1
|
Zhu W, Xiong L, Oteiza PI. Structure-dependent capacity of procyanidin dimers to inhibit inflammation-induced barrier dysfunction in a cell model of intestinal epithelium. Redox Biol 2024; 75:103275. [PMID: 39059205 PMCID: PMC11327484 DOI: 10.1016/j.redox.2024.103275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Diet is of major importance in modulating intestinal inflammation, as the gastrointestinal tract is directly exposed to high concentrations of dietary components. Procyanidins are flavan-3-ol oligomers abundant in fruits and vegetables. Although with limited or no intestinal absorption, they can have GI health benefits which can promote overall health. We previously observed that epicatechin gallate (ECG) and epigallocatechin gallate (EGCG) dimers inhibit in vitro colorectal cancer cell proliferation and invasiveness. Inflammation-mediated intestinal barrier permeabilization can result in a chronic inflammatory condition and promote colorectal cancer onset/progression. Thus, this study investigated the structure-dependent capacity of ECG, EGCG and (-)-epicatechin (EC) dimers to inhibit tumor necrosis factor alpha (TNFα)-induced inflammation, oxidative stress, and loss of barrier integrity in Caco-2 cells differentiated into an intestinal epithelial cell monolayer. Cells were incubated with TNFα (10 ng/ml), in the absence/presence of ECG, EGCG and EC dimers. The three dimers inhibited TNFα-mediated Caco-2 cell monolayer permeabilization, modulating events involved in the loss of barrier function and inflammation, i.e. decreased tight junction protein levels; increased matrix metalloproteinases expression and activity; increased NADPH oxidase expression and oxidant production; activation of the NF-κB and ERK1/2 pathways and downstream events leading to tight junction opening. For some of these mechanisms, the galloylated ECG and EGCG dimers had stronger protective potency than the non-galloylated EC dimer. These differences could be due to differential membrane interactions as pointed out by molecular dynamics simulation of procyanidin dimers-cell membrane interactions and/or by differential interactions with NOX1. Results show that dimeric procyanidins, although poorly absorbed, can promote health by alleviating intestinal inflammation, oxidative stress and barrier permeabilization.
Collapse
Affiliation(s)
- Wei Zhu
- Department of Nutrition, University of California, Davis, CA, 95618, USA
| | - Le Xiong
- Cleveland Clinic, Cleveland, OH, 44194, USA
| | - Patricia I Oteiza
- Department of Nutrition, University of California, Davis, CA, 95618, USA; Department of Environmental Toxicology, University of California, Davis, CA, 95618, USA.
| |
Collapse
|
2
|
Fujiki H, Tobase K, Muguruma H. Electrochemical determination of the procyanidins in peanut skin using a carbon nanotube electrode. ANAL SCI 2024; 40:549-553. [PMID: 38072890 DOI: 10.1007/s44211-023-00466-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 11/07/2023] [Indexed: 02/27/2024]
Abstract
We demonstrated the electrochemical detection of procyanidins in peanut skin, which is often a waste product of the food industry, using a carbon nanotube electrode. Procyanidins, the main ingredients of peanut skin, are oligomers of catechin or epicatechin; therefore, they have various forms such as dimers, trimers, and a different number of linkages between monomers. Quantification using traditional high-performance liquid chromatography-mass spectroscopy (HPLC-MS) is tedious, because many peaks can be traced. The use of CNT electrodes for procyanidin sensing is promising, because CNT's properties, such as high conductivity, catalytic ability, and special geometry (high ratio of surface area to volume), enable common and specific profiles of the cyclic voltammograms (CVs) of procyanidins. Furthermore, the intensity of the anodic peaks (+ 0.32 V) due to the oxidation of catechol groups is proportional to the concentration of procyanidin (linear rang: 2.8-88 mg L-1, sensitivity: 1.4 mA mg-1 L cm-2), and does not depend on the type of procyanidin. The amount of procyanidins in the peanut skin estimated by CV was similar to that estimated by HPLC-MS. This study may contribute to accelerating the utilization of peanut skin for animal food, drugs, and supplementation.
Collapse
Affiliation(s)
- Hiyo Fujiki
- Shibuya Kyoiku Gakuen Makuhari Junior and Senior High School, 1-3 Wakaba, Mihama-ku, Chiba, 261-0043, Japan
| | - Kazuma Tobase
- Shibuya Kyoiku Gakuen Makuhari Junior and Senior High School, 1-3 Wakaba, Mihama-ku, Chiba, 261-0043, Japan
| | - Hitoshi Muguruma
- Faculty of Medical Science, Juntendo University, 6-8-1 Hinode, Urayasu, Chiba, 279-0013, Japan.
| |
Collapse
|
3
|
Phenolic Fraction from Peanut ( Arachis hypogaea L.) By-product: Innovative Extraction Techniques and New Encapsulation Trends for Its Valorization. FOOD BIOPROCESS TECH 2023; 16:726-748. [PMID: 36158454 PMCID: PMC9483447 DOI: 10.1007/s11947-022-02901-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/02/2022] [Indexed: 11/23/2022]
Abstract
Peanut skin is a by-product rich in bioactive compounds with high nutritional and pharmaceutical values. The phenolic fraction, rich in proanthocyanidins/procyanidins, is a relevant class of bioactive compounds, which has been increasingly applied as functional ingredients for food and pharmaceutical applications and is mostly recovered from peanut skins through low-pressure extraction methods. Therefore, the use of green high-pressure extractions is an interesting alternative to value this peanut by-product. This review addresses the benefits of the phenolic fraction recovered from peanut skin, with a focus on proanthocyanin/procyanidin compounds, and discusses the improvement of their activity, bioavailability, and protection, by methods such as encapsulation. Different applications for the proanthocyanidins, in the food and pharmaceutical industries, are also explored. Additionally, high-pressure green extraction methods, combined with micro/nanoencapsulation, using wall material derived from peanut industrial processing, may represent a promising biorefinery strategy to improve the bioavailability of proanthocyanidins recovered from underutilized peanut skins.
Collapse
|
4
|
Zou YP, Zhang QC, Zhang QY, Jiang LB, Li XL. Procyanidin B2 alleviates oxidative stress-induced nucleus pulposus cells apoptosis through upregulating Nrf2 via PI3K-Akt pathway. J Orthop Res 2022. [PMID: 36448180 DOI: 10.1002/jor.25492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/25/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022]
Abstract
Oxidative stress can lead to nucleus pulposus cell (NPC) apoptosis, which is considered to be one of the main contributors to intervertebral disc degeneration (IVDD). Procyanidin B2 is a natural antioxidant that protects against oxidative stress. However, whether procyanidin B2 protects NPCs from oxidative stress remains unknown. In this study, we demonstrated that procyanidin B2 could reduce tert-butyl hydroperoxide-induced reactive oxygen species in rat NPCs and attenuate rat NPC apoptosis. Further experiments revealed that procyanidin B2 upregulated the expression of both nuclear factor erythroid 2-related factor 2 (Nrf2) and phosphorylation of protein kinase B (Akt). We then used silencing of Nrf2 and LY294002 to silence Nrf2 expression and block the phosphatidylinositol 3-kinase (PI3K)/Akt pathway, respectively, and found that the protective roles of procyanidin B2 in NPCs were inhibited. Therefore, we demonstrated that procyanidin B2 alleviated rat NPC apoptosis induced by oxidative stress by upregulating Nrf2 via activation of the PI3K/Akt signaling pathway. This study provides a potential therapeutic approach for procyanidin B2 in IVDD, which might help in the development of new drugs for IVDD treatment.
Collapse
Affiliation(s)
- Yan-Pei Zou
- Department of Orthopaedic Surgery, Zhongshan Hospital Fudan University, Shanghai, China
| | - Qi-Chen Zhang
- Department of Orthopaedic Surgery, Zhongshan Hospital Fudan University, Shanghai, China
| | - Qian-Yi Zhang
- Department of Orthopaedic Surgery, Zhongshan Hospital Fudan University, Shanghai, China
| | - Li-Bo Jiang
- Department of Orthopaedic Surgery, Zhongshan Hospital Fudan University, Shanghai, China
| | - Xi-Lei Li
- Department of Orthopaedic Surgery, Zhongshan Hospital Fudan University, Shanghai, China
| |
Collapse
|
5
|
Tarshish E, Hermoni K, Sharoni Y, Muizzuddin N. Effect of Lumenato oral supplementation on plasma carotenoid levels and improvement of visual and experiential skin attributes. J Cosmet Dermatol 2022; 21:4042-4052. [PMID: 35020247 PMCID: PMC9786813 DOI: 10.1111/jocd.14724] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/16/2021] [Accepted: 12/22/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND Cellular metabolism and exposure to solar irradiation result in generation of free radicals which are destructive and can lead to premature aging. Antioxidants and free radical scavengers such as carotenoids successfully protect from these free radicals by quenching and neutralizing them thereby strengthening skin barrier which leads to improved skin moisturization, desquamation, and a more youthful look. This study was designed to evaluate the consumer-perceived efficacy of an oral supplement (Lumenato™) containing a mix of tomato carotenoids and oil-soluble vitamins in improving skin appearance after 12 weeks of supplement use. MATERIALS AND METHODS Plasma levels of phytoene, phytofluene, zeta-carotene, and lycopene were quantitated before and after 1-, 2-, 3-, and 4-week administration of Lumenato by 24 healthy volunteers. Part II of the study addressed skin visual attributes as assessed by validated tools (questionnaires). A total of 60 females, aged 35 to 55 years, completed part II of the study. The subjects answered questionnaires pertaining to their assessment of skin appearance before and after 12 weeks of taking the supplement. RESULTS There was a significant increase (p < 0.001) in plasma levels of phytoene, phytofluene, and zeta-carotene after 1- to 4-week treatment with Lumenato. After 12 weeks of using the supplement, the score of different skin parameters was reported to significantly improve (p < 0.001). Improvement was recorded in skin elasticity, firmness, brightness, skin tone, reduction in dark spots and periorbital dark circles, skin hydration, texture and fine lines and wrinkles. A significant (p < 0.001) improvement in overall skin condition after using the supplement was observed. The subjects noticed statistically significant (p < 0.001) improvement in skin elasticity, firmness, brightness, skin tone, reduction in dark spots and periorbital dark circles, skin hydration, texture and fine lines and wrinkles after 12 weeks of using the supplement. The overall skin condition also exhibited a significant improvement (p < 0.001). Self-assessed improvement of the face was identified at the first time point (4 weeks) and improved significantly (p < 0.001) for the 12 weeks of use. Interestingly, these improvements persisted even after treatment was stopped. CONCLUSION Based on the confines and conditions of this study, the use of oral supplement containing a mix of tomato carotenoids significantly increased plasma levels of phytoene, phytofluene, and zeta-carotene, and continuous use resulted in improved facial skin attributes which were palpable by the consumers and continued even after treatment was stopped.
