1
|
Mandal T, Shukla D, Pattanayak S, Barman R, Ashraf R, Dixit AK, Kumar S, Kumar D, Srivastava AK. Ellagic Acid Induces DNA Damage and Apoptosis in Cancer Stem-like Cells and Overcomes Cisplatin Resistance. ACS OMEGA 2024; 9:48988-49000. [PMID: 39713677 PMCID: PMC11656259 DOI: 10.1021/acsomega.3c08819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 12/24/2024]
Abstract
Cancer stem cells (CSCs) are responsible for chemoresistance and tumor relapse in many solid malignancies, including lung and ovarian cancer. Ellagic acid (EA), a natural polyphenol, exhibits anticancer effects on various human malignancies. However, its impact and mechanism of action on cancer stem-like cells (CSLCs) are only partially understood. In this study, we evaluated the therapeutic potential and underlying molecular mechanism of EA isolated from tropical mango against CSLCs. Herein, we observed that EA treatment reduces the stem-like phenotypes in cancer cells, thereby lowering the cell survival and self-renewal potential of ovarian and lung CSLCs. Additionally, EA treatment limits the populations of lung and ovarian CSLCs characterized by CD133+ and CD44+CD117+, respectively. A mechanistic investigation showed that EA treatment induces ROS generation by altering mitochondrial dynamics, causing changes in the levels of Drp1 and Mfn2, which lead to an increased level of accumulation of DNA damage and eventually trigger apoptosis in CSLCs. Moreover, pretreatment with EA sensitizes CSLCs to cisplatin treatment by enhancing DNA damage accumulation and impairing the DNA repair ability of the CSLCs. Furthermore, EA pretreatment significantly reduces cisplatin-induced mutation frequency and improves drug retention in CSLCs, potentially suppressing the development of acquired drug resistance. Taken together, our results demonstrate an unreported finding that EA inhibits CSLCs by targeting mitochondrial function and triggering apoptosis. Thus, EA can be used either alone or in combination with other chemotherepeutic drugs for the management of cancer.
Collapse
Affiliation(s)
- Tanima Mandal
- Cancer
Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal 700032, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Devendra Shukla
- Cancer
Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal 700032, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Subhamoy Pattanayak
- Organic
and Medicinal Chemistry Division, CSIR-Indian
Institute of Chemical Biology, Kolkata, West Bengal 700032, India
| | - Raju Barman
- Organic
and Medicinal Chemistry Division, CSIR-Indian
Institute of Chemical Biology, Kolkata, West Bengal 700032, India
| | - Rahail Ashraf
- Division
of Biology, Indian Institute of Science
Education & Research Tirupati, Tirupati, Andhra Pradesh 517507, India
| | - Amit Kumar Dixit
- CCRAS-Central
Ayurveda Research Institute, Kolkata, West Bengal 700091, India
| | - Sanjay Kumar
- Division
of Biology, Indian Institute of Science
Education & Research Tirupati, Tirupati, Andhra Pradesh 517507, India
| | - Deepak Kumar
- Organic
and Medicinal Chemistry Division, CSIR-Indian
Institute of Chemical Biology, Kolkata, West Bengal 700032, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Amit Kumar Srivastava
- Cancer
Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal 700032, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
2
|
Zhang T, Liu J, Liu X, Wang Q, Zhang H. The causal impact of gut microbiota on circulating adipokine concentrations: a two-sample Mendelian randomization study. Hormones (Athens) 2024; 23:789-799. [PMID: 38564143 DOI: 10.1007/s42000-024-00553-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024]
Abstract
PURPOSE Evidence from previous experimental and observational research demonstrates that the gut microbiota is related to circulating adipokine concentrations. Nevertheless, the debate as to whether gut microbiome composition causally influences circulating adipokine concentrations remains unresolved. This study aimed to take an essential step in elucidating this issue. METHODS We used two-sample Mendelian randomization (MR) to causally analyze genetic variation statistics for gut microbiota and four adipokines (including adiponectin, leptin, soluble leptin receptor [sOB-R], and plasminogen activator inhibitor-1 [PAI-1]) from large-scale genome-wide association studies (GWAS) datasets. A range of sensitivity analyses was also conducted to assess the stability and reliability of the results. RESULTS The composite results of the MR and sensitivity analyses revealed 22 significant causal associations. In particular, there is a suggestive causality between the family Clostridiaceae1 (IVW: β = 0.063, P = 0.034), the genus Butyrivibrio (IVW: β = 0.029, P = 0.031), and the family Alcaligenaceae (IVW: β=-0.070, P = 0.014) and adiponectin. Stronger causal effects with leptin were found for the genus Enterorhabdus (IVW: β=-0.073, P = 0.038) and the genus Lachnospiraceae (NK4A136 group) (IVW: β=-0.076, P = 0.01). Eight candidate bacterial groups were found to be associated with sOB-R, with the phylum Firmicutes (IVW: β = 0.235, P = 0.03) and the order Clostridiales (IVW: β = 0.267, P = 0.028) being of more interest. In addition, the genus Roseburia (IVW: β = 0.953, P = 0.022) and the order Lactobacillales (IVW: β=-0.806, P = 0.042) were suggestive of an association with PAI-1. CONCLUSION This study reveals a causal relationship between the gut microbiota and circulating adipokines and may help to offer novel insights into the prevention of abnormal concentrations of circulating adipokines and obesity-related diseases.
Collapse
Affiliation(s)
- Tongxin Zhang
- Department of Ultrasound, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, China
| | - Jingyu Liu
- Department of Ultrasound, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, China
| | - Xiao Liu
- Department of Ultrasound, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, China
| | - Qian Wang
- Department of Ultrasound, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, China.
| | - Huawei Zhang
- Department of Ultrasound, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, China.
| |
Collapse
|
3
|
Alqudah S, Claesen J. Mechanisms of gut bacterial metabolism of dietary polyphenols into bioactive compounds. Gut Microbes 2024; 16:2426614. [PMID: 39540668 PMCID: PMC11572103 DOI: 10.1080/19490976.2024.2426614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/23/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024] Open
Abstract
The fruits and vegetables we consume as part of our diet are rich in bioactive metabolites that can prevent and ameliorate cardiometabolic diseases, cancers, and neurological conditions. Polyphenols are a major metabolite family that has been intensively investigated in this context. However, for these compounds to exert their optimal bioactivity, they rely on the enzymatic capacity of an individual's gut microbiota. Indeed, for most polyphenols, the human host is restricted to more basic metabolism such as deglycosylation and hepatic conjugation. In this review, we discuss the mechanisms by which gut bacteria metabolize the core scaffold of polyphenol substrates, and how their conversion into bioactive small molecules impacts host health.
Collapse
Affiliation(s)
- Sara Alqudah
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH, USA
- Department of Chemistry, Cleveland State University, Cleveland, OH, USA
| | - Jan Claesen
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH, USA
- Center for Microbiome and Human Health, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
4
|
Ardalan ZS, Livingstone KM, Polzella L, Avakian J, Rohani F, Sparrow MP, Gibson PR, Yao CK. Perceived dietary intolerances, habitual intake and diet quality of patients with an ileoanal pouch: Associations with pouch phenotype (and behaviour). Clin Nutr 2023; 42:2095-2108. [PMID: 37748240 DOI: 10.1016/j.clnu.2023.07.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/24/2023] [Accepted: 07/23/2023] [Indexed: 09/27/2023]
Abstract
BACKGROUND AND AIMS Ileoanal pouch patients frequently attribute pouch-related symptoms and pouchitis with diet. We aimed to assess perceived food intolerance and habitual dietary intake and their relationship with pouch indication, symptoms and current or history of pouchitis. METHODS In this cross-sectional study, patients with an ileoanal pouch completed a dietary intolerance and a food frequency questionnaire, that specifically quantifies habitual intake of FODMAPs. Perceived dietary intolerance rates, nutrient intake and diet quality, and their differences based on pouch indication, symptom, and current or history of pouchitis were assessed. Associations between intolerances and intake, and between dietary intake with pouchitis risk were analysed using univariable and multivariable regression analysis. RESULTS Of the 58 (10 FAP and 48 UC) patients with complete data, 81% of UC and 80% of FAP patients reported dietary intolerances. Overall diet quality was good. Differences in dietary intake were limited to a few food groups. Patients with a history of pouchitis had a lower intake of fruits (p = 0.03) and nuts (p = 0.004). Patients with current pouchitis had a lower intake of nuts (p = 0.02). On multivariable logistic regression, intake of dietary fibre was associated negatively [OR 0.68(95%CI:0.51-0.92)] and of non-digestible oligosaccharides positively with pouchitis history [OR 5.5(95% CI:1.04-29.1)]. CONCLUSIONS In patients with an ileoanal pouch, perceived dietary intolerances are common but had minimal impact on nutritional adequacy and diet quality. Negative associations of the intakes of fruits, nuts and dietary fibre and positive association with non-digestible oligosaccharides with a history of pouchitis require further study to inform dietary recommendations.
Collapse
Affiliation(s)
- Zaid S Ardalan
- Department of Gastroenterology, Alfred Health and Monash University, Melbourne, Victoria, Australia.
| | - Katherine M Livingstone
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria, Australia
| | - Louise Polzella
- Department of Nutrition and Dietetics, Monash University, Victoria, Australia
| | - Julia Avakian
- Department of Nutrition and Dietetics, Monash University, Victoria, Australia
| | - Faran Rohani
- Department of Gastroenterology, Alfred Health and Monash University, Melbourne, Victoria, Australia
| | - Miles P Sparrow
- Department of Gastroenterology, Alfred Health and Monash University, Melbourne, Victoria, Australia
| | - Peter R Gibson
- Department of Gastroenterology, Alfred Health and Monash University, Melbourne, Victoria, Australia
| | - Chu K Yao
- Department of Gastroenterology, Alfred Health and Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
5
|
Di Stasi LC. Natural Coumarin Derivatives Activating Nrf2 Signaling Pathway as Lead Compounds for the Design and Synthesis of Intestinal Anti-Inflammatory Drugs. Pharmaceuticals (Basel) 2023; 16:ph16040511. [PMID: 37111267 PMCID: PMC10142712 DOI: 10.3390/ph16040511] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/29/2023] Open
Abstract
Nrf2 (nuclear factor erythroid 2-related factor 2) is a transcription factor related to stress response and cellular homeostasis that plays a key role in maintaining the redox system. The imbalance of the redox system is a triggering factor for the initiation and progression of non-communicable diseases (NCDs), including Inflammatory Bowel Disease (IBD). Nrf2 and its inhibitor Kelch-like ECH-associated protein 1 (Keap1) are the main regulators of oxidative stress and their activation has been recognized as a promising strategy for the treatment or prevention of several acute and chronic diseases. Moreover, activation of Nrf2/keap signaling pathway promotes inhibition of NF-κB, a transcriptional factor related to pro-inflammatory cytokines expression, synchronically promoting an anti-inflammatory response. Several natural coumarins have been reported as potent antioxidant and intestinal anti-inflammatory compounds, acting by different mechanisms, mainly as a modulator of Nrf2/keap signaling pathway. Based on in vivo and in vitro studies, this review focuses on the natural coumarins obtained from both plant products and fermentative processes of food plants by gut microbiota, which activate Nrf2/keap signaling pathway and produce intestinal anti-inflammatory activity. Although gut metabolites urolithin A and urolithin B as well as other plant-derived coumarins display intestinal anti-inflammatory activity modulating Nrf2 signaling pathway, in vitro and in vivo studies are necessary for better pharmacological characterization and evaluation of their potential as lead compounds. Esculetin, 4-methylesculetin, daphnetin, osthole, and imperatorin are the most promising coumarin derivatives as lead compounds for the design and synthesis of Nrf2 activators with intestinal anti-inflammatory activity. However, further structure-activity relationships studies with coumarin derivatives in experimental models of intestinal inflammation and subsequent clinical trials in health and disease volunteers are essential to determine the efficacy and safety in IBD patients.
Collapse
Affiliation(s)
- Luiz C Di Stasi
- Laboratory of Phytomedicines, Pharmacology and Biotechnology (PhytoPharmaTech), Department of Biophysics and Pharmacology, São Paulo State University (UNESP), Botucatu 18618-689, SP, Brazil
| |
Collapse
|
6
|
García‐Villalba R, Giménez‐Bastida JA, Cortés‐Martín A, Ávila‐Gálvez MÁ, Tomás‐Barberán FA, Selma MV, Espín JC, González‐Sarrías A. Urolithins: a Comprehensive Update on their Metabolism, Bioactivity, and Associated Gut Microbiota. Mol Nutr Food Res 2022; 66:e2101019. [PMID: 35118817 PMCID: PMC9787965 DOI: 10.1002/mnfr.202101019] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/22/2022] [Indexed: 12/30/2022]
Abstract
Urolithins, metabolites produced by the gut microbiota from the polyphenols ellagitannins and ellagic acid, are discovered by the research group in humans almost 20 years ago. Pioneering research suggests urolithins as pleiotropic bioactive contributors to explain the health benefits after consuming ellagitannin-rich sources (pomegranates, walnuts, strawberries, etc.). Here, this study comprehensively updates the knowledge on urolithins, emphasizing the review of the literature published during the last 5 years. To date, 13 urolithins and their corresponding conjugated metabolites (glucuronides, sulfates, etc.) have been described and, depending on the urolithin, detected in different human fluids and tissues (urine, blood, feces, breastmilk, prostate, colon, and breast tissues). There has been a substantial advance in the research on microorganisms involved in urolithin production, along with the compositional and functional characterization of the gut microbiota associated with urolithins metabolism that gives rise to the so-called urolithin metabotypes (UM-A, UM-B, and UM-0), relevant in human health. The design of in vitro studies using physiologically relevant assay conditions (molecular forms and concentrations) is still a pending subject, making some reported urolithin activities questionable. In contrast, remarkable progress has been made in the research on the safety, bioactivity, and associated mechanisms of urolithin A, including the first human interventions.
