1
|
Yan X, Li H, Yi J, Sun C, Yu Q, Wen R. Unravelling the effects of drying techniques on Porphyra yezoensis: Morphology, rehydration properties, metabolomic profile, and taste formation. Food Chem 2024; 464:141562. [PMID: 39396475 DOI: 10.1016/j.foodchem.2024.141562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/26/2024] [Accepted: 10/05/2024] [Indexed: 10/15/2024]
Abstract
This study explored the impact of sun drying (SD), freeze drying (FD), oven drying (OD), and microwave drying (MD) on the morphology, rehydration properties, metabolomic profile, and taste formation of Porphyra yezoensis. FD elicited a brighter colour, smooth surface, porous microstructure, and strong rehydration properties in P. yezoensis, while dramatically maintaining the umami, sweetness, and saltiness. OD and MD decreased structural openness owing to tissue collapse and affected water absorption. Metabolomic analysis revealed 1030 metabolites, among which taste-related compounds, especially free amino acids, nucleotides, organic acids, and their derivatives, were the main biomarkers for distinguishing the different drying methods. Their related metabolic pathways, such as taurine and hypotaurine metabolism; purine metabolism; glyoxylate and dicarboxylate metabolism; and citrate cycle, were the most active. A metabolic pathway network of the main taste compounds was built to provide novel insights into the mechanisms underlying the taste profile changes associated with different drying methods.
Collapse
Affiliation(s)
- Xinlu Yan
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, School of Life Sciences, Yantai University, Yantai, Shandong 264005, China
| | - Hongyu Li
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, School of Life Sciences, Yantai University, Yantai, Shandong 264005, China
| | - Jing Yi
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, School of Life Sciences, Yantai University, Yantai, Shandong 264005, China
| | - Chengfeng Sun
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, School of Life Sciences, Yantai University, Yantai, Shandong 264005, China
| | - Qianqian Yu
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, School of Life Sciences, Yantai University, Yantai, Shandong 264005, China.
| | - Rongxin Wen
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, School of Life Sciences, Yantai University, Yantai, Shandong 264005, China.
| |
Collapse
|
2
|
Wong A, Frommel AY, Sumaila UR, Cheung WWL. A traits-based approach to assess aquaculture's contributions to food, climate change, and biodiversity goals. NPJ OCEAN SUSTAINABILITY 2024; 3:30. [PMID: 38828386 PMCID: PMC11142914 DOI: 10.1038/s44183-024-00065-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/29/2024] [Indexed: 06/05/2024]
Abstract
Aquaculture has the potential to support a sustainable and equitable food system in line with the United Nations Sustainable Development Goals (SDG) on food security, climate change, and biodiversity (FCB). Biological diversity amongst aquaculture organisms can drive diverse contributions to such goals. Existing studies have assessed the performance of a limited number of taxa in the general context of improving aquaculture production, but few explicitly consider the biological attributes of farmed aquatic taxa at the FCB nexus. Through a systematic literature review, we identify key traits associated with FCB and evaluate the potential of aquaculture to contribute to FCB goals using a fuzzy logic model. The majority of identified traits are associated with food security, and two-thirds of traits linked with food security are also associated with climate change or biodiversity, revealing potential co-benefits of optimizing a single trait. Correlations between FCB indices further suggest that challenges and opportunities in aquaculture are intertwined across FCB goals, but low mean FCB scores suggest that the focus of aquaculture research and development on food production is insufficient to address food security, much less climate or biodiversity issues. As expected, production-maximizing traits (absolute fecundity, the von Bertalanffy growth function coefficient K, macronutrient density, maximum size, and trophic level as a proxy for feed efficiency) highly influence a species' FCB potential, but so do species preferences for environmental conditions (tolerance to phosphates, nitrates, and pH levels, as well as latitudinal and geographic ranges). Many highly farmed species that are typically associated with food security, especially finfish, score poorly for food, climate, and biodiversity potential. Algae and mollusc species tend to perform well across FCB indices, revealing the importance of non-fish species in achieving FCB goals and potential synergies in integrated multi-trophic aquaculture systems. Overall, this study provides decision-makers with a biologically informed assessment of desirable aquaculture traits and species while illuminating possible strategies to increase support for FCB goals. Our findings can be used as a foundation for studying the socio-economic opportunities and barriers for aquaculture transitions to develop equitable pathways toward FCB-positive aquaculture across nuanced regional contexts.
Collapse
Affiliation(s)
- Aleah Wong
- Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, BC Canada
| | - Andrea Y. Frommel
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC Canada
| | - U. Rashid Sumaila
- Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, BC Canada
| | - William W. L. Cheung
- Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, BC Canada
| |
Collapse
|
3
|
Bayomy HM, Alamri ES. Biochemical Assessments of Six Species of Edible Coastal Algae Collected from Tabuk Region in Saudi Arabia. Molecules 2024; 29:639. [PMID: 38338383 PMCID: PMC10856434 DOI: 10.3390/molecules29030639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
In the first study focusing on the Red Sea's Tabuk coast, six edible species of the most common algae were collected to evaluate their approximate composition using AOAC methods, amino acids using ion-exchange chromatography, minerals using atomic absorption spectroscopy, phenolic compounds using the Folin-Ciocalteu method, and ferric-reducing antioxidant power. All the data were significantly (p < 0.05) different among all the studied species. The data indicated that the protein content ranged from 9.25% for A. nodosum to 20.06% for H. musciformis. C. racemosa had the highest lipid content of 7.57%. Phosphors varied from 68.2 mg/100 g for A. nodosum to 406 mg/100 g for D. simplex. The largest amounts of calcium (2458 mg/100 g) and iron (29.79 mg/100 g) were found in C. racemosa. The total essential amino acids ranged between 38.16 and 46.82% for A. nodosum and D. simplex, respectively. F. vesiculosus had the maximum content of phenolic compounds (11.06 mg GAE/g). A. nodosum had the highest antioxidant capacity (1.78 mg TE/g). The research concluded that algae are the main effort toward sustainable agriculture to meet the world's food needs. that algae may be used to improve food naturally. To satisfy the criteria for sustainable food, which is one of the pillars of NEOM, numerous studies are required to investigate the natural products available in the Red Sea.
Collapse
Affiliation(s)
- Hala M. Bayomy
- Food Science and Nutrition Department, Science Faculty, University of Tabuk, Tabuk 71491, Saudi Arabia;
- Food and Dairy Science and Technology Department, Faculty of Agriculture, Damanhour University, Damanhour 22516, Egypt
| | - Eman S. Alamri
- Food Science and Nutrition Department, Science Faculty, University of Tabuk, Tabuk 71491, Saudi Arabia;
| |
Collapse
|
4
|
Kang YA, Kim YJ, Jin SK, Choi HJ. Antioxidant, Collagenase Inhibitory, and Antibacterial Effects of Bioactive Peptides Derived from Enzymatic Hydrolysate of Ulva australis. Mar Drugs 2023; 21:469. [PMID: 37755082 PMCID: PMC10532848 DOI: 10.3390/md21090469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/28/2023] Open
Abstract
The protein extract of Ulva australis hydrolyzed with Alcalase and Flavourzyme was found to have multi-functional properties, including total antioxidant capacity (TAC), collagenase inhibitory, and antibacterial activities. The #5 fraction (SP5) and #7 fraction (SP7) of U. australis hydrolysate from cation-exchange chromatography displayed significantly high TAC, collagenase inhibitory, and antibacterial effects against Propionibacterium acnes, and only the Q3 fraction from anion-exchange chromatography displayed high multi-functional activities. Eight of 42 peptides identified by MALDI-TOF/MS and Q-TOF/MS/MS were selected from the results for screening with molecular docking on target proteins and were then synthesized. Thr-Gly-Thr-Trp (TGTW) displayed ABTS [2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid)] radical scavenging activity. The effect of TAC as Trolox equivalence was dependent on the concentration of TGTW. Asn-Arg-Asp-Tyr (NRDY) and Arg-Asp-Arg-Phe (RDRF) exhibited collagenase inhibitory activity, which increased according to the increase in concentration, and their IC50 values were 0.95 mM and 0.84 mM, respectively. Peptides RDRF and His-Ala-Val-Tyr (HAVY) displayed anti-P. Acnes effects, with IC50 values of 8.57 mM and 13.23 mM, respectively. These results suggest that the U. australis hydrolysate could be a resource for the application of effective nutraceuticals and cosmetics.
Collapse
Affiliation(s)
- You-An Kang
- Korea Beauty Industry Development Institute Co., Ltd., #501, Elite Bldg, Jeju Science Park, Cheomdanro 213-4, Jeju 63309, Republic of Korea;
| | - Ye-Jin Kim
- Oceanpep Co., Ltd., 105, Jinju Bioindustry Foundation, Musan-myeon, Jinju 52839, Republic of Korea;
| | - Sang-Keun Jin
- Division of Animal Science, Gyeongsang National University, Jinju 52828, Republic of Korea;
| | - Hwa-Jung Choi
- Department of Beauty Art, Youngsan University, 142 Bansong Beltway (Bansong-dong), Busan 48015, Republic of Korea
| |
Collapse
|
5
|
Kumari A, Garima, Bharadvaja N. A comprehensive review on algal nutraceuticals as prospective therapeutic agent for different diseases. 3 Biotech 2023; 13:44. [PMID: 36643398 PMCID: PMC9834485 DOI: 10.1007/s13205-022-03454-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 12/25/2022] [Indexed: 01/13/2023] Open
Abstract
Ongoing research in the food supplement sector provides insightful information regarding algae as a new-generation nutritional supplement and is also referred to as a superfood. Due to the diverse nutritional components, algae have documented numerous health benefits like fighting microbial diseases, hypertension, obesity, and diabetes. Therefore, algae-derived nutraceuticals account for a rapidly expanding market in the food supplements sector. The concept of algal prebiotics and their role in modulating gut microbiota have also been a chief contributor to this. This review evaluates the use of possible algal species and their specific bioactive compounds for the management of several chronic diseases. Proteins, peptides, polysaccharides, phenolics, and vitamins give an insight into the significance of algae in boosting the immune system and improving the body's nutritional makeup. In addition, phyco-compounds such as polysaccharides and polyphenols are also receiving a lot more interest in cosmeceutical applications for protecting skin from photodamage. The incorporation of algae in the diet for the management and prevention of chronic diseases like cancer, lung, and heart disease has been discussed in this review along with their action mechanism. This review provides a brief overview of several bioactive compounds present in micro and macroalgae and their therapeutic effect on lifestyle diseases, gastrointestinal diseases as well as neurodegenerative diseases.
