, Portugal.
| | - Maria Helena Abreu
- ALGAplus-Produção e Comercialização de Algas e Derivados, Lda., 3830-196 Ílhavo, Portugal.
| | - Maria Rosário Domingues
- Centro de Espectrometria de Massa, Departamento de Química & QOPNA, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
37
|
Bioprospecting of Marine Macrophytes Using MS-Based Lipidomics as a New Approach. Mar Drugs 2016; 14:md14030049. [PMID: 27005634 PMCID: PMC4820303 DOI: 10.3390/md14030049] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/25/2016] [Accepted: 03/02/2016] [Indexed: 11/17/2022] Open
Abstract
The marine environment supports a remarkable diversity of organisms which are a potential source of natural products with biological activities. These organisms include a wide variety of marine plants (from micro- to macrophytes), which have been used in the food and pharmaceutical industry. However, the biochemistry and biological activities of many of these macrophytes (namely macroalgae and halophytes, including seagrasses) are still far from being fully explored. Most popular bioactive components include polysaccharides, peptides, phenolics and fatty acids (FAs). Polar lipids (glycolipids, phospholipids and betaine lipids) are emerging as novel value-added bioactive phytochemicals, rich in n-3 FA, with high nutritional value and health beneficial effects for the prevention of chronic diseases. Polar lipids account various combinations of polar groups, fatty acyl chains and backbone structures. The polar lipidome of macrophytes is remarkably diverse, and its screening represents a significant analytical challenge. Modern research platforms, particularly mass spectrometry (MS)-based lipidomic approaches, have been recently used to address this challenge and are here reviewed. The application of lipidomics to address lipid composition of marine macrophytes will contribute to the stimulation of further research on this group and foster the exploration of novel applications.
Collapse
|
38
|
Pagano D, Cutignano A, Manzo E, Tinto F, Fontana A. Glycolipids synthesis: improved hydrazinolysis conditions for preparation of 1,2-polyunsaturated fatty acyl-β-monogalactosyl-glycerols. Carbohydr Res 2016; 424:21-3. [PMID: 26921607 DOI: 10.1016/j.carres.2016.02.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/04/2016] [Accepted: 02/06/2016] [Indexed: 11/29/2022]
Abstract
The investigation is related to the development of a general strategy for the synthesis of glycolipids including analogs bearing polyunsaturated fatty acids. In particular, here we report exceptionally mild and selective conditions to remove acetate protecting groups from glyceroglycolipids by hydrazinolysis. Synthetic 1,2-O-di-arachidonoyl-3-O-β-galactosyl-glycerol was used as representative of polyunsaturated β-galactosyl-di-acyl-glycerols due to its reactivity under the conditions usually employed in literature.
Collapse
Affiliation(s)
- Dario Pagano
- Istituto di Chimica Biomolecolare, CNR, Via Campi Flegrei 34, I 80078-Pozzuoli (Na), Italy
| | - Adele Cutignano
- Istituto di Chimica Biomolecolare, CNR, Via Campi Flegrei 34, I 80078-Pozzuoli (Na), Italy
| | - Emiliano Manzo
- Istituto di Chimica Biomolecolare, CNR, Via Campi Flegrei 34, I 80078-Pozzuoli (Na), Italy.
