1
|
Yeh WJ, Yan C, Wu CH. Photoprotective Effects of Phytochemicals on Blue Light-Induced Retinal Damage: Current Evidence and Future Perspectives. Nutrients 2025; 17:331. [PMID: 39861461 PMCID: PMC11768023 DOI: 10.3390/nu17020331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/13/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
The widespread use of light-emitting diodes (LEDs) has increased blue light (BL) exposure, raising concerns about its potential adverse effects on ocular health. Prolonged exposure to BL has been implicated in the pathogenesis of various retinal disorders, including age-related macular degeneration (AMD), primarily through mechanisms involving oxidative stress and inflammation mediated by the overproduction of reactive oxygen species (ROS). This review synthesizes current evidence on the photoprotective properties of dietary bioactive compounds, (e.g., anthocyanins, curcumin, quercetin, myricetin, and resveratrol), with a focus on their potential to mitigate BL-induced retinal damage. Accumulating research suggests that dietary antioxidants, particularly polyphenols, may offer photoprotective benefits. These phytochemicals act by neutralizing ROS and enhancing the retina's endogenous antioxidant capacity. Based on these findings, this review advocates for a food-first approach in future investigations, emphasizing the development of evidence-based dietary recommendations to bolster retinal health and mitigate the risk of BL-related ocular diseases. Considering the current lack of empirical clinical studies examining the impact of BL on human ocular health, future research in the field of BL hazard should prioritize two key approaches: conducting large-scale epidemiological dietary surveys and implementing clinical trials on functional ingredients that have demonstrated beneficial effects against photodamage in preclinical animal studies.
Collapse
Affiliation(s)
| | | | - Chi-Hao Wu
- Graduate Program of Nutrition Science, School of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan; (W.-J.Y.); (C.Y.)
| |
Collapse
|
2
|
Jang BK, Shin SJ, Park HH, Kumar V, Park YH, Kim JY, Kang HY, Park S, Kwon Y, Shin SE, Moon M, Lee BJ. Investigation of Novel Aronia Bioactive Fraction-Alginic Acid Nanocomplex on the Enhanced Modulation of Neuroinflammation and Inhibition of Aβ Aggregation. Pharmaceutics 2024; 17:13. [PMID: 39861665 PMCID: PMC11769017 DOI: 10.3390/pharmaceutics17010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Aronia extract or its active compounds, especially anthocyanin, have shown potential for Alzheimer's disease (AD)-related pathologies, including neuroinflammation, fibrillogenesis of amyloid beta (Aβ), and cognitive impairment. However, there was still concern about their structural instability in vivo and in vitro. To solve the instability of anthocyanins, we combined aronia bioactive factions (ABFs) and alginic acid via electrostatic molecular interactions and created an ABF-alginic acid nanocomplex (AANCP). We evaluated whether it is more stable and effective in cognitive disorder mice and neuroinflammation cell models. METHODS The physicochemical properties of the AANCP, such as nanoparticle size, structural stability, and release rate, were characterized. The AANCP was administered to scopolamine-injected Balb/c mice, and to BV2 microglia treated with lipopolysaccharide (LPS) and amyloid beta (Aβ). Inflammation responses were measured via qPCR and ELISA in vitro, and cognitive functions were measured via behavior tests in vivo. RESULTS The AANCP readily formed nanoparticles, 209.6 nm in size, with a negatively charged zeta potential. The AANCP exhibited better stability in four plasma samples (human, dog, rat, and mouse) and was slowly released in different pH conditions (pH 2.0, 7.4, and 8.0) compared with non-complexedABF. In vitro studies on microglial cells treated with AANCPs revealed a suppression of inflammatory cytokines (tumor necrosis factor-alpha and interleukin-6) induced by LPS. The AANCP increased microglial Aβ phagocytosis through the activation of triggering receptor expressed on myeloid cell 2 (TREM2)-related microglial polarization. The AANCP inhibited aggregation of Aβ in vitro and alleviated cognitive impairment in a scopolamine-induced in vivo dementia mouse model. CONCLUSIONS Our data indicate that AANCPs are more stable than ABFs and effective for cognitive disorders and neuroinflammation via modulation of M2 microglial polarization.
Collapse
Affiliation(s)
- Bong-Keun Jang
- Department of Pharmacy, College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea;
- JBKLAB, Inc., 17 Techno 4-ro, Yuseoung-gu, Daejeon 34013, Republic of Korea; (J.-Y.K.); (H.-Y.K.); (S.P.); (Y.K.); (S.-E.S.)
| | - Soo Jung Shin
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea; (S.J.S.); (H.H.P.); (V.K.); (Y.H.P.)
| | - Hyun Ha Park
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea; (S.J.S.); (H.H.P.); (V.K.); (Y.H.P.)
| | - Vijay Kumar
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea; (S.J.S.); (H.H.P.); (V.K.); (Y.H.P.)
| | - Yong Ho Park
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea; (S.J.S.); (H.H.P.); (V.K.); (Y.H.P.)
| | - Jeom-Yong Kim
- JBKLAB, Inc., 17 Techno 4-ro, Yuseoung-gu, Daejeon 34013, Republic of Korea; (J.-Y.K.); (H.-Y.K.); (S.P.); (Y.K.); (S.-E.S.)
- JBKLAB, Inc., 464 Dunchon-daero, Jungwon-gu, Seongnam-si 13229, Republic of Korea
| | - Hye-Yeon Kang
- JBKLAB, Inc., 17 Techno 4-ro, Yuseoung-gu, Daejeon 34013, Republic of Korea; (J.-Y.K.); (H.-Y.K.); (S.P.); (Y.K.); (S.-E.S.)
| | - Sunyoung Park
- JBKLAB, Inc., 17 Techno 4-ro, Yuseoung-gu, Daejeon 34013, Republic of Korea; (J.-Y.K.); (H.-Y.K.); (S.P.); (Y.K.); (S.-E.S.)
| | - Youngsun Kwon
- JBKLAB, Inc., 17 Techno 4-ro, Yuseoung-gu, Daejeon 34013, Republic of Korea; (J.-Y.K.); (H.-Y.K.); (S.P.); (Y.K.); (S.-E.S.)
| | - Sang-Eun Shin
- JBKLAB, Inc., 17 Techno 4-ro, Yuseoung-gu, Daejeon 34013, Republic of Korea; (J.-Y.K.); (H.-Y.K.); (S.P.); (Y.K.); (S.-E.S.)
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea; (S.J.S.); (H.H.P.); (V.K.); (Y.H.P.)
- Research Institute for Dementia Science, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea
| | - Beom-Jin Lee
- Department of Pharmacy, College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea;
- Institute of Pharmaceutical Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| |
Collapse
|
3
|
Auger C, Muzammel H, Diouf I, Schini-Kerth VB. Potential of Anthocyanin-rich Products to Prevent and Improve Endothelial Function and Senescence: Focus on Anthocyanins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27590-27618. [PMID: 39629614 DOI: 10.1021/acs.jafc.4c04727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Endothelial dysfunction is a pivotal early event in the development of major cardiovascular diseases including hypertension, atherosclerosis, diabetes, and aging. The alteration of the endothelial function is often triggered by an imbalance between the endothelial formation of vasoprotective factors, including nitric oxide (NO) and endothelium-dependent hyperpolarization (EDH), and vasocontracting factors, such as arachidonic acid-derived mediators generated by cyclooxygenases, and an increased level of oxidative stress. Recently, endothelial senescence was reported to be an early trigger of endothelial dysfunction. Preclinical studies indicate that polyphenol-rich food, including anthocyanin-rich products, can activate pathways promoting an increased formation of vasoprotective factors and can prevent the induction of endothelial dysfunction in endothelial cells and isolated blood vessels. Similarly, intake of anthocyanin-rich products has been associated with the prevention and/or the improvement of an endothelial dysfunction in several experimental models of cardiovascular diseases, including physiological aging. Moreover, clinical data indicate that polyphenol-rich and anthocyanin-rich products can improve endothelial function and vascular health in humans with cardiovascular diseases. The present review will discuss both experimental and clinical evidence indicating that several polyphenol-rich foods and natural products, and especially anthocyanin-rich products, can promote endothelial and vascular health, as well as the underlying mechanisms.
Collapse
Affiliation(s)
- Cyril Auger
- University of Strasbourg, INSERM, Regenerative Nanomedicine UMR 1260, 67000 Strasbourg, France
| | - Hira Muzammel
- University of Strasbourg, Translational Cardiovascular Medicine UR 3074, 67000 Strasbourg, France
| | - Ibrahima Diouf
- University of Strasbourg, Translational Cardiovascular Medicine UR 3074, 67000 Strasbourg, France
| | - Valérie B Schini-Kerth
- University of Strasbourg, Translational Cardiovascular Medicine UR 3074, 67000 Strasbourg, France
| |
Collapse
|
4
|
Victoria-Campos CI, Ornelas-Paz JDJ, Rios-Velasco C, Ruiz-Cruz S, Ornelas-Paz J, Del Toro-Sánchez CL, Márquez-Ríos E, Calderón-Loera R. Relevance of Anthocyanin Metabolites Generated During Digestion on Bioactivity Attributed to Intact Anthocyanins. Foods 2024; 13:4066. [PMID: 39767009 PMCID: PMC11675127 DOI: 10.3390/foods13244066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/07/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Epidemiological and in vitro studies suggest that dietary anthocyanins in their intact form exert beneficial effects on human health. However, the potential contributions of anthocyanin metabolites to these beneficial effects have been underestimated. The objective of this review was to critically analyze the outcomes of studies concerning the formation, identification, cellular transport, and biological actions of anthocyanin metabolites generated during digestion to formulate several premises supporting the idea that these compounds largely contribute to human health. Studies performed using purified or semi-purified anthocyanins under digestion or physiological conditions were prioritized in this review. It was found that the information available about the digestive stability and metabolism of anthocyanins, as well as about their transport and deposition in human tissues has mostly been generated using plant extracts or tissues naturally containing compounds identified as anthocyanin metabolites or compounds that can serve as precursors of compounds identified as anthocyanin metabolites. This has significantly compromised the accurate identification of anthocyanin metabolites. Studies with pure or semi-purified anthocyanins are scarce in this regard. Some analytical procedures have also led to the unreliable identification and quantification of anthocyanin metabolites and, consequently, to the unreliable determination of their contribution to human health. Evidence suggests that anthocyanins are also highly metabolized in the gastrointestinal tract and transported, stored, and biologically active as their intermediary structures and final metabolites.
Collapse
Affiliation(s)
- Claudia I. Victoria-Campos
- Facultad de Enfermería y Nutrición, Universidad Autónoma de San Luis Potosí, Niño Artillero 183, Zona Universitaria, San Luis Potosí 78240, San Luis Potosí, Mexico;
| | - José de Jesús Ornelas-Paz
- Centro de Investigación en Alimentación y Desarrollo A.C.-Unidad Cuauhtémoc, Av. Río Conchos S/N, Parque Industrial, Cd. Cuauhtémoc 31570, Chihuahua, Mexico; (C.R.-V.); (J.O.-P.); (R.C.-L.)
| | - Claudio Rios-Velasco
- Centro de Investigación en Alimentación y Desarrollo A.C.-Unidad Cuauhtémoc, Av. Río Conchos S/N, Parque Industrial, Cd. Cuauhtémoc 31570, Chihuahua, Mexico; (C.R.-V.); (J.O.-P.); (R.C.-L.)
| | - Saul Ruiz-Cruz
- Departamento de Investigación y Postgrado, Universidad de Sonora, Blvd. Rosales and Luis Encinas S/N, Hermosillo 83000, Sonora, Mexico; (S.R.-C.); (C.L.D.T.-S.); (E.M.-R.)
| | - Juan Ornelas-Paz
- Centro de Investigación en Alimentación y Desarrollo A.C.-Unidad Cuauhtémoc, Av. Río Conchos S/N, Parque Industrial, Cd. Cuauhtémoc 31570, Chihuahua, Mexico; (C.R.-V.); (J.O.-P.); (R.C.-L.)
| | - Carmen L. Del Toro-Sánchez
- Departamento de Investigación y Postgrado, Universidad de Sonora, Blvd. Rosales and Luis Encinas S/N, Hermosillo 83000, Sonora, Mexico; (S.R.-C.); (C.L.D.T.-S.); (E.M.-R.)
| | - Enrique Márquez-Ríos
- Departamento de Investigación y Postgrado, Universidad de Sonora, Blvd. Rosales and Luis Encinas S/N, Hermosillo 83000, Sonora, Mexico; (S.R.-C.); (C.L.D.T.-S.); (E.M.-R.)
| | - Rogelio Calderón-Loera
- Centro de Investigación en Alimentación y Desarrollo A.C.-Unidad Cuauhtémoc, Av. Río Conchos S/N, Parque Industrial, Cd. Cuauhtémoc 31570, Chihuahua, Mexico; (C.R.-V.); (J.O.-P.); (R.C.-L.)
| |
Collapse
|
5
|
Muzolf-Panek M, Zaworska-Zakrzewska A, Czech A, Lisiak D, Kasprowicz-Potocka M. Antioxidative Status and Meat Quality Traits as Affected by Dietary Supplementation of Finishing Pigs with Natural Phenolics. Antioxidants (Basel) 2024; 13:1362. [PMID: 39594504 PMCID: PMC11590991 DOI: 10.3390/antiox13111362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/29/2024] [Accepted: 11/03/2024] [Indexed: 11/28/2024] Open
Abstract
This work investigated the effect of a plant-based phenolic supplement on the color, myoglobin forms, lipid oxidation, and antioxidative status of fresh and stored (10 days at 4 °C) meat (Longissimus thoracis et lumborum), as well as the antioxidative status of the blood and liver. The sensory quality of the meat was also evaluated for color, aroma, texture, juiciness, and palatability. Twenty-four finishing pigs, divided into two groups, were fed a basal diet and a diet with a phenolic supplement (0.1%). The supplementation increased the redness of the meat (+36% for a* and +28% for redness index), the myoglobin (Mb) content (+7%), the antioxidant activity, and the juiciness. The treatment increased the antioxidant status of meat, reflected by superoxide dismutase (SOD) activity and total glutathione (GSH + GSSG). The catalase and SOD activities and GSH + GSSG of the blood and liver were also elevated in the supplemented samples when compared to the control group. A significant effect of time was observed for all tested parameters (pH, color attributes, Mb forms, the antioxidant activity, lipid oxidation) except for the Mb content. For the stored samples, only TBARSs (thiobarbituric acid reagent substances) were affected by the diet. The slope of the plot for TBARS changes with time was significantly different between the control and treated groups (p = 0.017), which indicated a significant effect of dietary supplementation. A higher rate of lipid oxidation was observed in the control samples.