Collapse
Affiliation(s)
- Asmita Kumari
- Plant Biotechnology Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi, 110042 India
| | - Garima
- Plant Biotechnology Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi, 110042 India
| | - Navneeta Bharadvaja
- Plant Biotechnology Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi, 110042 India
| |
Collapse
|
6
|
Chen H, Qi H, Xiong P. Phycobiliproteins-A Family of Algae-Derived Biliproteins: Productions, Characterization and Pharmaceutical Potentials. Mar Drugs 2022; 20:md20070450. [PMID: 35877743 PMCID: PMC9318637 DOI: 10.3390/md20070450] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 12/04/2022] Open
Abstract
Phycobiliproteins (PBPs) are colored and water-soluble biliproteins found in cyanobacteria, rhodophytes, cryptomonads and cyanelles. They are divided into three main types: allophycocyanin, phycocyanin and phycoerythrin, according to their spectral properties. There are two methods for PBPs preparation. One is the extraction and purification of native PBPs from Cyanobacteria, Cryptophyta and Rhodophyta, and the other way is the production of recombinant PBPs by heterologous hosts. Apart from their function as light-harvesting antenna in photosynthesis, PBPs can be used as food colorants, nutraceuticals and fluorescent probes in immunofluorescence analysis. An increasing number of reports have revealed their pharmaceutical potentials such as antioxidant, anti-tumor, anti-inflammatory and antidiabetic effects. The advances in PBP biogenesis make it feasible to construct novel PBPs with various activities and produce recombinant PBPs by heterologous hosts at low cost. In this review, we present a critical overview on the productions, characterization and pharmaceutical potentials of PBPs, and discuss the key issues and future perspectives on the exploration of these valuable proteins.
Collapse
Affiliation(s)
- Huaxin Chen
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China;
- Correspondence:
| | - Hongtao Qi
- School of Life Sciences, Qingdao University, Qingdao 266000, China;
| | - Peng Xiong
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China;
| |
Collapse
|
7
|
Hu X, Pan C, Cai M, Li L, Yang X, Xiang H, Chen S. Novel Antioxidant Peptides from Grateloupia livida Hydrolysates: Purification and Identification. Foods 2022; 11:1498. [PMID: 35627068 PMCID: PMC9141318 DOI: 10.3390/foods11101498] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 11/16/2022] Open
Abstract
Grateloupia livida protein was hydrolyzed with various proteases (alkaline protease, Protamex and neutral protease) to obtain anti-oxidative peptides. Antioxidant activity of the enzymatic hydrolysates was evaluated by the DPPH radical scavenging, ABTS radical scavenging and reducing power assays. The results suggested that hydrolysates obtained by neutral protease 1 h hydrolysis displayed the highest antioxidant activity (DPPH IC50 value of 3.96 mg/mL ± 0.41 mg/mL, ABTS IC50 value of 0.88 ± 0.13 mg/mL and reducing power of 0.531 ± 0.012 at 8 mg/mL), and had low molecular weight distribution (almost 99% below 3 kDa). Three fractions (F1-F3) were then isolated from the hydrolysates by using semi-preparative RP-HPLC, and the fraction F3 showed the highest antioxidant ability. Four antioxidant peptides were identified as LYEEMKESKVINADK, LEADNVGVVLMGDGR, LIDDSFGTDAPVPERL, and GLDELSEEDRLT from the F3 by LC-MS/MS. Online prediction showed that the four peptides possessed good water solubility, non-toxic and non-allergenic characteristics. Moreover, the LYEEMKESKVINADK exhibited the highest antioxidant ability. Molecular docking revealed that these peptides could all well bind with Kelch-like ECH-associated protein 1 (Keap1), among which LYEEMKESKVINADK had the lowest docking energy (-216.878 kcal/mol). These results demonstrated that the antioxidant peptides from Grateloupia livida could potentially be used as natural antioxidant.
Collapse
Affiliation(s)
- Xiao Hu
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (X.H.); (C.P.); (M.C.); (L.L.); (X.Y.); (H.X.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Chuang Pan
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (X.H.); (C.P.); (M.C.); (L.L.); (X.Y.); (H.X.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Miaomiao Cai
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (X.H.); (C.P.); (M.C.); (L.L.); (X.Y.); (H.X.)
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Laihao Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (X.H.); (C.P.); (M.C.); (L.L.); (X.Y.); (H.X.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xianqing Yang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (X.H.); (C.P.); (M.C.); (L.L.); (X.Y.); (H.X.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Huan Xiang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (X.H.); (C.P.); (M.C.); (L.L.); (X.Y.); (H.X.)
- Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Marine Food Deep Processing, Dalian 116034, China
| | - Shengjun Chen
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (X.H.); (C.P.); (M.C.); (L.L.); (X.Y.); (H.X.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Marine Food Deep Processing, Dalian 116034, China
| |
Collapse
|
8
|
Lomartire S, Gonçalves AMM. An Overview of Potential Seaweed-Derived Bioactive Compounds for Pharmaceutical Applications. Mar Drugs 2022; 20:141. [PMID: 35200670 PMCID: PMC8875101 DOI: 10.3390/md20020141] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 02/06/2023] Open
Abstract
Nowadays, seaweeds are widely involved in biotechnological applications. Due to the variety of bioactive compounds in their composition, species of phylum Ochrophyta, class Phaeophyceae, phylum Rhodophyta and Chlorophyta are valuable for the food, cosmetic, pharmaceutical and nutraceutical industries. Seaweeds have been consumed as whole food since ancient times and used to treat several diseases, even though the mechanisms of action were unknown. During the last decades, research has demonstrated that those unique compounds express beneficial properties for human health. Each compound has peculiar properties (e.g., antioxidant, antimicrobial, antiviral activities, etc.) that can be exploited to enhance human health. Seaweed's extracted polysaccharides are already involved in the pharmaceutical industry, with the aim of replacing synthetic compounds with components of natural origin. This review aims at a better understanding of the recent uses of algae in drug development, with the scope of replacing synthetic compounds and the multiple biotechnological applications that make up seaweed's potential in industrial companies. Further research is needed to better understand the mechanisms of action of seaweed's compounds and to embrace the use of seaweeds in pharmaceutical companies and other applications, with the final scope being to produce sustainable and healthier products.
Collapse
Affiliation(s)
- Silvia Lomartire
- University of Coimbra, MARE—Marine and Environmental Sciences Centre, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal;
| | - Ana M. M. Gonçalves
- University of Coimbra, MARE—Marine and Environmental Sciences Centre, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal;
- Department of Biology, CESAM—Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
9
|
Moerdijk-Poortvliet TCW, de Jong DLC, Fremouw R, de Reu S, de Winter JM, Timmermans K, Mol G, Reuter N, Derksen GCH. Extraction and analysis of free amino acids and 5'-nucleotides, the key contributors to the umami taste of seaweed. Food Chem 2022; 370:131352. [PMID: 34788963 DOI: 10.1016/j.foodchem.2021.131352] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 09/13/2021] [Accepted: 10/04/2021] [Indexed: 11/29/2022]
Abstract
Assessing the umami taste of seaweed on a chemical level can inform the use and selection of seaweed in European cuisine. Accordingly, we developed a method for the simultaneous extraction, separate clean-up and analysis of 21 free amino acids and 10 free nucleotides by reversed phase and mixed-mode HPLC respectively. Of multiple mouth emulating solvents, extracting in Milli-Q at 35 °C was found most suitable. This method showed good linearity (R2 > 0.9996), resolution (Rs ≥ 1.5) and picomole detection limits, and was successfully applied to determine the Equivalent Umami Concentration (EUC) and Taste Activity Values (TAV) of seven Dutch seaweed species. Phaeophyceae showed the highest EUC, followed by Chlorophyceae and Rhodophyceae (≈ 9.5, 3.7 and 1.1 g/100 g respectively). Glutamic acid always exceeded the TAV, while other umami compounds were species specific. Our method can accurately predict umami intensity and therefore contributes towards species selection for the European palette.
Collapse
Affiliation(s)
- Tanja C W Moerdijk-Poortvliet
- HZ University of Applied Sciences, Chemistry Department, Research Group Marine Biobased Specialties, P.O. Box 364, 4380 AJ Vlissingen, the Netherlands.