Collapse
Affiliation(s)
- Rocío García‐Villalba
- Laboratory of Food & HealthResearch Group on QualitySafety and Bioactivity of Plant FoodsCEBAS‐CSICMurciaCampus de EspinardoSpain
| | - Juan Antonio Giménez‐Bastida
- Laboratory of Food & HealthResearch Group on QualitySafety and Bioactivity of Plant FoodsCEBAS‐CSICMurciaCampus de EspinardoSpain
| | - Adrián Cortés‐Martín
- Laboratory of Food & HealthResearch Group on QualitySafety and Bioactivity of Plant FoodsCEBAS‐CSICMurciaCampus de EspinardoSpain
| | - María Ángeles Ávila‐Gálvez
- Laboratory of Food & HealthResearch Group on QualitySafety and Bioactivity of Plant FoodsCEBAS‐CSICMurciaCampus de EspinardoSpain
| | - Francisco A. Tomás‐Barberán
- Laboratory of Food & HealthResearch Group on QualitySafety and Bioactivity of Plant FoodsCEBAS‐CSICMurciaCampus de EspinardoSpain
| | - María Victoria Selma
- Laboratory of Food & HealthResearch Group on QualitySafety and Bioactivity of Plant FoodsCEBAS‐CSICMurciaCampus de EspinardoSpain
| | - Juan Carlos Espín
- Laboratory of Food & HealthResearch Group on QualitySafety and Bioactivity of Plant FoodsCEBAS‐CSICMurciaCampus de EspinardoSpain
| | - Antonio González‐Sarrías
- Laboratory of Food & HealthResearch Group on QualitySafety and Bioactivity of Plant FoodsCEBAS‐CSICMurciaCampus de EspinardoSpain
| |
Collapse
|
7
|
Eidizade F, Soukhtanloo M, Zhiani R, Mehrzad J, Mirzavi F. Inhibition of glioblastoma proliferation, invasion, and migration by Urolithin B through inducing G0/G1 arrest and targeting MMP-2/-9 expression and activity. Biofactors 2022; 49:379-389. [PMID: 36310375 DOI: 10.1002/biof.1915] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022]
Abstract
One kind of brain cancer with a dismal prognosis is called glioblastoma multiforme (GBM) due to its high growth rate and widespread tumor cell invasion into various areas of the brain. To improve therapeutic approaches, the objective of this research investigates the cytotoxic, anti-metastatic, and apoptotic effect of urolithin-B (UB) as a bioactive metabolite of ellagitannins (ETs) on GBM U87 cells. The malignant GBM cell line (U87) was examined for apoptosis rate, cell cycle analysis, cell viability, mRNA expressions of several apoptotic and metastasis-associated genes, production of reactive oxygen species (ROS), MMP-2, and MMP-9 activity and protein expression, and migration ability. The findings revealed that UB decreased U87 GBM viability in a dose-dependent manner and NIH/3T3 normal cells with the IC50 value of 30 and 55 μM after 24 h, respectively. UB also induces necrosis and G0/G1 cell cycle arrest in U87 cells. UB also increases ROS production and caused down-regulation of Bcl2 and up-regulation of Bax apoptotic genes. Additionally, treatment of UB reduced the migration of U87 cells. The protein levels, mRNA expression, and the MMP-2 and MMP-9 enzyme activities also decreased concentration-dependently. So, due to the non-toxic nature of UB and its ability to induce apoptosis and reduce the U87 GBM cell invasion and migration, after more research, it can be regarded as a promising new anti-GBM compound.
Collapse
Affiliation(s)
- Fateme Eidizade
- Department of Biochemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Mohammad Soukhtanloo
- Department of Biochemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rahele Zhiani
- Department of Chemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
- New Materials Technology and Processing Research Center, Department of Chemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Jamshid Mehrzad
- Department of Biochemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Farshad Mirzavi
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
8
|
Wang S, Du Q, Meng X, Zhang Y. Natural polyphenols: a potential prevention and treatment strategy for metabolic syndrome. Food Funct 2022; 13:9734-9753. [PMID: 36134531 DOI: 10.1039/d2fo01552h] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Metabolic syndrome (MS) is the term for a combination of hypertension, dyslipidemia, insulin resistance, and central obesity as factors leading to cardiovascular and metabolic disease. Epidemiological investigation has shown that polyphenol intake is negatively correlated with the incidence of MS. Natural polyphenols are widely found in cocoa beans, tea, vegetables, fruits, and some Chinese herbal medicines; they are a class of plant compounds containing a variety of phenolic structural units, which are potent antioxidants and anti-inflammatory agents in plants. Polyphenols are composed of flavonoids (such as flavanols, anthocyanidins, anthocyanins, isoflavones, etc.) and non-flavonoids (such as phenolic acids, stilbenes, and lignans). Modern pharmacological studies have proved that polyphenols can reduce blood pressure, improve lipid metabolism, lower blood glucose, and reduce body weight, thereby preventing and improving MS. Due to the unique characteristics and potential development and application value of polyphenols, this review summarizes some natural polyphenols that could treat MS, including their chemical properties, plant sources, and pharmacological action against MS, to provide a basis for the further study of polyphenols in MS.
Collapse
Affiliation(s)
- Shaohui Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Qinyun Du
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Yi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
9
|
Xu Z, Li S, Li K, Wang X, Li X, An M, Yu X, Long X, Zhong R, Liu Q, Wang X, Yang Y, Tian N. Urolithin A ameliorates diabetic retinopathy via activation of the Nrf2/HO-1 pathway. Endocr J 2022; 69:971-982. [PMID: 35321989 DOI: 10.1507/endocrj.ej21-0490] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Diabetic retinopathy (DR) is a progressive microvascular complication of diabetes mellitus and is characterised by excessive inflammation and oxidative stress. Urolithin A (UA), a major metabolite of ellagic acid, exerts anti-inflammatory and antioxidant functions in various human diseases. This study, for the first time, uncovered the role of UA in DR pathogenesis. Streptozotocin-induced diabetic rats were used to determine the effects of UA on blood glucose levels, retinal structures, inflammation, and oxidative stress. High glucose (HG)-induced human retinal endothelial cells (HRECs) were used to elucidate the anti-inflammatory and antioxidant mechanisms of UA in DR in vitro. The in vivo experiments demonstrated that UA injection reduced blood glucose levels, decreased albumin and vascular endothelial growth factor concentrations, and ameliorated the injured retinal structures caused by DR. UA administration also inhibited inflammation and oxidative damage in the retinal tissues of diabetic rats. Similar anti-inflammatory and antioxidant effects of UA were observed in HRECs induced by HG. Furthermore, we found that UA elevated the levels of nuclear Nrf2 and HO-1 both in vivo and in vitro. Nrf2 silencing reversed the inhibitory effects of UA on inflammation and oxidative stress during DR progression. Together, our findings indicate that UA can ameliorate DR by repressing inflammation and oxidative stress via the Nrf2/HO-1 pathway, which suggests that UA could be an effective drug for clinical DR treatment.
Collapse
Affiliation(s)
- Zepeng Xu
- Department of Ophthalmology, Wuyi Hospital of Traditional Chinese Medicine, Guangdong Province, 529000, China
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangdong Province, 510504, China
| | - Songtao Li
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangdong Province, 510504, China
| | - Kunmeng Li
- Department of Ophthalmology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Province, 510504, China
| | - Xiaoyu Wang
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangdong Province, 510504, China
| | - Xiaojie Li
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangdong Province, 510504, China
| | - Meixia An
- Department of Ophthalmology, The Third Affiliated Hospital of Southern Medical University, Guangdong Province, 510630, China
| | - Xiaoyi Yu
- Department of Ophthalmology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Province, 510504, China
| | - Xinguang Long
- Department of Ophthalmology, Wuyi Hospital of Traditional Chinese Medicine, Guangdong Province, 529000, China
| | - Ruiying Zhong
- Department of Ophthalmology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Province, 510504, China
| | - Qiuhong Liu
- Department of Ophthalmology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Province, 510504, China
| | - Xiaochuan Wang
- Department of Ophthalmology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Province, 510504, China
| | - Yan Yang
- Department of Ophthalmology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Province, 510504, China
| | - Ni Tian
- Department of Ophthalmology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Province, 510504, China
| |
Collapse
|
10
|
Abstract
There are trillions of microorganisms in the human intestine. They can react to the intestinal microenvironment by metabolizing food or producing small molecular compounds to affect the host's digestive ability and resist the risk of infection and autoimmune diseases. Many studies have revealed that intestinal flora and its metabolites play an important role in human physiology and the development of diseases. Urolithins are kind of intestinal microbiota metabolites of ellagitannins (ETs) and ellagic acid (EA) with potent biological activity in vivo. However, different individuals have different intestinal flora. According to the different metabolites from ETs and EA, it is divided into three metabo-types including UM-A, UM-B and UM-0. This paper reviews the origin of urolithins, the urolithin producing microorganisms and the effects of urolithins on regulating intestinal diseases. This review will provide a theoretical basis for the regulation of urolithins in the homeostasis of intestinal flora and a reference for the scientific utilization of urolithins and foods rich in ETs and EA.
Collapse
Affiliation(s)
- Chunhua Lu
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong, China
| | - Xintong Li
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong, China
| | - Zeyuan Gao
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong, China
| | - Yuliang Song
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong, China
| | - Yuemao Shen
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong, China
| |
Collapse
|
11
|
Giménez-Bastida JA, Ávila-Gálvez MÁ, Carmena-Bargueño M, Pérez-Sánchez H, Espín JC, González-Sarrías A. Physiologically relevant curcuminoids inhibit angiogenesis via VEGFR2 in human aortic endothelial cells. Food Chem Toxicol 2022; 166:113254. [PMID: 35752269 DOI: 10.1016/j.fct.2022.113254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/02/2022] [Accepted: 06/20/2022] [Indexed: 10/17/2022]
Abstract
Angiogenesis is a complex process encompassing endothelial cell proliferation, migration, and tube formation. While numerous studies describe that curcumin exerts antitumor properties (e.g., targeting angiogenesis), information regarding other dietary curcuminoids such as demethoxycurcumin (DMC) and bisdemethoxycurcumin (BisDMC) is scant. In this study, we evaluated the antiangiogenic activities of these three curcuminoids at physiological concentrations (0.1-5 μM) on endothelial cell migration and tubulogenesis and the underlying associated mechanisms on human aortic endothelial cells (HAECs). Results showed that the individual compounds and a representative mixture inhibited the tubulogenic and migration capacity of endothelial cells dose-dependently, while sparing cell viability. Notably, DMC and BisDMC at 0.1 and 1 μM showed higher capacity than curcumin inhibiting tubulogenesis. These compounds also reduced phosphorylation of the VEGFR2 and the downstream ERK and Akt pathways in VEGF165-stimulated cells. In silico analysis showed that curcuminoids could bind the VEGFR2 antagonizing the VEGF-mediated angiogenesis. These findings suggest that physiologically concentrations of curcuminoids might counteract pro-angiogenic stimuli relevant to tumorigenic processes.
Collapse
Affiliation(s)
- Juan Antonio Giménez-Bastida
- Laboratory of Food and Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, Dept. Food Science and Technology, CEBAS-CSIC, P.O. Box 164, 30100. Campus de Espinardo, Murcia, Spain.
| | - María Ángeles Ávila-Gálvez
- Laboratory of Food and Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, Dept. Food Science and Technology, CEBAS-CSIC, P.O. Box 164, 30100. Campus de Espinardo, Murcia, Spain
| | - Miguel Carmena-Bargueño
- Structural Bioinformatics and High Performance Computing Research Group (BIO-HPC), HiTech Innovation Hub, UCAM Universidad Católica de Murcia, Campus de los Jerónimos, s/n, 30107, Guadalupe, Spain
| | - Horacio Pérez-Sánchez
- Structural Bioinformatics and High Performance Computing Research Group (BIO-HPC), HiTech Innovation Hub, UCAM Universidad Católica de Murcia, Campus de los Jerónimos, s/n, 30107, Guadalupe, Spain
| | - Juan Carlos Espín
- Laboratory of Food and Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, Dept. Food Science and Technology, CEBAS-CSIC, P.O. Box 164, 30100. Campus de Espinardo, Murcia, Spain
| | - Antonio González-Sarrías
- Laboratory of Food and Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, Dept. Food Science and Technology, CEBAS-CSIC, P.O. Box 164, 30100. Campus de Espinardo, Murcia, Spain
| |
Collapse
|
12
|
Pharmacological Effects of Polyphenol Phytochemicals on the Intestinal Inflammation via Targeting TLR4/NF-κB Signaling Pathway. Int J Mol Sci 2022; 23:ijms23136939. [PMID: 35805952 PMCID: PMC9266441 DOI: 10.3390/ijms23136939] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 02/05/2023] Open
Abstract
TLR4/NF-κB is a key inflammatory signaling transduction pathway, closely involved in cell differentiation, proliferation, apoptosis, and pro-inflammatory response. Toll like receptor 4 (TLR4), the first mammalian TLR to be characterized, is the innate immune receptor that plays a key role in inflammatory signal transductions. Nuclear factor kappa B (NF-κB), the TLR4 downstream, is the key to accounting for the expression of multiple genes involved in inflammatory responses, such as pro-inflammatory cytokines. Inflammatory bowel disease (IBD) in humans is a chronic inflammatory disease with high incidence and prevalence worldwide. Targeting the TLR4/NF-κB signaling pathway might be an effective strategy to alleviate intestinal inflammation. Polyphenol phytochemicals have shown noticeable alleviative effects by acting on the TLR4/NF-κB signaling pathway in intestinal inflammation. This review summarizes the pharmacological effects of more than 20 kinds of polyphenols on intestinal inflammation via targeting the TLR4/NF-κB signaling pathway. We expected that polyphenol phytochemicals targeting the TLR4/NF-κB signaling pathway might be an effective approach to treat IBD in future clinical research applications.