Collapse
Affiliation(s)
- Małgorzata Muzolf-Panek
- Department of Food Quality and Safety Management, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-637 Poznań, Poland
| | - Anita Zaworska-Zakrzewska
- Department of Animal Nutrition, Faculty of Veterinary Medicine and Animal Science, Poznań University of Life Sciences, Wołyńska 33, 60-637 Poznań, Poland;
| | - Anna Czech
- Department of Biochemistry and Toxicology, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland;
| | - Dariusz Lisiak
- Department of Primary Meat Production, Institute of Agricultural and Food Biotechnology—State Research Institute, Głogowska 239, 60-111 Poznań, Poland;
| | - Małgorzata Kasprowicz-Potocka
- Department of Animal Nutrition, Faculty of Veterinary Medicine and Animal Science, Poznań University of Life Sciences, Wołyńska 33, 60-637 Poznań, Poland;
| |
Collapse
|
6
|
Naskar R, Ghosh A, Bhattacharya R, Chakraborty S. A critical appraisal of geroprotective activities of flavonoids in terms of their bio-accessibility and polypharmacology. Neurochem Int 2024; 180:105859. [PMID: 39265701 DOI: 10.1016/j.neuint.2024.105859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
Flavonoids, a commonly consumed natural product, elicit health-benefits such as antioxidant, anti-inflammatory, antiviral, anti-allergic, hepatoprotective, anti-carcinogenic and neuroprotective activities. Several studies have reported the beneficial role of flavonoids in improving memory, learning, and cognition in clinical settings. Their mechanism of action is mediated through the modulation of multiple signalling cascades. This polypharmacology makes them an attractive natural scaffold for designing and developing new effective therapeutics for complex neurological disorders like Alzheimer's disease and Parkinson's disease. Flavonoids are shown to inhibit crucial targets related to neurodegenerative disorders (NDDs), including acetylcholinesterase, butyrylcholinesterase, β-secretase, γ-secretase, α-synuclein, Aβ protein aggregation and neurofibrillary tangles formation. Conserved neuro-signalling pathways related to neurotransmitter biogenesis and inactivation, ease of genetic manipulation and tractability, cost-effectiveness, and their short lifespan make Caenorhabditis elegans one of the most frequently used models in neuroscience research and high-throughput drug screening for neurodegenerative disorders. Here, we critically appraise the neuroprotective activities of different flavonoids based on clinical trials and epidemiological data. This review provides critical insights into the absorption, metabolism, and tissue distribution of various classes of flavonoids, as well as detailed mechanisms of the observed neuroprotective activities at the molecular level, to rationalize the clinical data. We further extend the review to critically evaluate the scope of flavonoids in the disease management of neurodegenerative disorders and review the suitability of C. elegans as a model organism to study the neuroprotective efficacy of flavonoids and natural products.
Collapse
Affiliation(s)
- Roumi Naskar
- Center for Innovation in Molecular and Pharmaceutical Sciences (CIMPS), Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad, 500046, India
| | - Anirrban Ghosh
- Amity Institute of Biotechnology, Amity University, Kolkata, 700135, India
| | - Raja Bhattacharya
- Amity Institute of Biotechnology, Amity University, Kolkata, 700135, India.
| | - Sandipan Chakraborty
- Center for Innovation in Molecular and Pharmaceutical Sciences (CIMPS), Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad, 500046, India.
| |
Collapse
|
7
|
Venable KE, Lee CC, Francis J. Addressing Mental Health in Rural Settings: A Narrative Review of Blueberry Supplementation as a Natural Intervention. Nutrients 2024; 16:3539. [PMID: 39458533 PMCID: PMC11510281 DOI: 10.3390/nu16203539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/23/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Depression and anxiety are major public health issues; however, there is an unmet need for novel, effective, and accessible treatments, particularly in rural communities. Blueberries are an unexplored nutraceutical for these conditions due to their excellent nutritional profile, with particularly high levels of polyphenols and anthocyanins and benefits on mood, cognition, and health. Here, we present a narrative review of the literature concerning the etiology and treatments of major depressive disorder (MDD) and generalized anxiety disorder (GAD). In both animal and human studies, blueberry supplementation can ameliorate behavioral symptoms of both anxiety and depression. The mechanistic underpinnings of these behavioral improvements are not fully defined, but likely involve biochemical alterations in the gut-brain axis, including to inflammatory cytokines, reactive oxygen species, and growth factors. We also review the limitations of traditional therapies in rural settings. Finally, we assess the potential benefit of nutraceutical interventions, particularly blueberries, as novel therapeutics for these distinct, yet related mental health issues.
Collapse
Affiliation(s)
- Katy E. Venable
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA; (C.C.L.); (J.F.)
| | | | | |
Collapse
|
8
|
Semenova Y, Bjørklund G. Antioxidants and neurodegenerative eye disease. Crit Rev Food Sci Nutr 2024; 64:9672-9690. [PMID: 37312562 DOI: 10.1080/10408398.2023.2215865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Neurodegenerative ocular disorders mostly develop with aging and present great complications in the quality of life. Glaucoma and age-related macular degeneration (ARMD) rank as the third and fourth leading causes of blindness and low vision. Oxidative stress is one factor in the pathogenesis of neurodegenerative eye disease. In addition, ocular ischemia and neuroinflammation play an important role. It can be hypothesized that the influence of antioxidants through diet or oral supplementation can counteract the harmful effects of reactive oxygen species accumulated secondary to oxidative stress, ischemia, and inflammation. A range of studies has been published over the past decades focusing on the possible adjuvant effect of antioxidants in ARMD, while there were fewer reports on the potential role of antioxidants in glaucoma. Although certain reports demonstrated positive results, others were discouraging. As there is a controversy between the studies favoring and disfavoring supplementation with different types of antioxidants, it is important to revise the existing evidence on the role of antioxidants in neurodegenerative ocular disorders with a special focus on glaucoma and ARMD.
Collapse
Affiliation(s)
- Yuliya Semenova
- Department of Surgery, Nazarbayev University School of Medicine, Astana, Kazakhstan
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Mo i Rana, Norway
| |
Collapse
|
9
|
Wang D, Chen Y, Li J, Wu E, Tang T, Singla RK, Shen B, Zhang M. Natural products for the treatment of age-related macular degeneration. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155522. [PMID: 38820665 DOI: 10.1016/j.phymed.2024.155522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/08/2024] [Accepted: 03/07/2024] [Indexed: 06/02/2024]
Abstract
BACKGROUND Age-related macular degeneration (AMD) is a chronic retinal disease that significantly influences the vision of the elderly. PURPOSE There is no effective treatment and prevention method. The pathogenic process behind AMD is complex, including oxidative stress, inflammation, and neovascularization. It has been demonstrated that several natural products can be used to manage AMD, but systematic summaries are lacking. STUDY DESIGN AND METHODS PubMed, Web of Science, and ClinicalTrials.gov were searched using the keywords "Biological Products" AND "Macular Degeneration" for studies published within the last decade until May 2023 to summarize the latest findings on the prevention and treatment of age-related macular degeneration through the herbal medicines and functional foods. RESULTS The eligible studies were screened, and the relevant information about the therapeutic action and mechanism of natural products used to treat AMD was extracted. Our findings demonstrate that natural substances, including retinol, phenols, and other natural products, prevent the development of new blood vessels and protect the retina from oxidative stress in cells and animal models. However, they have barely been examined in clinical studies. CONCLUSION Natural products could be highly prospective candidate drugs used to treat AMD, and further preclinical and clinical research is required to validate it to control the disease.
Collapse
Affiliation(s)
- Dongyue Wang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Yi Chen
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Jiakun Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, PR China
| | - Erman Wu
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, PR China
| | - Tong Tang
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, PR China
| | - Rajeev K Singla
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, PR China; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab-144411, India.
| | - Bairong Shen
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, PR China.
| | - Ming Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China.
| |
Collapse
|
10
|
Cammareri M, Frary A, Frary A, Grandillo S. Genetic and Biotechnological Approaches to Improve Fruit Bioactive Content: A Focus on Eggplant and Tomato Anthocyanins. Int J Mol Sci 2024; 25:6811. [PMID: 38928516 PMCID: PMC11204163 DOI: 10.3390/ijms25126811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Anthocyanins are a large group of water-soluble flavonoid pigments. These specialized metabolites are ubiquitous in the plant kingdom and play an essential role not only in plant reproduction and dispersal but also in responses to biotic and abiotic stresses. Anthocyanins are recognized as important health-promoting and chronic-disease-preventing components in the human diet. Therefore, interest in developing food crops with improved levels and compositions of these important nutraceuticals is growing. This review focuses on work conducted to elucidate the genetic control of the anthocyanin pathway and modulate anthocyanin content in eggplant (Solanum melongena L.) and tomato (Solanum lycopersicum L.), two solanaceous fruit vegetables of worldwide relevance. While anthocyanin levels in eggplant fruit have always been an important quality trait, anthocyanin-based, purple-fruited tomato cultivars are currently a novelty. As detailed in this review, this difference in the anthocyanin content of the cultivated germplasm has largely influenced genetic studies as well as breeding and transgenic approaches to improve the anthocyanin content/profile of these two important solanaceous crops. The information provided should be of help to researchers and breeders in devising strategies to address the increasing consumer demand for nutraceutical foods.
Collapse
Affiliation(s)
- Maria Cammareri
- Institute of Biosciences and BioResources (IBBR), Research Division Portici, National Research Council of Italy (CNR), Via Università 133, 80055 Portici, Italy;
| | - Amy Frary
- Department of Biological Sciences, Mount Holyoke College, South Hadley, MA 01075, USA;
| | - Anne Frary
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir 35433, Turkey
| | - Silvana Grandillo
- Institute of Biosciences and BioResources (IBBR), Research Division Portici, National Research Council of Italy (CNR), Via Università 133, 80055 Portici, Italy;
| |
Collapse
|
11
|
Norouzkhani N, Afshari S, Sadatmadani SF, Mollaqasem MM, Mosadeghi S, Ghadri H, Fazlizade S, Alizadeh K, Akbari Javar P, Amiri H, Foroughi E, Ansari A, Mousazadeh K, Davany BA, Akhtari kohnehshahri A, Alizadeh A, Dadkhah PA, Poudineh M. Therapeutic potential of berries in age-related neurological disorders. Front Pharmacol 2024; 15:1348127. [PMID: 38783949 PMCID: PMC11112503 DOI: 10.3389/fphar.2024.1348127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/10/2024] [Indexed: 05/25/2024] Open
Abstract
Aging significantly impacts several age-related neurological problems, such as stroke, brain tumors, oxidative stress, neurodegenerative diseases (Alzheimer's, Parkinson's, and dementia), neuroinflammation, and neurotoxicity. Current treatments for these conditions often come with side effects like hallucinations, dyskinesia, nausea, diarrhea, and gastrointestinal distress. Given the widespread availability and cultural acceptance of natural remedies, research is exploring the potential effectiveness of plants in common medicines. The ancient medical system used many botanical drugs and medicinal plants to treat a wide range of diseases, including age-related neurological problems. According to current clinical investigations, berries improve motor and cognitive functions and protect against age-related neurodegenerative diseases. Additionally, berries may influence signaling pathways critical to neurotransmission, cell survival, inflammation regulation, and neuroplasticity. The abundance of phytochemicals in berries is believed to contribute to these potentially neuroprotective effects. This review aimed to explore the potential benefits of berries as a source of natural neuroprotective agents for age-related neurological disorders.
Collapse
Affiliation(s)
- Narges Norouzkhani
- Department of Medical Informatics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shaghayegh Afshari
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | | | | | - Shakila Mosadeghi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Hani Ghadri
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Safa Fazlizade
- Student Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Keyvan Alizadeh
- Student Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Pouyan Akbari Javar
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Hamidreza Amiri
- Student Research Committee, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Elaheh Foroughi
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arina Ansari
- Student Research Committee, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Kourosh Mousazadeh
- School of Medicine, Islamic Azad University, Tehran Medical Branch, Tehran, Iran
| | | | - Ata Akhtari kohnehshahri
- Student Research Committee, Faculty of Medicine, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran
| | - Alaleh Alizadeh
- Student Research Committee, Faculty of Medicine, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Parisa Alsadat Dadkhah
- Student Research Committee, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohadeseh Poudineh
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
12
|
Sesso HD, Rautiainen S, Park SJ, Kim E, Lee IM, Glynn RJ, Buring JE, Christen WG. Intake of Blueberries, Anthocyanins, and Risk of Eye Disease in Women. J Nutr 2024; 154:1404-1413. [PMID: 38432561 PMCID: PMC11007733 DOI: 10.1016/j.tjnut.2024.02.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/12/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND Blueberries and anthocyanins, their key bioactive component, may improve eye health. However, few long-term studies have examined blueberries and anthocyanins with cataract and age-related macular degeneration (AMD). OBJECTIVES To investigate the prospective association between blueberry and anthocyanin intake with incident cataract, total AMD, and visually significant AMD among middle-aged and older women. METHODS A total of 36,653 and 35,402 women initially free of AMD and cataract, respectively, aged ≥45 y from the Women's Health Study provided semiquantitative food frequency questionnaire data on blueberry intake categorized as none, 1-3 servings/mo, 1 serving/wk, or ≥2 servings/wk, plus a combined category of ≥1 serving/wk. Total anthocyanin intake and major subclasses were energy-adjusted and categorized into quintiles. Self-reported risk factors of eye disease were adjusted in multivariable hazard ratios (HRs) (95% confidence intervals [CIs]) of confirmed cataract, AMD, and visually significant AMD with mean follow-up of 11 y. RESULTS Among the participants, 10.5% consumed ≥1 serving/wk of blueberries, with mean total anthocyanin intake of 11.2 mg/d. Compared to no blueberry intake, women consuming 1-3 servings/mo, 1 serving/wk, and ≥2 servings/wk had corresponding multivariable HRs of total AMD of 0.90 (95% CI: 0.73, 1.11), 0.71 (95% CI: 0.50, 1.00), and 0.36 (95% CI: 0.14, 0.93) (Ptrend = 0.011); those consuming ≥1 servings/wk had an HR of 0.68 (95% CI: 0.47, 0.98). A similar magnitude of HRs were found for visually significant AMD (Ptrend = 0.012) but not for cataract. There were no significant associations between increasing total anthocyanin quintiles and total and visually significant AMD, but there was a modest inverse association with cataract (Ptrend = 0.022), driven by a 10% reduction in cataract in the upper 2 quintiles. CONCLUSIONS Greater blueberry intake significantly reduced total AMD, but not visually significant AMD or cataract. However, the magnitude of effect for visually significant AMD was similar to total AMD. There was a modest but significant inverse association between dietary anthocyanin intake with cataract but not AMD.