Collapse
Affiliation(s)
| | | | - Yoav Sharoni
- Department of Clinical Biochemistry and PharmacologyFaculty of Health SciencesBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | | |
Collapse
|
6
|
Villalaín J. Procyanidin C1 Location, Interaction, and Aggregation in Two Complex Biomembranes. MEMBRANES 2022; 12:membranes12070692. [PMID: 35877895 PMCID: PMC9319219 DOI: 10.3390/membranes12070692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 06/29/2022] [Accepted: 07/04/2022] [Indexed: 01/25/2023]
Abstract
Procyanidins are known for their many benefits to human health and show a plethora of biological effects. One of the most important procyanidin is the procyanidin trimer C1 (PC1). Due to its relatively high lipid–water partition coefficient, the properties of PC1 could be attributed to its capability to interact with the biomembrane, to modulate its structure and dynamics, and to interact with lipids and proteins, however, its biological mechanism is not known. We have used all-atom molecular dynamics in order to determine the position of PC1 in complex membranes and the presence of its specific interactions with membrane lipids, having simulated a membrane mimicking the plasma membrane and another mimicking the mitochondrial membrane. PC1 has a tendency to be located at the membrane interphase, with part of the molecule exposed to the water solvent and part of it reaching the first carbons of the hydrocarbon chains. It has no preferred orientation, and it completely excludes the CHOL molecule. Remarkably, PC1 has a tendency to spontaneously aggregate, forming high-order oligomers. These data suggest that its bioactive properties could be attributed to its membranotropic effects, which therefore supports the development of these molecules as therapeutic molecules, which would open new opportunities for future medical advances.
Collapse
Affiliation(s)
- José Villalaín
- Institute of Research, Development, and Innovation in Healthcare Biotechnology (IDiBE), Universidad Miguel Hernández, E-03202 Elche, Spain
| |
Collapse
|
7
|
Rauf A, Akram M, Anwar H, Daniyal M, Munir N, Bawazeer S, Bawazeer S, Rebezov M, Bouyahya A, Shariati MA, Thiruvengadam M, Sarsembenova O, Mabkhot YN, Islam MN, Emran TB, Hodak S, Zengin G, Khan H. Therapeutic potential of herbal medicine for the management of hyperlipidemia: latest updates. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:40281-40301. [PMID: 35320475 DOI: 10.1007/s11356-022-19733-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
Hyperlipidemia, the most common form of dyslipidemia, is the main source of cardiovascular disorders, characterized by elevated level of total cholesterol (TC), triglycerides (TG) and low-density lipoprotein cholesterol (LDL-C) with high-density lipoprotein cholesterol (HDL-C) in peripheral blood. It is caused by a defect in lipid metabolism in the surface of Apoprotein C-II or a defect in lipoprotein lipase activity as well as reported in genetic, dietary and environmental factors. Several electronic databases were investigated as information sources, including Google Scholar, PubMed, Web of Science, Scopus, ScienceDirect, SpringerLink, Semantic Scholar, MEDLINE and CNKI Scholar. The current review focused on the risk factors of dyslipidemia, synthetic medication with their side effects and different types of medicinal plants having significant potential for the management of hyperlipidemia. The management of hyperlipidemia mostly involves a constant decrease in lipid level using different remedial drugs like statin, fibrate, bile acid sequestrates and niacin. However, this extensive review suggested that the consequences of these drugs are arguable, due to their numerous adverse effects. The selected parts of herb plants are used intact or their extracts containing active phytoconstituents to regulate the lipids in blood level. It was also noted that the Chinese herbal medicine and combination therapy is promising for the lowering of hyperlipidemia. This review intends to provide a scientific base for future endeavors, such as in-depth biological and chemical investigations into previously researched topics.
Collapse
Affiliation(s)
- Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, 23430, Khyber Pakhtunkhwa, Pakistan.
| | - Muhammad Akram
- Department of Eastern Medicine, Government College University Faisalabad, Faisalabad, Pakistan
| | - Hina Anwar
- Department of Eastern Medicine, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Daniyal
- TCM and Ethnomedicine Innovation and Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Naveed Munir
- Department of Biochemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Sami Bawazeer
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, P.O. Box 42, Makkah, Saudi Arabia
| | - Saud Bawazeer
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, P.O. Box 42, Makkah, Saudi Arabia
| | - Maksim Rebezov
- V. M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, Moscow, Russian Federation
- Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow, Russian Federation
- K.G. Razumovsky Moscow State University of Technologies and Management (the First Cossack University), Moscow, Russian Federation
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathology Biology, Faculty of Sciences, and Genomic Center of Human Pathology, Mohammed V University, Rabat, Morocco
| | - Mohammad Ali Shariati
- K.G. Razumovsky Moscow State University of Technologies and Management (the First Cossack University), Moscow, Russian Federation
| | | | | | - Yahia N Mabkhot
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha, 61421, Saudi Arabia
| | - Mohammad Nazmul Islam
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, 4318, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh
| | - Sergey Hodak
- K.G. Razumovsky Moscow State University of Technologies and Management (the First Cossack University), Moscow, Russian Federation
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Campus, Konya, Turkey.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
| |
Collapse
|
8
|
Bodoira R, Martínez M, Velez A, Cittadini MC, Ribotta P, Maestri D. Peanut skin phenolics obtained by green solvent extraction: characterization and antioxidant activity in pure chia oil and chia oil in water (O/W) emulsion. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2396-2403. [PMID: 34625975 DOI: 10.1002/jsfa.11577] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/16/2021] [Accepted: 10/09/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The peanut skin (PS) is considered as an industrial waste with undervalued applications. Although several studies report potent antioxidant capacities of PS phenolics, the effectiveness in highly unsaturated lipid systems has not yet been evaluated. The objectives of the present study were two-fold: (i) to characterize a PS phenolic extract (PSE) obtained by means of a green technology and (ii) to evaluate its antioxidant efficacy on pure chia oil and chia oil in water (O/W) acid emulsion. RESULTS PSE was composed mainly of monomeric and condensed flavonoids (procyanidin and proanthocyanidin oligomers). PSE displayed strong antioxidant properties as measured by different reducing power and radical scavenging capacities [IC50 = 0.36 μg dry extract (DE) mL-1 for ferric reducing antioxidant power; IC50 = 4.96 μg DE mL-1 for 2,2-diphenyl-1-picrylhydrazyl (DPPH)• ; IC50 = 6.01 μg DE mL-1 for 2,2'-azinobis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS)•+ ; IC50 = 2.62 μg DE mL-1 for HO• ]. It also showed high antioxidant efficacy when tested in pure chia oil under accelerated oxidation conditions (Rancimat, 100 °C). When added to the O/W emulsions maintained at 40 °C for 15 days, the PSE was more effective than a synthetic antioxidant (tert-butylhydroquinone) with respect to minimizing the formation and degradation of lipid hydroperoxides. CONCLUSIONS The antioxidant efficacy of PSE was primarily attributed to the abundance of compounds with a high number of phenolic-OH groups. Because they were found to cover a relatively wide range of partition coefficients, the antioxidant properties could be also enhanced by effect of both interfacial and solubility phenomena. All of these features allow the potential use of PSE as a natural antioxidant in different types of foods, including acid emulsion systems. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Romina Bodoira
- Instituto de Ciencia y Tecnología de los Alimentos Córdoba (ICYTAC - CONICET), Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
| | - Marcela Martínez
- Instituto de Ciencia y Tecnología de los Alimentos (ICTA), Facultad de Ciencias Exactas, Físicas y Naturales - Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
| | - Alexis Velez
- Instituto de Ciencia y Tecnología de los Alimentos (ICTA), Facultad de Ciencias Exactas, Físicas y Naturales - Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada. (IPQA-CONICET), Facultad de Ciencias Exactas, Físicas y Naturales. Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Maria C Cittadini
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
| | - Pablo Ribotta
- Instituto de Ciencia y Tecnología de los Alimentos Córdoba (ICYTAC - CONICET), Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
- Instituto de Ciencia y Tecnología de los Alimentos (ICTA), Facultad de Ciencias Exactas, Físicas y Naturales - Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
| | - Damián Maestri
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
| |
Collapse
|
9
|
Mingrou L, Guo S, Ho C, Bai N. Review on chemical compositions and biological activities of peanut (
Arachis hypogeae
L.). J Food Biochem 2022; 46:e14119. [DOI: 10.1111/jfbc.14119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/04/2022] [Accepted: 01/29/2022] [Indexed: 12/27/2022]
Affiliation(s)
- Li Mingrou
- College of Food Science and Technology Northwest University Xi’an China
| | - Sen Guo
- College of Food Science and Technology Northwest University Xi’an China
| | - Chi‐Tang Ho
- Department of Food Science Rutgers University New Brunswick New Jersey USA
| | - Naisheng Bai
- College of Food Science and Technology Northwest University Xi’an China
| |
Collapse
|
10
|
Bodoira R, Cecilia Cittadini M, Velez A, Rossi Y, Montenegro M, Martínez M, Maestri D. An overview on extraction, composition, bioactivity and food applications of peanut phenolics. Food Chem 2022; 381:132250. [PMID: 35121321 DOI: 10.1016/j.foodchem.2022.132250] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 01/05/2022] [Accepted: 01/23/2022] [Indexed: 12/20/2022]
Abstract
Peanuts contain a diverse and vast array of phenolic compounds having important biological properties. They are allocated mostly in the seed coat (skin), an industrial waste with minor and undervalued applications. In the last few years, a considerable amount of scientific knowledge about extraction, composition, bioactivities and health benefits of peanut skin phenolics has been generated. The present review was focused on four main aspects: a) extraction methods and technologies for obtaining peanut skin phenolics with an emphasis on green-solvent extraction processes; b) variations in chemical profiles including those due to genetic variability, extraction methodologies and process-related issues; c) bioactive properties, especially antioxidant activities in food and biological systems; d) update of promising food applications. The revision was also aimed at identifying areas where knowledge is insufficient and to set priorities for further research.