Collapse
|
13
|
Chen P, Guo Z, Chen F, Wu Y, Zhou B. Recent Advances and Perspectives on the Health Benefits of Urolithin B, A Bioactive Natural Product Derived From Ellagitannins. Front Pharmacol 2022; 13:917266. [PMID: 35814202 PMCID: PMC9257173 DOI: 10.3389/fphar.2022.917266] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/06/2022] [Indexed: 12/11/2022] Open
Abstract
Urolithin (Uro) B is a natural compound produced by gut bacteria from ingested ellagitannins (ETs) and ellagic acid (EA), complex polyphenols abundant in foods such as pomegranates, raspberries, blueberries and chestnuts. Uro B has recently garnered considerable attention owing to its wide range of nutraceutical effects and relatively high potency. According to several studies, Uro B prevents the development of hyperlipidemia, cardiovascular disease (CVD) and tumors due to its strong antioxidant and anti-inflammatory properties. Many reviews have systematically summarized the health benefits and pharmacological activities of ETs, EA and urolithins (especially Uro A) while available reviews or detailed summaries on the positive impact of Uro B are rarer. Here, we sought to review the pharmacological activity, mechanism of action, regulation of immune function and its associated diseases and preventive potential of Uro B to elucidate its function as a nutritional agent in humans.
Collapse
Affiliation(s)
- Peng Chen
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhiei Guo
- Department of Pharmacy, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fuchao Chen
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, China
| | - Yue Wu
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, China
| | - Benhong Zhou
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Benhong Zhou,
| |
Collapse
|
14
|
Rostom B, Karaky R, Kassab I, Sylla-Iyarreta Veitia M. Coumarins derivatives and inflammation: Review of their effects on the inflammatory signaling pathways. Eur J Pharmacol 2022; 922:174867. [DOI: 10.1016/j.ejphar.2022.174867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 02/21/2022] [Accepted: 02/28/2022] [Indexed: 12/27/2022]
|
15
|
Zhang M, Cui S, Mao B, Zhang Q, Zhao J, Zhang H, Tang X, Chen W. Ellagic acid and intestinal microflora metabolite urolithin A: A review on its sources, metabolic distribution, health benefits, and biotransformation. Crit Rev Food Sci Nutr 2022; 63:6900-6922. [PMID: 35142569 DOI: 10.1080/10408398.2022.2036693] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Foods rich in ellagic tannins are first hydrolyzed into ellagic acid in the stomach and small intestine, and then converted into urolithins with high bioavailability by the intestinal flora. Urolithin has beneficially biological effects, it can induce adipocyte browning, improve cholesterol metabolism, inhibit graft tumor growth, relieve inflammation, and downregulate neuronal amyloid protein formation via the β3-AR/PKA/p38MAPK, ERK/AMPKα/SREBP1, PI3K/AKT/mTOR signaling pathways, and TLR4, AHR receptors. But differences have been reported in urolithin production capacity among different individuals. Thus, it is of great significance to explore the biological functions of urolithin, screen the strains responsible for biotransformation of urolithin, and explore the corresponding functional genes. Tannin acyl hydrolase can hydrolyze tannins into ellagic acid, and the genera Gordonibacter and Ellagibacter can metabolize ellagic acid into urolithins. Therefore, application of "single bacterium", "single bacterium + enzyme", and "microflora" can achieve biotransformation of urolithin A. In this review, the source and metabolic pathway of ellagic tannins, and the mechanisms of the biological function of a metabolite, urolithin A, are discussed. The current strategies of biotransformation to obtain urolithin A are expounded to provide ideas for further studies on the relationship between urolithin and human health.
Collapse
Affiliation(s)
- Mengwei Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R China
| | - Shumao Cui
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, P. R China
- Wuxi Translational Medicine Research Center, Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, Jiangsu, P. R China
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, P. R China
| |
Collapse
|
16
|
Lin Y, Wu SH, Wang XH, Zhang W, Li BG, Liu WS. Associations of imbalance of intestinal flora with severity of disease, inflammatory factors, adiponectin, and vascular endothelial function of hypertension patients. Kaohsiung J Med Sci 2021; 38:165-173. [PMID: 34672426 DOI: 10.1002/kjm2.12459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 08/09/2021] [Accepted: 08/26/2021] [Indexed: 11/12/2022] Open
Abstract
To explore the relationship between the severity of hypertension and the imbalanced intestinal flora, inflammatory factors, adiponectin (ADPN) and vascular endothelial function in primary hypertension patients. According to the grading criteria for hypertension, in total of 60 patients with primary hypertension in our hospital from April to July, 2020 were divided into Grade 1 group (n = 20), Grade 2 group (n = 20), and Grade 3 group (n = 20). The feces of the research subjects were collected to extract the deoxyribonucleic acid (DNA) and detect its composition of intestinal flora. Subsequently, the peripheral blood was collected to determine the changes in inflammatory factors interleukin-2 (IL-2), IL-4, tumor necrosis factor-α (TNF-α) and IL-1β, serum immunoglobulin G (IgG) and IgM, ADPN and vascular endothelial function-related endothelin-1 (ET-1), nitric oxide (NO), vascular endothelial growth factor (VEGF), and intercellular adhesion molecule-1 (ICAM-1). There were no significant differences in the gender, age, and body mass index (BMI), the proportion of smokers, diet habit, probiotics and antihypertensive medication use, and number of diabetic cases among groups (p > 0.05). We found an inverse association between blood pressure measures and microbial diversity, in particular microbial richness (p < 0.05). Among the four major kinds of intestinal flora, the composition of firmicutes (p < 0.05) and bacteroidetes (p < 0.05) showed obvious differences among the three groups, and they had consistent trends with the changes in the abundance of firmicutes and bacteroidetes. Intestinal flora imbalance is closely related to the severity of hypertension, inflammatory factors, ADPN, and vascular endothelial function.
Collapse
Affiliation(s)
- Yang Lin
- Department of Endocrinology, Qiqihar First Hospital, Qiqihar City, Heilongjiang Province, China.,Qiqihar Hospital Affiliated to Southern Medical University, Qiqihar City, Heilongjiang Province, China
| | - Shi-Hui Wu
- Department of Endocrinology, Qiqihar First Hospital, Qiqihar City, Heilongjiang Province, China.,Qiqihar Hospital Affiliated to Southern Medical University, Qiqihar City, Heilongjiang Province, China
| | - Xu-Hong Wang
- Department of Endocrinology, Qiqihar First Hospital, Qiqihar City, Heilongjiang Province, China.,Qiqihar Hospital Affiliated to Southern Medical University, Qiqihar City, Heilongjiang Province, China
| | - Wei Zhang
- Department of Endocrinology, Qiqihar First Hospital, Qiqihar City, Heilongjiang Province, China.,Qiqihar Hospital Affiliated to Southern Medical University, Qiqihar City, Heilongjiang Province, China
| | - Bai-Gang Li
- Qiqihar Hospital Affiliated to Southern Medical University, Qiqihar City, Heilongjiang Province, China.,Department of Emergency, Qiqihar First Hospital, Qiqihar City, Heilongjiang Province, China
| | - Wen-Shu Liu
- Qiqihar Hospital Affiliated to Southern Medical University, Qiqihar City, Heilongjiang Province, China.,Department of Emergency, Qiqihar First Hospital, Qiqihar City, Heilongjiang Province, China
| |
Collapse
|
17
|
Giménez-Bastida JA, Ávila-Gálvez MÁ, Espín JC, González-Sarrías A. Evidence for health properties of pomegranate juices and extracts beyond nutrition: A critical systematic review of human studies. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Zhang Y, Zhang Y, Halemahebai G, Tian L, Dong H, Aisker G. Urolithin A, a pomegranate metabolite, protects pancreatic β cells from apoptosis by activating autophagy. JOURNAL OF ETHNOPHARMACOLOGY 2021; 272:113628. [PMID: 33246115 DOI: 10.1016/j.jep.2020.113628] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Urolithin A is an active metabolite of plant polyphenol ellagic acid generated by intestinal flora, which is derived from strawberry or traditional anti-diabetic Chinese medicine such as Punica granatum L. and Phyllanthus emblica. The present study aimed to whether urolithin A can protect against glycolipid-toxicity-induced apoptosis of pancreatic β-cells and the underlying mechanisms. MATERIALS AND METHODS Apoptosis was induced in the pancreas of mice with type 2 diabetes and MIN6 pancreatic β-cells. CC-8 assay was conducted to determine cell viability. Flow cytometry, JC-1 fluorescent probe, and western blot assays were performed to assess apoptosis. Immunofluorescence and western blot assays were used to detect changes in autophagy. The mechanism of apoptosis was elucidated using autophagy inhibitor chloroquine. RESULTS Urolithin A intervention significantly reduced pancreatic cell apoptosis in diabetic mice and MIN6 β cells. This was achieved by the downregulation of cleaved-caspase 3, cleaved-caspase 1, and restoration of cell viability, cell morphology and mitochondrial membrane potential, accompanied with the downregulation of autophagic protein SQSTM1/p62 and upregulation of LC3II. Chloroquine, an autophagy inhibitor, reversed the anti-glucolipotoxic and anti-apoptotic effects of urolithin A. CONCLUSION These findings suggest that urolithin A protects against glucolipotoxicity-induced apoptosis in pancreatic β-cells by inducing activation of autophagy.
Collapse
Affiliation(s)
- YanZhi Zhang
- Department of Pharmacology, College of Pharmacy, Xinjiang Medical University, Urumqi, 830011, Xinjiang, China.
| | - Yan Zhang
- Department of Pediatrics,Xinjiang Military General Hospital, Urumqi, Xinjiang, China
| | - Gulihaixia Halemahebai
- Department of Pharmacology, College of Pharmacy, Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
| | - Linai Tian
- Third Clinical College, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Huaiyang Dong
- Department of Pharmacology, College of Pharmacy, Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
| | - Gulimila Aisker
- Department of Pharmacology, College of Pharmacy, Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
| |
Collapse
|
19
|
Song X, Yang Y, Li J, He M, Zou Y, Jia R, Li L, Hang J, Cui M, Bai L, Yin Z. Tannins extract from Galla Chinensis can protect mice from infection by Enterotoxigenic Escherichia coli O101. BMC Complement Med Ther 2021; 21:84. [PMID: 33676495 PMCID: PMC7937208 DOI: 10.1186/s12906-021-03261-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 02/24/2021] [Indexed: 01/04/2023] Open
Abstract
Background Enterotoxigenic Escherichia coli (ETEC) is classically associated with acute secretory diarrhea, which induces 2 million people death in developing countries over a year, predominantly children in the first years of life. Previously, tannins (47.75%) were extracted from Galla Chinensis and prepared as Galla Chinensis oral solution (GOS) which showed significant antidiarrheal activity in a castor oil-induced diarrhea in mice. Whether the tannins extract were also effective in treatment of ETEC-induced diarrhea was determined in this study. Methods Mice were randomly divided into 6 groups (n = 22). The mice in the normal and untreated groups were given normal saline. Three GOS-treated groups were received different concentrations of GOS (5, 10 and 15%, respectively) at a dose of 10 mL/kg. Mice in the positive control group were fed with loperamide (10 mg/kg). The treatment with GOS started 3 days before infection with ETEC and continued for 4 consecutive days after infection. On day 3, mice were all infected with one dose of LD50 of ETEC, except those in the normal group. Survival of mice was observed daily and recorded throughout the study. On days 4 and 7, samples were collected from 6 mice in each group. Results GOS could increase the survival rate up to 75%, while in the untreated group it is 43.75%. The body weights of mice treated with 15% GOS were significantly increased on day 7 in comparison with the untreated group and the normal group. GOS-treatment recovered the small intestine coefficient enhanced by ETEC-infection. The diarrhea index of mice treated with GOS was significantly decreased. GOS increased the levels of IgG and sIgA in the terminal ileum and decreased the levels of pro-inflammatory cytokines (IFN-γ, TNF-α, IL-1β, IL-6 and IL-8) in serum. GOS could increase the amount of intestinal probiotics, Lactobacilli and Bifidobacteria. GOS could alleviate colon lesions induced by ETEC-infection. GOS showed higher potency than loperamide. Conclusions GOS could be a promising drug candidate for treating ETEC infections.