Collapse
Affiliation(s)
- Howard D Sesso
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States; Osher Center for Integrative Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States.
| | - Susanne Rautiainen
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States; Clinical Epidemiology Division, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | - Sarah Jaehwa Park
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States; Osher Center for Integrative Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Eunjung Kim
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - I-Min Lee
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Robert J Glynn
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Julie E Buring
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - William G Christen
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
13
|
Yamazaki K, Ishida K, Otsu W, Muramatsu A, Nakamura S, Yamada W, Tsusaki H, Shimoda H, Hara H, Shimazawa M. Delphinidins from Maqui Berry (Aristotelia chilensis) ameliorate the subcellular organelle damage induced by blue light exposure in murine photoreceptor-derived cells. BMC Complement Med Ther 2024; 24:3. [PMID: 38167061 PMCID: PMC10759685 DOI: 10.1186/s12906-023-04322-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Blue light exposure is known to induce reactive oxygen species (ROS) production and increased endoplasmic reticulum stress, leading to apoptosis of photoreceptors. Maqui berry (Aristotelia chilensis) is a fruit enriched in anthocyanins, known for beneficial biological activities such as antioxidation. In this study, we investigated the effects of Maqui berry extract (MBE) and its constituents on the subcellular damage induced by blue light irradiation in mouse retina-derived 661W cells. METHODS We evaluated the effects of MBE and its main delphinidins, delphinidin 3-O-sambubioside-5-O-glucoside (D3S5G) and delphinidin 3,5-O-diglucoside (D3G5G), on blue light-induced damage on retinal cell line 661W cells. We investigated cell death, the production of ROS, and changes in organelle morphology using fluorescence microscopy. The signaling pathway linked to stress response was evaluated by immunoblotting in the whole cell lysates or nuclear fractions. We also examined the effects of MBE and delphinidins against rotenone-induced mitochondrial dysfunction. RESULTS Blue light-induced cell death, increased intracellular ROS generation and mitochondrial fragmentation, decreased ATP-production coupled respiration, caused lysosomal membrane permeabilization, and increased ATF4 protein level. Treatment with MBE and its main constituents, delphinidin 3-O-sambubioside-5-O-glucoside and delphinidin 3,5-O-diglucoside, prevented these defects. Furthermore, MBE and delphinidins also protected 661W cells from rotenone-induced cell death. CONCLUSIONS Maqui berry may be a useful protective agent for photoreceptors against the oxidative damage induced by exposure to blue light.
Collapse
Affiliation(s)
- Kanta Yamazaki
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - Kodai Ishida
- Department of Biomedical Research Laboratory, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - Wataru Otsu
- Department of Biomedical Research Laboratory, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - Aomi Muramatsu
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - Shinsuke Nakamura
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - Wakana Yamada
- Research & Development Division, Oryza Oil & Fat Chemical Co., Ltd, 1 Numata, Kitagata- cho, Ichinomiya, Aichi, 493-8001, Japan
| | - Hideshi Tsusaki
- Department of Biomedical Research Laboratory, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - Hiroshi Shimoda
- Research & Development Division, Oryza Oil & Fat Chemical Co., Ltd, 1 Numata, Kitagata- cho, Ichinomiya, Aichi, 493-8001, Japan
| | - Hideaki Hara
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - Masamitsu Shimazawa
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan.
- Department of Biomedical Research Laboratory, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan.
| |
Collapse
|
14
|
Ijinu TP, De Lellis LF, Shanmugarama S, Pérez-Gregorio R, Sasikumar P, Ullah H, Buccato DG, Di Minno A, Baldi A, Daglia M. Anthocyanins as Immunomodulatory Dietary Supplements: A Nutraceutical Perspective and Micro-/Nano-Strategies for Enhanced Bioavailability. Nutrients 2023; 15:4152. [PMID: 37836436 PMCID: PMC10574533 DOI: 10.3390/nu15194152] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/21/2023] [Accepted: 09/24/2023] [Indexed: 10/15/2023] Open
Abstract
Anthocyanins (ACNs) have attracted considerable attention for their potential to modulate the immune system. Research has revealed their antioxidant and anti-inflammatory properties, which play a crucial role in immune regulation by influencing key immune cells, such as lymphocytes, macrophages, and dendritic cells. Moreover, ACNs contribute towards maintaining a balance between proinflammatory and anti-inflammatory cytokines, thus promoting immune health. Beyond their direct effects on immune cells, ACNs significantly impact gut health and the microbiota, essential factors in immune regulation. Emerging evidence suggests that they positively influence the composition of the gut microbiome, enhancing their immunomodulatory effects. Furthermore, these compounds synergize with other bioactive substances, such as vitamins and minerals, further enhancing their potential as immune-supporting dietary supplements. However, detailed clinical studies must fully validate these findings and determine safe dosages across varied populations. Incorporating these natural compounds into functional foods or supplements could revolutionize the management of immune-related conditions. Personalized nutrition and healthcare strategies may be developed to enhance overall well-being and immune resilience by fully understanding the mechanisms underlying the actions of their components. Recent advancements in delivery methods have focused on improving the bioavailability and effectiveness of ACNs, providing promising avenues for future applications.
Collapse
Affiliation(s)
- Thadiyan Parambil Ijinu
- Naturæ Scientific, Kerala University-Business Innovation and Incubation Centre, Kariavattom Campus, University of Kerala, Thiruvananthapuram 695581, India;
- The National Society of Ethnopharmacology, VRA-179, Mannamoola, Peroorkada P.O., Thiruvananthapuram 695005, India
| | - Lorenza Francesca De Lellis
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (L.F.D.L.); (D.G.B.); (A.D.M.); (A.B.)
| | - Santny Shanmugarama
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Rosa Pérez-Gregorio
- Food and Health Omics Group, Institute of Agroecology and Food, Faculty of Sciences, University of Vigo, 32004 Ourense, Spain;
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
- Department of Analytical and Food Chemistry, Galicia Sur Health Research Institute (IISGS), SERGAS-UVIGO, 32002 Ourense, Spain
| | | | - Hammad Ullah
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (L.F.D.L.); (D.G.B.); (A.D.M.); (A.B.)
| | - Daniele Giuseppe Buccato
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (L.F.D.L.); (D.G.B.); (A.D.M.); (A.B.)
| | - Alessandro Di Minno
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (L.F.D.L.); (D.G.B.); (A.D.M.); (A.B.)
- CEINGE-Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Alessandra Baldi
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (L.F.D.L.); (D.G.B.); (A.D.M.); (A.B.)
| | - Maria Daglia
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (L.F.D.L.); (D.G.B.); (A.D.M.); (A.B.)
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
15
|
Abdurrahim AE, Mazurak VC, Chen L. Gingerols synergize with anthocyanins to induce antioxidant activity in vitro. Front Nutr 2023; 10:1229015. [PMID: 37743923 PMCID: PMC10514514 DOI: 10.3389/fnut.2023.1229015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/28/2023] [Indexed: 09/26/2023] Open
Abstract
Oxidative stress caused by free radicals contributes to the pathogenesis of multiple chronic health conditions. Phytochemicals protect against oxidative stress; however, low bioavailability from dietary sources limits their health benefits. This study aimed to assess the effects of anthocyanins and gingerols' combination on the cellular antioxidant response of Caco-2 cells against oxidative stress. A strong synergism was observed for anthocyanin-gingerol (Ac-G) w/w combined ratios of 8:1 and 2:1 (dosages of (1 + 0.125) and (1 + 0.5) μg/mL) in the cellular antioxidant activity (CAA) and cytoprotective effects, with synergistic effect indicator (SE) values of 1.41 and 1.61, respectively. The synergism of Ac-G combinations promoted cellular antioxidant defense systems and cytoprotective effects by reducing the induced GPx enzyme activity, protecting SOD enzyme activity, reducing cellular ROS generation, increasing glutathione content, and inhibiting lipid peroxidation. Thus, Ac-G combinations showed potential in supporting the endogenous antioxidant systems to protect cells from oxidation and restore physiological redox status. The Ac-G formulation is a promising healthy option that can be developed into functional foods or nutraceutical products. Furthermore, it could help address the low bioavailability of these phenolics, as higher effects were achieved when combining the same doses.
Collapse
Affiliation(s)
- Amna Emhemed Abdurrahim
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
- Department of Food and Nutritional Science, College of Medical Technology-Misurata, Misurata, Libya
| | - Vera C. Mazurak
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Lingyun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
16
|
Rusciano D, Bagnoli P. Pharmacotherapy and Nutritional Supplements for Neovascular Eye Diseases. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1334. [PMID: 37512145 PMCID: PMC10383223 DOI: 10.3390/medicina59071334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/27/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
In this review, we aim to provide an overview of the recent findings about the treatment of neovascular retinal diseases. The use of conventional drugs and nutraceuticals endowed with antioxidant and anti-inflammatory properties that may support conventional therapies will be considered, with the final aim of achieving risk reduction (prevention) and outcome improvement (cooperation between treatments) of such sight-threatening proliferative retinopathies. For this purpose, we consider a medicinal product one that contains well-defined compound(s) with proven pharmacological and therapeutic effects, usually given for the treatment of full-blown diseases. Rarely are prescription drugs given for preventive purposes. A dietary supplement refers to a compound (often an extract or a mixture) used in the prevention or co-adjuvant treatment of a given pathology. However, it must be kept in mind that drug-supplement interactions may exist and might affect the efficacy of certain drug treatments. Moreover, the distinction between medicinal products and dietary supplements is not always straightforward. For instance, melatonin is formulated as a medicinal product for the treatment of sleep and behavioral problems; at low doses (usually below 1 mg), it is considered a nutraceutical, while at higher doses, it is sold as a psychotropic drug. Despite their lower status with respect to drugs, increasing evidence supports the notion of the beneficial effects of dietary supplements on proliferative retinopathies, a major cause of vision loss in the elderly. Therefore, we believe that, on a patient-by-patient basis, the administration of nutraceuticals, either alone or in association, could benefit many patients, delaying the progression of their disease and likely improving the efficacy of pharmaceutical drugs.
Collapse
Affiliation(s)
| | - Paola Bagnoli
- Department of Biology, University of Pisa, 56123 Pisa, Italy
| |
Collapse
|
17
|
Scrob T, Filip GA, Baldea I, Varodi SM, Cimpoiu C. Sweeteners' Influence on In Vitro α-Glucosidase Inhibitory Activity, Cytotoxicity, Stability and In Vivo Bioavailability of the Anthocyanins from Lingonberry Jams. Foods 2023; 12:2569. [PMID: 37444306 DOI: 10.3390/foods12132569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/19/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Several lines of evidence demonstrate the multiple health-promoting properties of anthocyanins, but little is known regarding the bioavailability of these phytochemicals. Therefore, the stability during storage and bioavailability of anthocyanins from lingonberries jams were determined by HPLC, together with the impact of used sweeteners on their adsorption. Further, the in vitro α-glucosidase inhibition using spectrophotometric methods and cytotoxicity determined on normal and colon cancer cells were communicated. The content of anthocyanins was significantly decreased during storage in coconut sugar-based jam, but was best preserved in jam with fructose and stevia. Fructose and stevia-based jams showed the highest inhibition activity upon α-glucosidase. Lingonberry jams showed no cytotoxic effects on normal cells, but at low concentration reduced the tumor cells viability. Anthocyanins were still detectable in rats' blood streams after 24 h, showing a prolonged bioavailability in rats. This study brings important results that will enable the development of functional food products.
Collapse
Affiliation(s)
- Teodora Scrob
- Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 11 Arany Janos, 400028 Cluj-Napoca, Romania
- Research Center for Advanced Chemical Analysis, Instrumentation and Chemometrics, 11 Arany Janos, 400028 Cluj-Napoca, Romania
| | - Gabriela Adriana Filip
- Department of Physiology, "Iuliu Hatieganu" University of Medicine and Pharmacy, 1-3 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Ioana Baldea
- Department of Physiology, "Iuliu Hatieganu" University of Medicine and Pharmacy, 1-3 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Sânziana Maria Varodi
- Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 11 Arany Janos, 400028 Cluj-Napoca, Romania
| | - Claudia Cimpoiu
- Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 11 Arany Janos, 400028 Cluj-Napoca, Romania
- Research Center for Advanced Chemical Analysis, Instrumentation and Chemometrics, 11 Arany Janos, 400028 Cluj-Napoca, Romania
| |
Collapse
|
18
|
Esquivel-Chirino C, Bolaños-Carrillo MA, Carmona-Ruiz D, Lopéz-Macay A, Hernández-Sánchez F, Montés-Sánchez D, Escuadra-Landeros M, Gaitán-Cepeda LA, Maldonado-Frías S, Yáñez-Ocampo BR, Ventura-Gallegos JL, Laparra-Escareño H, Mejía-Velázquez CP, Zentella-Dehesa A. The Protective Role of Cranberries and Blueberries in Oral Cancer. PLANTS (BASEL, SWITZERLAND) 2023; 12:2330. [PMID: 37375955 DOI: 10.3390/plants12122330] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023]
Abstract
BACKGROUND Oral cancer has a high prevalence worldwide, and this disease is caused by genetic, immunological, and environmental factors. The main risk factors associated with oral cancer are smoking and alcohol. RESULTS There are various strategies to reduce risk factors, including prevention programs as well as the consumption of an adequate diet that includes phytochemical compounds derived from cranberries (Vaccinium macrocarpon A.) and blueberries (Vaccinium corymbosum L.); these compounds exhibit antitumor properties. RESULTS The main outcome of this review is as follows: the properties of phytochemicals derived from cranberries were evaluated for protection against risk factors associated with oral cancer. CONCLUSIONS The secondary metabolites of cranberries promote biological effects that provide protection against smoking and alcoholism. An alternative for the prevention of oral cancer can be the consumption of these cranberries and blueberries.