Collapse
Affiliation(s)
- Romina Bodoira
- Instituto de Ciencia y Tecnología de los Alimentos Córdoba (ICYTAC - CONICET), Universidad Nacional de Córdoba (UNC), Argentina
| | - M Cecilia Cittadini
- Instituto Multidisciplinario de Biología Vegetal (IMBIV - CONICET), Facultad de Ciencias Exactas, Físicas y Naturales - Universidad Nacional de Córdoba (UNC), Argentina
| | - Alexis Velez
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada (IPQA - CONICET), Facultad de Ciencias Exactas, Físicas y Naturales - Universidad Nacional de Córdoba (UNC), Argentina
| | - Yanina Rossi
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB - CONICET), Universidad Nacional de Villa María (UNVM), Argentina
| | - Mariana Montenegro
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB - CONICET), Universidad Nacional de Villa María (UNVM), Argentina
| | - Marcela Martínez
- Instituto Multidisciplinario de Biología Vegetal (IMBIV - CONICET), Facultad de Ciencias Exactas, Físicas y Naturales - Universidad Nacional de Córdoba (UNC), Argentina
| | - Damián Maestri
- Instituto Multidisciplinario de Biología Vegetal (IMBIV - CONICET), Facultad de Ciencias Exactas, Físicas y Naturales - Universidad Nacional de Córdoba (UNC), Argentina.
| |
Collapse
|
11
|
Hydrolysable tannins change physicochemical parameters of lipid nano-vesicles and reduce DPPH radical - Experimental studies and quantum chemical analysis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1864:183778. [PMID: 34537215 DOI: 10.1016/j.bbamem.2021.183778] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/28/2021] [Accepted: 09/12/2021] [Indexed: 11/23/2022]
Abstract
Tannins belong to plant secondary metabolites exhibiting a wide range of biological activity. One of the important aspects of the realization of the biological effects of tannins is the interaction with lipids of cell membranes. In this work we studied the interaction of two hydrolysable tannins: 1,2,3,4,6-penta-O-galloyl-β-d-glucose (PGG) and 1,2-di-O-galloyl-4,6-valoneoyl-β-d-glucose (T1) which had the same number of both aromatic rings (5) and hydroxyl groups (15) but differing in flexibility due to the presence of valoneoyl group in the T1 molecule with DMPC (dimyristoylphosphatidylcholine) lipid nano-vesicles (liposomes). Tannins-liposomes interactions were investigated using fluorescence spectroscopy, differential scanning calorimetry, laser Doppler velocimetry, dynamic light scattering and Fourier Transform Infra-Red spectroscopy. It was shown that more flexible PGG molecules stronger decreased the microviscosity of the liposomal membranes and increased the values of negative zeta potential in comparison with the more rigid T1. Both compounds diminished the phase transition temperature of DMPC membranes, interacted with liposomes via PO groups of head of phospholipids and their hydrophobic regions. These tannins neutralized DPPH free radicals with the stoichiometry of the reaction equal 1:1. The effects of the studied compounds on liposomes were discussed in relation to tannin quantum chemical parameters calculated by molecular modeling.
Collapse
|
12
|
Andersen-Civil AIS, Leppä MM, Thamsborg SM, Salminen JP, Williams AR. Structure-function analysis of purified proanthocyanidins reveals a role for polymer size in suppressing inflammatory responses. Commun Biol 2021; 4:896. [PMID: 34290357 PMCID: PMC8295316 DOI: 10.1038/s42003-021-02408-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/30/2021] [Indexed: 02/06/2023] Open
Abstract
Proanthocyanidins (PAC) are dietary compounds that have been extensively studied for beneficial health effects due to their anti-inflammatory properties. However, the structure-function relationships of PAC and their mode-of-action remain obscure. Here, we isolated a wide range of diverse PAC polymer mixtures of high purity from plant material. Polymer size was a key factor in determining the ability of PAC to regulate inflammatory cytokine responses in murine macrophages. PAC polymers with a medium (9.1) mean degree of polymerization (mDP) induced substantial transcriptomic changes, whereas PAC with either low (2.6) or high (12.3) mDP were significantly less active. Short-term oral treatment of mice with PAC modulated gene pathways connected to nutrient metabolism and inflammation in ileal tissue in a polymerization-dependent manner. Mechanistically, the bioactive PAC polymers modulated autophagic flux and inhibited lipopolysaccharide-induced autophagy in macrophages. Collectively, our results highlight the importance of defined structural features in the health-promoting effects of PAC-rich foods.
Collapse
Affiliation(s)
| | - Milla Marleena Leppä
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, Turku, Finland
| | - Stig M Thamsborg
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Juha-Pekka Salminen
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, Turku, Finland
| | - Andrew R Williams
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark.
| |
Collapse
|
13
|
Extracts of Peanut Skins as a Source of Bioactive Compounds: Methodology and Applications. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10238546] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Peanut skins are a waste product of the peanut processing industry with little commercial value. They are also significant sources of the polyphenolic compounds that are noted for their bioactivity. The extraction procedures for these compounds range from simple single solvent extracts to sophisticated separation schemes to isolate and identify the large range of compounds present. To take advantage of the bioactivities attributed to the polyphenols present, a range of products both edible and nonedible containing peanut skin extracts have been developed. This review presents the range of studies to date that are dedicated to extracting these compounds from peanut skins and their various applications.
Collapse
|
14
|
Spiegler V. Anthelmintic A-Type Procyanidins and Further Characterization of the Phenolic Composition of a Root Extract from Paullinia pinnata. Molecules 2020; 25:E2287. [PMID: 32414042 PMCID: PMC7287971 DOI: 10.3390/molecules25102287] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/07/2020] [Accepted: 05/11/2020] [Indexed: 01/22/2023] Open
Abstract
Extracts from the roots of Paullinia pinnata L. are used in West Africa as traditional remedies for a variety of diseases including infestations with soil-transmitted helminths. Based on the results of an ethnopharmacological survey in Ghana, an aqueous acetone (70%) extract was investigated for its anthelmintic and phytochemical properties. Partitioning of the crude extract followed by several fractionation steps of the ethyl acetate phase using Sephadex® LH-20, fast centrifugal partition chromatography, RP-18-MPLC and HPLC led to isolation of six oligomeric A-type procyanidins (1 to 6). To determine the anthelmintic activity, the crude extract, fractions and isolated compounds were tested in vitro against the model organism Caenorhabditis elegans. A significantly better activity was observed for the trimeric A-type procyanidin (1) compared to a B-type trimer. However, this effect could not be generalized for the tetrameric procyanidins, for which the type of the interflavan-linkage (4→6 vs. 4→8) had the greatest impact on the bioactivity. Besides the procyanidins, three novel compounds, isofraxidin-7-O-α-l-rhamnopyranosyl-(1″→6')-β-d-glucopyranoside (17), 4-methoxycatechol-2-O-(5''-O-vanilloyl-β-apiofuranosyl)-(1''→2')-β-glucopyranoside (18) and a 6-(3-methoxy-4-hydroxyphenyl)-hexane-2,4-diol-2-O-hexoside (19) were isolated together with further ten known compounds (7 to 16), mainly coumarins and coumarinolignans. Except for 3-β-d-glucopyranosyloxy-4-methyl-2(5H)-furanone (15), none of the isolated compounds has previously been described for P. pinnata. The anthelmintic activity was attributed to the presence of procyanidins, but not to any of the other compound classes. In summary, the findings rationalize the traditional use of P. pinnata root extracts as anthelmintic remedies.