| | - Dylan L C de Jong
- HZ University of Applied Sciences, Chemistry Department, Research Group Marine Biobased Specialties, P.O. Box 364, 4380 AJ Vlissingen, the Netherlands
| | - Roy Fremouw
- HZ University of Applied Sciences, Chemistry Department, Research Group Marine Biobased Specialties, P.O. Box 364, 4380 AJ Vlissingen, the Netherlands
| | - Sandra de Reu
- HZ University of Applied Sciences, Chemistry Department, Research Group Marine Biobased Specialties, P.O. Box 364, 4380 AJ Vlissingen, the Netherlands
| | - Jose M de Winter
- HZ University of Applied Sciences, Chemistry Department, Research Group Marine Biobased Specialties, P.O. Box 364, 4380 AJ Vlissingen, the Netherlands
| | - Klaas Timmermans
- NIOZ Royal Netherlands Institute for Sea Research, Department Estuarine and Delta Systems, P.O. Box 140, 4400 AC Yerseke, the Netherlands
| | - Geert Mol
- HZ University of Applied Sciences, Chemistry Department, Research Group Marine Biobased Specialties, P.O. Box 364, 4380 AJ Vlissingen, the Netherlands
| | - Norbert Reuter
- Agilent Technologies, P.O. Box 8033, 4330 EA Middelburg, the Netherlands
| | - Goverdina C H Derksen
- HZ University of Applied Sciences, Chemistry Department, Research Group Marine Biobased Specialties, P.O. Box 364, 4380 AJ Vlissingen, the Netherlands; NIOZ Royal Netherlands Institute for Sea Research, Department Estuarine and Delta Systems, P.O. Box 140, 4400 AC Yerseke, the Netherlands
| |
Collapse
|
10
|
AMORIM ANDREZAPDE, SILVA GABRIELLYHDA, BRANDÃO ROMEROMP, PORTO ANALÚCIAF, BEZERRA RAQUELP. Algae as a source of peptides inhibitors of the angiotensin-converting enzyme: a systematic review. AN ACAD BRAS CIENC 2022; 94:e20201636. [DOI: 10.1590/0001-3765202220201636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/16/2020] [Indexed: 11/22/2022] Open
|
11
|
R-Phycoerythrin from Colaconema formosanum (Rhodophyta), an Anti-Allergic and Collagen Promoting Material for Cosmeceuticals. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11209425] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
R-phycoerythrin (R-PE), a pigment complex found in red algae, was extracted and purified from a newly identified red alga, Colaconema formosanum, and its bioactivities were examined. It was revealed that R-PE treatment resulted in high cell viability (>70%) to the mammalian cell lines NIH-3T3, RBL-2H3, RAW264.7, and Hs68, and had no effect on cell morphology in NIH-3T3 cells. Its suppression effect was insignificant on the production of IL-6 and TNF-α in lipopolysaccharides-stimulated RAW264.7 cells. However, calcium ionophore A23187-induced β-hexosaminidase release was effectively inhibited in a dose-dependent manner in RBL-2H3 cells. Additionally, it was revealed to be non-irritating to bionic epidermal tissues. Notably, procollagen production was promoted in Hs68 cells. Overall, the data revealed that R-PE purified from C. formosanum exhibits anti-allergic and anti-aging bioactivities with no observed consequential toxicity on multiple mammalian cell lines as well as epidermal tissues, suggesting that this macromolecule is a novel material for potential cosmetic use.
Collapse
|
12
|
Coniglio D, Bianco M, Ventura G, Calvano CD, Losito I, Cataldi TRI. Lipidomics of the Edible Brown Alga Wakame ( Undaria pinnatifida) by Liquid Chromatography Coupled to Electrospray Ionization and Tandem Mass Spectrometry. Molecules 2021; 26:4480. [PMID: 34361633 PMCID: PMC8348742 DOI: 10.3390/molecules26154480] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 12/18/2022] Open
Abstract
The lipidome of a brown seaweed commonly known as wakame (Undaria pinnatifida), which is grown and consumed around the world, including Western countries, as a healthy nutraceutical food or supplement, was here extensively examined. The study was focused on the characterization of phospholipids (PL) and glycolipids (GL) by liquid chromatography (LC), either hydrophilic interaction LC (HILIC) or reversed-phase LC (RPLC), coupled to electrospray ionization (ESI) and mass spectrometry (MS), operated both in high and in low-resolution mode. Through the acquisition of single (MS) and tandem (MS/MS) mass spectra more than 200 PL and GL of U. pinnatifida extracts were characterized in terms of lipid class, fatty acyl (FA) chain composition (length and number of unsaturations), and regiochemistry, namely 16 SQDG, 6 SQMG, 12 DGDG, 5 DGMG, 29 PG, 8 LPG, 19 PI, 14 PA, 19 PE, 8 PE, 38 PC, and 27 LPC. The FA (C16:0) was the most abundant saturated acyl chain, whereas the monounsaturated C18:1 and the polyunsaturated C18:2 and C20:4 chains were the prevailing ones. Odd-numbered acyl chains, iJ., C15:0, C17:0, C19:0, and C19:1, were also recognized. While SQDG exhibited the longest and most unsaturated acyl chains, C18:1, C18:2, and C18:3, in the sn-1 position of glycerol, they were preferentially located in the sn-2 position in the case of PL. The developed analytical approach might pave the way to extend lipidomic investigations also for other edible marine algae, thus emphasizing their potential role as a source of bioactive lipids.
Collapse
Affiliation(s)
- Davide Coniglio
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy; (D.C.); (M.B.); (G.V.); (I.L.)
| | - Mariachiara Bianco
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy; (D.C.); (M.B.); (G.V.); (I.L.)
| | - Giovanni Ventura
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy; (D.C.); (M.B.); (G.V.); (I.L.)
| | - Cosima D. Calvano
- Centro Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy
| | - Ilario Losito
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy; (D.C.); (M.B.); (G.V.); (I.L.)
- Centro Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy
| | - Tommaso R. I. Cataldi
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy; (D.C.); (M.B.); (G.V.); (I.L.)
- Centro Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy
| |
Collapse
|
13
|
Alboofetileh M, Hamzeh A, Abdollahi M. Seaweed Proteins as a Source of Bioactive Peptides. Curr Pharm Des 2021; 27:1342-1352. [PMID: 33557731 DOI: 10.2174/1381612827666210208153249] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 10/01/2020] [Indexed: 11/22/2022]
Abstract
Seaweeds have received great attention as a vegetarian and sustainable marine source of protein, which does not need irrigation, arable land, and fertilization. Besides, seaweeds are considered as an untapped resource for discovering bioactive compounds with health benefits where bioactive peptides have shown outstanding potential. This review provides a detailed overview of available scientific knowledge on production methods, bioactivity and application of peptides from seaweed proteins. The emphasis is on the effects from seaweed varieties and peptide production conditions on the bioactivity of the peptides and their potential health benefits. Bioactive properties of seaweed peptides, including antioxidant, antihypertensive, antidiabetic, anti-inflammatory, anticancer activities and other potential health benefits, have been discussed. It also covers current challenges and required future research and innovations for the successful application of seaweeds proteins as a sustainable source of bioactive peptides. Effects from seasonal variation of seaweed composition on the bioactivity of their peptides, difficulties in the extraction of proteins from seaweed complex structure, scalability and reproducibility of the developed methods for the production of bioactive peptides, the safety of the peptides are examples of highlighted challenges. Further studies on the bioavailability of the seaweed bioactive peptides and validation of the results in animal models and human trials are needed before their application as functional foods or pharmaceutical ingredients.
Collapse
Affiliation(s)
- Mehdi Alboofetileh
- Iran Fish Processing Technology Research Center, Iranian Fisheries Science Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Bandar Anzali, Iran
| | - Ali Hamzeh
- School of Food Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Mehdi Abdollahi
- Department of Biology and Biological Engineering-Food and Nutrition Science, Chalmers University of Technology, SE 412 96 Gothenburg, Sweden
| |
Collapse
|
14
|
|
15
|
Characterization of ACE Inhibitory Peptides Prepared from Pyropia pseudolinearis Protein. Mar Drugs 2021; 19:md19040200. [PMID: 33916201 PMCID: PMC8066288 DOI: 10.3390/md19040200] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 12/13/2022] Open
Abstract
More than 7000 red algae species have been classified. Although most of them are underused, they are a protein-rich marine resource. The hydrolysates of red algal proteins are good candidates for the inhibition of the angiotensin-I-converting enzyme (ACE). The ACE is one of the key factors for cardiovascular disease, and the inhibition of ACE activity is related to the prevention of high blood pressure. To better understand the relationship between the hydrolysates of red algal proteins and the inhibition of ACE activity, we attempted to identify novel ACE inhibitory peptides from Pyropia pseudolinearis. We prepared water soluble proteins (WSP) containing phycoerythrin, phycocyanin, allophycocyanin, and ribulose 1,5-bisphosphate carboxylase/oxygenase. In vitro analysis showed that the thermolysin hydrolysate of the WSP had high ACE inhibitory activity compared to that of WSP. We then identified 42 peptides in the hydrolysate by high-performance liquid chromatography and mass spectrometry. Among 42 peptides, 23 peptides were found in chloroplast proteins. We then synthesized the uncharacterized peptides ARY, YLR, and LRM and measured the ACE inhibitory activity. LRM showed a low IC50 value (0.15 μmol) compared to ARY and YLR (1.3 and 5.8 μmol). In silico analysis revealed that the LRM sequence was conserved in cpcA from Bangiales and Florideophyceae, indicating that the novel ACE inhibitory peptide LRM was highly conserved in red algae.
Collapse
|
16
|
Chathuranga K, Weerawardhana A, Dodantenna N, Ranathunga L, Cho WK, Ma JY, Lee JS. Inhibitory Effect of Sargassum fusiforme and Its Components on Replication of Respiratory Syncytial Virus In Vitro and In Vivo. Viruses 2021; 13:548. [PMID: 33806073 PMCID: PMC8064456 DOI: 10.3390/v13040548] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 12/23/2022] Open
Abstract
Sargassum fusiforme, a plant used as a medicine and food, is regarded as a marine vegetable and health supplement to improve life expectancy. Here, we demonstrate that S. fusiforme extract (SFE) has antiviral effects against respiratory syncytial virus (RSV) in vitro and in vivo mouse model. Treatment of HEp2 cells with a non-cytotoxic concentration of SFE significantly reduced RSV replication, RSV-induced cell death, RSV gene transcription, RSV protein synthesis, and syncytium formation. Moreover, oral inoculation of SFE significantly improved RSV clearance from the lungs of BALB/c mice. Interestingly, the phenolic compounds eicosane, docosane, and tetracosane were identified as active components of SFE. Treatment with a non-cytotoxic concentration of these three components elicited similar antiviral effects against RSV infection as SFE in vitro. Together, these results suggest that SFE and its potential components are a promising natural antiviral agent candidate against RSV infection.