Collapse
Affiliation(s)
- César Esquivel-Chirino
- Área de Básicas Médicas, División de Estudios Profesionales, Facultad de Odontología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Mario Augusto Bolaños-Carrillo
- Área de Ciencias Naturales, Departamento de Bachillerato, Universidad del Valle de México, Campus Guadalajara Sur, Guadalajara 045601, Mexico
| | - Daniela Carmona-Ruiz
- Área de Ortodoncia, División de Estudios Profesionales, Facultad de Odontología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Ambar Lopéz-Macay
- Laboratorio de Liquído Sinovial, Instituto Nacional de Rehabilitación LGII, Ciudad de México 14389, Mexico
| | - Fernando Hernández-Sánchez
- Departamento de Virología y Micología, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Ciudad de México 04502, Mexico
| | - Delina Montés-Sánchez
- Investigación Biomédica Básica, Licenciatura en Estomatología, Benemérita Universidad Autónoma de Puebla, Puebla 75770, Mexico
| | | | - Luis Alberto Gaitán-Cepeda
- Departamento de Medicina y Patología Oral Clínica, División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Silvia Maldonado-Frías
- Laboratorio de Bioingeniería de Tejidos, División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Ciudad de México 04360, Mexico
| | - Beatriz Raquel Yáñez-Ocampo
- Especialidad en Periodoncia e Implantología, División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - José Luis Ventura-Gallegos
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, UNAM, Ciudad de México 04510, Mexico
| | - Hugo Laparra-Escareño
- Departamento de Cirugía, Sección de Cirugía Vascular y Terapia, Instituto de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México 14080, Mexico
| | - Claudia Patricia Mejía-Velázquez
- Departamento de Patología, Medicina Bucal y Maxilofacial, Facultad de Odontología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Alejandro Zentella-Dehesa
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, UNAM, Ciudad de México 04510, Mexico
- Unidad de Bioquímica, Instituto de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México 14080, Mexico
| |
Collapse
|
19
|
Ćujić Nikolić N, Žilić S, Simić M, Nikolić V, Živković J, Marković S, Šavikin K. Microencapsulates of Blue Maize Polyphenolics as a Promising Ingredient in the Food and Pharmaceutical Industry: Characterization, Antioxidant Properties, and In Vitro-Simulated Digestion. Foods 2023; 12:foods12091870. [PMID: 37174408 PMCID: PMC10178619 DOI: 10.3390/foods12091870] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/21/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
An anthocyanin-rich blue maize waste product was used for anthocyanin extraction. To preserve bioactive phenolic compounds, a spray-drying technique was employed using conventional wall material maltodextrin (MD), with novel one, hydroxypropyl-β-cyclodextrin (HPBCD). The obtained spray-dried maize extract (SME) and microencapsulates were analyzed based on physicochemical powder properties, chemical analysis, antioxidant activity, and digestibility. The examined microencapsulates demonstrated good powder properties, exhibited a high powder yield (up to 83%), and had a low moisture content (less than 5%). HPBCD and MD + HPBCD combinations demonstrated superior powder properties in the terms of decreasing the time necessary for rehydration (133.25 and 153.8 s, respectively). The mean average particle diameter ranged from 4.72 to 21.33 µm. DSC analyses signified high powder thermal stability, around 200 °C, related to the increasing preservation with biopolymer addition. The total phenolic and anthocyanin compounds ranged from 30,622 to 32,211 mg CE/kg (CE-catechin equivalents) and from 9642 to 12,182 mg CGE/kg (CGE-cyanidin 3-glucoside equivalents), respectively, associated with good bioactive compound protection. Microencapsulates with both carriers (15% MD and 15% HPBCD) had the highest digestibility (73.63%). Our results indicated that the microencapsulates created with the active ingredient and the wall materials (MD and HPBCD) could protect phenolic compounds/anthocyanins against ABTS radicals (63.53 and 62.47 mmol Trolox Eq/kg, respectively).
Collapse
Affiliation(s)
- Nada Ćujić Nikolić
- Department for Pharmaceutical Research and Development, Institute of Medicinal Plants Research "Dr Josif Pančić", Tadeuša Koščuška 1, 11000 Belgrade, Serbia
| | - Slađana Žilić
- Laboratory of Food Technology and Biochemistry, Maize Research Institute, Zemun Polje, Slobodana Bajića 1, 11185 Belgrad-Zemun, Serbia
| | - Marijana Simić
- Laboratory of Food Technology and Biochemistry, Maize Research Institute, Zemun Polje, Slobodana Bajića 1, 11185 Belgrad-Zemun, Serbia
| | - Valentina Nikolić
- Laboratory of Food Technology and Biochemistry, Maize Research Institute, Zemun Polje, Slobodana Bajića 1, 11185 Belgrad-Zemun, Serbia
| | - Jelena Živković
- Department for Pharmaceutical Research and Development, Institute of Medicinal Plants Research "Dr Josif Pančić", Tadeuša Koščuška 1, 11000 Belgrade, Serbia
| | - Smilja Marković
- Institute of Technical Sciences of SASA, Knez Mihailova 35/IV, 11000 Belgrade, Serbia
| | - Katarina Šavikin
- Department for Pharmaceutical Research and Development, Institute of Medicinal Plants Research "Dr Josif Pančić", Tadeuša Koščuška 1, 11000 Belgrade, Serbia
| |
Collapse
|
20
|
Sun M, Yu T, Zhao J, Zhu X, Xin W, Zhang F, Zhang L. Role of flavonoids in age-related macular degeneration. Biomed Pharmacother 2023; 159:114259. [PMID: 36652737 DOI: 10.1016/j.biopha.2023.114259] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/11/2023] [Accepted: 01/14/2023] [Indexed: 01/18/2023] Open
Abstract
A common eye disorder known as age-related macular degeneration (AMD) eventually results in blindness and vision loss. AMD has a complicated and poorly understood aetiology. The main pathological processes associated with AMD include oxidative damage, inflammation, and neovascularization. Flavonoids are naturally occurring bioactive substances with extensive distribution and antioxidant, anti-inflammatory, and neovascularization inhibitory properties. Several in vitro and in vivo AMD-related models pertinent to vision and this ocular ailment have been used to assess the mechanisms of action of various flavonoids. This article will discuss the research progress of flavonoids in AMD, especially the characteristics and mechanism of flavonoids in treating AMD.
Collapse
Affiliation(s)
- Mengmeng Sun
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, School of Pharmacy, Yantai University, Yantai 264005, PR China
| | - Tao Yu
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, School of Pharmacy, Yantai University, Yantai 264005, PR China
| | - Jianing Zhao
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, School of Pharmacy, Yantai University, Yantai 264005, PR China
| | - Xuan Zhu
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, School of Pharmacy, Yantai University, Yantai 264005, PR China
| | - Wenyu Xin
- Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, School of Pharmacy, Binzhou Medical University, Yantai 264003, PR China.
| | - Fenglan Zhang
- Yantai Yuhuangding Hospital, The Affiliated Hospital of Qingdao University, Yantai 264000, PR China.
| | - Leiming Zhang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, School of Pharmacy, Yantai University, Yantai 264005, PR China.
| |
Collapse
|
21
|
Feng RC, Dong YH, Hong XL, Su Y, Wu XV. Effects of anthocyanin-rich supplementation on cognition of the cognitively healthy middle-aged and older adults: a systematic review and meta-analysis of randomized controlled trials. Nutr Rev 2023; 81:287-303. [PMID: 35960187 DOI: 10.1093/nutrit/nuac055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
CONTEXT The prevalence of age-related cognitive decline has been on the rise as the global population age, putting the independence and quality of life of elderly at risk. Anthocyanin, as a subclass of dietary flavonoids, may have a beneficial impact on cognitive outcomes. OBJECTIVES To examine the effects of dietary anthocyanin supplementation on cognition of the cognitively healthy middle-aged and older adults. DATA SOURCES PubMed, ScienceDirect, CINAHL, EMBASE, ProQuest and Cochrane databases were searched. DATA EXTRACTION AND ANALYSIS Thirteen studies were included in this meta-analysis. Anthocyanin-rich supplementation was found to significantly improve the processing speed of the older adults (95%CI 0.08, 0.44; P = 0.004). No significant differences were observed between intervention and control groups on memory, attention, executive function and psychomotor performance. Current neuroimaging studies have found promising effects of anthocyanin supplementation on brain activation and cerebral perfusion. CONCLUSION Anthocyanin-rich supplementation may preserve cognitive processing speed and neuro-activities in older adults, which improves their daily functioning and quality of life. This review provides useful insights to guide direction and methodological designs for future studies to explore the underlying mechanisms of anthocyanins. SYSTEMATIC REVIEW AND META-ANALYSIS REGISTRATION PROSPERO registration No. CRD42021228007.
Collapse
Affiliation(s)
- Ruo Chen Feng
- is with the High-Dependency Unit, Tan Tock Seng Hospital, National Health Group, Singapore
| | - Yan Hong Dong
- are with the Alice Lee Centre for Nursing Studies, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,is with the Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Xian Li Hong
- is with the Medical Intensive Care Unit, Tan Tock Seng Hospital, National Health Group, Singapore
| | - Ya Su
- is with the Shanghai Jiao Tong University, School of Nursing, Shanghai, China.,is with the Faculty of Health Sciences, Hokkaido University, Japan
| | - Xi Vivien Wu
- are with the Alice Lee Centre for Nursing Studies, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,is with the NUSMED Healthy Longevity Translational Research Programme, National University of Singapore, Singapore
| |
Collapse
|
22
|
Protective Effect of Anthocyanins against Neurodegenerative Diseases through the Microbial-Intestinal-Brain Axis: A Critical Review. Nutrients 2023; 15:nu15030496. [PMID: 36771208 PMCID: PMC9922026 DOI: 10.3390/nu15030496] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
With the increase in human mean age, the prevalence of neurodegenerative diseases (NDs) also rises. This negatively affects mental and physiological health. In recent years, evidence has revealed that anthocyanins could regulate the functioning of the central nervous system (CNS) through the microbiome-gut-brain axis, which provides a new perspective for treating NDs. In this review, the protective effects and mechanisms of anthocyanins against NDs are summarized, especially the interaction between anthocyanins and the intestinal microbiota, and the microbial-intestinal-brain axis system is comprehensively discussed. Moreover, anthocyanins achieve the therapeutic purpose of NDs by regulating intestinal microflora and certain metabolites (protocateic acid, vanillic acid, etc.). In particular, the inhibitory effect of tryptophan metabolism on some neurotransmitters and the induction of blood-brain barrier permeability by butyrate production has a preventive effect on NDs. Overall, it is suggested that microbial-intestinal-brain axis may be a novel mechanism for the protective effect of anthocyanins against NDs.
Collapse
|
23
|
Davinelli S, Medoro A, Ali S, Passarella D, Intrieri M, Scapagnini G. Dietary Flavonoids and Adult Neurogenesis: Potential Implications for Brain Aging. Curr Neuropharmacol 2023; 21:651-668. [PMID: 36321225 PMCID: PMC10207917 DOI: 10.2174/1570159x21666221031103909] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/27/2022] [Accepted: 08/19/2022] [Indexed: 02/10/2023] Open
Abstract
Adult neurogenesis deficiency has been proposed to be a common hallmark in different age-related neurodegenerative diseases. The administration of flavonoids is currently reported as a potentially beneficial strategy for preventing brain aging alterations, including adult neurogenesis decline. Flavonoids are a class of plant-derived dietary polyphenols that have drawn attention for their neuroprotective and pro-cognitive effects. Although they undergo extensive metabolism and localize in the brain at low concentrations, flavonoids are now believed to improve cerebral vasculature and interact with signal transduction cascades involved in the regulation of adult neurogenesis. Furthermore, many dietary flavonoids have been shown to reduce oxidative stress and neuroinflammation, improving the neuronal microenvironment where adult neurogenesis occurs. The overall goal of this review is to summarize the evidence supporting the role of flavonoids in modulating adult neurogenesis as well as to highlight how these dietary agents may be promising candidates in restoring healthy brain function during physiological and pathological aging.
Collapse
Affiliation(s)
- Sergio Davinelli
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso 86100, Italy
| | - Alessandro Medoro
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso 86100, Italy
| | - Sawan Ali
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso 86100, Italy
| | - Daniela Passarella
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso 86100, Italy
| | - Mariano Intrieri
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso 86100, Italy
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso 86100, Italy
| |
Collapse
|
24
|
Soler-Martínez R, Deulofeu M, Bagó-Mas A, Dubový P, Verdú E, Fiol N, Boadas-Vaello P. Central Neuropathic Pain Development Modulation Using Coffee Extract Major Polyphenolic Compounds in Spinal-Cord-Injured Female Mice. BIOLOGY 2022; 11:1617. [PMID: 36358318 PMCID: PMC9687351 DOI: 10.3390/biology11111617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/24/2022] [Accepted: 11/03/2022] [Indexed: 08/18/2024]
Abstract
It was recently shown that coffee polyphenolic extract exerts preventive effects on central neuropathic pain development, but it is unknown whether its beneficial effects are associated with only one of its major polyphenolic compounds or if the whole extract is needed to exert such effects. The main objective of this study was to determine whether the separate administration of major polyphenols from coffee extract exerts preventive effects on the development of central neuropathic pain in mice compared with the effects of the whole coffee extract. Thus, spinal-cord-injured female ICR-CD1 mice were daily treated with either coffee extract or its major polyphenolic compounds during the first week, and reflexive and nonreflexive pain responses were evaluated within the acute phase of spinal cord injury. In addition, the injury-induced gliosis and dorsal horn sprouting were evaluated with immunohistochemistry. The results showed that the coffee extract prevented spinal cord injury-induced neuropathic pain, whereas its major polyphenolic compounds resulted in reflexive pain response attenuation. Both preventive and attenuation effects were associated with gliosis and afferent fiber sprouting modulation. Overall, the results suggested that coffee extract effects may be associated with potential synergistic mechanisms exerted by its major polyphenolic compounds and not by the sole effect of only one of them.