Collapse
Affiliation(s)
- Verena Spiegler
- Institute for Pharmaceutical Biology and Phytochemistry, University of Münster, Corrensstraße 48, 48149 Münster, Germany
| |
Collapse
|
15
|
Zhu W, Wang RF, Khalifa I, Li CM. Understanding toward the Biophysical Interaction of Polymeric Proanthocyanidins (Persimmon Condensed Tannins) with Biomembranes: Relevance for Biological Effects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:11044-11052. [PMID: 31545599 DOI: 10.1021/acs.jafc.9b04508] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Persimmon condensed tannins (PT) are highly polymerized (mDP = 26) and highly galloylated (72%) proanthocyanidins. Its pleiotropic effects in oxidation resistance, neuroprotection, hypolipidemia, and cardio-protection both in vitro and in vivo were widely reported. Because large proanthocyanidins are unlikely to be absorbed in the gastrointestinal tract, it is believed that the interaction of PT with biological membranes may play a crucial role in its biological activities. In the present study, the capacities of PT adsorbing to membrane, partitioning into membrane, and its influence on the membrane fluidity were investigated by fluorescence quenching, isothermal titration calorimetry (ITC) and fluorescence anisotropy measurements in a biomembrane-mimetic system composed of 1-palmitoyl-2-oleoylphosphatidylcholine (POPC), 1-palmitoyl-2-oleoylphosphatidylethanolamine (POPE), sphingomyelin (SPM), and cholesterol (CHOL). Besides, the effects of PT on the morphology and integrity of the cell membrane were studied by scanning electron microscopy (SEM) and fluorescence staining in the 3T3-L1 cell model. The results suggested that PT could affect cell membrane rafts domains, destroy the cell membrane morphology, and regulate cell membrane fluidity, which might contribute to its biological effects.
Collapse
Affiliation(s)
- Wei Zhu
- College of Food Science and Technology , Huazhong Agricultural University , Wuhan 430070 , China
| | - Rui-Feng Wang
- College of Food Science and Technology , Huazhong Agricultural University , Wuhan 430070 , China
| | - Ibrahim Khalifa
- College of Food Science and Technology , Huazhong Agricultural University , Wuhan 430070 , China
- Food Technology Department, Faculty of Agriculture , Benha University , Moshtohor 13736 , Egypt
| | - Chun-Mei Li
- College of Food Science and Technology , Huazhong Agricultural University , Wuhan 430070 , China
- Key Laboratory of Environment Correlative Food Science , Huazhong Agricultural University, Ministry of Education , Wuhan 430070 , China
| |
Collapse
|
16
|
Mahrous E, Abdel-Sattar E, Abdelhady D, Ghazy E, Abdo W, Elbialy Z, Shukry M, Jandirk S. Proanthocyanidins rich extract of Calligonum comosum ameliorates doxorubicin-induced immunosuppression and hepatorenal toxicity. Pharmacogn Mag 2019. [DOI: 10.4103/pm.pm_670_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
17
|
Fraga CG, Oteiza PI, Galleano M. Plant bioactives and redox signaling: (-)-Epicatechin as a paradigm. Mol Aspects Med 2018; 61:31-40. [PMID: 29421170 DOI: 10.1016/j.mam.2018.01.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 01/25/2018] [Accepted: 01/25/2018] [Indexed: 12/31/2022]
Abstract
Polyphenols are bioactives claimed to be responsible for some of the health benefits provided by fruit and vegetables. It is currently accepted that the bioactivities of polyphenols can be mostly ascribed to their interactions with proteins and lipids. Such interactions can affect cell oxidant production and cell signaling, and explain in part the ability of polyphenols to promote health. EC can modulate redox sensitive signaling by: i) defining the extent of oxidant levels that can modify cell signaling, function, and fate, e.g. regulating enzymes that generate superoxide, hydrogen peroxide and nitric oxide; or ii) regulating the activation of transcription factors sensible to oxidants. The latter includes the regulation of the nuclear factor E2-related factor 2 (Nfr2) pathway, which in turn can promote the synthesis of antioxidant defenses, and of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) pathway, which mediates the expression of oxidants generating enzymes, as well as proteins not involved in redox reactions. In summary, a significant amount of data vindicates the participation of EC in redox regulated signaling pathways. Progress in the understanding of the molecular mechanisms involved in EC biological actions will help to define recommendations in terms of which fruit and vegetables are healthier and the amounts necessary to provide health effects.
Collapse
Affiliation(s)
- Cesar G Fraga
- Fisicoquímica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Bioquímica y Medicina Molecular (IBIMOL), Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina; Department of Nutrition, University of California, Davis, USA.
| | - Patricia I Oteiza
- Department of Nutrition, University of California, Davis, USA; Department of Environmental Toxicology, University of California, Davis, USA
| | - Monica Galleano
- Fisicoquímica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Bioquímica y Medicina Molecular (IBIMOL), Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| |
Collapse
|
18
|
Abstract
Phenolic compounds are important constituents of red wine, contributing to its sensory properties and antioxidant activity. Owing to the diversity and structural complexity, study of these compounds was mainly limited, during the last three decades, on their low-molecular-mass compounds or simple phenolic compounds. Only in recent years, much attention has been paid to highly polymerized polyphenols in grape and red wines. The reason for this is largely due to the development of analytical techniques, especially those of HPLC-ESI-MS, permitting the structural characterization of highly polymerized polyphenols. Furthermore, the knowledge on the biological properties of polymeric polyphenols of red wine is very limited. Grape polyphenols mainly consist of proanthocyanidins (oligomers and polymers) and anthocyanins, and low amount of other phenolics. Red wine polyphenols include both grape polyphenols and new phenolic products formed from them during winemaking process. This leads to a great diversity of new polyphenols and makes wine polyphenol composition more complex. The present paper summarizes the advances in the research of polymeric polyphenols in grape and red wine and their important role in Enology. Scientific results indicate that polymeric polyphenols, as the major polyphenols in grape and red wine, play a major role in red wine sensory properties, color stability and antioxidant activities.
Collapse
Affiliation(s)
- Lingxi Li
- a School of Pharmacy, Shenyang Pharmaceutical University , Shenyang , P. R. China.,b School of Functional Food and Wine, Shenyang Pharmaceutical University , Shenyang , P. R. China
| | - Baoshan Sun
- b School of Functional Food and Wine, Shenyang Pharmaceutical University , Shenyang , P. R. China.,c Pólo Dois Portos, Instituto Nacional de Investigação Agrária e Veterinária, I.P. , Quinta da Almoinha , Dois Portos , Portugal
| |
Collapse
|
19
|
Cyboran-Mikołajczyk S, Żyłka R, Jurkiewicz P, Pruchnik H, Oszmiański J, Hof M, Kleszczyńska H. Interaction of procyanidin B 3 with membrane lipids – Fluorescence, DSC and FTIR studies. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1362-1371. [DOI: 10.1016/j.bbamem.2017.04.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 04/05/2017] [Accepted: 04/28/2017] [Indexed: 12/22/2022]
|
20
|
Zhu W, Deng X, Peng J, Zou B, Li C. A-type ECG and EGCG dimers inhibit 3T3-L1 differentiation by binding to cholesterol in lipid rafts. J Nutr Biochem 2017; 48:62-73. [PMID: 28772148 DOI: 10.1016/j.jnutbio.2017.06.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 04/26/2017] [Accepted: 06/21/2017] [Indexed: 12/21/2022]
Abstract
The present study aimed to explore the underlying mechanisms of epicatechin-3-gallate-(4β→8, 2β→O→7)-epicatechin-3-gallate (A-type ECG dimer) and epigallocatechin-3-gallate-(4β→8, 2β→O→7)-epigallocatechin-3-gallate (A-type EGCG dimer) involved in their strong inhibitory effects on 3T3-L1 preadipocytes differentiation. In the synthetic "lipid raft-like" liposome, A-type ECG and EGCG dimers incorporated into the liposome with high affinity and decreased the fluidity of the liposome. In 3T3-L1 preadipocytes, A-type ECG and EGCG dimers possibly bonded to lipid rafts cholesterol and disrupted the integrity of lipid rafts, thus exerting their notable inhibitory effects on 3T3-L1 preadipocytes differentiation by suppressing mitotic clonal expansion process and mRNA levels of PPARγ, C/EBPα and SREBP1C. A highly positive correlation between the cholesterol binding capacity of the two dimers and their inhibitory effect on 3T3-L1 preadipocytes differentiation (R2=0.9328) was observed. Molecular dynamics simulation further verified that A-type ECG and EGCG dimers could bond to cholesterol via hydrogen bonding. The results of this study suggested that the disruption of A-type ECG and EGCG dimers on membrane lipid rafts by targeting cholesterol in the lipid rafts was involved in the underlying mechanisms of their strong inhibitory effects on 3T3-L1 preadipocytes differentiation. This broadens the understanding of the molecular mechanisms of polyphenols on modulating and controlling of metabolic dysregulation, particularly adipocyte differentiation, which is a significant risk factor associated with the development of cardiovascular disease.
Collapse
Affiliation(s)
- Wei Zhu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China, 430070
| | - Xiangyi Deng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China, 430070
| | - Jinming Peng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China, 430070
| | - Bo Zou
- Sericultural & Agri-food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China, 510610
| | - Chunmei Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China, 430070; Key Laboratory of Environment Correlative Food Science (Huazhong Agricultural University), Ministry of Education.
| |
Collapse
|
21
|
Gau J, Prévost M, Van Antwerpen P, Sarosi MB, Rodewald S, Arnhold J, Flemmig J. Tannins and Tannin-Related Derivatives Enhance the (Pseudo-)Halogenating Activity of Lactoperoxidase. JOURNAL OF NATURAL PRODUCTS 2017; 80:1328-1338. [PMID: 28368593 DOI: 10.1021/acs.jnatprod.6b00915] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Several hydrolyzable tannins, proanthocyanidins, tannin derivatives, and a tannin-rich plant extract of tormentil rhizome were tested for their potential to regenerate the (pseudo-)halogenating activity, i.e., the oxidation of SCN- to hypothiocyanite -OSCN, of lactoperoxidase (LPO) after hydrogen peroxide-mediated enzyme inactivation. Measurements were performed using 5-thio-2-nitrobenzoic acid in the presence of tannins and related substances in order to determine kinetic parameters and to trace the LPO-mediated -OSCN formation. The results were combined with docking studies and molecular orbital analysis. The -OSCN-regenerating effect of tannin derivatives relates well with their binding properties toward LPO as well as their occupied molecular orbitals. Especially simple compounds like ellagic acid or methyl gallate and the complex plant extract were found as potent enzyme-regenerating compounds. As the (pseudo-)halogenating activity of LPO contributes to the maintenance of oral bacterial homeostasis, the results provide new insights into the antibacterial mode of action of tannins and related compounds. Furthermore, chemical properties of the tested compounds that are important for efficient enzyme-substrate interaction and regeneration of the -OSCN formation by LPO were identified.