Collapse
Affiliation(s)
- Kiramage Chathuranga
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea; (K.C.); (A.W.); (N.D.); (L.R.)
| | - Asela Weerawardhana
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea; (K.C.); (A.W.); (N.D.); (L.R.)
| | - Niranjan Dodantenna
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea; (K.C.); (A.W.); (N.D.); (L.R.)
| | - Lakmal Ranathunga
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea; (K.C.); (A.W.); (N.D.); (L.R.)
| | - Won-Kyung Cho
- Korean Medicine Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Korea; (W.-K.C.); (J.Y.M.)
| | - Jin Yeul Ma
- Korean Medicine Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Korea; (W.-K.C.); (J.Y.M.)
| | - Jong-Soo Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea; (K.C.); (A.W.); (N.D.); (L.R.)
| |
Collapse
|
17
|
Lobine D, Rengasamy KRR, Mahomoodally MF. Functional foods and bioactive ingredients harnessed from the ocean: current status and future perspectives. Crit Rev Food Sci Nutr 2021; 62:5794-5823. [PMID: 33724095 DOI: 10.1080/10408398.2021.1893643] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
With an increase in life expectancy and decrease of quality-of-life couple with the high prevalence of diseases, diet is expected to play a key function in sustaining human health. Nutritionists, food technologists and medical experts are working in synergy to cater for the increasing demand of food with associated therapeutic benefits, commonly known as functional food, that may improve well-being and reduce the risk of diseases. Interestingly, the marine ecosystem, due to its abundant and phenomenal biodiversity of marine organisms, constitutes a vital source of a panoply of healthy foods supply for the thriving functional food industry. Marine organisms such as seaweeds, sea cucumbers, sponges, and mollusks amongst others are sources of thousands of biologically active metabolites with antioxidant, anti-parasitic, antiviral, anti-inflammatory and anticancer properties. Given the growing number of research and interest to probe into the therapeutic roles of marine products, this review was designed to provide a comprehensive summary of the therapeutic properties of marine organisms (macroalgae, sea cucumbers and fish among others) which are consumed worldwide, in addition to their potentials and as sources of functional ingredients for developing novel food and fostering wellness. The gap between research development and actual commercialization, and future prospects of marine-based products also summarized to some extent.
Collapse
Affiliation(s)
- Devina Lobine
- Department of Health Sciences; Faculty of Medicine and Health Sciences, University of Mauritius, Réduit, Mauritius
| | - Kannan R R Rengasamy
- Indigenous Knowledge Systems Centre, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, North West Province, South Africa
| | - Mohamad Fawzi Mahomoodally
- Department of Health Sciences; Faculty of Medicine and Health Sciences, University of Mauritius, Réduit, Mauritius
| |
Collapse
|
18
|
A Systemic Review on Microalgal Peptides: Bioprocess and Sustainable Applications. SUSTAINABILITY 2021. [DOI: 10.3390/su13063262] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nowadays, microalgal research is predominantly centered on an industrial scale. In general, multipotent bioactive peptides are the advantages over focal points over utilitarian nourishment as well as nutraceuticals. Microalgal peptides are now profoundly connected with biological properties rather than nutritive. Numerous techniques are employed to purify active peptides from algal protein using enzymatic hydrolysis; it is broadly used for numerous favorable circumstances. There is a chance to utilize microalgal peptides for human well-being as nutritive enhancements. This exhaustive survey details the utilization of microalgal peptides as antioxidant, anti-cancerous, anti-hypersensitive, anti-atherosclerotic, and nutritional functional foods. It is also exploring the novel technologies for the production of active peptides, for instance, the use of algal peptides as food for human health discovered restrictions, where peptides are sensitive to hydrolysis protease degradation. This review emphasizes the issue of active peptides in gastrointestinal transit, which has to be solved in the future, and prompt impacts.
Collapse
|
19
|
Nadeeshani H, Hassouna A, Lu J. Proteins extracted from seaweed Undaria pinnatifida and their potential uses as foods and nutraceuticals. Crit Rev Food Sci Nutr 2021; 62:6187-6203. [PMID: 33703974 DOI: 10.1080/10408398.2021.1898334] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Isolation and utilization of proteins from seaweeds have been a novel trend in the world at present due to the increasing demand for healthy non-animal proteins. The attention of scientific community has been paid on the protein derived from seaweed Undaria pinnatifida due to their high nutritional quality and bioactivity. This article aims to provide an integrated overview on methods of extraction, isolation and purification of U. pinnatifida-derived proteins and composition, nutritional value and potential nutraceutical and food applications with an interest to stimulate further research to optimize the utilization. Potential food applications of U. pinnatifida derived proteins are nutritional components in human diet, food ingredients and additives, alternative meat and meat analogues and animal and fish feed. Excellent antioxidant, antihypertension, anticoagulant, anti-diabetes, antimicrobial and anti-cancer activities possessed by proteins of U. pinnatifida enable the use of these proteins in various nutraceutical applications. A number of studies have been carried out on antioxidant and antihypertensive activities of U. pinnatifida proteins, whereas other bioactivites are yet to be further studied. Hence, more research works are crucial to be done in order to facilitate and promote the emerging novel foods and nutraceuticals, using proteins from seaweed U. pinnatifida.
Collapse
Affiliation(s)
- Harshani Nadeeshani
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Amira Hassouna
- School of Public Health and Interdisciplinary Studies, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Jun Lu
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
- School of Public Health and Interdisciplinary Studies, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
- Institute of Biomedical Technology, Auckland University of Technology, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Discovery, Auckland, New Zealand
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong Province, China
- College of Food Engineering and Nutrition Sciences, Shaanxi Normal University, Xi'an, Shaanxi Province, China
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| |
Collapse
|
20
|
Xi M, Ove Dragsted L, Tullin M, Ernst M, Zaharudin N, La Barbera G. Discovery of Urinary Biomarkers of Seaweed Intake Using Untargeted LC-MS Metabolomics in a Three-Way Cross-Over Human Study. Metabolites 2020; 11:11. [PMID: 33379223 PMCID: PMC7823344 DOI: 10.3390/metabo11010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/28/2020] [Accepted: 12/23/2020] [Indexed: 11/17/2022] Open
Abstract
Seaweeds are a marine source rich in potentially bioactive components, and therefore have attracted attention since the middle of the twentieth century. Accurate and objective assessment of the intake of seaweeds to study their health effects is hampered by a lack of validated intake biomarkers. In this three-armed, randomized, cross-over study, an untargeted metabolomics approach was applied for discovering novel intake biomarkers. Twenty healthy participants (9 men and 11 women) were provided each of three test meals in a randomized order: 5 g of Laminaria digitate (LD), 5 g of Undaria pinnatifida (UP), or a control meal with energy-adjusted pea protein. Four urine samples and a 24 h pooled urine were collected along with blood samples at seven time-points. All samples were profiled by LC-ESI-QTOF-MS and the data were analyzed by univariate analysis and excretion kinetics to select putative intake biomarkers. In total, four intake biomarkers were selected from urine samples. They were identified as hydroxyl-dihydrocoumarin at Level III, loliolid glucuronide at level I, and isololiolid glucuronide at level II, while the last one remains unknown. Further identification and validation of these biomarkers by a cross-sectional study is essential to assess their specificity and robustness.
Collapse
Affiliation(s)
- Muyao Xi
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, 1958 Copenhagen, Denmark; (M.X.); (M.T.); (N.Z.); (G.L.B.)
| | - Lars Ove Dragsted
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, 1958 Copenhagen, Denmark; (M.X.); (M.T.); (N.Z.); (G.L.B.)
| | - Mikkel Tullin
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, 1958 Copenhagen, Denmark; (M.X.); (M.T.); (N.Z.); (G.L.B.)
| | - Madeleine Ernst
- Section for Clinical Mass Spectrometry, Danish Center for Neonatal Screening, Department of Congenital Disorders, Statens Serum Institut, 2300 Copenhagen, Denmark;
| | - Nazikussabah Zaharudin
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, 1958 Copenhagen, Denmark; (M.X.); (M.T.); (N.Z.); (G.L.B.)
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Gambang 26600, Malaysia
| | - Giorgia La Barbera
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, 1958 Copenhagen, Denmark; (M.X.); (M.T.); (N.Z.); (G.L.B.)
| |
Collapse
|
21
|
Membrane processing for purification of R-Phycoerythrin from marine macro-alga, Gelidium pusillum and process integration. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117470] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
22
|
Ismail MM, Alotaibi BS, EL-Sheekh MM. Therapeutic Uses of Red Macroalgae. Molecules 2020; 25:molecules25194411. [PMID: 32992919 PMCID: PMC7583832 DOI: 10.3390/molecules25194411] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022] Open
Abstract
Red Seaweed “Rhodophyta” are an important group of macroalgae that include approximately 7000 species. They are a rich source of structurally diverse bioactive constituents, including protein, sulfated polysaccharides, pigments, polyunsaturated fatty acids, vitamins, minerals, and phenolic compounds with nutritional, medical, and industrial importance. Polysaccharides are the main components in the cell wall of red algae and represent about 40–50% of the dry weight, which are extensively utilized in industry and pharmaceutical compounds, due to their thickening and gelling properties. The hydrocolloids galactans carrageenans and agars are the main red seaweed cell wall polysaccharides, which had broad-spectrum therapeutic characters. Generally, the chemical contents of seaweed are different according to the algal species, growth stage, environment, and external conditions, e.g., the temperature of the water, light intensity, nutrient concentrations in the ecosystem. Economically, they can be recommended as a substitute source for natural ingredients that contribute to a broad range of bioactivities like cancer therapy, anti-inflammatory agents, and acetylcholinesterase inhibitory. This review touches on the main points of the pharmaceutical applications of red seaweed, as well as the exploitation of their specific compounds and secondary metabolites with vital roles.