Collapse
Affiliation(s)
- Roger Soler-Martínez
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, E-17003 Girona, Catalonia, Spain
| | - Meritxell Deulofeu
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, E-17003 Girona, Catalonia, Spain
| | - Anna Bagó-Mas
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, E-17003 Girona, Catalonia, Spain
| | - Petr Dubový
- Department of Anatomy, Division of Neuroanatomy, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| | - Enrique Verdú
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, E-17003 Girona, Catalonia, Spain
| | - Núria Fiol
- Department of Chemical Engineering, Agriculture and Food Technology, Polytechnic School, University of Girona, E-17003 Girona, Catalonia, Spain
| | - Pere Boadas-Vaello
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, E-17003 Girona, Catalonia, Spain
| |
Collapse
|
25
|
Iqbal AZ, Javaid N, Hameeda M. Synergic interactions between berry polyphenols and gut microbiota in cardiovascular diseases. MEDITERRANEAN JOURNAL OF NUTRITION AND METABOLISM 2022. [DOI: 10.3233/mnm-220071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Now a days, scientific community has been taking initiatives to decrease burden of metabolic disorders including diabetes mellitus, chronic hypertension, cardiovascular diseases and many others. Many nutraceuticals and functional food have a crucial function in preventing and decreasing burden of chronic diseases. Main purpose of the study was to relate association between mechanism of gut microbiota effecting cardiovascular diseases, moreover, to find out advantageous effects of berry polyphenols on gut microbiota and cardiovascular diseases. To summarize, we explore literature for beneficial effects of berry polyphenols by using multiple search engines including Google Scholar, Science Direct and PubMed. Original research article, review articles, experimental trials (human and animal studies) and abstract were also included in the current study based on relevancy to the characteristics of berries and their potential benefit on human health. This detailed review revealed that all classes of berries and their metabolites possess a definite impact on human health by preventing onset of chronic diseases by its anti-inflammatory property, thus, consider as one of the beneficial natural compounds that can be consumed on daily basis to prevent various disorders. There is also a positive association between berry polyphenols and modulation of gut microbiota and their metabolites, furthermore, showed a relationship between gut microbiome and incidence of cardiovascular disease.
Collapse
Affiliation(s)
- Ayesha Zafar Iqbal
- College of Allied Health Sciences, Akhtar Saeed Medical and Dental College, Lahore
| | - Nida Javaid
- University Institute of Diet and Nutritional Sciences, University of Lahore, Lahore
| | - Maryam Hameeda
- Department of Food Science and Human Nutrition, University of Veterinary and Animal Sciences, Lahore
| |
Collapse
|
26
|
Effect of Blueberry Extract on Liver in Aged Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3490776. [PMID: 35898615 PMCID: PMC9314000 DOI: 10.1155/2022/3490776] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/11/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022]
Abstract
Aging and age-related disorders are prominent issues. Aging is associated with a gradual impairment of physiology at the genetic, cellular, tissue, and whole organism level that directly influences the development of chronic diseases and organ failure. Blueberries, on the other hand, are well known for their high content of bioactive compounds and have demonstrated positive impacts on metabolic factors that influence health and general well-being. This study is aimed at evaluating the ameliorating the effects of blueberry on the liver of aged rats by monitoring changes in metabolic disturbances, oxidative stress, and inflammatory disruption. The aged group of rats was orally administered with blueberry extract (200 mg/kg) for a period of 4 weeks. The results revealed that aging was associated with an increase in body weight, liver weight, and metabolic parameters like serum insulin, triglycerides, total cholesterol, and liver function markers accompanied with a decrease in vitamin D levels. Furthermore, the results showed a significant diminish in the activities of antioxidant enzymes, glutathione content with an elevation in lipid peroxidation, inflammatory mediators (tumor necrosis factor alpha, interleukin 6, and nuclear factor kappa-light-chain-enhancer of activated B cells) as well as fibrotic markers (TGF-β1) in the liver of aged rats. Compared to the young rats (control group), blueberry effectively reversed age-mediated disruption of the aforementioned parameters. Hence, blueberries can be used as a potential therapeutic strategy for the management of age-related liver dysfunction and disease.
Collapse
|
27
|
Nistor M, Pop R, Daescu A, Pintea A, Socaciu C, Rugina D. Anthocyanins as Key Phytochemicals Acting for the Prevention of Metabolic Diseases: An Overview. Molecules 2022; 27:molecules27134254. [PMID: 35807504 PMCID: PMC9268666 DOI: 10.3390/molecules27134254] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/23/2022] [Accepted: 06/28/2022] [Indexed: 02/01/2023] Open
Abstract
Anthocyanins are water-soluble pigments present in fruits and vegetables, which render them an extensive range of colors. They have a wide distribution in the human diet, are innocuous, and, based on numerous studies, have supposed preventive and therapeutical benefits against chronic affections such as inflammatory, neurological, cardiovascular, digestive disorders, diabetes, and cancer, mostly due to their antioxidant action. Despite their great potential as pharmaceutical applications, they have a rather limited use because of their rather low stability to environmental variations. Their absorption was noticed to occur best in the stomach and small intestine, but the pH fluctuation of the digestive system impacts their rapid degradation. Urine excretion and tissue distribution also occur at low rates. The aim of this review is to highlight the chemical characteristics of anthocyanins and emphasize their weaknesses regarding bioavailability. It also targets to deliver an update on the recent advances in the involvement of anthocyanins in different pathologies with a focus on in vivo, in vitro, animal, and human clinical trials.
Collapse
Affiliation(s)
- Madalina Nistor
- Department of Agricultural Egineering Sciences, University of Agricultural Sciences and Veterinary Medicine, Manastur Street 3-5, 400372 Cluj-Napoca, Romania; (M.N.); (R.P.); (A.D.); (C.S.)
| | - Roxana Pop
- Department of Agricultural Egineering Sciences, University of Agricultural Sciences and Veterinary Medicine, Manastur Street 3-5, 400372 Cluj-Napoca, Romania; (M.N.); (R.P.); (A.D.); (C.S.)
| | - Adela Daescu
- Department of Agricultural Egineering Sciences, University of Agricultural Sciences and Veterinary Medicine, Manastur Street 3-5, 400372 Cluj-Napoca, Romania; (M.N.); (R.P.); (A.D.); (C.S.)
| | - Adela Pintea
- Department of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Manastur Street 3-5, 400372 Cluj-Napoca, Romania;
| | - Carmen Socaciu
- Department of Agricultural Egineering Sciences, University of Agricultural Sciences and Veterinary Medicine, Manastur Street 3-5, 400372 Cluj-Napoca, Romania; (M.N.); (R.P.); (A.D.); (C.S.)
| | - Dumitrita Rugina
- Department of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Manastur Street 3-5, 400372 Cluj-Napoca, Romania;
- Correspondence:
| |
Collapse
|
28
|
Mohammed HA, Khan RA. Anthocyanins: Traditional Uses, Structural and Functional Variations, Approaches to Increase Yields and Products' Quality, Hepatoprotection, Liver Longevity, and Commercial Products. Int J Mol Sci 2022; 23:2149. [PMID: 35216263 PMCID: PMC8875224 DOI: 10.3390/ijms23042149] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 02/06/2023] Open
Abstract
Anthocyanins are water-soluble, colored compounds of the flavonoid class, abundantly found in the fruits, leaves, roots, and other parts of the plants. The fruit berries are prime sources and exhibit different colors. The anthocyanins utility as traditional medicament for liver protection and cure, and importance as strongest plants-based anti-oxidants have conferred these plants products different biological activities. These activities include anti-inflammation, liver protective, analgesic, and anti-cancers, which have provided the anthocyanins an immense commercial value, and has impelled their chemistry, biological activity, isolation, and quality investigations as prime focus. Methods in extraction and production of anthocyanin-based products have assumed vital economic importance. Different extraction techniques in aquatic solvents mixtures, eutectic solvents, and other chemically reactive extractions including low acid concentrations-based extractions have been developed. The prophylactic and curative therapy roles of the anthocyanins, together with no reported toxicity has offered much-needed impetus and economic benefits to these classes of compounds which are commercially available. Information retrieval from various search engines, including the PubMed®, ScienceDirect®, Scopus®, and Google Scholar®, were used in the review preparation. This imparted an outlook on the anthocyanins occurrence, roles in plants, isolation-extraction, structures, biosynthetic as well as semi- and total-synthetic pathways, product quality and yields enhancements, including uses as part of traditional medicines, and uses in liver disorders, prophylactic and therapeutic applications in liver protection and longevity, liver cancer and hepatocellular carcinoma. The review also highlights the integrated approach to yields maximizations to meet the regular demands of the anthocyanins products, also as part of the extract-rich preparations together with a listing of marketed products available for human consumption as nutraceuticals/food supplements.
Collapse
Affiliation(s)
- Hamdoon A. Mohammed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Cairo 11371, Egypt
| | - Riaz A. Khan
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia
| |
Collapse
|
29
|
Fan Z, Wen H, Zhang X, Li J, Zang J. Cyanidin 3- O-β-Galactoside Alleviated Cognitive Impairment in Mice by Regulating Brain Energy Metabolism During Aging. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1111-1121. [PMID: 35040318 DOI: 10.1021/acs.jafc.1c06240] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Metabolic disorder, which commonly happens among senile people worldwide, is an important sign of aging. The early symptoms of neurodegenerative diseases include a decrease in energy metabolism and mitochondrial dysfunction. Comparably, early dietary intervention may be more effective in preventing or delaying brain aging, owing to its role in regulating metabolism. Polyphenol intake has shown its potential in preventing Alzheimer's disease. However, whether there are close connections between polyphenols and the energy metabolism of the brain during aging remains unclear. This study sought to evaluate whether cyanidin 3-O-β-galactoside from black chokeberry (Aronia melanocarpa (Michx.) Elliott) has positive effects on energy metabolism, as well as cognitive function in aging mice. Intragastrical administration of cyanidin 3-O-β-galactoside (25 and 50 mg/kg/day) for 8 weeks effectively alleviated the decline in brain glucose uptake (decline rate 18.29% versus 1.05%, 7.63%) of aging mice. Moreover, cyanidin 3-O-β-galactoside also alleviated neuronal damage in the hippocampus (number of neurons 212.33 ± 16.19 versus 285.33 ± 29.53, 301.67 ± 10.07; p < 0.05) and cortex (number of neurons 82.00 ± 4.58 versus 111.67 ± 6.51, 112.00 ± 1.00; p < 0.05). Furthermore, cyanidin 3-O-β-galactoside reduced β-amyloid load in the brain and significantly increased the crossing-platform number (0.92 ± 1.11 versus 1.83 ± 0.68, 2.08 ± 0.58; p < 0.05) in the Morris water maze test. We further determined that protein kinase B (AKT) might be the target of cyanidin 3-O-β-galactoside, which played a beneficial role in controlling the energy metabolism of the brain. These results suggested that early intervention of anthocyanins could promote neuroprotection under the challenge of brain energy metabolism.
Collapse
Affiliation(s)
- Zhuoyan Fan
- College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Tsinghua East Road, Beijing 100083, China
| | - Haichao Wen
- College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Tsinghua East Road, Beijing 100083, China
| | - Xiaoxu Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Tsinghua East Road, Beijing 100083, China
| | - Jingming Li
- College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Tsinghua East Road, Beijing 100083, China
| | - Jiachen Zang
- College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Tsinghua East Road, Beijing 100083, China
| |
Collapse
|
30
|
Wu H, Liu HN, Liu CQ, Zhou JZ, Liu XL, Zhang HZ. Hulless Black Barley as a Carrier of Probiotics and a Supplement Rich in Phenolics Targeting Against H 2O 2-Induced Oxidative Injuries in Human Hepatocarcinoma Cells. Front Nutr 2022; 8:790765. [PMID: 35155516 PMCID: PMC8833231 DOI: 10.3389/fnut.2021.790765] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/15/2021] [Indexed: 12/31/2022] Open
Abstract
Lactic acid bacteria can provide benefits to human beings and transform phenolic substances to improve their potential functionality. It was of interest to develop black barley as a carrier of probiotics and nutraceutical supplement rich in more antioxidants. Due to fermentation, bacterial counting and free phenolic content in black barley increased to 9.54 ± 0.22 log cfu/mL and 5.61 ± 0.02 mg GAE/mL, respectively. Eleven phenolic compounds, including nine isoflavones and two nitrogenous compounds were characterized using UPLC-QTOF-MS, among which epicatechin, hordatine, and pelargonidin aglycone were largely enriched. Moreover, free phenolic extracts from fermented barley (F-BPE) played a greater role in scavenging DPPH radicals, reducing Fe3+ to Fe2+, and increasing oxygen radical absorbance capacity, compared phenolic extracts from unfermented barley [UF-BPE (1.94-, 1.71-, and 1.35-fold at maximum for F-BPE vs. UF-BPE, respectively)]. In hepatocarcinoma cells, F-BPE also better inhibited ROS production and improved cell viability, cell membrane integrity, SOD activity, and non-enzymatic antioxidant GSH redox status (2.85-, 3.28-, 2.05-, 6.42-, and 3.99-fold at maximum for F-BPE vs. UF-BPE, respectively).