Collapse
Affiliation(s)
- Jana Gau
- Institute for Medical Physics and Biophysics, Medical Faculty, University of Leipzig , Härtelstraße 16-18, 04107 Leipzig, Germany
| | | | | | | | | | - Jürgen Arnhold
- Institute for Medical Physics and Biophysics, Medical Faculty, University of Leipzig , Härtelstraße 16-18, 04107 Leipzig, Germany
| | - Jörg Flemmig
- Institute for Medical Physics and Biophysics, Medical Faculty, University of Leipzig , Härtelstraße 16-18, 04107 Leipzig, Germany
| |
Collapse
|
22
|
Kirakosyan G, Mohamadvarzi M, Ghulikyan L, Zaqaryan N, Kishmiryan A, Ayvazyan N. Morphological and functional alteration of erythrocyte ghosts and giant unilamellar vesicles caused by Vipera latifi venom. Comp Biochem Physiol C Toxicol Pharmacol 2016; 190:48-53. [PMID: 27558241 DOI: 10.1016/j.cbpc.2016.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 08/10/2016] [Accepted: 08/16/2016] [Indexed: 10/21/2022]
Abstract
Snake bites are an endemic public health problem in Iran, both in rural and urban area. Viper venom as a hemolytic biochemical "cocktail" of toxins, primarily cause to the systemic alteration of blood cells. In the sixties and seventies, human erythrocytes were extensively studied, but the mechanical and chemical stresses commonly exerted on red blood cells continue to attract interest of scientists for the study of membrane structure and function. Here, we monitor the effect of Vipera latifi venom on human erythrocytes ghost membranes using phase contrast and fluorescent microscopy and changes in ATPase activity under snake venom influence in vitro. The ion pumps [Na+,K+]-ATPase and (Ca2++Mg2+)-ATPase plays a pivotal role in the active transport of certain cations and maintenance of intracellular electrolyte homeostasis. We also describe the interaction of Vipera latifi (VL) venom with giant unilamellar vesicles (GUVs) composed of the native phospholipid mixtures visualized by the membrane fluorescence probe, ANS, used to assess the state of membrane and specifically mark the phospholipid domains.
Collapse
Affiliation(s)
- Gayane Kirakosyan
- Orbeli Institute of Physiology, National Academy of Sciences of the Republic of Armenia, Orbely str. 22, 0019 Yerevan, Armenia
| | - Maryam Mohamadvarzi
- Orbeli Institute of Physiology, National Academy of Sciences of the Republic of Armenia, Orbely str. 22, 0019 Yerevan, Armenia
| | - Lusine Ghulikyan
- Orbeli Institute of Physiology, National Academy of Sciences of the Republic of Armenia, Orbely str. 22, 0019 Yerevan, Armenia
| | - Naira Zaqaryan
- Orbeli Institute of Physiology, National Academy of Sciences of the Republic of Armenia, Orbely str. 22, 0019 Yerevan, Armenia
| | - Arsen Kishmiryan
- Orbeli Institute of Physiology, National Academy of Sciences of the Republic of Armenia, Orbely str. 22, 0019 Yerevan, Armenia
| | - Naira Ayvazyan
- Orbeli Institute of Physiology, National Academy of Sciences of the Republic of Armenia, Orbely str. 22, 0019 Yerevan, Armenia.
| |
Collapse
|
23
|
Martín MA, Ramos S. Cocoa polyphenols in oxidative stress: Potential health implications. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.10.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
24
|
Feng J, Zhang XL, Li YY, Cui YY, Chen YH. Pinus massoniana Bark Extract: Structure-Activity Relationship and Biomedical Potentials. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2016; 44:1559-1577. [PMID: 27852122 DOI: 10.1142/s0192415x16500877] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Proanthocyanidins (PAs) belong to the condensed tannin subfamily of natural flavonoids. Recent studies have shown that the main bioactive compounds of Pinus massoniana bark extract (PMBE) are PAs, especially the proanthocyanidins B series, which play important roles in cell cycle arrest, apoptosis induction and migration inhibition of cancer cells in vivo and in vitro. PA-Bs are mixtures of oligomers and polymers composed of flavan-3-ol, and the relationship between their structure and corresponding biomedical potentials is summarized in this paper. The hydroxyl at certain positions or the linkage between different carbon atoms of different rings determines or affects their anti-oxidant and free radical scavenging bioactivities. The degree of polymerization and the water solubility of the reaction system also influence their biomedical potential. Taken together, PMBE has a promising future in clinical drug development as a candidate anticancer drug and as a food additive to prevent tumorigenesis. We hope this review will encourage interested researchers to conduct further preclinical and clinical studies to evaluate the anticancer activities of PMBE, its active constituents and their derivatives.
Collapse
Affiliation(s)
- Jiao Feng
- ‡ Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Xiao-Lu Zhang
- ‡ Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Ying-Ya Li
- ‡ Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Ying-Yu Cui
- * Key Laboratory of Arrhythmias, Ministry of Education (Tongji University), Shanghai 200120, P.R. China
- † Institute of Medical Genetics, Tongji University School of Medicine, Shanghai 200092, P.R. China
- ‡ Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Yi-Han Chen
- * Key Laboratory of Arrhythmias, Ministry of Education (Tongji University), Shanghai 200120, P.R. China
- † Institute of Medical Genetics, Tongji University School of Medicine, Shanghai 200092, P.R. China
- § Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai 200092, P.R. China
- ¶ Department of Cardiology, East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| |
Collapse
|
25
|
Procyanidin A2 Modulates IL-4-Induced CCL26 Production in Human Alveolar Epithelial Cells. Int J Mol Sci 2016; 17:ijms17111888. [PMID: 27845745 PMCID: PMC5133887 DOI: 10.3390/ijms17111888] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/08/2016] [Accepted: 11/08/2016] [Indexed: 12/16/2022] Open
Abstract
Allergic asthma is an inflammatory lung disease that is partly sustained by the chemokine eotaxin-3 (CCL26), which extends eosinophil migration into tissues long after allergen exposure. Modulation of CCL26 could represent a means to mitigate airway inflammation. Here we evaluated procyanidin A2 as a means of modulating CCL26 production and investigated interactions with the known inflammation modulator, Interferon γ (IFNγ). We used the human lung epithelial cell line A549 and optimized the conditions for inducing CCL26. Cells were exposed to a range of procyanidin A2 or IFNγ concentrations for varied lengths of time prior to an inflammatory insult of interleukin-4 (IL-4) for 24 h. An enzyme-linked immunosorbent assay was used to measure CCL26 production. Exposing cells to 5 μM procyanidin A2 (prior to IL-4) reduced CCL26 production by 35% compared with control. Greatest inhibition by procyanidin A2 was seen with a 2 h exposure prior to IL-4, whereas IFNγ inhibition was greatest at 24 h. Concomitant incubation of procyanidin A2 and IFNγ did not extend the inhibitory efficacy of procyanidin A2. These data provide evidence that procyanidin A2 can modulate IL-4-induced CCL26 production by A549 lung epithelial cells and that it does so in a manner that is different from IFNγ.
Collapse
|
26
|
Tamura T, Ozawa M, Tanaka N, Arai S, Mura K. Bacillus cereus Response to a Proanthocyanidin Trimer, a Transcriptional and Functional Analysis. Curr Microbiol 2016; 73:115-23. [PMID: 27061585 PMCID: PMC4899491 DOI: 10.1007/s00284-016-1032-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 02/21/2016] [Indexed: 01/16/2023]
Abstract
Proanthocyanidins are abundant in peanut skin, and in this study, the antibacterial effects of a peanut skin extract (PSE) against food-borne bacteria were investigated to find its minimum inhibitory concentration. Food-borne gram-positive bacteria, and in particular Bacillus cereus, was more sensitive to PSE. In particular, the inhibitory activity of epicatechin-(4β → 6)-epicatechin-(2β → O→7, 4β → 8)-catechin (EEC), a proanthocyanidin trimer from peanut skin, against B. cereus was stronger than that of procyanidin A1, a proanthocyanidin dimer. DNA microarray analysis of B. cereus treated with EEC was carried out, with a finding that 597 genes were significantly up-regulated. Analysis of the up-regulated genes suggested that EEC disrupted the normal condition of the cell membrane and wall of B. cereus and alter its usual nutritional metabolism. Moreover, treatment of B. cereus with EEC inhibited glucose uptake, suggesting that EEC affects the cell-surface adsorption.