| | - Francesco Tinto
- Istituto di Chimica Biomolecolare, CNR, Via Campi Flegrei 34, I 80078-Pozzuoli (Na), Italy
| | - Angelo Fontana
- Istituto di Chimica Biomolecolare, CNR, Via Campi Flegrei 34, I 80078-Pozzuoli (Na), Italy
| |
Collapse
|
39
|
Seaweed (Eucheuma cottonii) reduced inflammation, mucin synthesis, eosinophil infiltration and MMP-9 expressions in asthma-induced rats compared to Loratadine. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.10.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
40
|
Hamed I, Özogul F, Özogul Y, Regenstein JM. Marine Bioactive Compounds and Their Health Benefits: A Review. Compr Rev Food Sci Food Saf 2015. [DOI: 10.1111/1541-4337.12136] [Citation(s) in RCA: 216] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Imen Hamed
- Biotechnology Centre; Cukurova Univ; Adana Turkey
| | - Fatih Özogul
- Dept. of Seafood Processing Technology, Faculty of Fisheries; Cukurova Univ; Adana Turkey
| | - Yesim Özogul
- Dept. of Seafood Processing Technology, Faculty of Fisheries; Cukurova Univ; Adana Turkey
| | | |
Collapse
|
41
|
Total synthesis and structure-activity relationship of glycoglycerolipids from marine organisms. Mar Drugs 2014; 12:3634-59. [PMID: 24945415 PMCID: PMC4071594 DOI: 10.3390/md12063634] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 05/29/2014] [Accepted: 06/10/2014] [Indexed: 12/05/2022] Open
Abstract
Glycoglycerolipids occur widely in natural products, especially in the marine species. Glycoglycerolipids have been shown to possess a variety of bioactivities. This paper will review the different methodologies and strategies for the synthesis of biological glycoglycerolipids and their analogs for bioactivity assay. In addition, the bioactivities and structure-activity relationship of the glycoglycerolipids are also briefly outlined.
Collapse
|
42
|
Banskota AH, Stefanova R, Sperker S, Lall SP, Craigie JS, Hafting JT, Critchley AT. Polar lipids from the marine macroalga Palmaria palmata inhibit lipopolysaccharide-induced nitric oxide production in RAW264.7 macrophage cells. PHYTOCHEMISTRY 2014; 101:101-8. [PMID: 24569177 DOI: 10.1016/j.phytochem.2014.02.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 01/11/2014] [Accepted: 02/03/2014] [Indexed: 05/05/2023]
Abstract
The EtOAc soluble fraction of a MeOH/CHCl3 extract of Palmaria palmata showed strong nitric oxide (NO) inhibitory activity against lipopolysaccharide (LPS)-induced NO production in murine RAW264.7 cells. NO inhibition-guided isolation led to identification of three new polar lipids including a sulfoquinovosyl diacylglycerol (SQDG) (2S)-1-O-eicosapentaenoyl-2-O-myristoyl-3-O-(6-sulfo-α-D-quinovopyranosyl)-glycerol (1) and two phosphatidylglycerols, 1-O-eicosapentaenoyl-2-O-trans-3-hexadecenoyl-3-phospho-(1'-glycerol)-glycerol (3) and 1-O-eicosapentaenoyl-2-O-palmitoyl-3-phospho-(1'-glycerol)-glycerol (4) from the EtOAc fraction. Seven known lipids were also isolated including a SQDG (2), a phospholipid (5) and five galactolipids (6-10). Structures of the isolated lipids were elucidated by spectral analyses. The isolated SQDGs, phosphatidylglycerols and phospholipid possessed strong and dose-dependent NO inhibitory activity compared to N(G)-methyl-L-arginine acetate salt (L-NMMA), a well-known NO inhibitor used as a positive control. Further study suggested that these polar lipids suppressed NO production through down-regulation of inducible nitric oxide synthase (iNOS).
Collapse
Affiliation(s)
- Arjun H Banskota
- Aquatic and Crop Resource Development, National Research Council Canada, 1411 Oxford Street, Halifax, Nova Scotia B3H 3Z1, Canada.