Collapse
Affiliation(s)
- Han Wu
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hao-Nan Liu
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Chun-Quan Liu
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jian-Zhong Zhou
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Xiao-Li Liu
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Hong-Zhi Zhang
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
31
|
Jaboticaba (Myrciaria jaboticaba) Attenuates Ventricular Remodeling after Myocardial Infarction in Rats. Antioxidants (Basel) 2022; 11:antiox11020249. [PMID: 35204132 PMCID: PMC8868135 DOI: 10.3390/antiox11020249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023] Open
Abstract
The cardiac remodeling after myocardial infarction is characterized by inflammation and oxidative stress. Thus, this study aimed to test the hypothesis that jaboticaba, due to its anti-inflammatory and antioxidants properties, attenuates cardiac remodeling after myocardial infarction. Wistar rats were submitted to myocardial infarction due to coronary artery occlusion, and divided into four experimental groups: C, sham control animals; I, animals submitted to myocardial infarction, received a standard diet; IJ2, animals submitted to myocardial infarction, received a standard diet plus 2% jaboticaba; and IJ4, animals submitted to myocardial infarction, received a standard diet plus 4% jaboticaba. After a three-month follow-up, echocardiography, histology, oxidative stress, and cardiac energy metabolism were analyzed. There was no difference in infarct size or mortality among the infarcted groups. The IJ4 group displayed improved diastolic function, as assessed by isovolumetric relaxation time normalized to the heart rate. As expected, the percentage of collagen was higher in all infarcted groups than in the C group. However, the IJ2 group had less collagen than groups I and IJ4. The IJ4 group presented lower PFK activity than I and IJ2, and lower pyruvate dehydrogenase activity than controls, whereas the IJ2 group showed no differences compared to the control group in both LDH and ATP synthase activity. The 2% and 4% doses attenuated lipid peroxidation and increased the activity of glutathione peroxidase compared with the I group. In conclusion, jaboticaba attenuated the remodeling process after myocardial infarction, which was associated with decreased oxidative stress and improved energy metabolism.
Collapse
|
32
|
Gui H, Sun L, Liu R, Si X, Li D, Wang Y, Shu C, Sun X, Jiang Q, Qiao Y, Li B, Tian J. Current knowledge of anthocyanin metabolism in the digestive tract: absorption, distribution, degradation, and interconversion. Crit Rev Food Sci Nutr 2022; 63:5953-5966. [PMID: 35057688 DOI: 10.1080/10408398.2022.2026291] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Potential roles for anthocyanins in preventing various chronic diseases have been reported. These compounds are highly sensitive to external conditions and are susceptible to degradation, which increases the complexity of their metabolism in vivo. This review discusses anthocyanin metabolism in the digestive tract, phase I and II metabolism, and enterohepatic circulation (EHC), as well as their distribution of anthocyanins in blood, urine, and several organs. In the oral cavity, anthocyanins are partly hydrolyzed by microbiota into aglycones which are then conjugated by glucuronidase. In stomach, anthocyanins are absorbed without deglycosylation via specific transporters, such as sodium-dependent glucose co-transporter 1 and facilitative glucose transporters 1, while in small intestine, they are mainly absorbed as aglycones. High polymeric anthocyanins are easily degraded into low-polymeric forms or smaller phenolic acids by colonic microbiota, which improves their absorption. Anthocyanins and their derivatives are modified by phase I and II metabolic enzymes in cells and are released into the blood via the gastrovascular cavity into EHC. Notably, interconversion can be occurred under the action of enzymes such as catechol-O-methyltransferase. Taking together, differences in anthocyanin absorption, distribution, metabolism, and excretion largely depend on their glycoside and aglycone structures.
Collapse
Affiliation(s)
- Hailong Gui
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Shenyang, Liaoning, China
| | - Lijun Sun
- College of Food Science and Engineering, Northwest A & F University, Yangling, Shaanxi, China
| | - Ruihai Liu
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Department of Food Science, Cornell University, Ithaca, NY, USA
| | - Xu Si
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Shenyang, Liaoning, China
| | - Dongnan Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Shenyang, Liaoning, China
| | - Yuehua Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Shenyang, Liaoning, China
| | - Chi Shu
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Shenyang, Liaoning, China
| | - Xiyun Sun
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Shenyang, Liaoning, China
| | - Qiao Jiang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Shenyang, Liaoning, China
| | - Yanyan Qiao
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Shenyang, Liaoning, China
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Shenyang, Liaoning, China
| | - Jinlong Tian
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Shenyang, Liaoning, China
| |
Collapse
|
33
|
Katasonov A. Anthocyanins for the prevention and treatment of neurodegenerative diseases. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:16-22. [DOI: 10.17116/jnevro202212204116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
34
|
Şahin MA, Bilgiç P, Montanari S, Willems MET. Intake Duration of Anthocyanin-Rich New Zealand Blackcurrant Extract Affects Cardiovascular Responses during Moderate-Intensity Walking But Not at Rest. J Diet Suppl 2021; 20:428-443. [PMID: 34791970 DOI: 10.1080/19390211.2021.2005214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
We examined effects of intake duration of New Zealand blackcurrant (NZBC) extract on cardiovascular responses during supine rest and moderate-intensity walking. Recreationally active men (n = 15, age: 24 ± 6 yr, BMI: 24.7 ± 4.3 kg·m-2) volunteered in a randomized, cross-over design. One metabolic equivalent (1-MET) was measured (3.97 ± 0.66 mL·kg-1·min-1) and an incremental walking test was performed to individualize speed at 4 (n = 3) or 5 (n = 12) METs for the 30-min walk (5.7 ± 0.7 km·hr-1). NZBC extract (210 mg of anthocyanins) was taken with breakfast for 7 and 14 days, with a 14-days washout. The final dose was ingested 2-hr before recording of the cardiovascular responses (Portapres Model-2). At rest, %changes at 7- and 14-days intake were observed for stroke volume (+6.8% (trend), p = 0.065; +8.5%, p = 0.012), cardiac output (+10.1%, p = 0.007; +8.5%, p = 0.013), total peripheral resistance (-12.0%, p = 0.004; -13.1%, p = 0.011), diastolic (-5.7%, p = 0.045; -9.7%, p = 0.015) and mean arterial pressure (-4.4%, p = 0.040; -7.2%, p = 0.029), but without intake duration effect. During walking, %changes at 7- and 14-days intake were observed for stroke volume (+7.7% (trend), p = 0.063; +9.9%, p = 0.006), cardiac output (+8.7%, p = 0.037; +10.1%, p = 0.007), diastolic blood pressure (-6.2%, p = 0.042; -10.6%, p = 0.001), and total peripheral resistance (-9.6%, p = 0.042; -13.5%, p = 0.005) but without intake duration effect. During walking, %changes at 14-days were observed only for mean arterial pressure (-6.4%, p = 0.018) and arterio-venous oxygen difference (-7.9%, p = 0.019). NZBC extract affects cardiovascular responses at rest and during moderate-intensity exercise with 7- and 14-day intake. Only during moderate-intensity exercise, a longer intake of NZBC extract was required for an effect on some cardiovascular responses.
Collapse
Affiliation(s)
- Mehmet Akif Şahin
- Institute of Sport, Nursing and Allied Health, College Lane, University of Chichester, Chichester, UK.,Department of Nutrition and Dietetics, Hacettepe University, Ankara, Turkey
| | - Pelin Bilgiç
- Department of Nutrition and Dietetics, Hacettepe University, Ankara, Turkey
| | - Stefano Montanari
- Institute of Sport, Nursing and Allied Health, College Lane, University of Chichester, Chichester, UK
| | | |
Collapse
|
35
|
|
36
|
Li H, Zheng T, Lian F, Xu T, Yin W, Jiang Y. Anthocyanin-rich blueberry extracts and anthocyanin metabolite protocatechuic acid promote autophagy-lysosomal pathway and alleviate neurons damage in in vivo and in vitro models of Alzheimer's disease. Nutrition 2021; 93:111473. [PMID: 34739938 DOI: 10.1016/j.nut.2021.111473] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/13/2021] [Accepted: 08/24/2021] [Indexed: 12/19/2022]
Abstract
OBJECTIVES As the global aging phenomenon intensifies, the incidence of Alzheimer's disease (AD) is gradually increasing. Diet appears to be an effective way to prevent and delay the progression of AD. Previous studies have found that cognitive impairment and neuronal damage were effectively alleviated by blueberry extract (BBE) in AD mice, but its mechanism is still unclear. The aims of this study were to detect the main anthocyanins of BBE; then to verify the protective effects of anthocyanin-rich BBE on hippocampal neurons and the promotion of autophagy; and finally to investigate the main protective effects and mechanisms of protocatechuic acid (PCA), a major metabolite of BBE, for promoting autophagy and thus playing a neuroprotective role. METHODS APP/PS1 mice were given 150 mg/kg BBE daily for 16 wk. Morphology of neurons was observed and autophagy-related proteins were detected. RESULTS Neuron damage in morphology was reduced and the expression of autophagy-related proteins in APP/PS1 mice were promoted after BBE treatment. In vitro, Aβ25-35-induced cytotoxicity, including decreased neuron viability and increased levels of lactate dehydrogenase and reactive oxygen species, was effectively reversed by PCA. Furthermore, by adding autophagy inducers rapamycin and autophagy inhibitors Bafilomycin A1, it was verified that degradation of autophagosomes was upregulated and autophagy was promoted by PCA. CONCLUSION This study elucidated the mechanism of BBE for reducing neuronal damage by promoting neuronal autophagy and proved PCA may be the main bioactive metabolite of BBE for neuroprotective effects, providing a basis for dietary intervention in AD.
Collapse
Affiliation(s)
- Hui Li
- Department of Nutrition and Food Hygiene, Institute of Environmental and Operational Medicine, Tianjin, PR China
| | - Tingting Zheng
- Department of Nutrition and Food Hygiene, Institute of Environmental and Operational Medicine, Tianjin, PR China; Department of Nutrition, Food Hygiene and Toxicology, West China School of Public Health, and Healthy Food Evaluation Research Center, Sichuan University, Sichuan, PR China
| | - Fuzhi Lian
- Department of Preventive Medicine, Hangzhou Normal University, Hangzhou, China
| | - Tong Xu
- Department of Nutrition and Food Hygiene, Institute of Environmental and Operational Medicine, Tianjin, PR China
| | - Wenya Yin
- Department of Nutrition, Food Hygiene and Toxicology, West China School of Public Health, and Healthy Food Evaluation Research Center, Sichuan University, Sichuan, PR China.
| | - Yugang Jiang
- Department of Nutrition and Food Hygiene, Institute of Environmental and Operational Medicine, Tianjin, PR China.
| |
Collapse
|
37
|
Noi K, Ikenaka K, Mochizuki H, Goto Y, Ogi H. Disaggregation Behavior of Amyloid β Fibrils by Anthocyanins Studied by Total-Internal-Reflection-Fluorescence Microscopy Coupled with a Wireless Quartz-Crystal Microbalance Biosensor. Anal Chem 2021; 93:11176-11183. [PMID: 34351734 DOI: 10.1021/acs.analchem.1c01720] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Amyloid fibrils are formed from various proteins, some of which cause the corresponding neurodegenerative disorders, such as Alzheimer's and Parkinson's diseases. It has been reported that many compounds inhibit the formation of amyloid fibrils. Anthocyanins are flavonoid pigments present in fruits and vegetables, which are known to suppress symptoms related with Alzheimer's disease. However, the influence of anthocyanins on the amyloid fibril remains unclear. Here, we succeeded in the direct monitoring of the disaggregation reaction of single amyloid β (Aβ) fibrils by anthocyanins using total-internal-reflection-fluorescence microscopy with a quartz-crystal microbalance (TIRFM-QCM). It is found that the disassembly activity to the Aβ fibrils depends on the number of hydroxyl groups in six-membered ring B of anthocyanin, and only delphinidin-3-galactoside, possessing three hydroxyl groups there, shows high disassembly activity. Our results show the importance of the number of hydroxyl groups and demonstrate the usefulness of TIRFM-QCM as a powerful tool in studying interactions between amyloid fibrils and compounds.
Collapse
Affiliation(s)
- Kentaro Noi
- Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kensuke Ikenaka
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hideki Mochizuki
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yuji Goto
- Global Center for Medical Engineering and Informatics, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hirotsugu Ogi
- Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
38
|
Richter CK, Skulas-Ray AC, Gaugler TL, Meily S, Petersen KS, Kris-Etherton PM. Effects of Cranberry Juice Supplementation on Cardiovascular Disease Risk Factors in Adults with Elevated Blood Pressure: A Randomized Controlled Trial. Nutrients 2021; 13:nu13082618. [PMID: 34444779 PMCID: PMC8398037 DOI: 10.3390/nu13082618] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/15/2021] [Accepted: 07/24/2021] [Indexed: 12/19/2022] Open
Abstract
Emerging cardiovascular disease (CVD) risk factors, including central vascular function and HDL efflux, may be modifiable with food-based interventions such as cranberry juice. A randomized, placebo-controlled, crossover trial was conducted in middle-aged adults with overweight/obesity (n = 40; mean BMI: 28.7 ± 0.8 kg/m2; mean age: 47 ± 2 years) and elevated brachial blood pressure (mean systolic/diastolic BP: 124 ± 2/81 ± 1 mm Hg). Study participants consumed 500 mL/d of cranberry juice (~16 fl oz; 27% cranberry juice) or a matched placebo juice in a randomized order (8-week supplementation periods; 8-week compliance break), with blood samples and vascular measurements obtained at study entry and following each supplementation period. There was no significant treatment effect of cranberry juice supplementation on the primary endpoint of central systolic blood pressure or central or brachial diastolic pressure. Cranberry juice significantly reduced 24-h diastolic ambulatory BP by ~2 mm Hg compared to the placebo (p = 0.05) during daytime hours. Cranberry juice supplementation did not alter LDL-C but significantly changed the composition of the lipoprotein profile compared to the placebo, increasing the concentration of large LDL-C particles (+29.5 vs. −6.7 nmol/L; p = 0.02) and LDL size (+0.073 vs. −0.068 nm; p = 0.001). There was no effect of treatment on ex vivo HDL efflux in the total population, but exploratory subgroup analyses identified an interaction between BMI and global HDL efflux (p = 0.02), with greater effect of cranberry juice in participants who were overweight. Exploratory analyses indicate that baseline C-reactive protein (CRP) values may moderate treatment effects. In this population of adults with elevated blood pressure, cranberry juice supplementation had no significant effect on central systolic blood pressure but did have modest effects on 24-h diastolic ambulatory BP and the lipoprotein profile. Future studies are needed to verify these findings and the results of our exploratory analyses related to baseline health moderators.