Collapse
Affiliation(s)
- Tomoko Tamura
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan.
| | - Megumi Ozawa
- Advantec.Co., Ltd, 2-7-1 Nishisinjuku, Sinjuku-ku, Tokyo, 163-0703, Japan
| | - Naoto Tanaka
- Faculty of Applied Bioscience, Nodai Culture Collection Center, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Soichi Arai
- Nodai Research Institute, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Kiyoshi Mura
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
| |
Collapse
|
27
|
Preventive Effects of Cocoa and Cocoa Antioxidants in Colon Cancer. Diseases 2016; 4:diseases4010006. [PMID: 28933386 PMCID: PMC5456306 DOI: 10.3390/diseases4010006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 01/14/2016] [Accepted: 01/15/2016] [Indexed: 01/22/2023] Open
Abstract
Colorectal cancer is one of the main causes of cancer-related mortality in the developed world. Carcinogenesis is a multistage process conventionally defined by the initiation, promotion and progression stages. Natural polyphenolic compounds can act as highly effective antioxidant and chemo-preventive agents able to interfere at the three stages of cancer. Cocoa has been demonstrated to counteract oxidative stress and to have a potential capacity to interact with multiple carcinogenic pathways involved in inflammation, proliferation and apoptosis of initiated and malignant cells. Therefore, restriction of oxidative stress and/or prevention or delayed progression of cancer stages by cocoa antioxidant compounds has gained interest as an effective approach in colorectal cancer prevention. In this review, we look over different in vitro and in vivo studies that have identified potential targets and mechanisms whereby cocoa and their flavonoids could interfere with colonic cancer. In addition, evidence from human studies is also illustrated.
Collapse
|
28
|
Sekowski S, Ionov M, Dubis A, Mavlyanov S, Bryszewska M, Zamaraeva M. Biomolecular Interactions of Tannin Isolated from Oenothera gigas with Liposomes. J Membr Biol 2015; 249:171-9. [PMID: 26621636 DOI: 10.1007/s00232-015-9858-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 11/18/2015] [Indexed: 11/30/2022]
Abstract
We have examined the interaction between hydrolysable tannin 1-O-galloyl-4,6-hexahydroxydiphenoyl-β-D-glucose (OGβDG) with neutral liposomes as a model of cell membranes composed of three lipids: lecithin, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) at different mass ratios. OGβDG in the concentration range 0.5-15 µg/ml (0.4-12 µM) strongly interacts with liposomal membranes by changing their structure, surface charge and fluidity. Used OGβDG molecules decrease and increase the rigidity of hydrophilic surface and hydrophobic parts of liposomes, respectively. At higher concentrations of tannin (>15 µM), liposomes are aggregated. Fourier Transform Infra-Red (FTIR) analysis showed that mainly -OH groups from OGβDG and also PO(2-) groups from phospholipids are responsible for the interaction. Obtained data indicate the importance of membrane lipid composition in interactions between tannins and cells.
Collapse
Affiliation(s)
- Szymon Sekowski
- Department of Biophysics, Laboratory of Molecular Biophysics, Faculty of Biology and Chemistry, University of Bialystok, 15-950, Bialystok, Poland.
| | - Maksim Ionov
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236, Lodz, Poland
| | - Alina Dubis
- Department of Natural Products Chemistry, Faculty of Biology and Chemistry, University of Bialystok, 15-950, Bialystok, Poland.,Bio-Nano-Techno Center, Faculty of Biology and Chemistry, University of Bialystok, 15-950, Bialystok, Poland
| | - Saidmukhtar Mavlyanov
- Institute of Bioorganic Chemistry, Academy of Science of Republic of Uzbekistan, Tashkent-143, Uzbekistan
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236, Lodz, Poland
| | - Maria Zamaraeva
- Department of Biophysics, Laboratory of Molecular Biophysics, Faculty of Biology and Chemistry, University of Bialystok, 15-950, Bialystok, Poland
| |
Collapse
|
29
|
Saito C, Asano S, Kato C, Kobayashi S, Musha A, Kuribayashi H, Moriguchi S, Seto Y, Kawashima T, Kobayashi M, Ishizaki S, Kajikawa H. Nutritional values and antioxidative activities of whole peanuts and peanut skins for ruminant feeds. Anim Sci J 2015; 87:54-60. [DOI: 10.1111/asj.12405] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 01/25/2015] [Accepted: 01/28/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Chihiro Saito
- Department of Animal Science and Resources; Nihon University; Fujisawa Japan
| | - Sanae Asano
- Department of Animal Science and Resources; Nihon University; Fujisawa Japan
| | - Chizuko Kato
- Department of Animal Science and Resources; Nihon University; Fujisawa Japan
| | - Shintaro Kobayashi
- Department of Animal Science and Resources; Nihon University; Fujisawa Japan
| | - Ayaka Musha
- Department of Animal Science and Resources; Nihon University; Fujisawa Japan
| | | | - Shouhei Moriguchi
- Department of Animal Science and Resources; Nihon University; Fujisawa Japan
| | - Yuuki Seto
- Department of Animal Science and Resources; Nihon University; Fujisawa Japan
| | - Tasuku Kawashima
- Department of Animal Science and Resources; Nihon University; Fujisawa Japan
| | | | | | - Hiroshi Kajikawa
- Department of Animal Science and Resources; Nihon University; Fujisawa Japan
| |
Collapse
|
30
|
Impact of Procyanidins from Different Berries on Caspase 8 Activation in Colon Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:154164. [PMID: 26180579 PMCID: PMC4477188 DOI: 10.1155/2015/154164] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/10/2014] [Accepted: 10/11/2014] [Indexed: 01/28/2023]
Abstract
Scope. The aim of this work is to identify which proapoptotic pathway is induced in human colon cancer cell lines, in contact with proanthocyanidins extracted from various berries. Methods and Results. Proanthocyanidins (Pcys) extracted from 11 berry species are monitored for proapoptotic activities on two related human colon cancer cell lines: SW480-TRAIL-sensitive and SW620-TRAIL-resistant. Apoptosis induction is monitored by cell surface phosphatidylserine (PS) detection. Lowbush blueberry extract triggers the strongest activity. When tested on the human monocytic cell line THP-1, blueberry Pcys are less effective for PS externalisation and DNA fragmentation is absent, highlighting a specificity of apoptosis induction in gut cells. In Pcys-treated gut cell lines, caspase 8 (apoptosis extrinsic pathway) but not caspase 9 (apoptosis intrinsic pathway) is activated after 3 hours through P38 phosphorylation (90 min), emphasizing the potency of lowbush blueberry Pcys to eradicate gut TRAIL-resistant cancer cells. Conclusion. We highlight here that berries Pcys, especially lowbush blueberry Pcys, are of putative interest for nutritional chemoprevention of colorectal cancer in view of their apoptosis induction in a human colorectal cancer cell lines.
Collapse
|
31
|
Ziyatdinova GK, Budnikov HC. Natural phenolic antioxidants in bioanalytical chemistry: state of the art and prospects of development. RUSSIAN CHEMICAL REVIEWS 2015. [DOI: 10.1070/rcr4436] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
32
|
Tamura T, Ozawa M, Kobayashi S, Watanabe H, Arai S, Mura K. Inhibitory Effect of Oligomeric Polyphenols from Peanut-skin on Sugar Digestion Enzymes and Glucose Transport. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2015. [DOI: 10.3136/fstr.21.111] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Tomoko Tamura
- Department of Nutritional Science, Faculty of Applied Bioscience, Tokyo University of Agriculture
| | | | - Shoko Kobayashi
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Hirohito Watanabe
- Department of Life Science and Department of Agricultural Chemistry, Meiji University
| | - Soichi Arai
- Department of Nutritional Science, Faculty of Applied Bioscience, Tokyo University of Agriculture
| | - Kiyoshi Mura
- Department of Nutritional Science, Faculty of Applied Bioscience, Tokyo University of Agriculture
| |
Collapse
|
33
|
Gamma-irradiation induced changes in microbiological status, phenolic profile and antioxidant activity of peanut skin. J Funct Foods 2015. [DOI: 10.1016/j.jff.2014.10.034] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
34
|
Guo F, Lin M, Gu Y, Zhao X, Hu G. Preparation of PEG-modified proanthocyanidin liposome and its application in cosmetics. Eur Food Res Technol 2014. [DOI: 10.1007/s00217-014-2405-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
35
|
Verstraeten SV, Fraga CG, Oteiza PI. Interactions of flavan-3-ols and procyanidins with membranes: mechanisms and the physiological relevance. Food Funct 2014; 6:32-41. [PMID: 25418533 DOI: 10.1039/c4fo00647j] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Flavonoids are a type of phenolic compound widely present in edible plants. A great number of health benefits have been ascribed to flavonoid consumption in the human population. However, the molecular mechanisms involved in such effects remain to be identified. The flavan-3-ols (-)-epicatechin and (+)-catechin, and their related oligomers (procyanidins) have been thoroughly studied because of their capacity to interact with cell membranes. Starting with these interactions, procyanidins could modulate multiple biochemical processes, such as enzyme activities, receptor-ligand binding, membrane-initiated cell signaling, and molecule transport across membranes. This review focuses on molecular aspects of procyanidin interactions with membrane lipid components, and the resulting protection of the membranes against mechanical and/or oxidative damage, resulting in the maintenance of cell functions.