| | - Roumiana Stefanova
- Aquatic and Crop Resource Development, National Research Council Canada, 1411 Oxford Street, Halifax, Nova Scotia B3H 3Z1, Canada
| | - Sandra Sperker
- Aquatic and Crop Resource Development, National Research Council Canada, 1411 Oxford Street, Halifax, Nova Scotia B3H 3Z1, Canada
| | - Santosh P Lall
- Aquatic and Crop Resource Development, National Research Council Canada, 1411 Oxford Street, Halifax, Nova Scotia B3H 3Z1, Canada
| | - James S Craigie
- Aquatic and Crop Resource Development, National Research Council Canada, 1411 Oxford Street, Halifax, Nova Scotia B3H 3Z1, Canada
| | - Jeff T Hafting
- Acadian Seaplants Limited, 30 Brown Avenue, Dartmouth, Nova Scotia B3B 1X8, Canada
| | - Alan T Critchley
- Acadian Seaplants Limited, 30 Brown Avenue, Dartmouth, Nova Scotia B3B 1X8, Canada
| |
Collapse
|
43
|
Min SW, Park MH, Han JS. Polyopes lancifolia extracts protect INS-1 pancreatic β cells against high glucose level induced apoptosis. Food Sci Biotechnol 2014. [DOI: 10.1007/s10068-014-0086-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
44
|
Min SW, Han JS. Polyopes lancifolia Extract, a Potent α-Glucosidase Inhibitor, Alleviates Postprandial Hyperglycemia in Diabetic Mice. Prev Nutr Food Sci 2014; 19:5-9. [PMID: 24772403 PMCID: PMC3999809 DOI: 10.3746/pnf.2014.19.1.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 03/17/2014] [Indexed: 11/30/2022] Open
Abstract
This study was designed to investigate the inhibitory effects of Polyopes lancifolia extract (PLE) on α-glucosidase activity, α-amylase activitiy, and postprandial hyperglycemia in streptozotocin (STZ)-induced diabetic mice. The results of this study revealed a marked inhibitory effect of PLE on α-glucosidase and α-amylase activities. The IC50s of PLE against α-glucosidase and α-amylase were 0.20 mg/mL and 0.35 mg/mL, respectively. PLE was a more effective inhibitor of α-glucosidase and α-amylase activities than acarbose, the positive control. The postprandial blood glucose levels of STZ-induced diabetic mice were significantly lower in the PLE treated group than in the control group. Moreover, PLE administration was associated with a decreased area under the curve for the glucose response in diabetic mice. These results indicate that PLE may be a potent inhibitor of α-glucosidase and α-amylase activities and may suppress postprandial hyperglycemia.
Collapse
Affiliation(s)
- Seong Won Min
- Department of Food Science and Nutrition, Pusan National University, Busan 609-735, Korea
| | - Ji Sook Han
- Department of Food Science and Nutrition, Pusan National University, Busan 609-735, Korea
| |
Collapse
|
45
|
Abd El Baky HH, El Baz FK, El Baroty GS, Abd El-Salam OI, Ibrahim EA. Structural characterization and Biological Activity of Sulfolipids from selected Marine Algae. GRASAS Y ACEITES 2013. [DOI: 10.3989/gya.050213] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
46
|
Imbs TI, Ermakova SP, Fedoreyev SA, Anastyuk SD, Zvyagintseva TN. Isolation of fucoxanthin and highly unsaturated monogalactosyldiacylglycerol from brown alga Fucus evanescens C Agardh and in vitro investigation of their antitumor activity. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2013; 15:606-12. [PMID: 23748883 DOI: 10.1007/s10126-013-9507-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 04/29/2013] [Indexed: 05/24/2023]
Abstract
Fucoxanthin (FX) and highly unsaturated monogalactosyldiacylglycerol (MGDG) were isolated from the ethanol extract of brown alga Fucus evanescens. Their structures were identified by nuclear magnetic resonance, complemented by electrospray ionization mass spectrometry (ESIMS). MGDG was identified as 1-O-(5Z,8Z,11Z,14Z,17Z-eicosapentanoyl)-2-O-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-3-O-β-D-galactopiranosyl-sn-glycerol. Antitumor activity of these compounds was tested on human melanoma (SK-MEL-28) cells. MGDG and FX inhibited the growth of human melanoma cells in a dose-dependent manner. IC50 values for growth inhibition were 104 and 114 μM, correspondently.
Collapse
Affiliation(s)
- Tatiana I Imbs
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Prospect 100-letya Vladivostoka, 159, Vladivostok, 690022, Russia.