Collapse
Affiliation(s)
- Xu Song
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yi Yang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Junzhi Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mengxue He
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuanfeng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Renyong Jia
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, P. R. China
| | - Lixia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Juan Hang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, P. R. China
| | - Min Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, P. R. China
| | - Lu Bai
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhongqiong Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
20
|
Caffeic Acid Modulates Processes Associated with Intestinal Inflammation. Nutrients 2021; 13:nu13020554. [PMID: 33567596 PMCID: PMC7914463 DOI: 10.3390/nu13020554] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/28/2021] [Accepted: 02/04/2021] [Indexed: 12/14/2022] Open
Abstract
Caffeic acid is one of the most abundant hydroxycinnamic acids in fruits, vegetables, and beverages. This phenolic compound reaches relevant concentrations in the colon (up to 126 µM) where it could come into contact with the intestinal cells and exert its anti-inflammatory effects. The aim of this investigation was to study the capacity of caffeic acid, at plausible concentrations from an in vivo point of view, to modulate mechanisms related to intestinal inflammation. Consequently, we tested the effects of caffeic acid (50–10 µM) on cyclooxygenase (COX)-2 expression and prostaglandin (PG)E2, cytokines, and chemokines (IL-8, monocyte chemoattractant protein-1 -MCP-1-, and IL-6) biosynthesis in IL-1β-treated human myofibroblasts of the colon, CCD-18Co. Furthermore, the capacity of caffeic acid to inhibit the angiotensin-converting enzyme (ACE) activity, to hinder advanced glycation end product (AGE) formation, as well as its antioxidant, reducing, and chelating activity were also investigated. Our results showed that (i) caffeic acid targets COX-2 and its product PGE2 as well as the biosynthesis of IL-8 in the IL-1β-treated cells and (ii) inhibits AGE formation, which could be related to (iii) the high chelating activity exerted. Low anti-ACE, antioxidant, and reducing capacity of caffeic acid was also observed. These effects of caffeic acid expands our knowledge on anti-inflammatory mechanisms against intestinal inflammation.
Collapse
|
21
|
Mithul Aravind S, Wichienchot S, Tsao R, Ramakrishnan S, Chakkaravarthi S. Role of dietary polyphenols on gut microbiota, their metabolites and health benefits. Food Res Int 2021; 142:110189. [PMID: 33773665 DOI: 10.1016/j.foodres.2021.110189] [Citation(s) in RCA: 179] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/22/2021] [Accepted: 01/24/2021] [Indexed: 12/19/2022]
Abstract
The beneficial health roles of dietary polyphenols in preventing oxidative stress related chronic diseases have been subjected to intense investigation over the last two decades. As our understanding of the role of gut microbiota advances our knowledge of the antioxidant and anti-inflammatory functions of polyphenols accumulates, there emerges a need to examine the prebiotic role of dietary polyphenols. This review focused onthe role of different types and sources of dietary polyphenols on the modulation of the gut microbiota, their metabolites and how they impact on host health benefits. Inter-dependence between the gut microbiota and polyphenol metabolites and the vital balance between the two in maintaining the host gut homeostasis were discussed with reference to different types and sources of dietary polyphenols. Similarly, the mechanisms behind the health benefits by various polyphenolic metabolites bio-transformed by gut microbiota were also explained. However, further research should focus on the importance of human trials and profound links of polyphenols-gut microbiota-nerve-brain as they provide the key to unlock the mechanisms behind the observed benefits of dietary polyphenols found in vitro and in vivo studies.
Collapse
Affiliation(s)
- S Mithul Aravind
- Department of Basic and Applied Sciences, National Institute of Food Technology and Entrepreneurship Management, Haryana, India
| | - Santad Wichienchot
- Center of Excellence in Functional Food and Gastronomy, Faculty of Agro-Industry, Prince of Songkla University, Korhong, Hat Yai, Songkhla 90110, Thailand
| | - Rong Tsao
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario N1G 5C9, Canada.
| | - S Ramakrishnan
- Department of Cardiology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - S Chakkaravarthi
- Department of Basic and Applied Sciences, National Institute of Food Technology and Entrepreneurship Management, Haryana, India.
| |
Collapse
|
22
|
Direito R, Rocha J, Sepodes B, Eduardo-Figueira M. Phenolic Compounds Impact on Rheumatoid Arthritis, Inflammatory Bowel Disease and Microbiota Modulation. Pharmaceutics 2021; 13:pharmaceutics13020145. [PMID: 33499333 PMCID: PMC7912052 DOI: 10.3390/pharmaceutics13020145] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/30/2020] [Accepted: 01/18/2021] [Indexed: 12/21/2022] Open
Abstract
Non-communicable chronic diseases (NCDs) are nowadays the principal cause of death, especially in most industrialized nations. These illnesses have increased exponentially with the consumption of diets very high in fat and sugar, not to mention stress and physical inactivity among other factors. The potential impact of suboptimal diets on NCDs’ morbidity and mortality rates brings to the forefront the necessity for a new way of improving dietary habits. The literature provides extensive scientific work that presents evidence that phenolic compounds from diets have antioxidant, anti-inflammatory and antiproliferative activities that impact human health. Gut microbiota modulation by some phenolic compounds leads to favorable changes in abundance, diversity, and in the immune system. However, polyphenol’s limited bioavailability needs to be overcome, highlighting their application in new delivery systems and providing their health benefits in well-established ways such as health maintenance, treatment or adjuvant to conventional pharmacological treatments. In this context, novel dietary approaches, including new food supplements, have emerged to prevent diseases and preserve health.
Collapse
Affiliation(s)
- Rosa Direito
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal; (J.R.); (B.S.); (M.E.-F.)
- Correspondence: ; Tel.: +351-96-3654-899
| | - João Rocha
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal; (J.R.); (B.S.); (M.E.-F.)
- Department of Pharmacy, Pharmacology and Health Technologies, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Bruno Sepodes
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal; (J.R.); (B.S.); (M.E.-F.)
- Department of Pharmacy, Pharmacology and Health Technologies, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Maria Eduardo-Figueira
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal; (J.R.); (B.S.); (M.E.-F.)
- Department of Pharmaceutical Sciences and Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| |
Collapse
|
23
|
Kujawska M, Jodynis-Liebert J. Potential of the ellagic acid-derived gut microbiota metabolite - Urolithin A in gastrointestinal protection. World J Gastroenterol 2020; 26:3170-3181. [PMID: 32684733 PMCID: PMC7336321 DOI: 10.3748/wjg.v26.i23.3170] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/19/2020] [Accepted: 05/23/2020] [Indexed: 02/06/2023] Open
Abstract
Urolithin A (UA) is a metabolic compound generated during the biotransformation of ellagitannins by the intestinal bacteria. The physiologically relevant micromolar concentrations of UA, achieved in the plasma and gastrointestinal tract (GI) after consumption of its dietary precursors, have been revealed to offer GI protection. The health benefit has been demonstrated to be principally related to anticancer and anti-inflammatory effects. UA has been shown to possess the capability to regulate multiple tumor and inflammatory signaling pathways and to modulate enzyme activity, including those involved in carcinogen biotransformation and antioxidant defense. The purpose of this review is to gather evidence from both in vitro and in vivo studies showing the potential of UA in GI protection alongside suggested mechanisms by which UA can protect against cancer and inflammatory diseases of the digestive tract. The data presented herein, covering both studies on the pure compound and in vivo generated UA form its natural precursor, support the potential of this metabolite in treatment interventions against GI ailments.
Collapse
Affiliation(s)
- Małgorzata Kujawska
- Department of Toxicology, Poznan University of Medical Sciences, Poznan 60631, Poland
| | | |
Collapse
|
24
|
Formulation Strategies to Improve Oral Bioavailability of Ellagic Acid. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10103353] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ellagic acid, a polyphenolic compound present in fruit and berries, has recently been the object of extensive research for its antioxidant activity, which might be useful for the prevention and treatment of cancer, cardiovascular pathologies, and neurodegenerative disorders. Its protective role justifies numerous attempts to include it in functional food preparations and in dietary supplements, and not only to limit the unpleasant collateral effects of chemotherapy. However, ellagic acid use as a chemopreventive agent has been debated because of its poor bioavailability associated with low solubility, limited permeability, first pass effect, and interindividual variability in gut microbial transformations. To overcome these drawbacks, various strategies for oral administration including solid dispersions, micro and nanoparticles, inclusion complexes, self-emulsifying systems, and polymorphs were proposed. Here, we listed an updated description of pursued micro and nanotechnological approaches focusing on the fabrication processes and the features of the obtained products, as well as on the positive results yielded by in vitro and in vivo studies in comparison to the raw material. The micro and nanosized formulations here described might be exploited for pharmaceutical delivery of this active, as well as for the production of nutritional supplements or for the enrichment of novel foods.
Collapse
|
25
|
Giménez-Bastida JA, González-Sarrías A, Espín JC, Schneider C. Inhibition of 5-Lipoxygenase-Derived Leukotrienes and Hemiketals as a Novel Anti-Inflammatory Mechanism of Urolithins. Mol Nutr Food Res 2020; 64:e2000129. [PMID: 32306507 DOI: 10.1002/mnfr.202000129] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/27/2020] [Indexed: 12/20/2022]
Abstract
SCOPE Urolithins (Uro), gut microbial metabolites derived from ellagic acid (EA), reach significant concentrations in the human colon. Uro-A exerts anti-inflammatory activity in animal models of inflammatory bowel diseases (IBDs). It is hypothesized that Uro can modulate the biosynthesis of leukocyte-derived inflammatory eicosanoids from the 5-lipoxygenase (5-LOX), cyclooxygenase-2 (COX-2), and 5-LOX/COX-2 pathways, relevant in the onset and progression of IBDs, including 5-hydroxyeicosatetraenoic acids (5-HETEs), leukotriene-B4 (LTB4 ), prostaglandin E2 (PGE2 ), and hemiketals (HKE2 and HKD2 ). METHODS AND RESULTS Leukocytes, obtained from six healthy donors, are stimulated with lipopolysaccharide and calcium ionophore A23187. Uro, at concentrations found in the human colon (1-15 µm), decrease eicosanoid biosynthesis and COX-2 levels in the activated leukocytes. In contrast, EA and conjugated Uro (glucuronides and sulfates) are inactive. Uro-A and isourolithin-A reduce the formation of the 5-LOX/COX-2 products HKE2 and HKD2 through the COX-2 pathway (down-regulation of COX-2 and PGE2), whereas Uro-C reduces 5-HETE and LTB4 via inhibition of 5-LOX. CONCLUSIONS The results show that physiologically relevant colonic Uro target eicosanoid biosynthetic pathways. The effect on HKs and LTB4 formation is unprecedented and expands the knowledge on anti-inflammatory mechanisms of Uro against IBDs.
Collapse
Affiliation(s)
- Juan Antonio Giménez-Bastida
- Department of Pharmacology and Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical School, Nashville, TN, 37232, USA.,Laboratory of Food and Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, Dept. Food Science and Technology, CEBAS-CSIC, P.O. Box 164, Murcia, Campus de Espinardo, 30100, Spain
| | - Antonio González-Sarrías
- Laboratory of Food and Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, Dept. Food Science and Technology, CEBAS-CSIC, P.O. Box 164, Murcia, Campus de Espinardo, 30100, Spain
| | - Juan Carlos Espín
- Laboratory of Food and Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, Dept. Food Science and Technology, CEBAS-CSIC, P.O. Box 164, Murcia, Campus de Espinardo, 30100, Spain
| | - Claus Schneider
- Department of Pharmacology and Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical School, Nashville, TN, 37232, USA
| |
Collapse
|
26
|
Zhao R, Long X, Yang J, Du L, Zhang X, Li J, Hou C. Pomegranate peel polyphenols reduce chronic low-grade inflammatory responses by modulating gut microbiota and decreasing colonic tissue damage in rats fed a high-fat diet. Food Funct 2020; 10:8273-8285. [PMID: 31720661 DOI: 10.1039/c9fo02077b] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Recent studies have found that a high-fat diet (HFD) causes gut microbiota imbalance and colon tissue damage, resulting in increased intestinal permeability, which is one of the main reasons for the existence of constantly circulating low-grade inflammatory cytokines. Pomegranate extracts have been shown to protect from HFD-induced metabolic inflammation (e.g., colitis) and to promote the growth of beneficial bacteria in in vitro stool cultures. However, whether the beneficial effects of pomegranate extracts on the HFD-induced metabolic inflammation are achieved by acting on intestinal tissues has not yet been studied. In our present study, we found that pomegranate peel polyphenols (PPPs) alleviated HFD-induced obesity, elevated circulating pro-inflammatory cytokines, colonic tissue damage, and depressed colonic tight junction protein expression level in rats. Moreover, PPPs normalized the HFD-induced gut microbiota imbalance by increasing the abundance of beneficial bacteria in the colon. Furthermore, we also found that PPPs, punicalagin, and urolithin A (the main microbiota metabolites of pomegranate ellagitannins) all increased the LPS-induced decreased tight junction protein expression level and reversed the LPS-induced inflammatory response in Caco-2 cells. Urolithin A exhibited the best effects among the three pomegranate components. Our results suggested that the protective effects of PPPs in HFD-induced metabolic inflammation can be due to the recovery of colonic tissue damage and the regulation of gut microbiota and that urolithin A is the major component that contributes to the in vivo effects of PPPs.