Collapse
Affiliation(s)
- Sandra V Verstraeten
- Department of Biological Chemistry and IQUIFIB (UBA-CONICET), Buenos Aires, Argentina
| | | | | |
Collapse
|
36
|
Ghazaryan NA, Ghulikyan L, Kishmiryan A, Andreeva TV, Utkin YN, Tsetlin VI, Lomonte B, Ayvazyan NM. Phospholipases a2 from Viperidae snakes: Differences in membranotropic activity between enzymatically active toxin and its inactive isoforms. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:463-8. [PMID: 25450350 DOI: 10.1016/j.bbamem.2014.10.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 10/23/2014] [Accepted: 10/27/2014] [Indexed: 12/19/2022]
Abstract
We describe the interaction of various phospholipases A2 (PLA2) from snake venoms of the family Viperidae (Macrovipera lebetina obtusa, Vipera ursinii renardi, Bothrops asper) with giant unilamellar vesicles (GUVs) composed of natural brain phospholipids mixture, visualized through fluorescence microscopy. The membrane fluorescent probes 8-anilino-1-naphthalenesulfonicacid (ANS), LAUDRAN and PRODAN were used to assess the state of the membrane and specifically mark the lipid packing and membrane fluidity. Our results have shown that the three PLA2s which contain either of aspartic acid, serine, or lysine residues at position 49 in the catalytic center, have different effects on the vesicles. The PLA2 with aspartic acid at this position causes the oval deformation of the vesicles, while serine and lysine-containing enzymes lead to an appreciable increase of fluorescence intensity in the vesicles membrane, wherein the shape and dimensions of GUVs have not changed, but in this case GUV aggregation occurs. LAURDAN and PRODAN detect the extent of water penetration into the bilayer surface. We calculated generalized polarization function (GP), showing that for all cases (D49 PLA2, S49 PLA2 and K49 PLA2) both LAUDRAN and PRODAN GP values decrease. A higher LAURDAN GP is indicative of low water penetration in the lipid bilayer in case of K49 PLA2 compared with D49 PLA2, whereas the PRODAN mainly gives information when lipid is in liquid crystalline phase.
Collapse
Affiliation(s)
| | - Lusine Ghulikyan
- Orbeli Institute of Physiology, Orbely str. 22, 0019 Yerevan, Armenia
| | - Arsen Kishmiryan
- Orbeli Institute of Physiology, Orbely str. 22, 0019 Yerevan, Armenia
| | - Tatyana V Andreeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, GSP-7, Ul. Miklukho-Maklaya, 16/10, 117997 Moscow, Russian Federation
| | - Yuri N Utkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, GSP-7, Ul. Miklukho-Maklaya, 16/10, 117997 Moscow, Russian Federation
| | - Victor I Tsetlin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, GSP-7, Ul. Miklukho-Maklaya, 16/10, 117997 Moscow, Russian Federation
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Universidad de Costa Rica, 11501 San José, Costa Rica
| | - Naira M Ayvazyan
- Orbeli Institute of Physiology, Orbely str. 22, 0019 Yerevan, Armenia.
| |
Collapse
|
37
|
Cyboran S, Oszmiański J, Kleszczyńska H. Modification of the properties of biological membrane and its protection against oxidation by Actinidia arguta leaf extract. Chem Biol Interact 2014; 222:50-9. [PMID: 25199699 DOI: 10.1016/j.cbi.2014.08.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 08/04/2014] [Accepted: 08/26/2014] [Indexed: 10/24/2022]
Abstract
The aim of the study was to determine the polyphenol composition and biological activity of an extract from the leaves of kiwi. Antioxidant and hemolytic activity of the extract were examined, as well as its effect on the physical properties of the erythrocyte membrane such as osmotic resistance, membrane fluidity, and packing order of its hydrophilic area. Antioxidant activity of the extract was determined in relation to the erythrocyte membrane oxidized with free radicals induced by UVB and UVC radiation and the compound AAPH. Chromatographic, spectrophotometric and fluorimetric methods were applied in the research. The obtained results showed that kiwi leaves are a rich source of polyphenolic substances, mainly catechins and their dimers, which do not induce red blood cell hemolysis but make them stronger and more resistant to changes in medium tonicity. Substances contained in the extract effectively protect erythrocyte membranes against oxidation induced by physicochemical factors, the effectiveness of the protection depending on the concentration and type of free radical inducer. In addition, the study showed that the kiwi extract increases fluidity of the erythrocyte membrane and causes an increase in packing disorder in the hydrophilic membrane area. The changes seem to be due to the presence of polyphenolic substances in the extract, mainly in the region of the polar heads of lipids, where they can form a barrier protecting the membrane against diffusion of free radicals to the membrane interior. The effects of the extract evidenced by the present research, in particular protection of the biological membrane against free radicals induced by physicochemical agents, make it a potential valuable food additive, to enrich it with polyphenolic compounds that inhibit lipid oxidation in food exposed to UVB radiation. Supplementing the organism with substances contained in kiwi leaves is expected to provide protection against many diseases that develop as a result of oxidative stress.
Collapse
Affiliation(s)
- Sylwia Cyboran
- Department of Physics and Biophysics, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375 Wroclaw, Poland.
| | - Jan Oszmiański
- Department of Fruit, Vegetable and Cereal Technology, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375 Wroclaw, Poland.
| | - Halina Kleszczyńska
- Department of Physics and Biophysics, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375 Wroclaw, Poland.
| |
Collapse
|
38
|
González-Abuín N, Martínez-Micaelo N, Blay M, Green BD, Pinent M, Ardévol A. Grape-seed procyanidins modulate cellular membrane potential and nutrient-induced GLP-1 secretion in STC-1 cells. Am J Physiol Cell Physiol 2013; 306:C485-92. [PMID: 24371039 DOI: 10.1152/ajpcell.00355.2013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Grape-seed procyanidin extracts (GSPE) modulate glucose homeostasis, and it was suggested that GSPE may achieve this by enhancing the secretion of incretin hormones such as glucagon-like peptide-1 (GLP-1). Therefore, the aim of the present study is to examine in detail the effects of GSPE on intestinal endocrine cells (STC-1). GSPE was found to modulate plasma membrane potential in enteroendocrine cells, inducing depolarization at low concentrations (0.05 mg/l) and hyperpolarization at high concentrations (50 mg/l), and surprisingly this was also accompanied by suppressed GLP-1 secretion. Furthermore, how GSPE affects STC-1 cells under nutrient-stimulated conditions (i.e., glucose, linoleic acid, and l-proline) was also explored, and we found that the higher GSPE concentration was effective in limiting membrane depolarization and reducing GLP-1 secretion. Next, it was also examined whether GSPE affected mitochondrial membrane potential, and it was found that this too is altered by GSPE; however, this does not appear to explain the observed effects on plasma membrane potential and GLP-1 secretion. In conclusion, our results show that grape-seed procyanidins modulate cellular membrane potential and nutrient-induced enteroendocrine hormone secretion in STC-1 cells.
Collapse
Affiliation(s)
- Noemi González-Abuín
- Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Tarragona, Spain; and
| | | | | | | | | | | |
Collapse
|
39
|
Verstraeten SV, Jaggers GK, Fraga CG, Oteiza PI. Procyanidins can interact with Caco-2 cell membrane lipid rafts: Involvement of cholesterol. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2646-53. [DOI: 10.1016/j.bbamem.2013.07.023] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 07/12/2013] [Accepted: 07/16/2013] [Indexed: 11/28/2022]
|
40
|
Dong XQ, Zou B, Zhang Y, Ge ZZ, Du J, Li CM. Preparation of A-type proanthocyanidin dimers from peanut skins and persimmon pulp and comparison of the antioxidant activity of A-type and B-type dimers. Fitoterapia 2013; 91:128-139. [PMID: 24001713 DOI: 10.1016/j.fitote.2013.08.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 08/24/2013] [Accepted: 08/26/2013] [Indexed: 11/30/2022]
Abstract
We have established a simple method for preparing large quantities of A-type dimers from peanut skin and persimmon for further structure-activity relationship study. Peanut skins were defatted with hexane and oligomeric proanthocyanidins were extracted from it with 20% of methanol, and the extract was fractionated with ethyl acetate. Persimmon tannin was extracted from persimmon with methanol acidified with 1% hydrochloric acid, after removing the sugar and small phenols, the high molecular weight persimmon tannin was partially cleaved with 6.25% hydrochloric acid in methanol. The ethyl acetate fraction from peanut skins and persimmon tannin cleaved products was chromatographed on AB-8 macroporous resin followed by Toyopearl HW-50F resin to yield about 378.3mg of A-type (epi)catechin (EC) dimer from 1 kg dry peanut skins and 34.3mg of A-type (epi)catechin-3-O-gallate (ECG) dimer and 37.7 mg of A-type (epi)gallocatechin-3-O-gallate (EGCG) dimer from 1 kg fresh persimmon fruit. The antioxidant properties of the A-type and B-type dimers were compared in five different assays, namely, 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical, 2,2-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical, hydroxyl radical, lipid peroxidation in mice liver homogenate and erythrocyte hemolysis in rat blood. Our results showed that both A-type and B-type dimers showed high antioxidant potency in a dose-dependent manner. In general, B-type dimers showed higher radical scavenging potency than A-type ones with the same subunits in aqueous systems. But in tissue or lipid systems, A-type dimers showed similar or even higher antioxidant potency than B-type ones.