Collapse
Affiliation(s)
- Chesney K. Richter
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ 85716, USA; (C.K.R.); (A.C.S.-R.)
| | - Ann C. Skulas-Ray
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ 85716, USA; (C.K.R.); (A.C.S.-R.)
| | - Trent L. Gaugler
- Department of Mathematics, Lafayette College, Easton, PA 18042, USA;
| | - Stacey Meily
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA 16802, USA; (S.M.); (K.S.P.)
| | - Kristina S. Petersen
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA 16802, USA; (S.M.); (K.S.P.)
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Penny M. Kris-Etherton
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA 16802, USA; (S.M.); (K.S.P.)
- Correspondence:
| |
Collapse
|
39
|
Sasaki K, Geribaldi-Doldan N, Szele FG, Isoda H. Grape skin extract modulates neuronal stem cell proliferation and improves spatial learning in senescence-accelerated prone 8 mice. Aging (Albany NY) 2021; 13:18131-18149. [PMID: 34319910 PMCID: PMC8351719 DOI: 10.18632/aging.203373] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/15/2021] [Indexed: 11/25/2022]
Abstract
In recent years, the number of patients with neurodegenerative illness such as Alzheimer’s disease (AD) has increased with the aging of the population. In this study, we evaluated the effect of Grape skin extract (GSE) on neurotypic SH-SY5Y cells as an in vitro AD model, murine neurospheres as an ex vivo neurogenesis model and SAMP8 mice as an in vivo AD model. Our in vitro result showed that pre-treatment of SH-SY5Y cells with GSE ameliorated Aβ-induced cytotoxicity. Moreover, GSE treatment significantly decreased the number of neurospheres, but increased their size suggesting reduced stem cell self-renewal but increased proliferation. Our in vivo Morris water maze test indicated that GSE improves learning and memory in SAMP8 mice. To detect proliferation and newborn neurons, we measured BrdU+ cells in the dentate gyrus (DG). GSE treatment increased the number of BrdU+ cells in the DG of SAMP8 mice. Finally, we showed that GSE induced a decrease in inflammatory cytokines and an increase in neurotransmitters in the cerebral cortex of SAMP8 mice. These results suggested that GSE increased neurogenic zone proliferation and memory but decreased oxidative stress associated with pro-inflammatory cytokines in aging, thus protecting neurons.
Collapse
Affiliation(s)
- Kazunori Sasaki
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan.,Open Innovation Laboratory for Food and Medicinal Resource Engineering, National Institute of Advanced Industrial Science and Technology (AIST) and University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Noelia Geribaldi-Doldan
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan.,Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK
| | - Francis G Szele
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK
| | - Hiroko Isoda
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan.,Open Innovation Laboratory for Food and Medicinal Resource Engineering, National Institute of Advanced Industrial Science and Technology (AIST) and University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan.,Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
40
|
Agulló V, González-Trujano ME, Hernandez-Leon A, Estrada-Camarena E, Pellicer F, García-Viguera C. Synergistic Interaction in the Analgesic-Like Effects of Maqui Berry and Citrus Is Antagonized by Sweeteners. Nutrients 2021; 13:nu13072466. [PMID: 34371971 PMCID: PMC8308574 DOI: 10.3390/nu13072466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 12/14/2022] Open
Abstract
Although physiologically pain has a protective function, in many diseases, it is one of the most prominent symptoms. Today, new trends are focused on finding more natural alternatives to conventional treatments to alleviate it. Thereby, the purpose of this investigation was to obtain preclinical data of the antinociceptive properties of a lyophilized obtained from a newly designed maqui-citrus beverage alone and added with different sweeteners. To achieve this objective, maqui berry and citrus pharmacological activity were studied separately, as well as the interaction of both ingredients. In addition, due to the controversy generated regarding the intake of sugars, related to different metabolic diseases, the influence of different sweeteners (stevia, sucralose, or sucrose) was studied to determine their possible influence on the bioactive compounds of this product. For the attainment of our goals, a pharmacological evaluation, using the 1% formalin test, a nociceptive pain model in mice, was performed by using a sub-efficacious dosage of Maqui (25 mg/kg, i.p.) alone and combined with citrus, and then compared with the effects obtained in the presence of the different sweeteners. As a result, the antinociceptive response of the maqui was synergized in the presence of citrus in the neurogenic and inflammatory phases of the formalin test. However, this response was partially or totally reduced in the presence of the sweeteners. Our study gives preclinical evidence that a combination of maqui and citrus might exert beneficial actions to relieve pain, whereas the presence of sweeteners could reduce or avoid it.
Collapse
Affiliation(s)
- Vicente Agulló
- Laboratorio de Neurofarmacología de Productos Naturales, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calz. Mexico-Xochimilco 101, Col. San Lorenzo Huipulco, Tlalpan, Ciudad de Mexico 14370, Mexico; (V.A.); (A.H.-L.); (F.P.)
- Grupo Calidad, Laboratorio de Fitoquímica y Alimentos Saludables (LabFAS), Bioactividad y Seguridad, Departamento de Ciencia y Tecnología de Alimentos, CEBAS-CSIC, Campus de Espinardo 25, 30100 Murcia, Spain
| | - María Eva González-Trujano
- Laboratorio de Neurofarmacología de Productos Naturales, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calz. Mexico-Xochimilco 101, Col. San Lorenzo Huipulco, Tlalpan, Ciudad de Mexico 14370, Mexico; (V.A.); (A.H.-L.); (F.P.)
- Correspondence: (M.E.G.-T.); (C.G.-V.)
| | - Alberto Hernandez-Leon
- Laboratorio de Neurofarmacología de Productos Naturales, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calz. Mexico-Xochimilco 101, Col. San Lorenzo Huipulco, Tlalpan, Ciudad de Mexico 14370, Mexico; (V.A.); (A.H.-L.); (F.P.)
| | - Erika Estrada-Camarena
- Laboratorio de Neuropsicofarmacología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calz. Mexico-Xochimilco 101, Col. San Lorenzo Huipulco, Tlalpan, Ciudad de Mexico 14370, Mexico;
| | - Francisco Pellicer
- Laboratorio de Neurofarmacología de Productos Naturales, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calz. Mexico-Xochimilco 101, Col. San Lorenzo Huipulco, Tlalpan, Ciudad de Mexico 14370, Mexico; (V.A.); (A.H.-L.); (F.P.)
| | - Cristina García-Viguera
- Grupo Calidad, Laboratorio de Fitoquímica y Alimentos Saludables (LabFAS), Bioactividad y Seguridad, Departamento de Ciencia y Tecnología de Alimentos, CEBAS-CSIC, Campus de Espinardo 25, 30100 Murcia, Spain
- Correspondence: (M.E.G.-T.); (C.G.-V.)
| |
Collapse
|
41
|
Olas B, Białecki J, Urbańska K, Bryś M. The Effects of Natural and Synthetic Blue Dyes on Human Health: A Review of Current Knowledge and Therapeutic Perspectives. Adv Nutr 2021; 12:2301-2311. [PMID: 34245145 PMCID: PMC8634323 DOI: 10.1093/advances/nmab081] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/08/2021] [Accepted: 06/04/2021] [Indexed: 12/31/2022] Open
Abstract
Blue synthetic dyes are widely used in many industries. Although they are approved for use as food dyes and in cosmetics and some medicines, their impacts on consumer health remain unknown. Some studies indicate that 2 synthetic dyes, Blue No. 1 and Blue No. 2, may have toxic effects. It has therefore been suggested that these should be replaced with natural dyes; however, despite being nontoxic and arguably healthier than synthetic dyes, these compounds are often unsuitable for use in food or drugs due to their instability. Nevertheless, among the natural blue pigments, anthocyanins and genipin offer particular health benefits, as they are associated with the prevention of cardiovascular disease and have anticancer, neuroprotective, anti-inflammatory, and antidiabetic properties. This review summarizes the effects of blue food and drug colorings on health and proposes that synthetic colors should be replaced with natural ones.
Collapse
Affiliation(s)
| | - Jacek Białecki
- University of Lodz, Department of General Biochemistry, Faculty of Biology and Environmental Protection, Lodz, Poland
| | - Karina Urbańska
- Medical University of Lodz, Faculty of Medicine, Lodz, Poland
| | - Magdalena Bryś
- University of Lodz, Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, Lodz, Poland
| |
Collapse
|
42
|
Kumar NB. The Promise of Nutrient-Derived Bioactive Compounds and Dietary Components to Ameliorate Symptoms of Chemotherapy-Related Cognitive Impairment in Breast Cancer Survivors. Curr Treat Options Oncol 2021; 22:67. [PMID: 34110516 DOI: 10.1007/s11864-021-00865-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2021] [Indexed: 11/30/2022]
Abstract
OPINION STATEMENT One of the most burdensome symptoms reported by breast cancer patients is chemotherapy-related neurocognitive impairment. It is estimated that of the 11 million cancer survivors in the USA, 22% of them are breast cancer patients. The National Cancer Institute classified chemotherapy-related cognitive impairment (CRCI) as one of the most debilitating sequelae of cancer therapy, limiting this patient population from recommencing their lives prior to the diagnosis of breast cancer. Currently, there are no strategies that are established to prevent, mitigate, or treat CRCI. In addition to surviving cancer, quality of life is critical to cancer survivors. Based on the multiple and complex biological and psychosocial etiology, the varying manifestation and extent of cognitive decline documented in breast cancer survivors, possibly attributed to varying combinations of chemotherapy and dose and duration of therapy, multimodal interventions combining promising nutrient-derived bioactive compounds with antioxidant and anti-inflammatory properties, in addition to structured cognitive training and exercise regimens, can work synergistically to reduce inflammation and oxidative stress with significant improvement in cognitive function resulting in improvements in quality of life of breast cancer survivors.
Collapse
Affiliation(s)
- Nagi B Kumar
- Cancer Epidemiology Program, Breast & Genitourinary Oncology Departments, H. Lee Moffitt Cancer Center & Research Institute, Inc., 12902 Magnolia Drive, MRC/CANCONT, Tampa, FL, 336129497, USA. .,Oncologic Sciences, University of South Florida College of Medicine, 12902 Magnolia Drive, Tampa, FL, 33612, USA.
| |
Collapse
|
43
|
Davinelli S, Ali S, Scapagnini G, Costagliola C. Effects of Flavonoid Supplementation on Common Eye Disorders: A Systematic Review and Meta-Analysis of Clinical Trials. Front Nutr 2021; 8:651441. [PMID: 34124119 PMCID: PMC8189261 DOI: 10.3389/fnut.2021.651441] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 04/30/2021] [Indexed: 12/13/2022] Open
Abstract
Background: Emerging studies show that certain plant compounds may reduce the severity of most prevalent ocular abnormalities. The aim of this systematic review and meta-analysis was to assess the effect of dietary flavonoids on major eye disorders. Methods: Eligible studies were identified by searching PubMed, Web of Science, Scopus, and Cochrane Library databases for all articles published up to April 2021. The literature search yielded 1,134 articles, and a total of 16 studies were included in the systematic review. A meta-analysis of 11 intervention trials involving a total of 724 participants was performed. Results: Using a random-effects model, the pooled results revealed an overall significant effect of flavonoids on common ophthalmic disorders (standard mean difference = −0.39; 95% CI: −0.56, −0.21, p < 0.01). Of the subclasses of flavonoids, flavan-3-ols (standard mean difference = −0.62; 95% CI: −1.03, −0.22, p < 0.01), and anthocyanins (standard mean difference = −0.42; 95% CI: −0.63, −0.21, p < 0.01) were the only effective intervention for improving the outcomes of ocular conditions. For several of the other flavonoid subclasses, evidence on efficacy was insufficient. Conclusion: Our findings indicate that flavonoids may improve the clinical manifestations associated with ocular disorders. However, further well-constructed clinical trials are required to confirm these results and examine the effect of flavonoids on eye disorders other than those identified in this review. Systematic Review Registration: PROSPERO, identifier CRD42021247332.
Collapse
Affiliation(s)
- Sergio Davinelli
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Sawan Ali
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Ciro Costagliola
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| |
Collapse
|
44
|
Borowiec K, Michalak A. Flavonoids from edible fruits as therapeutic agents in neuroinflammation - a comprehensive review and update. Crit Rev Food Sci Nutr 2021; 62:6742-6760. [PMID: 33783286 DOI: 10.1080/10408398.2021.1905604] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Neuroinflammation is a key process in the pathogenesis of many neurological disorders, i.e. Alzheimer's disease and Parkinson's disease. However, there are no anti-inflammatory medical interventions recommended so far in the treatment of neuroinflammation-related brain disorders. Therefore, the burden of searching for effective and safe antineuroinflammatory agents is well founded, especially in the aging society. Compounds of plant origin, mainly (poly)phenols, have attracted considerable attention in recent years. Notably, the role of flavonoids in ameliorating neuroinflammation is in the limelight. Thus, we used comprehensive literature retrieval to summarize the effects and active components of edible fruits and their phenolic compounds. As a result, this review presents a valuable summary of results of in vitro, ex vivo, and in vivo studies on the antineuroinflammatory effects of edible fruits and their (poly)phenolic extracts as well as dietary flavonoids and other selected (poly)phenols based on the detailed description of foregoing studies. Additionally, problems resulting from the limited bioavailability of (poly)phenols were discussed.