Collapse
Affiliation(s)
- Ruiqi Zhao
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | | | | | | | | | | | | |
Collapse
|
27
|
Tuohetaerbaike B, Zhang Y, Tian Y, Zhang NN, Kang J, Mao X, Zhang Y, Li X. Pancreas protective effects of Urolithin A on type 2 diabetic mice induced by high fat and streptozotocin via regulating autophagy and AKT/mTOR signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2020; 250:112479. [PMID: 31846746 DOI: 10.1016/j.jep.2019.112479] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/02/2019] [Accepted: 12/12/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Urolithin A (UroA), the main intestinal microflora metabolite of ellagic acid of berries, pomegranate,and some other traditional chinese herbals such as emblica officinalis,etc,has been reported to exhibit anti-inflammatory, anti-oxidative, anti-tumor and pro-autophagy effects. AIM OF THE STUDY This study evaluated the anti-diabetic and pancreas-protective effects of UroA using a mice model of type 2 diabetes and preliminarily explored its effect on autophagy as well as the mechanism involved. MATERIALS AND METHODS Type 2 diabetes model was induced by high-fat diet (HFD; 60% energy as fat) and low-dose streptozotocin (85 mg/kg) injection. Mice were administered with UroA (50 mg/kg/d) alone or UroA-chloroquine (autophagy inhibitor) combination for 8 weeks. RESULTS UroA improved symptoms of diabetic mice such as high water intake volume, high urine volume, significantly decreased fasting blood glucose (FBG), after-glucose-loading glucose, glycated hemoglobin (GHb) levels, plasma C-peptide, malondialdehyde (MDA) and interleukin-1 β level, increased reduced glutathione (GSH), interleukin-10 content, and glucose tolerance. UroA also improved pancreatic function indexes such as HOMA-β as evidenced by improved pathological and ultrastructural features of the pancreas assessed by light microscopy and transmission electron microscopy (TEM). Accordingly, UroA decreased mitochondrial swelling and myelin-like cytoplasmic inclusions. UroA significantly upregulated the protein levels of microtubule-associated protein 1 light chain 3-II (LC3II) and beclin1, downregulated sequestosome 1 (p62) accompanied by decreased expression of apoptotic protein cleaved caspase3 in pancreas of diabetic mice. In addition, it increased the phosphorylation level of protein kinase B (p-Akt) and mammalian target of rapamycin (p-mTOR). Most of these effects of UroA were reversed by treatment with autophagy inhibitor chloroquine. CONCLUSIONS Our findings reveal that the pancreas protective effects of UroA against diabetes were partially mediated by its regulation of autophagy and AKT/mTOR signal pathway.
Collapse
Affiliation(s)
- Bahetibieke Tuohetaerbaike
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, PR China
| | - Yan Zhang
- Department of Pediatrics, Military General Hospital, Urumqi, PR China
| | - Yali Tian
- Department of Pharmacology, College of Pharmacy, Xinjiang Medical University, Urumqi, 830011, PR China
| | - Nan Nan Zhang
- Department of Pharmacology, College of Pharmacy, Xinjiang Medical University, Urumqi, 830011, PR China
| | - Jinsen Kang
- Department of Pharmacology, College of Pharmacy, Xinjiang Medical University, Urumqi, 830011, PR China
| | - Xinmin Mao
- Department of Pharmacology, College of Pharmacy, Xinjiang Medical University, Urumqi, 830011, PR China
| | - Yanzhi Zhang
- Department of Pharmacology, College of Pharmacy, Xinjiang Medical University, Urumqi, 830011, PR China.
| | - Xuejun Li
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, PR China.
| |
Collapse
|
28
|
Sobhani M, Farzaei MH, Kiani S, Khodarahmi R. Immunomodulatory; Anti-inflammatory/antioxidant Effects of Polyphenols: A Comparative Review on the Parental Compounds and Their Metabolites. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1717523] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Mahsa Sobhani
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sarah Kiani
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Khodarahmi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
29
|
Baradaran Rahimi V, Ghadiri M, Ramezani M, Askari VR. Antiinflammatory and anti‐cancer activities of pomegranate and its constituent, ellagic acid: Evidence from cellular, animal, and clinical studies. Phytother Res 2020; 34:685-720. [DOI: 10.1002/ptr.6565] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 08/05/2019] [Accepted: 11/10/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Vafa Baradaran Rahimi
- Pharmacological Research Center of Medicinal PlantsMashhad University of Medical Sciences Mashhad Iran
| | - Mobarakeh Ghadiri
- Pharmacological Research Center of Medicinal PlantsMashhad University of Medical Sciences Mashhad Iran
| | - Mobina Ramezani
- Pharmacological Research Center of Medicinal PlantsMashhad University of Medical Sciences Mashhad Iran
| | - Vahid Reza Askari
- Pharmacological Research Center of Medicinal PlantsMashhad University of Medical Sciences Mashhad Iran
- Neurogenic Inflammation Research CenterMashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
30
|
Pontonio E, Montemurro M, Pinto D, Marzani B, Trani A, Ferrara G, Mazzeo A, Gobbetti M, Rizzello CG. Lactic Acid Fermentation of Pomegranate Juice as a Tool to Improve Antioxidant Activity. Front Microbiol 2019; 10:1550. [PMID: 31333636 PMCID: PMC6619386 DOI: 10.3389/fmicb.2019.01550] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 06/20/2019] [Indexed: 01/07/2023] Open
Abstract
An increasing consumer demand for pomegranate has been globally observed, mainly thanks to the scientific evidence related to its functional and health-promoting features. Pomegranate fruits from twenty accessions identified in Southeastern Italy were characterized according to morphological and chemical features. Juices extracted from pomegranate fruits were fermented with selected Lactobacillus plantarum PU1 and the antioxidant activity investigated. Whey was added to juices to promote the microbial growth. Fermentation led to the increase of the radical scavenging activity (up to 40%) and significant inhibition of the linoleic acid peroxidation. The three fermented juices showing the highest antioxidant activity, and the corresponding unfermented controls, were further characterized. In detail, the cytotoxicity and the protective role toward artificially induced oxidative stress were determined on murine fibroblasts Balb 3T3 through the determination of the viability and the intracellular ROS (reactive oxygen species) scavenging activity (RSA). RSA reached values of ca. 70% in fermented juices, being ca. 40% higher than the unfermented and control samples. Phenols compounds of the pomegranate juices obtained from accessions "Bitonto Piscina," "Sanrà nero," and "Wonderful (reference cultivar) were analyzed through ultrahigh pressure liquid chromatography coupled with mass spectrometry, showing that a marked increase (up to 60%) of the ellagitannins derivatives occurred during fermentation. Sensory analysis showed suitability of the fermented juices to be used as beverage and food ingredient.
Collapse
Affiliation(s)
- E. Pontonio
- Department of Soil, Plant, and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - M. Montemurro
- Department of Soil, Plant, and Food Science, University of Bari Aldo Moro, Bari, Italy
| | | | | | - A. Trani
- CIHEAM-MAIB, Mediterranean Agronomic Institute of Bari, Bari, Italy
| | - G. Ferrara
- Department of Soil, Plant, and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - A. Mazzeo
- Department of Soil, Plant, and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - M. Gobbetti
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - C. G. Rizzello
- Department of Soil, Plant, and Food Science, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
31
|
Scaioli E, Belluzzi A, Ricciardiello L, Del Rio D, Rotondo E, Mena P, Derlindati E, Danesi F. Pomegranate juice to reduce fecal calprotectin levels in inflammatory bowel disease patients with a high risk of clinical relapse: Study protocol for a randomized controlled trial. Trials 2019; 20:327. [PMID: 31171016 PMCID: PMC6554985 DOI: 10.1186/s13063-019-3321-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 03/25/2019] [Indexed: 12/12/2022] Open
Abstract
Background Inflammatory bowel disease (IBD) is a chronic condition characterized by recurrent episodes of intestinal inflammation and is thought to be related to an autoimmune reaction to genetic and environmental factors. Although evidence indicates that a polyphenolic-rich diet plays an important role in modulating aspects of chronic inflammation, few studies have focused on the effect of ellagitannin (ET)-rich food consumption on long-term remission maintenance in IBD patients with a high risk of clinical relapse. Therefore, we hypothesize that supplementation with a pomegranate juice, a naturally rich source of ETs, could significantly modulate the markers of mucosal and systemic inflammation relative to a control group receiving a placebo. Methods/design This double-blind, randomized controlled trial includes patients with IBD involving the colorectum who have been in stable therapy for at least the three previous months and have a high risk of clinical relapse. Participants are randomly allocated to one of two groups: active supplementation (125 mL of cv. Wonderful pomegranate juice) or placebo (125 mL) taken twice daily for 12 weeks. The primary outcome is changes in the fecal neutrophil-derived protein calprotectin, a surrogate marker of mucosal improvement, between the two groups from baseline to 12 weeks later. The secondary outcomes include transcriptomic changes in peripheral blood mononuclear cells and intestinal biopsies and changes in circulating inflammatory markers and trimethylamine-N-oxide levels. Pomegranate ET-derived metabolites are identified and quantified in plasma and urine samples. Discussion The results will provide information on the possible reduction of fecal calprotectin levels following the consumption of pomegranate juice. The findings will also show the in vivo metabolism of pomegranate ETs. Finally, the effect of 12-week pomegranate juice consumption on local and systemic inflammatory markers will be elucidated, which will likely provide additional insights into the maintenance of remission in IBD patients. Trial registration ClinicalTrials.gov, NCT03000101. Registered on 21 December 2016. Electronic supplementary material The online version of this article (10.1186/s13063-019-3321-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Eleonora Scaioli
- Gastroenterological Unit, Department of Medical and Surgical Sciences, University of Bologna, Via Massarenti 9, 40138, Bologna, Italy
| | - Andrea Belluzzi
- Gastroenterological Unit, St. Orsola-Malpighi Hospital, Via Massarenti 9, 40138, Bologna, Italy
| | - Luigi Ricciardiello
- Gastroenterological Unit, Department of Medical and Surgical Sciences, University of Bologna, Via Massarenti 9, 40138, Bologna, Italy
| | - Daniele Del Rio
- Department of Veterinary Science, University of Parma, Strada del Taglio, 10, 43126, Parma, Italy
| | - Enrica Rotondo
- Human Nutrition Unit, Department of Agricultural and Food Sciences, Campus of Food Science, University of Bologna, Piazza Goidanich, 60, 47521, Cesena, FC, Italy
| | - Pedro Mena
- Human Nutrition Unit, Department of Food and Drug, University of Parma, Medical School, Building C, Via Volturno 39, 43125, Parma, Italy
| | - Eleonora Derlindati
- Human Nutrition Unit, Department of Agricultural and Food Sciences, Campus of Food Science, University of Bologna, Piazza Goidanich, 60, 47521, Cesena, FC, Italy.,Endocrinology and Metabolism Unit, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126, Parma, Italy
| | - Francesca Danesi
- Human Nutrition Unit, Department of Agricultural and Food Sciences, Campus of Food Science, University of Bologna, Piazza Goidanich, 60, 47521, Cesena, FC, Italy.
| |
Collapse
|
32
|
Zielinska D, Laparra-Llopis JM, Zielinski H, Szawara-Nowak D, Giménez-Bastida JA. Role of Apple Phytochemicals, Phloretin and Phloridzin, in Modulating Processes Related to Intestinal Inflammation. Nutrients 2019; 11:E1173. [PMID: 31130634 PMCID: PMC6566941 DOI: 10.3390/nu11051173] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 12/24/2022] Open
Abstract
Plant-derived food consumption has gained attention as potential intervention for the improvement of intestinal inflammatory diseases. Apple consumption has been shown to be effective at ameliorating intestinal inflammation symptoms. These beneficial effects have been related to (poly)phenols, including phloretin (Phlor) and its glycoside named phloridzin (Phldz). To deepen the modulatory effects of these molecules we studied: i) their influence on the synthesis of proinflammatory molecules (PGE2, IL-8, IL-6, MCP-1, and ICAM-1) in IL-1β-treated myofibroblasts of the colon CCD-18Co cell line, and ii) the inhibitory potential of the formation of advanced glycation end products (AGEs). The results showed that Phlor (10-50 μM) decreased the synthesis of PGE2 and IL-8 and the formation of AGEs by different mechanisms. It is concluded that Phlor and Phldz, compounds found exclusively in apples, are positively associated with potential beneficial effects of apple consumption.