Collapse
Affiliation(s)
- Mona M. Ismail
- National Institute of Oceanography and Fisheries, NIOF, Alexandria 21556, Egypt;
| | - Badriyah S. Alotaibi
- Pharmaceutical Sciences Department, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Mostafa M. EL-Sheekh
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
- Correspondence: ; Tel.: +20-1224106666; Fax: +20-403350804
| |
Collapse
|
23
|
Coniglio D, Calvano CD, Ventura G, Losito I, Cataldi TRI. Arsenosugar Phospholipids (As-PL) in Edible Marine Algae: An Interplay between Liquid Chromatography with Electrospray Ionization Multistage Mass Spectrometry and Phospholipases A 1 and A 2 for Regiochemical Assignment. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:1260-1270. [PMID: 32342697 DOI: 10.1021/jasms.0c00094] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The chemical identity of arsenosugar phospholipids (As-PL) as mono- (i.e., lyso, L-As-PL) and diacyl-arsenosugar PL in four edible and common marine alga samples, such as nori (Porphyra spp.), wakame (Undaria pinnatifida), dulse (Palmaria palmata), and kombu (Saccharina japonica), was successfully investigated. Adopting negative polarity electrospray ionization (ESI), not common for As-PL, conjugated with hydrophilic interaction liquid chromatography (HILIC) and mass spectrometry (MS), performed either at low resolution using a linear ion trap (LIT) with sequential MSn (n = 2, 3) or at high resolution using a high-resolution/high-accuracy Fourier-transform MS (FTMS), based on an orbital trap instrument, more than 20 As-PL and 2 L-As-PL species were identified. The absence of As-PL standard compounds encouraged us to generate an in-house-built database of As-PL/L-As-PL for a rapid and simple classification. Despite their compositional diversity, tandem MS of deprotonated As-PL and L-As-PL ([M - H]-) demonstrated the occurrence of a highly diagnostic product ion at m/z 389.0 ([AsC10H19O9P]-). The fatty acid composition and distribution of As-PL were easily assigned on the basis of the ratio intensity between sn-1 and sn-2 product ions. Indeed, the preferential formation of [R1C3H5O4P]- ions over [R2C3H5O4P]- ions, both containing the glycerol backbone, enabled the regiochemical assignment of As-PL. These outcomes were confirmed by MSn (n = 2, 3) analyses and using sn-1- and sn-2-regioselective hydrolase enzymes (i.e., phospholipases A1 and A2). The predominant As-PL's in samples of nori (red alga), wakame, and kombu (both brown algae) were identified as containing palmitic acyl chains (i.e., As-PL958 (As-PL 16:0/16:0) with ca. 66 ± 3, 82 ± 4, and 58 ± 3% as relative abundances, respectively), while the main species in dulse (red alga) samples was As-PL982 (As-PL 18:1/16:1) at ca. 38 ± 3%.
Collapse
|
24
|
Sumikawa K, Takei K, Kumagai Y, Shimizu T, Yasui H, Kishimura H. In Silico Analysis of ACE Inhibitory Peptides from Chloroplast Proteins of Red Alga Grateloupia asiatica. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2020; 22:391-402. [PMID: 32206928 DOI: 10.1007/s10126-020-09959-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/25/2020] [Indexed: 06/10/2023]
Abstract
Inhibition of angiotensin I-converting enzyme (ACE) is one of the key factors to repress high blood pressure. Although many studies have been reported that seaweed protein hydrolysates showed the ACE inhibitory activity, the comprehensive understanding of the relationship was still unclear. In this study, we employed chloroplast genome for in silico analysis and compared it with in vitro experiments. We first extracted water-soluble proteins (WSP) from red alga Grateloupia asiatica, which contained mainly PE, PC, APC, and Rbc, and prepared WSP hydrolysate by thermolysin, resulting that the hydrolysate showed ACE inhibitory activity. Then, we determined the complete chloroplast genome of G. asiatica (187,518 bp: 206 protein-coding genes, 29 tRNA, and 3 rRNA) and clarified the amino acid sequences of main WSP, i.e., phycobiliproteins and Rubisco, to perform in silico analysis. Consequently, 190 potential ACE inhibitory peptides existed in the main WSP sequences, and 21 peptides were obtained by in silico thermolysin digestion. By comparing in vitro and in silico analyses, in vitro ACE inhibitory activity was correlated to the IC50 value from in silico digestion. Therefore, in silico approach provides insight into the comprehensive understanding of the potential bioactive peptides from seaweed proteins.
Collapse
Affiliation(s)
- Kana Sumikawa
- Chair of Marine Chemical Resource Development, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, 041-8611, Japan
| | - Kentaro Takei
- Chair of Marine Chemical Resource Development, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, 041-8611, Japan
| | - Yuya Kumagai
- Laboratory of Marine Chemical Resource Development, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, 041-8611, Japan
| | - Takeshi Shimizu
- Department of Research and Development, Hokkaido Industrial Technology Center, Hakodate, Hokkaido, 041-0801, Japan
| | - Hajime Yasui
- Laboratory of Humans and the Ocean, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, 041-8611, Japan
| | - Hideki Kishimura
- Laboratory of Marine Chemical Resource Development, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, 041-8611, Japan.
| |
Collapse
|
25
|
Lafarga T, Acién-Fernández FG, Garcia-Vaquero M. Bioactive peptides and carbohydrates from seaweed for food applications: Natural occurrence, isolation, purification, and identification. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101909] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
26
|
Park JK, Woo HW, Kim MK, Shin J, Lee YH, Shin DH, Shin MH, Choi BY. Dietary iodine, seaweed consumption, and incidence risk of metabolic syndrome among postmenopausal women: a prospective analysis of the Korean Multi-Rural Communities Cohort Study (MRCohort). Eur J Nutr 2020; 60:135-146. [PMID: 32211932 DOI: 10.1007/s00394-020-02225-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 03/09/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE Despite a beneficial role of iodine and seaweed consumption against metabolic syndrome (MetS), which is high in postmenopausal women, few studies investigated such associations in a prospective study. This study aimed to investigate the association of dietary iodine and seaweed consumption with the incidence of MetS and its components in postmenopausal women. METHODS A total of 2588 postmenopausal women aged ≥ 40 years were recruited between 2005 and 2011 in the Multi-Rural Communities Cohort (MRCohort). A validated semiquantitative food frequency questionnaire was used to collect dietary intake data. MetS was defined as three of five components [abdominal obesity, elevated blood pressure, glucose, triglyceride, and low-high density lipoprotein cholesterol (HDL-C)] and the incidence of MetS was checked every 2-4 years. The incidence rate ratio (IRR) was estimated using a modified Poisson regression model with a robust error estimator. RESULTS During the mean follow-up period (3.4 ± 2.1 years), MetS occurred in 481 participants. The median cumulative average iodine intake was 108.9 µg/day (interquartile range, 60.8-190.2 µg/day). In multivariable analyses, average iodine and seaweed consumption were inversely associated with MetS (IRR = 0.61, 95% CI 0.47-0.78 in the highest quartile of iodine intake, P for trend = 0.0018; IRR = 0.52, 95% CI 0.39-0.69 in the highest quartile of seaweed consumption, P for trend = 0.0004). Among MetS components, blood glucose (> 100 mg/dL), blood pressure (≥ 130/85 mmHg), and lipid profiles (triglyceride, ≥ 150 mg/dL and HDL-C, < 50 mg/dL) were significantly inversely associated with dietary iodine and seaweed consumption, but there was no clear association for waist circumference (≥ 85 cm). CONCLUSION Dietary iodine and seaweed consumption may be inversely associated with MetS incidence and its individual abnormalities in postmenopausal women.
Collapse
Affiliation(s)
- Jin-Kyu Park
- Division of Cardiology, Department of Internal Medicine, College of Medicine, Hanyang University, Seoul, South Korea
| | - Hye Won Woo
- Department of Preventive Medicine, College of Medicine, Hanyang University, Seoul, South Korea
- Institute for Health and Society, Hanyang University, Seoul, South Korea
| | - Mi Kyung Kim
- Department of Preventive Medicine, Medical School Building A-Room 517-2, College of Medicine, Hanyang University, 222 Wangsimni-ro, Sungdong-Gu, Seoul, 04763, Republic of Korea.
- Institute for Health and Society, Hanyang University, Seoul, South Korea.
| | - Jinho Shin
- Division of Cardiology, Department of Internal Medicine, College of Medicine, Hanyang University, Seoul, South Korea
| | - Young-Hoon Lee
- Department of Preventive Medicine and Institute of Wonkwang Medical Science, School of Medicine, Wonkwang University, Iksan, South Korea
| | - Dong Hoon Shin
- Department of Preventive Medicine, Keimyung University School of Medicine, Daegu, South Korea
| | - Min-Ho Shin
- Department of Preventive Medicine, Chonnam National University Medical School, Gwangju, South Korea
| | - Bo Youl Choi
- Department of Preventive Medicine, College of Medicine, Hanyang University, Seoul, South Korea
- Institute for Health and Society, Hanyang University, Seoul, South Korea
| |
Collapse
|
27
|
Kumar MS, Sharma SA. Toxicological effects of marine seaweeds: a cautious insight for human consumption. Crit Rev Food Sci Nutr 2020; 61:500-521. [PMID: 32188262 DOI: 10.1080/10408398.2020.1738334] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Marine environment is a rich and diverse source for many biologically active substances including functional foods and nutraceuticals. It is well exploited for useful compounds, natural products and aquaculture industry; and seaweeds is one of the major contributors in terms of both food security and healthy nutrition. They are well-known due to their enormous benefits and is consumed globally in many countries. However, there is lack of attention toward their toxicity reports which might be due toxic chemical compounds from seaweed, epiphytic bacteria or harmful algal bloom and absorbed heavy metals from seawater. The excess of these components might lead to harmful interactions with drugs and hormone levels in the human body. Due to their global consumption and to meet increasing demands, it is necessary to address their hazardous and toxic aspects. In this review, we have done extensive literature for healthy seaweeds, their nutritional composition while summarizing the toxic effects of selected seaweeds from red, brown and green group which includes- Gracilaria, Acanthophora, Caulerpa, Cladosiphon, and Laminaria sp. Spirulina, a microalgae (cyanobacteria) biomass is also included in toxicity discussion as it an important food supplement and many times shows adverse reactions and drug interactions. The identified compounds from seaweeds were concluded to be toxic to humans, though they exhibited certain beneficial effects too. They have an easy access in food chain and thus invade the higher trophic level organisms. This review will create an awareness among scientific and nonscientific community, as well as government organization to regulate edible seaweed consumption and keep them under surveillance for their beneficial and safe consumption.
Collapse
Affiliation(s)
- Maushmi S Kumar
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai, India
| | - Simran A Sharma
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai, India
| |
Collapse
|
28
|
Wang C, Shen Z, Li L, Li Y, Zhao H, Jiang X. Immunomodulatory activity of R-phycoerythrin from Porphyra haitanensis via TLR4/NF-κB-dependent immunocyte differentiation. Food Funct 2020; 11:2173-2185. [DOI: 10.1039/c9fo02444a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The immunomodulatory effects of R-phycoerythrin (R-PE) from Porphyra haitanensis were investigated by a hydrocortisone (HC)-induced immunosuppressive model in the present research.