Collapse
Affiliation(s)
- Kamila Borowiec
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, Lublin, Poland
| | - Agnieszka Michalak
- Independent Laboratory of Behavioral Studies, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
45
|
Agulló V, González-Trujano ME, Hernandez-Leon A, Estrada-Camarena E, Pellicer F, García-Viguera C. Antinociceptive effects of maqui-berry ( Aristotelia chilensis (Mol.) Stuntz). Int J Food Sci Nutr 2021; 72:947-955. [PMID: 33719824 DOI: 10.1080/09637486.2021.1895727] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Maqui-berry is characterised by presenting a high concentration of (poly)phenols, accounting anthocyanins (cyanidin and delphinidin) for over 85% of the total. These coloured flavonoids have demonstrated potential neurological activity, but the evidence of their antinociceptive properties is scarce. In order to cover this gap, different doses (suitable for human administration) of a maqui-berry powder (1.6% anthocyanin), using enteral and parenteral routes of administration, were compared at central and peripheral levels using a nociceptive pain model (formalin test) in mice. Gastric damage analysis as possible adverse effects of analgesic and anti-inflammatory drugs was also explored. Dose-antinociceptive response was confirmed using both routes of administration and in both neurogenic and inflammatory phases of the formalin test, without gastric damage. In conclusion, these preliminary data provide evidence of pharmacological properties of maqui-berry to alleviate nociceptive pain.
Collapse
Affiliation(s)
- Vicente Agulló
- Laboratorio de Neurofarmacología de Productos Naturales, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, México.,Laboratorio de Fitoquímica y Alimentos Saludables (LabFAS), Grupo Calidad, Bioactividad y Seguridad, Departamento de Ciencia y Tecnología de Alimentos, CEBAS-CSIC, Murcia, Spain
| | - María Eva González-Trujano
- Laboratorio de Neurofarmacología de Productos Naturales, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, México
| | - Alberto Hernandez-Leon
- Laboratorio de Neurofarmacología de Productos Naturales, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, México
| | - Erika Estrada-Camarena
- Laboratorio de Neuropsicofarmacología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, México
| | - Francisco Pellicer
- Laboratorio de Neurofarmacología de Productos Naturales, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, México
| | - Cristina García-Viguera
- Laboratorio de Fitoquímica y Alimentos Saludables (LabFAS), Grupo Calidad, Bioactividad y Seguridad, Departamento de Ciencia y Tecnología de Alimentos, CEBAS-CSIC, Murcia, Spain
| |
Collapse
|
46
|
Akter R, Rahman MH, Behl T, Chowdhury MAR, Manirujjaman M, Bulbul IJ, Elshenaw SE, Tit DM, Bungau S. Prospective Role of Polyphenolic Compounds in the Treatment of Neurodegenerative Diseases. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 20:430-450. [DOI: 10.2174/1871527320666210218084444] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 12/07/2020] [Accepted: 12/14/2020] [Indexed: 01/18/2023]
Abstract
:
Aging is an important stage of the human life cycle and the primary risk factor for neurodegenerative diseases (ND). The aging process contributes to modifications in cells, which may lead to a lack of nutrient signaling, disrupted cellular activity, increased oxidative pressure, cell homeostasis depletion, genomic instability, misfolded protein aggregation, impaired cellular protection, and telomere reduction. The neuropathologies found in Alzheimer's disease (AD) and Parkinson's disease (PD) are internally and extrinsically compound environmental stressors which may be partially alleviated by using different phytochemicals. The new therapies for ND are restricted as they are primarily targeted at final disease progression, including behavioral shifts, neurological disorders, proteinopathies, and neuronal failure. This review presents the role of phytochemicals-related polyphenolic compounds as an accompanying therapy model to avoid neuropathologies linked to AD, PD and to simultaneously enhance two stochastic stressors, namely inflammation and oxidative stress, promoting their disease pathologies. Therefore, this approach represents a prophylactic way to target risk factors that rely on their action against ND that does not occur through current pharmacological agents over the life of a person.
Collapse
Affiliation(s)
- Rokeya Akter
- Department of Pharmacy, Jagannath University, Sadarghat, Dhaka-1100, Bangladesh
| | - Md. Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, 42130, Dhaka-1213, Bangladesh
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, 140401 Punjab, India
| | | | - Manirujjaman Manirujjaman
- Institute of Health and Biomedical Innovation (IHBI), School of Clinical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Kelvin Grove, Australia
| | - Israt Jahan Bulbul
- Department of Pharmacy, Southeast University, Banani, 42130, Dhaka-1213, Bangladesh
| | - Shimaa E. Elshenaw
- Center of stem cell and regenerative medicine, Zewail City for Science, Egypt
| | - Delia Mirela Tit
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 10 1 Decembrie Sq., 410073 Oradea, Romania
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 10 1 Decembrie Sq., 410073 Oradea, Romania
| |
Collapse
|
47
|
Carecho R, Carregosa D, Dos Santos CN. Low Molecular Weight (poly)Phenol Metabolites Across the Blood-Brain Barrier: The Underexplored Journey. Brain Plast 2021; 6:193-214. [PMID: 33782650 PMCID: PMC7990460 DOI: 10.3233/bpl-200099] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The world of (poly)phenols arising from dietary sources has been significantly amplified with the discovery of low molecular weight (LMW) (poly)phenol metabolites resulting from phase I and phase II metabolism and microbiota transformations. These metabolites, which are known to reach human circulation have been studied to further explore their interesting properties, especially regarding neuroprotection. Nevertheless, once in circulation, their distribution to target tissues, such as the brain, relies on their ability to cross the blood-brain barrier (BBB), one of the most controlled barriers present in humans. This represents a key step of an underexplored journey towards the brain. Present review highlights the main findings related to the ability of LMW (poly)phenol metabolites to reach the brain, considering different studies: in silico, in vitro, and in vivo. The mechanisms associated with the transport of these LMW (poly)phenol metabolites across the BBB and possible transporters will be discussed. Overall, the transport of these LMW (poly)phenol metabolites is crucial to elucidate which compounds may exert direct neuroprotective effects, so it is imperative to continue dissecting their potential to cross the BBB and the mechanisms behind their permeation.
Collapse
Affiliation(s)
- Rafael Carecho
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, Lisboa, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Avenida da República, Oeiras, Portugal
| | - Diogo Carregosa
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, Lisboa, Portugal.,iBET, Instituto de Biologia Experimental e Tecnológica, Avenida da República, Apartado 12, Oeiras, Portugal
| | - Cláudia Nunes Dos Santos
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, Lisboa, Portugal.,iBET, Instituto de Biologia Experimental e Tecnológica, Avenida da República, Apartado 12, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Avenida da República, Oeiras, Portugal
| |
Collapse
|
48
|
Soares MSP, Luduvico KP, Chaves VC, Spohr L, Meine BDM, Lencina CL, Reginatto FH, Spanevello RM, Simões CMO, Stefanello FM. The Protective Action of Rubus sp. Fruit Extract Against Oxidative Damage in Mice Exposed to Lipopolysaccharide. Neurochem Res 2021; 46:1129-1140. [PMID: 33547616 DOI: 10.1007/s11064-021-03248-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/13/2021] [Accepted: 01/19/2021] [Indexed: 11/29/2022]
Abstract
Neuroinflammation is an event that occurs in several pathologies of brain. Rubus sp. (blackberry) is a powerful antioxidant fruit, and its extract has neuroprotective activity. The aim of this study was to investigate the blackberry extract properties on lipopolysaccharide (LPS)-induced neuroinflammation, in relation to oxidative parameters and acetylcholinesterase activity in the brain structures of mice. We also investigated interleukin-10 levels in serum. Mice were submitted to Rubus sp. extract treatment once daily for 14 days. On the fifteenth day, LPS was injected in a single dose. LPS induced oxidative brain damage and the blackberry extract demonstrated preventive effects in LPS-challenged mice. LPS administration increased reactive oxygen species levels in the cerebral cortex and striatum, as well as lipid peroxidation in the cerebral cortex. However, the blackberry extract prevented all these parameters. Furthermore, LPS decreased thiol content in the striatum and hippocampus, while a neuroprotective effect of blackberry extract treatment was observed in relation to this parameter. The blackberry extract also prevented a decrease in catalase activity in all the brain structures and of superoxide dismutase in the striatum. An increase in acetylcholinesterase activity was detected in the cerebral cortex in the LPS group, but this activity was decreased in the Rubus sp. extract group. Serum IL-10 levels were reduced by LPS, and the extract was not able to prevent this change. Finally, we observed an antioxidant effect of blackberry extract in LPS-challenged mice suggesting that this anthocyanin-rich extract could be considered as a potential nutritional therapeutic agent for preventive damage associated with neuroinflammation.
Collapse
Affiliation(s)
- Mayara Sandrielly Pereira Soares
- Programa de Pós-Graduação Em Bioquímica E Bioprospecção, Centro de Ciências Químicas, Farmacêuticas E de Alimentos, Universidade Federal de Pelotas, Campus Universitário s/n, Pelotas, RS, CEP 96010-900, Brazil.
| | - Karina Pereira Luduvico
- Programa de Pós-Graduação Em Bioquímica E Bioprospecção, Centro de Ciências Químicas, Farmacêuticas E de Alimentos, Universidade Federal de Pelotas, Campus Universitário s/n, Pelotas, RS, CEP 96010-900, Brazil
| | - Vitor Clasen Chaves
- Programa de Pós-Graduação Em Biotecnologia E Biociências, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Luiza Spohr
- Programa de Pós-Graduação Em Bioquímica E Bioprospecção, Centro de Ciências Químicas, Farmacêuticas E de Alimentos, Universidade Federal de Pelotas, Campus Universitário s/n, Pelotas, RS, CEP 96010-900, Brazil
| | - Bernardo de Moraes Meine
- Programa de Pós-Graduação Em Bioquímica E Bioprospecção, Centro de Ciências Químicas, Farmacêuticas E de Alimentos, Universidade Federal de Pelotas, Campus Universitário s/n, Pelotas, RS, CEP 96010-900, Brazil
| | - Claiton Leoneti Lencina
- Curso de Farmácia, Centro de Ciências Químicas, Farmacêuticas E de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Flávio Henrique Reginatto
- Programa de Pós-Graduação Em Biotecnologia E Biociências, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Roselia Maria Spanevello
- Programa de Pós-Graduação Em Bioquímica E Bioprospecção, Centro de Ciências Químicas, Farmacêuticas E de Alimentos, Universidade Federal de Pelotas, Campus Universitário s/n, Pelotas, RS, CEP 96010-900, Brazil
| | - Cláudia Maria Oliveira Simões
- Programa de Pós-Graduação Em Biotecnologia E Biociências, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Francieli Moro Stefanello
- Programa de Pós-Graduação Em Bioquímica E Bioprospecção, Centro de Ciências Químicas, Farmacêuticas E de Alimentos, Universidade Federal de Pelotas, Campus Universitário s/n, Pelotas, RS, CEP 96010-900, Brazil
| |
Collapse
|
49
|
Chuntakaruk H, Kongtawelert P, Pothacharoen P. Chondroprotective effects of purple corn anthocyanins on advanced glycation end products induction through suppression of NF-κB and MAPK signaling. Sci Rep 2021; 11:1895. [PMID: 33479339 PMCID: PMC7820347 DOI: 10.1038/s41598-021-81384-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 01/06/2021] [Indexed: 01/15/2023] Open
Abstract
Formation of advanced glycation end products (AGEs), which are associated with diabetes mellitus, contributes to prominent features of osteoarthritis, i.e., inflammation-mediated destruction of articular cartilage. Among the phytochemicals which play a role in anti-inflammatory effects, anthocyanins have also been demonstrated to have anti-diabetic properties. Purple corn is a source of three major anthocyanins: cyanidin-3-O-glucoside, pelargonidin-3-O-glucoside and peonidin-3-O-glucoside. Purple corn anthocyanins have been demonstrated to be involved in the reduction of diabetes-associated inflammation, suggesting that they may have a beneficial effect on diabetes-mediated inflammation of cartilage. This investigation of the chondroprotective effects of purple corn extract on cartilage degradation found a reduction in glycosaminoglycans released from AGEs induced cartilage explants, corresponding with diminishing of uronic acid loss of the cartilage matrix. Investigation of the molecular mechanisms in human articular chondrocytes showed the anti-inflammatory effect of purple corn anthocyanins and the metabolite, protocatechuic acid (PCA) on AGEs induced human articular chondrocytes via inactivation of the NFκb and MAPK signaling pathways. This finding suggests that purple corn anthocyanins and PCA may help ameliorate AGEs mediated inflammation and diabetes-mediated cartilage degradation.
Collapse
Affiliation(s)
- Hathaichanok Chuntakaruk
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Prachya Kongtawelert
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Peraphan Pothacharoen
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
50
|
Tran PH, Tran TT. Blueberry Supplementation in Neuronal Health and Protective Technologies for Efficient Delivery of Blueberry Anthocyanins. Biomolecules 2021; 11:biom11010102. [PMID: 33466731 PMCID: PMC7828789 DOI: 10.3390/biom11010102] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/04/2021] [Accepted: 01/12/2021] [Indexed: 12/11/2022] Open
Abstract
Blueberries are consumed as healthy fruits that provide a variety of benefits to the nervous system. Scientists have found that blueberries can be used as a daily edible source for supplementation to prevent and minimize complexities of age-related diseases as well as to improve learning and memory in children. Anthocyanins are the most mentioned compounds among the components in blueberries, as they play a major role in providing the health benefits of this fruit. However, while they are highly active in impeding biological impairment in neuronal functions, they have poor bioavailability. This review focuses on neurological investigations of blueberries from in vitro cell studies to in vivo studies, including animal and human studies, with respect to their positive outcomes of neuroprotection and intervention in neurodegenerative conditions. Readers will also find information on the bioavailability of anthocyanins and the considerable factors affecting them so that they can make informed decisions regarding the daily consumption of blueberries. In this context, the ways in which blueberries or blueberry supplementation forms are consumed and which of these forms is best for maximizing the health benefits of blueberries should be considered important decision-making factors in the consumption of blueberries; all of these aspects are covered in this review. Finally, we discuss recent technologies that have been employed to improve the bioavailability of blueberry anthocyanins in the development of effective delivery vehicles supporting brain health.
Collapse
Affiliation(s)
- Phuong H.L. Tran
- Deakin University, School of Medicine, IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, Geelong, Australia;
| | - Thao T.D. Tran
- Institute of Research and Development, Duy Tan University, Danang 550000, Vietnam
- The Faculty of Pharmacy, Duy Tan University, Danang 550000, Vietnam
- Correspondence:
| |
Collapse
|