Collapse
Affiliation(s)
- Danuta Zielinska
- Department of Chemistry, University of Warmia and Mazury, 10-727 Olsztyn, Poland.
| | - José Moisés Laparra-Llopis
- Group of Molecular Immunonutrition in Cancer, Madrid Institute for Advanced Studies in Food (IMDEA-Food), 28049 Madrid, Spain.
| | - Henryk Zielinski
- Institute of Animal Reproduction and Food Research, Department of Chemistry and Biodynamics of Food, Polish Academy of Science, 10-748 Olsztyn, Poland.
| | - Dorota Szawara-Nowak
- Institute of Animal Reproduction and Food Research, Department of Chemistry and Biodynamics of Food, Polish Academy of Science, 10-748 Olsztyn, Poland.
| | - Juan Antonio Giménez-Bastida
- Institute of Animal Reproduction and Food Research, Department of Chemistry and Biodynamics of Food, Polish Academy of Science, 10-748 Olsztyn, Poland.
- Group on Quality, Safety and Bioactivity of Plant Foods, Centro de Edafología y Biología Aplicada del Segura (CSIC), 30100 Murcia, Spain.
| |
Collapse
|
33
|
Gong Z, Huang J, Xu B, Ou Z, Zhang L, Lin X, Ye X, Kong X, Long D, Sun X, He X, Xu L, Li Q, Xuan A. Urolithin A attenuates memory impairment and neuroinflammation in APP/PS1 mice. J Neuroinflammation 2019; 16:62. [PMID: 30871577 PMCID: PMC6417212 DOI: 10.1186/s12974-019-1450-3] [Citation(s) in RCA: 177] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 03/05/2019] [Indexed: 12/30/2022] Open
Abstract
Background Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized by an abnormal accumulation of amyloid-β (Aβ) plaques, neuroinflammation, and impaired neurogenesis. Urolithin A (UA), a gut-microbial metabolite of ellagic acid, has been reported to exert anti-inflammatory effects in the brain. However, it is unknown whether UA exerts its properties of anti-inflammation and neuronal protection in the APPswe/PS1ΔE9 (APP/PS1) mouse model of AD. Methods Morris water maze was used to detect the cognitive function. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay was performed to detect neuronal apoptosis. Immunohistochemistry analyzed the response of glia, Aβ deposition, and neurogenesis. The expression of inflammatory mediators were measured by enzyme-linked immunosorbent assay (ELISA) and quantitative real-time polymerase chain reaction (qRT-PCR). The modulating effects of UA on cell signaling pathways were assayed by Western blotting. Results We demonstrated that UA ameliorated cognitive impairment, prevented neuronal apoptosis, and enhanced neurogenesis in APP/PS1 mice. Furthermore, UA attenuated Aβ deposition and peri-plaque microgliosis and astrocytosis in the cortex and hippocampus. We also found that UA affected critical cell signaling pathways, specifically by enhancing cerebral AMPK activation, decreasing the activation of P65NF-κB and P38MAPK, and suppressing Bace1 and APP degradation. Conclusions Our results indicated that UA imparted cognitive protection by protecting neurons from death and triggering neurogenesis via anti-inflammatory signaling in APP/PS1 mice, suggesting that UA might be a promising therapeutic drug to treat AD.
Collapse
Affiliation(s)
- Zhuo Gong
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China
| | - Jingyi Huang
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China
| | - Biao Xu
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China
| | - Zhenri Ou
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China
| | - Le Zhang
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China
| | - Xiaohong Lin
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China
| | - Xiujuan Ye
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China
| | - Xuejian Kong
- Department of Neurology of the Sixth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511518, China
| | - Dahong Long
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China
| | - Xiangdong Sun
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China
| | - Xiaosong He
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China
| | - Liping Xu
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China
| | - Qingqing Li
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China
| | - Aiguo Xuan
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, 510260, China.
| |
Collapse
|
34
|
Zheng J, Heber D, Wang M, Gao C, Heymsfield SB, Martin RJ, Greenway FL, Finley JW, Burton JH, Johnson WD, Enright FM, Keenan MJ, Li Z. Pomegranate juice and extract extended lifespan and reduced intestinal fat deposition in Caenorhabditis elegans. INT J VITAM NUTR RES 2019; 87:149-158. [PMID: 31084484 DOI: 10.1024/0300-9831/a000570] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Pomegranate juice with a high content of polyphenols, pomegranate extract, ellagic acid, and urolithin A, have anti-oxidant and anti-obesity effects in humans. Pomegranate juice extends lifespan of Drosophila melanogaster. Caenorhabditis elegans (C. elegans) (n = 6) compared to the control group in each treatment, lifespan was increased by pomegranate juice in wild type (N2, 56 %, P < 0.001) and daf-16 mutant (daf-16(mgDf50)I) (18 %, P = 0.00012), by pomegranate extract in N2 (28 %, P = 0.00004) and in daf-16(mgDf50)I (10 %, P < 0.05), or by ellagic acid (11 %, P < 0.05). Pomegranate juice reduced intestinal fat deposition (IFD) in C. elegans (n = 10) N2 (-68 %, P = 0.0003) or in the daf-16(mgDf50)I (-33 %, P = 0.0034). The intestinal fat deposition was increased by pomegranate extract in N2 (137 %, P < 0.0138) and in daf-16(mgDf50)I (26 %, P = 0.0225), by ellagic acid in N2 (66 %, P < 0.0001) and in daf-16(mgDf50)I (74 %, P < 0.0001), or by urolithin A in N2 (57 %, P = 0.0039) and in daf-16(mgDf50)I (43 %, P = 0.0001). These effects were partially mediated by the daf-16 pathway. The data may offer insights to human aging and obesity due to homology with C. elegans.
Collapse
Affiliation(s)
- Jolene Zheng
- 1 Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA.,2 School of Nutrition and Food Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - David Heber
- 3 Department of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Mingming Wang
- 2 School of Nutrition and Food Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Chenfei Gao
- 2 School of Nutrition and Food Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Steven B Heymsfield
- 1 Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Roy J Martin
- 4 Department of Nutrition, University of California, Davis, CA, USA
| | - Frank L Greenway
- 1 Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - John W Finley
- 2 School of Nutrition and Food Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Jeffrey H Burton
- 1 Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - William D Johnson
- 1 Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Frederick M Enright
- 5 School of Animal Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Michael J Keenan
- 1 Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA.,2 School of Nutrition and Food Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Zhaoping Li
- 3 Department of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
35
|
Giménez-Bastida JA, Laparra-Llopis JM, Baczek N, Zielinski H. Buckwheat and buckwheat enriched products exert an anti-inflammatory effect on the myofibroblasts of colon CCD-18Co. Food Funct 2018; 9:3387-3397. [PMID: 29870039 PMCID: PMC6597957 DOI: 10.1039/c8fo00193f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Buckwheat (BW) constitutes a good source of bioactive components that show anti-inflammatory effects in vitro and in vivo. The use of functional foods in the prevention and treatment of inflammatory bowel diseases (IBDs) has aroused increasing interest. This study investigates the effect of in vitro digested BW and BW-enriched products (BW-enriched wheat breads, roasted BW groats -fermented and non-fermented-, and BW sprouts) on colon myofibroblasts, the cells involved in the regulation of inflammatory response in the intestine. The cells were treated with different digested-BW products, alone or together with TNF-α (20 ng mL-1), and the effects on the cell migration, mitochondrial membrane potential and cell cycle, processes altered during intestinal inflammation, were investigated. A significant reduction in TNF-α-induced migration (25.5%, p < 0.05) and attenuation of the TNF-α-altered cell cycle (p < 0.05) was observed in myofibroblasts treated with BW-enriched white wheat bread. These results contribute to extend the beneficial effects derived from BW bioactive compounds, and suggest that BW consumption can exert beneficial effects on IBDs.
Collapse
Affiliation(s)
- J A Giménez-Bastida
- Department of Pharmacology. Vanderbilt University School of Medicine, RRB 514, 23rd Ave. S. at Pierce, Nashville, TN 37232-6602, USA
| | | | | | | |
Collapse
|
36
|
Zhao SS, Ma DX, Zhu Y, Zhao JH, Zhang Y, Chen JQ, Sheng ZL. Antidiarrheal effect of bioactivity-guided fractions and bioactive components of pomegranate (Punica granatum L.) peels. Neurogastroenterol Motil 2018; 30:e13364. [PMID: 29717519 DOI: 10.1111/nmo.13364] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 03/28/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND Pomegranate peels have been widely used to treat diarrhea in China. The antidiarrheal activities of aqueous extracts of pomegranate peels have been evaluated. However, there have not been any bioactivity-guided fractionation studies on the antidiarrheal effect to identify the bioactive components of the extract. METHODS Bioactivity-guided fractionation of an aqueous extract of pomegranate peels was performed using different solvents of increasing polarity, generating fractions dissolved in ethyl acetate, n-butyl alcohol, and the residual fraction. The principal chemical composition of the active fraction was analyzed by HPLC/ESI-MS. KEY RESULTS Fecal frequencies revealed that only the ethyl acetate fraction possessed significant antidiarrheal activity. Furthermore, administration of the ethyl acetate fraction at 100, 200, and 400 mg/kg significantly reduced gastrointestinal transit in charcoal meal tests in mice. It also significantly inhibited castor oil-induced enteropooling compared to control animals. Histopathological analysis revealed that small intestine lesions of mice treated with the ethyl acetate fraction were alleviated compared to those in mice treated with castor oil. The ethyl acetate fraction was found to be composed mainly of punicalagin, corilagin, and ellagic acid, and a combination of these compounds could mediate the antidiarrheal activities. CONCLUSION AND INFERENCES Our study describes the protective effects of pomegranate peels against castor oil-induced diarrhea. The findings showed that the ethyl acetate fraction was the active fraction of pomegranate peels, of which punicalagin, corilagin, and ellagic acid were responsible for the antidiarrheal effect of aqueous extracts.
Collapse
Affiliation(s)
- S-S Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - D-X Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Y Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - J-H Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Y Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - J-Q Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Z-L Sheng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| |
Collapse
|
37
|
Yoshida T, Yoshimura M, Amakura Y. Chemical and Biological Significance of Oenothein B and Related Ellagitannin Oligomers with Macrocyclic Structure. Molecules 2018; 23:E552. [PMID: 29498647 PMCID: PMC6017083 DOI: 10.3390/molecules23030552] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 02/26/2018] [Accepted: 02/26/2018] [Indexed: 12/03/2022] Open
Abstract
In 1990, Okuda et al. reported the first isolation and characterization of oenothein B, a unique ellagitannin dimer with a macrocyclic structure, from the Oenothera erythrosepala leaves. Since then, a variety of macrocyclic analogs, including trimeric-heptameric oligomers have been isolated from various medicinal plants belonging to Onagraceae, Lythraceae, and Myrtaceae. Among notable in vitro and in vivo biological activities reported for oenothein B are antioxidant, anti-inflammatory, enzyme inhibitory, antitumor, antimicrobial, and immunomodulatory activities. Oenothein B and related oligomers, and/or plant extracts containing them have thus attracted increasing interest as promising targets for the development of chemopreventive agents of life-related diseases associated with oxygen stress in human health. In order to better understand the significance of this type of ellagitannin in medicinal plants, this review summarizes (1) the structural characteristics of oenothein B and related dimers; (2) the oxidative metabolites of oenothein B up to heptameric oligomers; (3) the distribution of oenotheins and other macrocyclic analogs in the plant kingdom; and (4) the pharmacological activities hitherto documented for oenothein B, including those recently found by our laboratory.
Collapse
Affiliation(s)
- Takashi Yoshida
- College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime 790-8578, Japan.
- Okayama University, Okayama 701-1152, Japan.
| | - Morio Yoshimura
- College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime 790-8578, Japan.
| | - Yoshiaki Amakura
- College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime 790-8578, Japan.
| |
Collapse
|
38
|
Rupiani S, Guidotti L, Manerba M, Di Ianni L, Giacomini E, Falchi F, Di Stefano G, Roberti M, Recanatini M. Synthesis of natural urolithin M6, a galloflavin mimetic, as a potential inhibitor of lactate dehydrogenase A. Org Biomol Chem 2018; 14:10981-10987. [PMID: 27827510 DOI: 10.1039/c6ob01977c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Glycolysis is the main route for energy production in tumors. LDH-A is a key enzyme of this process and its inhibition represents an attractive strategy to hamper cancer cell metabolism. Galloflavin is a reliable LDH-A inhibitor as previously identified by us; however, its poor physicochemical properties and chemical tractability render it unsuitable for further development. Therefore, a rational design was undertaken with the aim to reproduce the pharmacophore of galloflavin on simpler, potentially more soluble and synthetic accessible scaffolds. Following a process of structural simplification, natural urolithin M6 (UM6), which is an ellagitannin metabolite produced by gut microbiota, was identified as a putative galloflavin mimetic. In the present study, the synthesis of UM6 is described for the first time. An efficient synthetic pathway has been developed, which involved five steps from readily accessible starting materials. The key reaction steps, a Suzuki coupling and an intramolecular C-H oxygenation, have been optimized to improve the synthetic feasibility and provide the best conditions in terms of reaction time and yield. Moreover, this route would be suitable to obtain other analogs for SAR studies. Preliminary biological tests revealed that UM6 was able to smoothly reproduce the behavior of galloflavin, confirming that our approach was successful in providing a new and accessible structure in the search for new LDH-A inhibitors.