| | | | | | | | | |
Collapse
|
47
|
|
48
|
Yang DJ, Lin JT, Chen YC, Liu SC, Lu FJ, Chang TJ, Wang M, Lin HW, Chang YY. Suppressive effect of carotenoid extract of Dunaliella salina alga on production of LPS-stimulated pro-inflammatory mediators in RAW264.7 cells via NF-κB and JNK inactivation. J Funct Foods 2013. [DOI: 10.1016/j.jff.2013.01.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
49
|
Shu MH, Appleton D, Zandi K, AbuBakar S. Anti-inflammatory, gastroprotective and anti-ulcerogenic effects of red algae Gracilaria changii (Gracilariales, Rhodophyta) extract. Altern Ther Health Med 2013; 13:61. [PMID: 23497105 PMCID: PMC3606449 DOI: 10.1186/1472-6882-13-61] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 03/07/2013] [Indexed: 11/23/2022]
Abstract
Background Gracilaria changii (Xia et Abbott) Abbott, Zhang et Xia, a red algae commonly found in the coastal areas of Malaysia is traditionally used for foods and for the treatment of various ailments including inflammation and gastric ailments. The aim of the study was to investigate anti-inflammatory, gastroprotective and anti-ulcerogenic activities of a mass spectrometry standardized methanolic extract of Gracilaria changii. Methods Methanolic extract of Gracilaria changii (MeOHGCM6 extract) was prepared and standardized using mass spectrometry (MS). Anti-inflammatory activities of MeOHGCM6 extract were examined by treating U937 cells during its differentiation with 10 μg/ml MeOHGCM6 extract. Tumour necrosis factors-α (TNF-α) response level and TNF-α and interleukin-6 (IL-6) gene expression were monitored and compared to that treated by 10 nM betamethasone, an anti-inflammatory drug. Gastroprotective and anti-ulcerogenic activities of MeOHGCM6 extract were examined by feeding rats with MeOHGCM6 extract ranging from 2.5 to 500 mg/kg body weight (b.w.) following induction of gastric lesions. Production of mucus and gastric juice, pH of the gastric juice and non-protein sulfhydryls (NP-SH) levels were determined and compared to that fed by 20 mg/kg b.w. omeprazole (OMP), a known anti-ulcer drug. Results MS/MS analysis of the MeOHGCM6 extracts revealed the presence of methyl 10-hydroxyphaeophorbide a and 10-hydroxypheophytin a, known chlorophyll proteins and several unidentified molecules. Treatment with 10 μg/ml MeOHGCM6 extract during differentiation of U937 cells significantly inhibited TNF-α response level and TNF-α and IL-6 gene expression. The inhibitory effect was comparable to that of betamethasone. No cytotoxic effects were recorded for cells treated with the 10 μg/ml MeOHGCM6 extract. Rats fed with MeOHGCM6 extract at 500 mg/kg b.w. showed reduced absolute ethanol-induced gastric lesion sizes by > 99% (p < 0.05). This protective effect was comparable to that conferred by OMP. The pH of the gastric mucus decreased in dose-dependent manner from 5.51 to 3.82 and there was a significant increase in NP-SH concentrations. Conclusions Results from the study, suggest that the mass spectrometry standardized methanolic extract of Gracillaria changii possesses anti-inflammatory, gastroprotective and anti-ulcerogenic properties. Further examination of the active constituent of the extract and its mechanism of action is warranted in the future.
Collapse
|
50
|
The green algae Ulva fasciata Delile extract induces apoptotic cell death in human colon cancer cells. In Vitro Cell Dev Biol Anim 2013; 49:74-81. [PMID: 23299316 DOI: 10.1007/s11626-012-9547-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 08/31/2012] [Indexed: 10/27/2022]
Abstract
This study investigated the mechanisms underlying the cytotoxicity of the green algae Ulva fasciata Delile. U. fasciata extract (UFE) inhibited the growth of HCT 116 human colon cancer cells by 50% at a concentration of 200 μg/ml. In addition, UFE stimulated the production of intracellular reactive oxygen species, an effect that was abolished by pretreatment with N-acetyl cysteine, which also inhibited the cytotoxic effects of UFE. UFE also induced morphological changes indicative of apoptosis, such as the formation of apoptotic bodies, DNA fragmentation, an increase in the population of apoptotic sub-G(1) phase cells, and mitochondrial membrane depolarization. Concomitant activation of the mitochondria-dependent apoptotic pathway occurred via modulation of Bax and Bcl-2 expression, resulting in disruption of the mitochondrial membrane potential and activation of caspase-9 and caspase-3. This is the first report to demonstrate the cytotoxic effect of U. fasciata on human colon cancer cells and to provide a possible mechanism for this activity.
Collapse
|