Collapse
Affiliation(s)
- Chun Wang
- College of Food Science and Engineering
- Ocean University of China
- Qingdao 266003
- PR China
| | - Zhaopeng Shen
- College of Medicine and Pharmacy
- Ocean University of China
- Qingdao 266003
- PR China
- Qingdao Marine Biomedical Research Institute
| | - Liyan Li
- Medical School
- Huanghe Scinece & Technology University
- Zhengzhou
- PR China
| | - Yinping Li
- College of Marine Science and Biological Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- PR China
| | - Hongtao Zhao
- State Key Laboratory of Bioactive Seaweed Substances
- Qingdao Brightmoon Seaweed Group Co Ltd
- Qingdao 266400
- PR China
| | - Xiaolu Jiang
- College of Food Science and Engineering
- Ocean University of China
- Qingdao 266003
- PR China
- Qingdao Marine Biomedical Research Institute
| |
Collapse
|
29
|
Charoensiddhi S, Abraham RE, Su P, Zhang W. Seaweed and seaweed-derived metabolites as prebiotics. ADVANCES IN FOOD AND NUTRITION RESEARCH 2019; 91:97-156. [PMID: 32035602 DOI: 10.1016/bs.afnr.2019.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Seaweeds and their bioactive compounds, particularly polysaccharides and phenolics can be regarded as great dietary supplements with gut health benefits and prebiotics. These components are resistant to digestion by enzymes present in the human gastrointestinal tract, also selectively stimulate the growth of beneficial gut bacteria and the production of fermentation products such as short chain fatty acids. Commonly, the health benefits of seaweed components are assessed by including them in an in vitro anaerobic fermentation system containing human fecal inocula that mimics the environment of the human large bowel. Regarding to the complex interactions between dietary components, gastrointestinal physiological processes, and gut microbiota are difficult to model in vitro. Consequently it is important to follow up the promising in vitro results with in vivo animal or human testing. The aim of this chapter is to have a comprehensive review on the application of seaweeds and seaweed-derived metabolites as prebiotics, and understand the trends, gaps and future directions of both scientific and industrial developments. This work contributes to develop and expand new platform of seaweed utilization for higher-value products, particularly to functional food and nutraceutical industries in order to serve the social demand for health awareness and support economic development.
Collapse
Affiliation(s)
- Suvimol Charoensiddhi
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok, Thailand
| | - Reinu E Abraham
- Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Peng Su
- Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Wei Zhang
- Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia.
| |
Collapse
|
30
|
Gomez HLR, Peralta JP, Tejano LA, Chang YW. In Silico and In Vitro Assessment of Portuguese Oyster ( Crassostrea angulata) Proteins as Precursor of Bioactive Peptides. Int J Mol Sci 2019; 20:ijms20205191. [PMID: 31635140 PMCID: PMC6829514 DOI: 10.3390/ijms20205191] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 12/31/2022] Open
Abstract
In this study, the potential bioactivities of Portuguese oyster (Crassostrea angulata) proteins were predicted through in silico analyses and confirmed by in vitro tests. C. angulata proteins were characterized by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and identified by proteomics techniques. Hydrolysis simulation by BIOPEP-UWM database revealed that pepsin (pH > 2) can theoretically release greatest amount of bioactive peptides from C. angulata proteins, predominantly angiotensin I-converting enzyme (ACE) and dipeptidyl peptidase IV (DPP-IV) inhibitory peptides, followed by stem bromelain and papain. Hydrolysates produced by pepsin, bromelain and papain have shown ACE and DPP-IV inhibitory activities in vitro, with pepsin hydrolysate (PEH) having the strongest activity of 78.18% and 44.34% at 2 mg/mL, respectively. Bioactivity assays of PEH fractions showed that low molecular weight (MW) fractions possessed stronger inhibitory activity than crude hydrolysate. Overall, in vitro analysis results corresponded with in silico predictions. Current findings suggest that in silico analysis is a rapid method to predict bioactive peptides in food proteins and determine suitable enzymes for hydrolysis. Moreover, C. angulata proteins can be a potential source of peptides with pharmaceutical and nutraceutical application.
Collapse
Affiliation(s)
- Honey Lyn R Gomez
- Institute of Fish Processing Technology, College of Fisheries and Ocean Sciences, University of the Philippines Visayas, Miagao 5023, Iloilo, Philippines.
| | - Jose P Peralta
- Institute of Fish Processing Technology, College of Fisheries and Ocean Sciences, University of the Philippines Visayas, Miagao 5023, Iloilo, Philippines.
| | - Lhumen A Tejano
- Institute of Fish Processing Technology, College of Fisheries and Ocean Sciences, University of the Philippines Visayas, Miagao 5023, Iloilo, Philippines.
| | - Yu-Wei Chang
- Department of Food Science, National Taiwan Ocean University, Keelung 202, Taiwan.
| |
Collapse
|
31
|
Xi M, Dragsted LO. Biomarkers of seaweed intake. GENES & NUTRITION 2019; 14:24. [PMID: 31428206 PMCID: PMC6694598 DOI: 10.1186/s12263-019-0648-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/19/2019] [Indexed: 01/18/2023]
Abstract
Seaweeds are marine macroalgae, some of which are edible. They are rich in specific dietary fibers and also contain other characteristic biological constituents. Biological activities have been investigated mainly in animal studies, while very few results are available from human studies. Biomarkers of food intake (BFIs) specific to seaweed could play an important role as objective measurements in observational studies and dietary intervention studies. Thus, the health effects of seaweeds can be explored and understood by discovering and applying BFIs. This review summarizes studies to identify candidate BFIs of seaweed intake. These BFIs are evaluated by a structured validation scheme. Hydroxytrifuhalol A, 7-hydroxyeckol, C-O-C dimer of phloroglucinol, diphloroethol, fucophloroethol, dioxinodehydroeckol, and/or their glucuronides or sulfate esters which all belong to the phlorotannins are considered candidate biomarkers for brown seaweed. Fucoxanthinol, the main metabolite of fucoxanthin, is also regarded as a candidate biomarker for brown seaweed. Further validation will be needed due to the very limited number of human studies. Further studies are also needed to identify additional candidate biomarkers, relevant specifically for the red and green seaweeds, for which no candidate biomarkers emerged from the literature search. Reliable BFIs should also ideally be found for the whole seaweed food group.
Collapse
Affiliation(s)
- Muyao Xi
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Lars O. Dragsted
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
32
|
Mittal R, Sharma R, Raghavarao K. Aqueous two-phase extraction of R-Phycoerythrin from marine macro-algae, Gelidium pusillum. BIORESOURCE TECHNOLOGY 2019; 280:277-286. [PMID: 30776654 DOI: 10.1016/j.biortech.2019.02.044] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/07/2019] [Accepted: 02/08/2019] [Indexed: 06/09/2023]
Abstract
Aqueous two-phase extraction (ATPE) of R-Phycoerythrin (R-PE), a fluorescent and commercially valuable protein, was carried out in two parallel schemes. In scheme-1, ATPE alone was employed, and in scheme-2, process-integration was attempted, where primary extract was subjected to precipitation before standardization of process parameters of ATPE. Scheme-1 with polyethylene glycol (PEG)-3350/potassium phosphate system has resulted in very low R-PE yield (26% w/w) without much enrichment in purity (0.3). In scheme-2, PEG-1450/potassium phosphate system (pH 6, tie-line length 12.26% and lower volume-ratio) has resulted in higher R-PE purity (0.74) with 72% yield. R-PE containing PEG-rich (top) phase was subjected to ultrafiltration, to remove phase forming components, resulting in further increase in R-PE purity (1.1). Overall enrichment in R-PE purity of 11-fold with 57% (w/w) yield and removal of about 95% of total sugars was achieved in scheme-2. Intactness of R-PE after processing was confirmed by absorbance and emission spectrum analysis.
Collapse
Affiliation(s)
- Rochak Mittal
- Academy of Scientific and Innovative Research (AcSIR), Department of Food Engineering, CSIR-Central Food Technological Research Institute (CSIR-CFTRI), Mysore, India
| | - Richa Sharma
- Academy of Scientific and Innovative Research (AcSIR), Department of Food Engineering, CSIR-Central Food Technological Research Institute (CSIR-CFTRI), Mysore, India
| | - Ksms Raghavarao
- Academy of Scientific and Innovative Research (AcSIR), Department of Food Engineering, CSIR-Central Food Technological Research Institute (CSIR-CFTRI), Mysore, India.
| |
Collapse
|
33
|
Separation and identification of peptides in hydrolysed protein extracts from edible macroalgae by HPLC-ESI-QTOF/MS. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101465] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
34
|
Preparation and Identification of ACE Inhibitory Peptides from the Marine Macroalga Ulva intestinalis. Mar Drugs 2019; 17:md17030179. [PMID: 30893907 PMCID: PMC6471128 DOI: 10.3390/md17030179] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/07/2019] [Accepted: 03/15/2019] [Indexed: 01/18/2023] Open
Abstract
Angiotensin I-converting enzyme (ACE) inhibitory peptides derived from seaweed represent a potential source of new antihypertensive. The aim of this study was to isolate and purify ACE inhibitory peptides (ACEIPs) from the protein hydrolysate of the marine macroalga Ulva intestinalis. U. intestinalis protein was hydrolyzed by five different proteases (trypsin, pepsin, papain, α-chymotrypsin, alcalase) to prepare peptides; compared with other hydrolysates, the trypsin hydrolysates exhibited the highest ACE inhibitory activity. The hydrolysis conditions were further optimized by response surface methodology (RSM), and the optimum conditions were as follows: pH 8.4, temperature 28.5 °C, enzyme/protein ratio (E/S) 4.0%, substrate concentration 15 mg/mL, and enzymolysis time 5.0 h. After fractionation and purification by ultrafiltration, gel exclusion chromatography and reverse-phase high-performance liquid chromatography, two novel purified ACE inhibitors with IC50 values of 219.35 μM (0.183 mg/mL) and 236.85 μM (0.179 mg/mL) were obtained. The molecular mass and amino acid sequence of the ACE inhibitory peptides were identified as Phe-Gly-Met-Pro-Leu-Asp-Arg (FGMPLDR; MW 834.41 Da) and Met-Glu-Leu-Val-Leu-Arg (MELVLR; MW 759.43 Da) by ultra-performance liquid chromatography-tandem mass spectrometry. A molecular docking study revealed that the ACE inhibitory activities of the peptides were mainly attributable to the hydrogen bond and Zn(II) interactions between the peptides and ACE. The results of this study provide a theoretical basis for the high-valued application of U. intestinalis and the development of food-derived ACE inhibitory peptides.