Collapse
Affiliation(s)
- Sebastiano Rupiani
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy.
| | - Laura Guidotti
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy.
| | - Marcella Manerba
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Via S. Giacomo 14, 40126 Bologna, Italy
| | - Lorenza Di Ianni
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Via S. Giacomo 14, 40126 Bologna, Italy
| | - Elisa Giacomini
- CompuNet, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genova, Italy
| | - Federico Falchi
- CompuNet, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genova, Italy
| | - Giuseppina Di Stefano
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Via S. Giacomo 14, 40126 Bologna, Italy
| | - Marinella Roberti
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy.
| | - Maurizio Recanatini
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy.
| |
Collapse
|
39
|
Xu J, Yuan C, Wang G, Luo J, Ma H, Xu L, Mu Y, Li Y, Seeram NP, Huang X, Li L. Urolithins Attenuate LPS-Induced Neuroinflammation in BV2Microglia via MAPK, Akt, and NF-κB Signaling Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:571-580. [PMID: 29336147 DOI: 10.1021/acs.jafc.7b03285] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Emerging data suggest that urolithins, gut microbiota metabolites of ellagitannins, contribute toward multiple health benefits attributed to ellagitannin-rich foods, including walnuts, red raspberry, strawberry, and pomegranate. However, there is limited data on whether the potential neuroprotective effects of these ellagitannin-rich foods are mediated by urolithins. Herein, we evaluated the potential mechanisms of antineuroinflammatory effects of urolithins (urolithins A, B, and C; 8-methyl-O-urolithin A; and 8,9-dimethyl-O-urolithin C) in BV2 murine microglia in vitro. Nitrite analysis and qRT-PCR suggested that urolithins A and B reduced NO levels and suppressed mRNA levels of pro-inflammatory genes of TNF-α, IL-6, IL-1β, iNOS, and COX-2 in LPS-treated microglia. Western blot revealed that urolithins A and B decreased phosphorylation levels of Erk1/2, p38 MAPK, and Akt, prevented IκB-α phosphorylation and degradation, and inhibited NF-κB p65 subunit phosphorylation and nuclear translocation in LPS-stimulated microglia. Our results indicated that urolithins A and B attenuated LPS-induced inflammation in BV2 microglia, which may be mediated by inhibiting NF-κB, MAPKs (p38 and Erk1/2), and Akt signaling pathway activation. The antineuroinflammatory activities of urolithins support their role in the potential neuroprotective effects reported for ellagitannin-rich foods warranting further in vivo studies on these ellagitannin gut microbial derived metabolites.
Collapse
Affiliation(s)
- Jialin Xu
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University , Shenyang 110819, People's Republic of China
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University , Shenyang 110819, People's Republic of China
| | - Chunhui Yuan
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University , Shenyang 110819, People's Republic of China
| | - Guihua Wang
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University , Shenyang 110819, People's Republic of China
| | - Jiaming Luo
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University , Shenyang 110819, People's Republic of China
| | - Hang Ma
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy & George and Anne Ryan Institute for Neuroscience, University of Rhode Island , Kingston, Rhode Island 02881, United States
| | - Li Xu
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University , Shenyang 110819, People's Republic of China
| | - Yu Mu
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University , Shenyang 110819, People's Republic of China
| | - Yuanyuan Li
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University , Shenyang 110819, People's Republic of China
| | - Navindra P Seeram
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy & George and Anne Ryan Institute for Neuroscience, University of Rhode Island , Kingston, Rhode Island 02881, United States
| | - Xueshi Huang
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University , Shenyang 110819, People's Republic of China
| | - Liya Li
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University , Shenyang 110819, People's Republic of China
| |
Collapse
|
40
|
Sánchez-González C, Ciudad CJ, Noé V, Izquierdo-Pulido M. Health benefits of walnut polyphenols: An exploration beyond their lipid profile. Crit Rev Food Sci Nutr 2018; 57:3373-3383. [PMID: 26713565 DOI: 10.1080/10408398.2015.1126218] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Walnuts are commonly found in our diet and have been recognized for their nutritious properties for a long time. Traditionally, walnuts have been known for their lipid profile, which has been linked to a wide array of biological properties and health-promoting effects. In addition to essential fatty acids, walnuts contain a variety of other bioactive compounds, such as vitamin E and polyphenols. Among common foods and beverages, walnuts represent one of the most important sources of polyphenols, hence their effect over human health warrants attention. The main polyphenol in walnuts is pedunculagin, an ellagitannin. After consumption, ellagitannins are hydrolyzed to release ellagic acid, which is converted by gut microflora to urolithin A and other derivatives such as urolithins B, C, and D. Ellagitannins possess well known antioxidant and anti-inflammatory bioactivity, and several studies have assessed the potential role of ellagitannins against disease initiation and progression, including cancer, cardiovascular, and neurodegenerative diseases. The purpose of this review is to summarize current available information relating to the potential effect of walnut polyphenols in health maintenance and disease prevention.
Collapse
Affiliation(s)
- Claudia Sánchez-González
- a Department of Nutrition, Food Science and Gastronomy , Facultad de Farmacia y Ciencias de la Alimentación, Universidad de Barcelona , Barcelona , Spain
| | - Carlos J Ciudad
- b Department of Biochemistry Physiology, Facultad de Farmacia y Ciencias de la Alimentación , Universidad de Barcelona, Barcelona , Spain
| | - Véronique Noé
- b Department of Biochemistry Physiology, Facultad de Farmacia y Ciencias de la Alimentación , Universidad de Barcelona, Barcelona , Spain
| | - Maria Izquierdo-Pulido
- a Department of Nutrition, Food Science and Gastronomy , Facultad de Farmacia y Ciencias de la Alimentación, Universidad de Barcelona , Barcelona , Spain
| |
Collapse
|
41
|
Fujimura Y, Miura D, Tachibana H. A Phytochemical-Sensing Strategy Based on Mass Spectrometry Imaging and Metabolic Profiling for Understanding the Functionality of the Medicinal Herb Green Tea. Molecules 2017; 22:molecules22101621. [PMID: 28953237 PMCID: PMC6151411 DOI: 10.3390/molecules22101621] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 09/25/2017] [Accepted: 09/25/2017] [Indexed: 11/25/2022] Open
Abstract
Low-molecular-weight phytochemicals have health benefits and reduce the risk of diseases, but the mechanisms underlying their activities have remained elusive because of the lack of a methodology that can easily visualize the exact behavior of such small molecules. Recently, we developed an in situ label-free imaging technique, called mass spectrometry imaging, for visualizing spatially-resolved biotransformations based on simultaneous mapping of the major bioactive green tea polyphenol and its phase II metabolites. In addition, we established a mass spectrometry-based metabolic profiling technique capable of evaluating the bioactivities of diverse green tea extracts, which contain multiple phytochemicals, by focusing on their compositional balances. This methodology allowed us to simultaneously evaluate the relative contributions of the multiple compounds present in a multicomponent system to its bioactivity. This review highlights small molecule-sensing techniques for visualizing the complex behaviors of herbal components and linking such information to an enhanced understanding of the functionalities of multicomponent medicinal herbs.
Collapse
Affiliation(s)
- Yoshinori Fujimura
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan.
| | - Daisuke Miura
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan.
| | - Hirofumi Tachibana
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan.
| |
Collapse
|
42
|
Danesi F, Ferguson LR. Could Pomegranate Juice Help in the Control of Inflammatory Diseases? Nutrients 2017; 9:nu9090958. [PMID: 28867799 PMCID: PMC5622718 DOI: 10.3390/nu9090958] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 08/19/2017] [Accepted: 08/26/2017] [Indexed: 12/13/2022] Open
Abstract
Fruits rich in polyphenols, such as pomegranates, have been shown to have health benefits relating to their antioxidant and anti-inflammatory properties. Using data obtained from PubMed and Scopus, this article provides a brief overview of the therapeutic effects of pomegranate on chronic inflammatory diseases (CID) such as inflammatory bowel disease (IBD), rheumatoid arthritis (RA), metabolic and cardiovascular disorders, and other inflammatory-associated conditions, with an emphasis on fruit-derived juices. Most studies regarding the effects of pomegranate juice have focused on its ability to treat prostate cancer, diabetes, and atherosclerosis. However, pomegranate juice has shown therapeutic potential for many other illnesses. For instance, a small number of human clinical trials have highlighted the positive effects of pomegranate juice and extract consumption on cardiovascular health. The beneficial effects of pomegranate components have also been observed in animal models for respiratory diseases, RA, neurodegenerative disease, and hyperlipidaemia. Furthermore, there exists strong evidence from rodent models suggesting that pomegranate juice can be used to effectively treat IBD, and as an anti-inflammatory agent to treat CID. The effects of pomegranate intake should be further investigated by conducting larger and more well-defined human trials.
Collapse
Affiliation(s)
- Francesca Danesi
- Department of Agri-Food Science and Technology (DISTAL), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy.
| | - Lynnette R Ferguson
- Discipline of Nutrition and Dietetics, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
43
|
Yin P, Zhang J, Yan L, Yang L, Sun L, Shi L, Ma C, Liu Y. Urolithin C, a gut metabolite of ellagic acid, induces apoptosis in PC12 cells through a mitochondria-mediated pathway. RSC Adv 2017. [DOI: 10.1039/c7ra01548h] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Urolithin C includes apoptosis in PC12 cells through a mitochondria-mediated pathway.
Collapse
Affiliation(s)
- Peipei Yin
- National Engineering Laboratory for Tree Breeding
- College of Biological Sciences and Biotechnology
- Beijing Forestry University
- Beijing 100083
- China
| | - Jianwei Zhang
- National Engineering Laboratory for Tree Breeding
- College of Biological Sciences and Biotechnology
- Beijing Forestry University
- Beijing 100083
- China
| | - Linlin Yan
- National Engineering Laboratory for Tree Breeding
- College of Biological Sciences and Biotechnology
- Beijing Forestry University
- Beijing 100083
- China
| | - Lingguang Yang
- National Engineering Laboratory for Tree Breeding
- College of Biological Sciences and Biotechnology
- Beijing Forestry University
- Beijing 100083
- China
| | - Liwei Sun
- National Engineering Laboratory for Tree Breeding
- College of Biological Sciences and Biotechnology
- Beijing Forestry University
- Beijing 100083
- China
| | - Lingling Shi
- National Engineering Laboratory for Tree Breeding
- College of Biological Sciences and Biotechnology
- Beijing Forestry University
- Beijing 100083
- China
| | - Chao Ma
- National Engineering Laboratory for Tree Breeding
- College of Biological Sciences and Biotechnology
- Beijing Forestry University
- Beijing 100083
- China
| | - Yujun Liu
- National Engineering Laboratory for Tree Breeding
- College of Biological Sciences and Biotechnology
- Beijing Forestry University
- Beijing 100083
- China
| |
Collapse
|
44
|
Abstract
Colorectal cancer is one of the so-called westernized diseases and the second leading cause of cancer death worldwide. On the basis of global epidemiological and scientific studies, evidence suggests that the risk of colorectal cancer is increased by processed and unprocessed meat consumption but suppressed by fibre, and that food composition affects colonic health and cancer risk via its effects on colonic microbial metabolism. The gut microbiota can ferment complex dietary residues that are resistant to digestion by enteric enzymes. This process provides energy for the microbiota but culminates in the release of short-chain fatty acids including butyrate, which are utilized for the metabolic needs of the colon and the body. Butyrate has a remarkable array of colonic health-promoting and antineoplastic properties: it is the preferred energy source for colonocytes, it maintains mucosal integrity and it suppresses inflammation and carcinogenesis through effects on immunity, gene expression and epigenetic modulation. Protein residues and fat-stimulated bile acids are also metabolized by the microbiota to inflammatory and/or carcinogenic metabolites, which increase the risk of neoplastic progression. This Review will discuss the mechanisms behind these microbial metabolite effects, which could be modified by diet to achieve the objective of preventing colorectal cancer in Western societies.
Collapse
|
45
|
Rodriguez J, Caille O, Ferreira D, Francaux M. Pomegranate extract prevents skeletal muscle of mice against wasting induced by acute TNF-α injection. Mol Nutr Food Res 2016; 61. [PMID: 27804206 DOI: 10.1002/mnfr.201600169] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 10/27/2016] [Accepted: 10/27/2016] [Indexed: 01/28/2023]
Abstract
SCOPE We investigated whether punicalagin-rich pomegranate extract (PE) protects skeletal muscle of mice against inflammation induced by an acute injection of TNF-α. RESULTS Mice fed with PE or standard chow during 6 wk were injected with TNF-α (100 ng/g) or vehicle and sacrificed 6 h later. Prior supplementation with PE prevented the loss of tibialis anterior mass induced by TNF-α. In skeletal muscle, the activation of the NF-κB signaling and the induction of cytokines mRNA were reduced in mice having received PE. In those mice, the activity of the Akt/mTORC1 pathway and the protein synthesis were maintained after TNF-α injection whereas markers involved in the ubiquitin proteasome pathway were less activated. As urolithin A was the only punicalagin metabolite detectable in plasma of mice supplemented with PE, we performed in vitro experiments using a murine cell line (C2C12) to provide evidence that urolithin A is likely the active compound protecting skeletal muscle against TNF-α-induced inflammation. CONCLUSION (FOCUS ON NUTRITIONAL RELEVANCE) These results suggest that supplementation with a punicalagin-rich PE may protect skeletal muscle against an acute inflammation.