Collapse
Affiliation(s)
- Xiao-Qian Dong
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Bo Zou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ying Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhen-Zhen Ge
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Du
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chun-Mei Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Food Science, Huazhong Agricultural University, Ministry of Education, China.
| |
Collapse
|
41
|
Ghazaryan NA, Ghulikyan LA, Ayvazyan NM. Morphological Changes of Proteolipid Giant Unilamellar Vesicles Affected by Macrovipera lebetina obtusa Venom Visualized with Fluorescence Microscope. J Membr Biol 2013; 246:627-32. [DOI: 10.1007/s00232-013-9576-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Accepted: 06/10/2013] [Indexed: 11/28/2022]
|
42
|
Potential for preventive effects of cocoa and cocoa polyphenols in cancer. Food Chem Toxicol 2013; 56:336-51. [DOI: 10.1016/j.fct.2013.02.020] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 02/04/2013] [Accepted: 02/06/2013] [Indexed: 12/20/2022]
|
43
|
Attenuation of oxidative stress in U937 cells by polyphenolic-rich bark fractions of Burkea africana and Syzygium cordatum. Altern Ther Health Med 2013; 13:116. [PMID: 23714009 PMCID: PMC3680320 DOI: 10.1186/1472-6882-13-116] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 05/22/2013] [Indexed: 02/03/2023]
Abstract
Background Oxidative stress has been implicated in the progression of various diseases, which may result in the depletion of endogenous antioxidants. Exogenous supplementation with antioxidants could result in increased protection against oxidative stress. As concerns have been raised regarding synthetic antioxidant usage, the identification of alternative treatments is justified. The aim of the present study was to determine the antioxidant efficacy of Burkea africana and Syzygium cordatum bark extracts in an in vitro oxidative stress model. Methods Cytotoxicity of crude aqueous and methanolic extracts, as well as polyphenolic-rich fractions, was determined in C2C12 myoblasts, 3T3-L1 pre-adipocytes, normal human dermal fibroblasts and U937 macrophage-like cells using the neutral red uptake assay. Polyphenolic content was determined using the Folin-Ciocalteau and aluminium trichloride assays, and antioxidant activity using the Trolox Equivalence Antioxidant Capacity and DPPH assays. The extracts efficacy against oxidative stress in AAPH-exposed U937 cells was assessed with regards to reactive oxygen species generation, cytotoxicity, apoptosis, lipid peroxidation and reduced glutathione depletion. Results B. africana and S. cordatum showed enrichment of polyphenols from the aqueous extract, to methanolic extract, to polyphenolic-rich fractions. Antioxidant activity followed the same trend, which correlated well with the increased concentration of polyphenols, and was between two- to three-fold stronger than the Trolox antioxidant control. Both plants had superior activity compared to ascorbic acid in the DPPH assay. Polyphenolic-rich fractions were most toxic to the 3T3-L1 (IC50’s between 13 and 21 μg/ml) and C2C12 (IC50’s approximately 25 μg/ml) cell lines, but were not cytotoxic in the U937 and normal human dermal fibroblasts cultures. Free radical-induced generation of reactive oxygen species (up to 80%), cytotoxicity (up to 20%), lipid peroxidation (up to 200%) and apoptosis (up to 60%) was successfully reduced by crude extracts of B. africana and the polyphenolic-rich fractions of both plants. The crude extracts of S. cordatum were not as effective in reducing cytotoxic parameters. Conclusion Although oxidative stress was attenuated in U937 cells, cytotoxicity was observed in the 3T3-L1 and C2C12 cell lines. Further isolation and purification of polyphenolic-fractions could increase the potential use of these extracts as supplements by decreasing cytotoxicity and maintaining antioxidant quality.
Collapse
|
44
|
Prunin- and hesperetin glucoside-alkyl (C4–C18) esters interaction with Jurkat cells plasma membrane: Consequences on membrane physical properties and antioxidant capacity. Food Chem Toxicol 2013; 55:411-23. [DOI: 10.1016/j.fct.2013.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 12/18/2012] [Accepted: 01/10/2013] [Indexed: 02/02/2023]
|
45
|
Wang H, Bastian SEP, Howarth GS. Newly Developed Synbiotics and the Chemotherapy-Damaged Gut. J Evid Based Complementary Altern Med 2013. [DOI: 10.1177/2156587213477864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mucositis is a common side-effect of cancer chemotherapy and radiotherapy. Features of mucositis include erythema, ulceration, and inflammation of the gastrointestinal tract accompanied by clinical symptoms of abdominal pain and digestive disturbances. New treatment strategies are required. Experimental evidence is accumulating showing therapeutic promise for new nutraceutical agents including probiotic bacteria, probiotic-derived factors, prebiotics, and plant extracts. However, the targeted development of new combinations of these agents (synbiotics) to combat mucositis remains largely unexplored. The current review addresses the potential for these nutraceutical agents to reduce the severity of chemotherapy-damaged mucositis by strategically aligning their underlying mechanism of action with features of mucositis pathogenesis. The potential for certain plant extracts to act as prebiotics, in combination with probiotics or their derived factors, is further investigated. These unique synbiotic formulations could form the basis of a new naturally sourced adjunctive approach to cancer chemotherapy.
Collapse
Affiliation(s)
- Hanru Wang
- School of Animal and Veterinary Sciences; University of Adelaide, Roseworthy Campus, South Australia, Australia
| | - Susan E. P. Bastian
- School of Agriculture, Food and Wine; University of Adelaide, Waite Campus, South Australia, Australia
| | - Gordon S. Howarth
- School of Animal and Veterinary Sciences; University of Adelaide, Roseworthy Campus, South Australia, Australia
- Centre for Paediatric and Adolescent Gastroenterology, Children, Youth and Women’s Health Service, North Adelaide, South Australia, Australia
| |
Collapse
|
46
|
Clovamide and phenolics from cocoa beans (Theobroma cacao L.) inhibit lipid peroxidation in liposomal systems. Food Res Int 2013. [DOI: 10.1016/j.foodres.2012.10.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
47
|
Martin FPJ, Montoliu I, Nagy K, Moco S, Collino S, Guy P, Redeuil K, Scherer M, Rezzi S, Kochhar S. Specific dietary preferences are linked to differing gut microbial metabolic activity in response to dark chocolate intake. J Proteome Res 2012; 11:6252-63. [PMID: 23163751 DOI: 10.1021/pr300915z] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Systems biology approaches are providing novel insights into the role of nutrition for the management of health and disease. In the present study, we investigated if dietary preference for dark chocolate in healthy subjects may lead to different metabolic response to daily chocolate consumption. Using NMR- and MS-based metabolic profiling of blood plasma and urine, we monitored the metabolic response of 10 participants stratified as chocolate desiring and eating regularly dark chocolate (CD) and 10 participants stratified as chocolate indifferent and eating rarely dark chocolate (CI) to a daily consumption of 50 g of dark chocolate as part of a standardized diet over a one week period. We demonstrated that preference for chocolate leads to different metabolic response to chocolate consumption. Daily intake of dark chocolate significantly increased HDL cholesterol by 6% and decreased polyunsaturated acyl ether phospholipids. Dark chocolate intake could also induce an improvement in the metabolism of long chain fatty acid, as noted by a compositional change in plasma fatty acyl carnitines. Moreover, a relationship between regular long-term dietary exposure to a small amount of dark chocolate, gut microbiota, and phenolics was highlighted, providing novel insights into biological processes associated with cocoa bioactives.
Collapse
|
48
|
Cocoa polyphenols and their potential benefits for human health. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:906252. [PMID: 23150750 PMCID: PMC3488419 DOI: 10.1155/2012/906252] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 05/18/2012] [Accepted: 05/31/2012] [Indexed: 12/20/2022]
Abstract
This paper compiles the beneficial effects of cocoa polyphenols on human health, especially with regard to cardiovascular and inflammatory diseases, metabolic disorders, and cancer prevention. Their antioxidant properties may be responsible for many of their pharmacological effects, including the inhibition of lipid peroxidation and the protection of LDL-cholesterol against oxidation, and increase resistance to oxidative stress. The phenolics from cocoa also modify the glycemic response and the lipid profile, decreasing platelet function and inflammation along with diastolic and systolic arterial pressures, which, taken together, may reduce the risk of cardiovascular mortality. Cocoa polyphenols can also modulate intestinal inflammation through the reduction of neutrophil infiltration and expression of different transcription factors, which leads to decreases in the production of proinflammatory enzymes and cytokines. The phenolics from cocoa may thus protect against diseases in which oxidative stress is implicated as a causal or contributing factor, such as cancer. They also have antiproliferative, antimutagenic, and chemoprotective effects, in addition to their anticariogenic effects.
Collapse
|
49
|
Ayvazyan NM, Ghazaryan NA. Lipid bilayer condition abnormalities following Macrovipera lebetina obtusa snake envenomation. Toxicon 2012; 60:607-13. [DOI: 10.1016/j.toxicon.2012.05.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 05/11/2012] [Accepted: 05/23/2012] [Indexed: 02/03/2023]
|
50
|
Delcambre A, Saucier C. Identification of new flavan-3-ol monoglycosides by UHPLC-ESI-Q-TOF in grapes and wine. JOURNAL OF MASS SPECTROMETRY : JMS 2012; 47:727-736. [PMID: 22707165 DOI: 10.1002/jms.3007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Flavan-3-ol monoglycosides, having four aglycons (+)-catechin, (-)-epicatechin, (-)-epigallocatechin and epicatechin gallate monomeric units, are detected for the first time in Vitis vinifera L. cv. Merlot grape seeds and wine. These compounds were analyzed in red wine, seed and skin extracts by electrospray ionization quadrupole time of flight mass spectrometry (MS) in negative mode. Fragment ions derived from retro-Diels Alder, heterocyclic ring fragmentation, benzofuran forming fragmentation and glycoside fragmentations were detected in targeted MS/MS mode. These compounds were not detected in skins; the comparative study showed evidence that these glycosylated compounds originate only from grape seeds. Our method allows for the identification of these glycosylated compounds based on their exact mass and their specific fragmentation pattern. However, exact glucose position on the monomeric units can not be determined. This work allowed us to partially identify 14 new flavan-3-ol monoglycosides, based on the exact mass of the molecular ions and their specific retro-Diels Alder, heterocyclic ring fragmentation, benzofuran forming fragmentation and glycoside fragmentations.
Collapse
Affiliation(s)
- Adéline Delcambre
- Enology Laboratory, Department of Chemistry, University of British Columbia, Okanagan Campus, Kelowna, British Columbia V1V 1V7, Canada
| | | |
Collapse
|