Collapse
|
35
|
Extraction of R-Phycoerythrin from marine macro-algae, Gelidium pusillum, employing consortia of enzymes. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.07.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
36
|
Canoy JL, Bitacura JG. Cytotoxicity and Antiangiogenic Activity of Turbinaria ornata Agardh and Padina australis Hauck Ethanolic Extracts. Anal Cell Pathol (Amst) 2018; 2018:3709491. [PMID: 30159217 PMCID: PMC6109477 DOI: 10.1155/2018/3709491] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 06/29/2018] [Accepted: 07/03/2018] [Indexed: 01/24/2023] Open
Abstract
Brown macroalgae species are constantly reported as potential sources of bioactive compounds useful in inhibiting cell proliferation and vascular formation. Thus, this study was conducted to determine and compare the in vitro cytotoxic activities of Turbinaria ornata Agardh and Padina australis Hauck ethanolic extracts against baker's yeast (Saccharomyces cerevisiae) using the resazurin reduction test (RRT) and investigate their in vivo antiangiogenic activity through duck (Anas platyrhynchos) chorioallantoic membrane (CAM) assay. Both T. ornata and P. australis ethanolic extracts exhibited cytotoxic activities at IC50 of 530.53 ppm and 528.78 ppm, respectively, and significant cytotoxicity was determined in 750 ppm and 1000 ppm concentrations of T. ornata and 1000 ppm concentration of P. australis. Also, both T. ornata and P. australis ethanolic extracts exhibited antiangiogenic activity (100% vascular inhibition) as all the concentrations of both species caused severe vascular damage in all the duck CAM samples treated. These results show the potential future application of these species for cytotoxic activities and vascular inhibition. The conduct of further tests using other model systems is recommended.
Collapse
Affiliation(s)
- Jenefa L. Canoy
- Department of Biological Sciences, Visayas State University, Visca, 6521-A Baybay City, Leyte, Philippines
| | - Jayzon G. Bitacura
- Department of Biological Sciences, Visayas State University, Visca, 6521-A Baybay City, Leyte, Philippines
| |
Collapse
|
37
|
Premkumar J, Thottiam Vasudevan R. Bioingredients: functional properties and health impacts. Curr Opin Food Sci 2018. [DOI: 10.1016/j.cofs.2018.03.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
38
|
Wu GC, Lin SY, Liang HJ, Hou WC. 135-Day Interventions of Yam Dioscorin and the Dipeptide Asn-Trp (NW) To Reduce Weight Gains and Improve Impaired Glucose Tolerances in High-Fat Diet-Induced C57BL/6 Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:645-652. [PMID: 29282980 DOI: 10.1021/acs.jafc.7b05564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The C57BL/6J mice were fed a 135-day normal diet or a high-fat diet (HFD) without, or concurrent with, a single yam dioscorin (80 mg/kg) or dipeptide NW (40 mg/kg) intervention every day. The final body weights (g) of mice were 26.1 ± 1.4, 34.97 ± 2.1, 31.75 ± 2.6, and 31.66 ± 3.1, respectively, for normal diet-fed, HFD-fed, dioscorin-intervened, and NW-intervened group. The mice in both intervened groups showed similar less weight gains and had significant differences (P < 0.05) compared to those in the HFD group under the same cumulative HFD intakes. The blood biochemical index of mice with dioscorin interventions showed significantly lower contents in total cholesterol and low-density lipoprotein, and NW interventions showed significantly lower total triglyceride contents compared to those of the HFD group (P < 0.05). Both intervened mice exhibited similar reductions in total visceral lipid contents and have significant differences compared to those of the HFD group (P < 0.05). The dioscorin intervention was better than NW interventions in lowering blood glucose levels by oral glucose tolerance tests and both showed significant differences (P < 0.05) compared to those in the HFD group. Yam dioscorin or dipeptide NW will potentially be used for preventive functional foods of less body weight gains and impaired glucose tolerance controls, which require further clinical trial investigations.
Collapse
Affiliation(s)
| | - Shyr-Yi Lin
- Department of Primary Care Medicine, Taipei Medical University Hospital , Taipei 110, Taiwan
| | - Hong-Jen Liang
- Department of Food Science, Yuanpei University of Medical Technology , Hsinchu 300, Taiwan
| | | |
Collapse
|
39
|
Bleakley S, Hayes M, O' Shea N, Gallagher E, Lafarga T. Predicted Release and Analysis of Novel ACE-I, Renin, and DPP-IV Inhibitory Peptides from Common Oat (Avena sativa) Protein Hydrolysates Using in Silico Analysis. Foods 2017; 6:E108. [PMID: 29207547 PMCID: PMC5742776 DOI: 10.3390/foods6120108] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 11/23/2017] [Accepted: 11/27/2017] [Indexed: 12/24/2022] Open
Abstract
The renin-angiotensin-aldosterone system (RAAS) plays an important role in regulating hypertension by controlling vasoconstriction and intravascular fluid volume. RAAS itself is largely regulated by the actions of renin (EC 3.4.23.15) and the angiotensin-I-converting enzyme (ACE-I; EC 3.4.15.1). The enzyme dipeptidyl peptidase-IV (DPP-IV; EC 3.4.14.5) also plays a role in the development of type-2 diabetes. The inhibition of the renin, ACE-I, and DPP-IV enzymes has therefore become a key therapeutic target for the treatment of hypertension and diabetes. The aim of this study was to assess the bioactivity of different oat (Avena sativa) protein isolates and their ability to inhibit the renin, ACE-I, and DPP-IV enzymes. In silico analysis was carried out to predictthe likelihood of bioactive inhibitory peptides occurring from oat protein hydrolysates following in silico hydrolysis with the proteases papain and ficin. Nine peptides, including FFG, IFFFL, PFL, WWK, WCY, FPIL, CPA, FLLA, and FEPL were subsequently chemically synthesised, and their bioactivities were confirmed using in vitro bioassays. The isolated oat proteins derived from seven different oat varieties were found to inhibit the ACE-I enzyme by between 86.5 ± 10.7% and 96.5 ± 25.8%, renin by between 40.5 ± 21.5% and 70.9 ± 7.6%, and DPP-IV by between 3.7 ± 3.9% and 46.2 ± 28.8%. The activity of the synthesised peptides was also determined.
Collapse
Affiliation(s)
- Stephen Bleakley
- Food Biosciences Department, Teagasc Food Research Centre, Ashtown, D15 Dublin, Ireland.
- School of Biological Sciences, College of Sciences and Health and Environment, Sustainability and Health Institute, DIT Kevin Street, D08 NF82 Dublin, Ireland.
| | - Maria Hayes
- Food Biosciences Department, Teagasc Food Research Centre, Ashtown, D15 Dublin, Ireland.
| | - Nora O' Shea
- Food Chemistry and Technology Department, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork P61 C996, Ireland. Nora.O'
| | - Eimear Gallagher
- Food Quality and Sensory Science Department, Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland.
| | - Tomas Lafarga
- Parc Científic I Tecnològic Agroalimentari de Lleida, Parc de Gardeny, Edifici Fruit Centre, Institut de Recerca, Tecnològia Agroalimentàries (IRTA), 25003 Lleida, Spain.
| |
Collapse
|
40
|
The development of seaweed-derived bioactive compounds for use as prebiotics and nutraceuticals using enzyme technologies. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.10.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
41
|
Mittal R, Tavanandi HA, Mantri VA, Raghavarao KSMS. Ultrasound assisted methods for enhanced extraction of phycobiliproteins from marine macro-algae, Gelidium pusillum (Rhodophyta). ULTRASONICS SONOCHEMISTRY 2017. [PMID: 28633862 DOI: 10.1016/j.ultsonch.2017.02.030] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Extraction of phycobiliproteins (R-phycoerythrin, R-PE and R-phycocyanin, R-PC) from macro-algae is difficult due to the presence of large polysaccharides (agar, cellulose etc.) present in the cell wall which offer major hindrance for cell disruption. The present study is aimed at developing most suitable methodology for the primary extraction of R-PE and R-PC from marine macro-algae, Gelidium pusillum(Stackhouse) Le Jolis. Such extraction of phycobiliproteins by using ultrasonication and other conventional methods such as maceration, maceration in presence of liquid nitrogen, homogenization, and freezing and thawing (alone and in combinations) is reported for the first time. Standardization of ultrasonication for different parameters such as ultrasonication amplitude (60, 90 and 120µm) and ultrasonication time (1, 2, 4, 6, 8 and 10mins) at different temperatures (30, 35 and 40°C) was carried out. Kinetic parameters were estimated for extraction of phycobiliproteins by ultrasonication based on second order mass transfer kinetics. Based on calorimetric measurements, power, ultrasound intensity and acoustic power density were estimated to be 41.97W, 14.81W/cm2 and 0.419W/cm3, respectively. Synergistic effect of ultrasonication was observed when employed in combination with other conventional primary extraction methods. Homogenization in combination with ultrasonication resulted in an enhancement in efficiency by 9.3% over homogenization alone. Similarly, maceration in combination with ultrasonication resulted in an enhancement in efficiency by 31% over maceration alone. Among all the methods employed, maceration in combination with ultrasonication resulted in the highest extraction efficiency of 77 and 93% for R-PE and R-PC, respectively followed by homogenization in combination with ultrasonication (69.6% for R-PE and 74.1% for R-PC). HPLC analysis was carried out in order to ensure that R-PE was present in the extract and remained intact even after processing. Microscopic studies indicated a clear relation between the extraction efficiency of phycobiliproteins and degree of cell disruption in a given primary extraction method. These combination methods were found to be effective for extraction of phycobiliproteins from rigid biomass of Gelidium pusillum macro-algae and can be employed for downstream processing of biomolecules also from other macro-algae.