Collapse
Affiliation(s)
- Julie Rodriguez
- Institute of Neuroscience, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Olivier Caille
- Institut Meurice, Haute Ecole Lucia de Brouckère, Anderlecht, Belgium
| | - Daneel Ferreira
- Department of BioMolecular Sciences, Division of Pharmacognosy, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, MS, USA
| | - Marc Francaux
- Institute of Neuroscience, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
46
|
Giménez-Bastida JA, Zielinski H, Piskula M, Zielinska D, Szawara-Nowak D. Buckwheat bioactive compounds, their derived phenolic metabolites and their health benefits. Mol Nutr Food Res 2016; 61. [PMID: 27709826 PMCID: PMC6599964 DOI: 10.1002/mnfr.201600475] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 09/09/2016] [Accepted: 09/29/2016] [Indexed: 12/28/2022]
Abstract
SCOPE Buckwheat (BW) consumption has been associated with a broad range of health benefits: antioxidant, anti-inflammatory and anticancer. These beneficial effects have been partially related to the presence of flavonoids. However, some of these compounds (i.e., rutin and quercetin) are metabolized in the gastrointestinal tract generating derived phenolic metabolites. In this study, we investigated the biological activity of rutin (Ru), quercetin (Q) an their derived phenolic metabolites 3,4-dihydroxyphenylacetic acid (3,4-DHPAA), 3-hydroxyphenylacetic acid (3-HPAA), and 4-hydroxy-3-methoxyphenylacetic acid (homovanillic acid, HVA). METHODS AND RESULTS Q showed the highest antioxidant and reducing activity, and Ru the maximum chelating activity (85.33%). Antioxidant activity of 3,4-DHPAA was 5-fold higher than that of HVA, whereas their reducing activity was similar. The formation of methylglyoxal (MGO)-BSA and glucose-BSA (advanced glycation end products) was inhibited by Ru (98.5 and 92.7%), Q (95.6 and 89.1%) and 3,4-DHPPA (84.4.6 and 77.5%). Furthermore, Q (10-50 μM) and Ru (1-50 μM) downregulated the release of PGE2 , IL-8 and MCP-1, molecules involved in the inflammatory response, in IL1β-inflamed myofibroblasts of colon CCD-18Co. CONCLUSION This study suggests that BW phytochemicals and their phenolic metabolites may be responsible for the beneficial effects against chronic diseases attributed to BW consumption.
Collapse
Affiliation(s)
- Juan Antonio Giménez-Bastida
- Department of Chemistry and Biodynamics of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, Olsztyn, Poland.,Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Henryk Zielinski
- Department of Chemistry and Biodynamics of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, Olsztyn, Poland
| | - Mariusz Piskula
- Department of Chemistry and Biodynamics of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, Olsztyn, Poland
| | - Danuta Zielinska
- Department of Chemistry, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Dorota Szawara-Nowak
- Department of Chemistry and Biodynamics of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, Olsztyn, Poland
| |
Collapse
|
47
|
Bayle M, Roques C, Marion B, Audran M, Oiry C, Bressolle-Gomeni FM, Cros G. Development and validation of a liquid chromatography-electrospray ionization-tandem mass spectrometry method for the determination of urolithin C in rat plasma and its application to a pharmacokinetic study. J Pharm Biomed Anal 2016; 131:33-39. [DOI: 10.1016/j.jpba.2016.07.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 07/26/2016] [Accepted: 07/29/2016] [Indexed: 01/15/2023]
|
48
|
Gomez-Arango LF, Barrett HL, McIntyre HD, Callaway LK, Morrison M, Dekker Nitert M. Increased Systolic and Diastolic Blood Pressure Is Associated With Altered Gut Microbiota Composition and Butyrate Production in Early Pregnancy. Hypertension 2016; 68:974-81. [PMID: 27528065 DOI: 10.1161/hypertensionaha.116.07910] [Citation(s) in RCA: 273] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 07/13/2016] [Indexed: 12/11/2022]
Abstract
The risk of developing pregnancy-induced hypertension and preeclampsia is higher in obese pregnant women. In obesity, the composition of the gut microbiota is altered. Obesity is also associated with low-grade inflammation. Metabolites from the gut microbiota may contribute to both hypertension and inflammation. The aim of this study is to investigate whether the composition of the gut microbiota in overweight and obese pregnant women is associated with blood pressure and levels of plasminogen activator inhibitor-1. The composition of the gut microbiota was determined with 16S ribosomal RNA sequencing in 205 women at 16 weeks gestation from the SPRING study (the Study of Probiotics in Gestational Diabetes). Expression of butyrate-producing genes in the gut microbiota was assessed by real-time polymerase chain reaction. Plasminogen activator inhibitor-1 levels were measured in fasting serum of a subset of 70 women. Blood pressure was slightly but significantly higher in obese compared with overweight women. The abundance of the butyrate-producing genus Odoribacter was inversely correlated with systolic blood pressure. Butyrate production capacity was decreased, but plasminogen activator inhibitor-1 concentrations increased in obese pregnant women. Plasminogen activator inhibitor-1 levels were inversely correlated with expression of butyrate kinase and Odoribacter abundance. This study shows that in overweight and obese pregnant women at 16 weeks gestation, the abundance of butyrate-producing bacteria and butyrate production in the gut microbiota is significantly negatively associated with blood pressure and with plasminogen activator inhibitor-1 levels. Increasing butyrate-producing capacity may contribute to maintenance of normal blood pressure in obese pregnant women.
Collapse
Affiliation(s)
- Luisa F Gomez-Arango
- From the School of Medicine (L.F.G.-A., H.L.B., H.D.M., L.K.C., M.D.N.), UQ Centre for Clinical Research (L.F.G.-A., H.L.B., L.K.C., M.D.N.), Mater Research Institute (H.D.M.), and Diamantina Institute, Faculty of Medicine and Biomedical Sciences (M.M.), The University of Queensland, Brisbane, Australia; and Obstetric Medicine, Royal Brisbane and Women's Hospital, Brisbane, Australia (H.L.B., L.K.C.)
| | - Helen L Barrett
- From the School of Medicine (L.F.G.-A., H.L.B., H.D.M., L.K.C., M.D.N.), UQ Centre for Clinical Research (L.F.G.-A., H.L.B., L.K.C., M.D.N.), Mater Research Institute (H.D.M.), and Diamantina Institute, Faculty of Medicine and Biomedical Sciences (M.M.), The University of Queensland, Brisbane, Australia; and Obstetric Medicine, Royal Brisbane and Women's Hospital, Brisbane, Australia (H.L.B., L.K.C.)
| | - H David McIntyre
- From the School of Medicine (L.F.G.-A., H.L.B., H.D.M., L.K.C., M.D.N.), UQ Centre for Clinical Research (L.F.G.-A., H.L.B., L.K.C., M.D.N.), Mater Research Institute (H.D.M.), and Diamantina Institute, Faculty of Medicine and Biomedical Sciences (M.M.), The University of Queensland, Brisbane, Australia; and Obstetric Medicine, Royal Brisbane and Women's Hospital, Brisbane, Australia (H.L.B., L.K.C.)
| | - Leonie K Callaway
- From the School of Medicine (L.F.G.-A., H.L.B., H.D.M., L.K.C., M.D.N.), UQ Centre for Clinical Research (L.F.G.-A., H.L.B., L.K.C., M.D.N.), Mater Research Institute (H.D.M.), and Diamantina Institute, Faculty of Medicine and Biomedical Sciences (M.M.), The University of Queensland, Brisbane, Australia; and Obstetric Medicine, Royal Brisbane and Women's Hospital, Brisbane, Australia (H.L.B., L.K.C.)
| | - Mark Morrison
- From the School of Medicine (L.F.G.-A., H.L.B., H.D.M., L.K.C., M.D.N.), UQ Centre for Clinical Research (L.F.G.-A., H.L.B., L.K.C., M.D.N.), Mater Research Institute (H.D.M.), and Diamantina Institute, Faculty of Medicine and Biomedical Sciences (M.M.), The University of Queensland, Brisbane, Australia; and Obstetric Medicine, Royal Brisbane and Women's Hospital, Brisbane, Australia (H.L.B., L.K.C.)
| | - Marloes Dekker Nitert
- From the School of Medicine (L.F.G.-A., H.L.B., H.D.M., L.K.C., M.D.N.), UQ Centre for Clinical Research (L.F.G.-A., H.L.B., L.K.C., M.D.N.), Mater Research Institute (H.D.M.), and Diamantina Institute, Faculty of Medicine and Biomedical Sciences (M.M.), The University of Queensland, Brisbane, Australia; and Obstetric Medicine, Royal Brisbane and Women's Hospital, Brisbane, Australia (H.L.B., L.K.C.).
| | | |
Collapse
|
49
|
Spigoni V, Mena P, Cito M, Fantuzzi F, Bonadonna RC, Brighenti F, Dei Cas A, Del Rio D. Effects on Nitric Oxide Production of Urolithins, Gut-Derived Ellagitannin Metabolites, in Human Aortic Endothelial Cells. Molecules 2016; 21:molecules21081009. [PMID: 27490528 PMCID: PMC6274502 DOI: 10.3390/molecules21081009] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 07/19/2016] [Accepted: 07/29/2016] [Indexed: 12/21/2022] Open
Abstract
The consumption of foodstuffs yielding circulating compounds able to maintain endothelial function by improving nitric oxide (NO) bioavailability can be considered as an effective strategy for cardiovascular disease prevention. This work assessed the in vitro effects of urolithin A, urolithin B, and urolithin B-glucuronide, ellagitannin-derived metabolites of colonic origin, on NO release and endothelial NO synthase (eNOS) activation in primary human aortic endothelial cells (HAECs). Urolithins were tested both individually at 15 μM and as a mixture of 5 μM each, at different time points. The biotransformation of these molecules in cell media due to cell metabolism was also evaluated by UHPLC-MSn. The mix of urolithins at 5 μM significantly increased nitrite/nitrate levels following 24 h of incubation, while single urolithins at 15 μM did not modify NO bioavailability. Both the mix of urolithins at 5 μM and urolithin B-glucuronide at 15 μM activated eNOS expression. All urolithins underwent metabolic reactions, but these were limited to conjugation with sulfate moieties. This study represents a step forward in the understanding of cardiovascular health benefits of ellagitannin-rich foodstuffs and backs the idea that peripheral cells may contribute to urolithin metabolism.
Collapse
Affiliation(s)
- Valentina Spigoni
- Endocrinology and Metabolism, Department of Clinical and Experimental Medicine, University of Parma, Parma 43126, Italy.
| | - Pedro Mena
- The Laboratory of Phytochemicals in Physiology, Department of Food Science, University of Parma, Parma 43125, Italy.
| | - Monia Cito
- Endocrinology and Metabolism, Department of Clinical and Experimental Medicine, University of Parma, Parma 43126, Italy.
| | - Federica Fantuzzi
- Endocrinology and Metabolism, Department of Clinical and Experimental Medicine, University of Parma, Parma 43126, Italy.
- Division of Endocrinology, Azienda Ospedaliero-Universitaria of Parma, Parma 43126, Italy.
| | - Riccardo C Bonadonna
- Endocrinology and Metabolism, Department of Clinical and Experimental Medicine, University of Parma, Parma 43126, Italy.
- Division of Endocrinology, Azienda Ospedaliero-Universitaria of Parma, Parma 43126, Italy.
| | - Furio Brighenti
- The Laboratory of Phytochemicals in Physiology, Department of Food Science, University of Parma, Parma 43125, Italy.
| | - Alessandra Dei Cas
- Endocrinology and Metabolism, Department of Clinical and Experimental Medicine, University of Parma, Parma 43126, Italy.
- Division of Endocrinology, Azienda Ospedaliero-Universitaria of Parma, Parma 43126, Italy.
| | - Daniele Del Rio
- The Laboratory of Phytochemicals in Physiology, Department of Food Science, University of Parma, Parma 43125, Italy.
| |
Collapse
|
50
|
Tomás-Barberán FA, González-Sarrías A, García-Villalba R, Núñez-Sánchez MA, Selma MV, García-Conesa MT, Espín JC. Urolithins, the rescue of “old” metabolites to understand a “new” concept: Metabotypes as a nexus among phenolic metabolism, microbiota dysbiosis, and host health status. Mol Nutr Food Res 2016; 61. [DOI: 10.1002/mnfr.201500901] [Citation(s) in RCA: 240] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/25/2016] [Accepted: 04/26/2016] [Indexed: 12/14/2022]
Affiliation(s)
| | | | - Rocío García-Villalba
- Research Group on Quality; Safety; and Bioactivity of Plant Foods; CEBAS-CSIC; Murcia Spain
| | - María A. Núñez-Sánchez
- Research Group on Quality; Safety; and Bioactivity of Plant Foods; CEBAS-CSIC; Murcia Spain
| | - María V. Selma
- Research Group on Quality; Safety; and Bioactivity of Plant Foods; CEBAS-CSIC; Murcia Spain
| | - María T. García-Conesa
- Research Group on Quality; Safety; and Bioactivity of Plant Foods; CEBAS-CSIC; Murcia Spain
| | - Juan Carlos Espín
- Research Group on Quality; Safety; and Bioactivity of Plant Foods; CEBAS-CSIC; Murcia Spain
| |
Collapse
|