Collapse
Affiliation(s)
- Rochak Mittal
- Academy of Scientific and Innovative Research (AcSIR), India; CSIR - Central Food Technological Research Institute (CSIR-CFTRI), Mysuru, India
| | - Hrishikesh A Tavanandi
- Academy of Scientific and Innovative Research (AcSIR), India; CSIR - Central Food Technological Research Institute (CSIR-CFTRI), Mysuru, India
| | - Vaibhav A Mantri
- CSIR - Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar, India
| | - K S M S Raghavarao
- Academy of Scientific and Innovative Research (AcSIR), India; CSIR - Central Food Technological Research Institute (CSIR-CFTRI), Mysuru, India.
| |
Collapse
|
42
|
Bleakley S, Hayes M. Algal Proteins: Extraction, Application, and Challenges Concerning Production. Foods 2017; 6:E33. [PMID: 28445408 PMCID: PMC5447909 DOI: 10.3390/foods6050033] [Citation(s) in RCA: 327] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 04/10/2017] [Accepted: 04/20/2017] [Indexed: 01/03/2023] Open
Abstract
Population growth combined with increasingly limited resources of arable land and fresh water has resulted in a need for alternative protein sources. Macroalgae (seaweed) and microalgae are examples of under-exploited "crops". Algae do not compete with traditional food crops for space and resources. This review details the characteristics of commonly consumed algae, as well as their potential for use as a protein source based on their protein quality, amino acid composition, and digestibility. Protein extraction methods applied to algae to date, including enzymatic hydrolysis, physical processes, and chemical extraction and novel methods such as ultrasound-assisted extraction, pulsed electric field, and microwave-assisted extraction are discussed. Moreover, existing protein enrichment methods used in the dairy industry and the potential of these methods to generate high value ingredients from algae, such as bioactive peptides and functional ingredients are discussed. Applications of algae in human nutrition, animal feed, and aquaculture are examined.
Collapse
Affiliation(s)
- Stephen Bleakley
- Food Biosciences Department, Teagasc Ashtown Food Research Centre, Ashtown, Dublin D15 KN3K, Ireland.
- School of Biological Sciences, College of Sciences and Health and Environment, Sustainability and Health Institute, Dublin Institute of Technology, Kevin Street, Dublin D08 NF82, Ireland.
| | - Maria Hayes
- Food Biosciences Department, Teagasc Ashtown Food Research Centre, Ashtown, Dublin D15 KN3K, Ireland.
| |
Collapse
|
43
|
Cao D, Lv X, Xu X, Yu H, Sun X, Xu N. Purification and identification of a novel ACE inhibitory peptide from marine alga Gracilariopsis lemaneiformis protein hydrolysate. Eur Food Res Technol 2017. [DOI: 10.1007/s00217-017-2886-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
44
|
Stranska-Zachariasova M, Kurniatanty I, Gbelcova H, Jiru M, Rubert J, Nindhia TGT, D'Acunto CW, Sumarsono SH, Tan MI, Hajslova J, Ruml T. Bioprospecting of Turbinaria Macroalgae as a Potential Source of Health Protective Compounds. Chem Biodivers 2017; 14. [DOI: 10.1002/cbdv.201600192] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 11/01/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Milena Stranska-Zachariasova
- Department of Food Analysis and Nutrition; University of Chemistry and Technology, Prague; Technicka 3 166 28 Prague Czech Republic
| | - Isma Kurniatanty
- School of Life Sciences and Technology; Institut Teknologi Bandung; Jl. Tamansari 64 40116 Bandung Indonesia
| | - Helena Gbelcova
- Department of Biochemistry and Microbiology; University of Chemistry and Technology, Prague; Technicka 3 166 28 Prague Czech Republic
| | - Monika Jiru
- Department of Food Analysis and Nutrition; University of Chemistry and Technology, Prague; Technicka 3 166 28 Prague Czech Republic
| | - Josep Rubert
- Department of Food Analysis and Nutrition; University of Chemistry and Technology, Prague; Technicka 3 166 28 Prague Czech Republic
| | - Tjokorda Gde Tirta Nindhia
- Department of Mechanical Engineering; Engineering Faculty; Udayana University; Jimbaran, Bali 80361 Indonesia
| | - Cosimo Walter D'Acunto
- Department of Biochemistry and Microbiology; University of Chemistry and Technology, Prague; Technicka 3 166 28 Prague Czech Republic
| | - Sony Heru Sumarsono
- School of Life Sciences and Technology; Institut Teknologi Bandung; Jl. Tamansari 64 40116 Bandung Indonesia
| | - Marselina Irasonia Tan
- School of Life Sciences and Technology; Institut Teknologi Bandung; Jl. Tamansari 64 40116 Bandung Indonesia
| | - Jana Hajslova
- Department of Food Analysis and Nutrition; University of Chemistry and Technology, Prague; Technicka 3 166 28 Prague Czech Republic
| | - Tomas Ruml
- Department of Biochemistry and Microbiology; University of Chemistry and Technology, Prague; Technicka 3 166 28 Prague Czech Republic
| |
Collapse
|
45
|
Prospects of microalgae proteins in producing peptide-based functional foods for promoting cardiovascular health. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2016.10.026] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
46
|
Malairaj S, Muthu S, Gopal VB, Perumal P, Ramasamy R. Qualitative and quantitative determination of R-phycoerythrin from Halymenia floresia (Clemente) C. Agardh by polyacrylamide gel using electrophoretic elution technique. J Chromatogr A 2016; 1454:120-6. [DOI: 10.1016/j.chroma.2016.05.063] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 05/14/2016] [Accepted: 05/19/2016] [Indexed: 10/21/2022]
|
47
|
Simple and efficient hydrolysis procedure for full utilization of the seaweed Mastocarpus stellatus to produce antioxidant films. Food Hydrocoll 2016. [DOI: 10.1016/j.foodhyd.2015.12.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
48
|
Karatzia M, Christaki E, Bonos E, Karatzias C, Florou-Paneri P. The influence of dietaryAscophyllum nodosumon haematologic parameters of dairy cows. ITALIAN JOURNAL OF ANIMAL SCIENCE 2016. [DOI: 10.4081/ijas.2012.e31] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
49
|
Dave LA, Hayes M, Montoya CA, Rutherfurd SM, Moughan PJ. Human gut endogenous proteins as a potential source of angiotensin-I-converting enzyme (ACE-I)-, renin inhibitory and antioxidant peptides. Peptides 2016; 76:30-44. [PMID: 26617077 DOI: 10.1016/j.peptides.2015.11.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 10/07/2015] [Accepted: 11/19/2015] [Indexed: 01/17/2023]
Abstract
It is well known that endogenous bioactive proteins and peptides play a substantial role in the body's first line of immunological defence, immune-regulation and normal body functioning. Further, the peptides derived from the luminal digestion of proteins are also important for body function. For example, within the peptide database BIOPEP (http://www.uwm.edu.pl/biochemia/index.php/en/biopep) 12 endogenous antimicrobial and 64 angiotensin-I-converting enzyme (ACE-I) inhibitory peptides derived from human milk and plasma proteins are listed. The antimicrobial peptide database (http://aps.unmc.edu/AP/main.php) lists over 111 human host-defence peptides. Several endogenous proteins are secreted in the gut and are subject to the same gastrointestinal digestion processes as food proteins derived from the diet. The human gut endogenous proteins (GEP) include mucins, serum albumin, digestive enzymes, hormones, and proteins from sloughed off epithelial cells and gut microbiota, and numerous other secreted proteins. To date, much work has been carried out regarding the health altering effects of food-derived bioactive peptides but little attention has been paid to the possibility that GEP may also be a source of bioactive peptides. In this review, we discuss the potential of GEP to constitute a gut cryptome from which bioactive peptides such as ACE-I inhibitory, renin inhibitory and antioxidant peptides may be derived.
Collapse
Affiliation(s)
- Lakshmi A Dave
- Massey Institute of Food Science and Technology, Massey University, Palmerston North, New Zealand; Teagasc, The Irish Agricultural and Food Development Authority, Food BioSciences Department, Ashtown, D 15 Dublin, Ireland
| | - Maria Hayes
- Teagasc, The Irish Agricultural and Food Development Authority, Food BioSciences Department, Ashtown, D 15 Dublin, Ireland
| | - Carlos A Montoya
- Massey Institute of Food Science and Technology, Massey University, Palmerston North, New Zealand
| | - Shane M Rutherfurd
- Massey Institute of Food Science and Technology, Massey University, Palmerston North, New Zealand.
| | - Paul J Moughan
- Massey Institute of Food Science and Technology, Massey University, Palmerston North, New Zealand
| |
Collapse
|
50
|
Seaweeds as Preventive Agents for Cardiovascular Diseases: From Nutrients to Functional Foods. Mar Drugs 2015; 13:6838-65. [PMID: 26569268 PMCID: PMC4663556 DOI: 10.3390/md13116838] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 10/16/2015] [Accepted: 10/30/2015] [Indexed: 12/11/2022] Open
Abstract
Being naturally enriched in key nutrients and in various health-promoting compounds, seaweeds represent promising candidates for the design of functional foods. Soluble dietary fibers, peptides, phlorotannins, lipids and minerals are macroalgae's major compounds that can hold potential in high-value food products derived from macroalgae, including those directed to the cardiovascular-health promotion. This manuscript revises available reported data focusing the role of diet supplementation of macroalgae, or extracts enriched in bioactive compounds from macroalgae origin, in targeting modifiable markers of cardiovascular diseases (CVDs), like dyslipidemia, oxidative stress, vascular inflammation, hypertension, hypercoagulability and activation of the sympathetic and renin-angiotensin systems, among others. At last, the review also describes several products that have been formulated with the use of whole macroalgae or extracts, along with their claimed cardiovascular-associated benefits.
Collapse
|