1
|
Wang L, Liu R, Yan F, Chen W, Zhang M, Lu Q, Huang B, Liu R. A newly isolated intestinal bacterium involved in the C-ring cleavage of flavan-3-ol monomers and the antioxidant activity of the metabolites. Food Funct 2024; 15:580-590. [PMID: 37927225 DOI: 10.1039/d3fo03601d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Flavan-3-ols are an important class of secondary metabolites in many plants. Their bioavailability and bioactivity are largely determined by the metabolism of intestinal microbiota. However, little is known about the intestinal bacteria involved in the metabolism of flavan-3-ols and the activities of the metabolites. C-ring cleavage is the initial and key step in the metabolism of flavan-3-ol monomers. Here, we isolated a strain from porcine cecum content, which is capable of cleaving the heterocyclic C-ring to form 1-(3',4'-dihydroxyphenyl)-3-(2'',4'',6''-trihydroxyphenyl)propan-2-ol from (+)-catechin and (-)-epicatechin, and 1-(3',4',5'-trihydroxyphenyl)-3-(2'',4'',6''-trihydroxyphenyl) propan-2-ol from (-)-epigallocatechin. The strain was identified as Streptococcus pasteurianus (Streptococcus gallolyticus subsp. Pasteurianus, designated as F32-1) based on 16S rDNA similarity and MALDI-TOF-MS identification. The formation of the C-ring cleavage structural unit by the F32-1 strain enhanced the chemical antioxidant ability and altered the cellular antioxidant activity of (+)-catechin, (-)-epicatechin and (-)-epigallocatechin. Overall, in this study we isolated a new intestinal bacterium involved in the C-ring cleavage of flavan-3-ol monomers and elucidated the bioactivity of their metabolites.
Collapse
Affiliation(s)
- Li Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wu Han 430000, China.
- Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wu Han 430000, China
| | - Ruonan Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wu Han 430000, China.
- Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wu Han 430000, China
| | - Fangfang Yan
- College of Food Science and Technology, Huazhong Agricultural University, Wu Han 430000, China.
- Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wu Han 430000, China
| | - Wanbing Chen
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guang Dong 430073, China
| | - Mo Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wu Han 430000, China.
- Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wu Han 430000, China
| | - Qun Lu
- College of Food Science and Technology, Huazhong Agricultural University, Wu Han 430000, China.
- Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wu Han 430000, China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, China
| | - Bijun Huang
- College of Food Science and Technology, Huazhong Agricultural University, Wu Han 430000, China.
- Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wu Han 430000, China
| | - Rui Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wu Han 430000, China.
- Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wu Han 430000, China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, China
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture and Rural Affairs, P. R. China
| |
Collapse
|
2
|
Speckmann B, Ehring E, Hu J, Rodriguez Mateos A. Exploring substrate-microbe interactions: a metabiotic approach toward developing targeted synbiotic compositions. Gut Microbes 2024; 16:2305716. [PMID: 38300741 PMCID: PMC10841028 DOI: 10.1080/19490976.2024.2305716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/11/2024] [Indexed: 02/03/2024] Open
Abstract
Gut microbiota is an important modulator of human health and contributes to high inter-individual variation in response to food and pharmaceutical ingredients. The clinical outcomes of interventions with prebiotics, probiotics, and synbiotics have been mixed and often unpredictable, arguing for novel approaches for developing microbiome-targeted therapeutics. Here, we review how the gut microbiota determines the fate of and individual responses to dietary and xenobiotic compounds via its immense metabolic potential. We highlight that microbial metabolites play a crucial role as targetable mediators in the microbiota-host health relationship. With this in mind, we expand the concept of synbiotics beyond prebiotics' role in facilitating growth and engraftment of probiotics, by focusing on microbial metabolism as a vital mode of action thereof. Consequently, we discuss synbiotic compositions that enable the guided metabolism of dietary or co-formulated ingredients by specific microbes leading to target molecules with beneficial functions. A workflow to develop novel synbiotics is presented, including the selection of promising target metabolites (e.g. equol, urolithin A, spermidine, indole-3 derivatives), identification of suitable substrates and producer strains applying bioinformatic tools, gut models, and eventually human trials.In conclusion, we propose that discovering and enabling specific substrate-microbe interactions is a valuable strategy to rationally design synbiotics that could establish a new category of hybrid nutra-/pharmaceuticals.
Collapse
Affiliation(s)
| | | | - Jiaying Hu
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, UK
| | - Ana Rodriguez Mateos
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, UK
| |
Collapse
|
3
|
Pferschy-Wenzig EM, Kunert O, Thumann T, Moissl-Eichinger C, Bauer R. Characterization of metabolites from milk thistle flavonolignans generated by human fecal microbiota. PHYTOCHEMISTRY 2023; 215:113834. [PMID: 37648045 DOI: 10.1016/j.phytochem.2023.113834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/18/2023] [Accepted: 08/20/2023] [Indexed: 09/01/2023]
Abstract
Silymarin, a mixture of diastereomeric and regioisomeric flavonolignans from milk thistle (Silybum marianum (L.) Gaertn.) fruits, is known to possess a panel of pharmacological activities. However, due to low water solubility and extensive phase II metabolism, the oral bioavailability of the flavonolignans is limited. Since their interaction with gut microbiome is likely due to their predominantly fecal excretion route, the biotransformation of milk thistle flavonolignans by gut microorganisms was studied. A 1:1 mixture of the two main silymarin flavonolignans silybins A and B was incubated in human fecal suspension from one donor for 24 h under anoxic conditions. Purification of the incubate allowed to isolate and structurally elucidate the two main metabolites as (2R, 3R)-2-{4-[2-(3,4-dihydroxy-phenyl)-(1R)-1-hydroxymethyl-ethoxy]-3-hydroxy-phenyl}-3,5,7-trihydroxy-chroman-4-one (a product of demethylation and dioxane ring cleavage) and demethylsilybin B. Furthermore, silymarin was incubated with human fecal suspension, and its biotransformation was monitored by means of LC-HRMS metabolite profiling. Apart from the two isolated and structurally elucidated metabolites, several types of biotransformation products could be annotated, including demethylation products, reduction/ring cleavage products, products of demethylation plus reduction/ring cleavage, as well as several low molecular weight aromatic metabolites. The potential pharmacological activities of these gut microbial metabolites deserve closer examination in the future.
Collapse
Affiliation(s)
- Eva-Maria Pferschy-Wenzig
- University of Graz, Institute of Pharmaceutical Sciences, Beethovenstraße 8, 8010, Graz, Austria; BioTechMed- Graz, Mozartgasse 12/II, 8010, Graz, Austria.
| | - Olaf Kunert
- University of Graz, Institute of Pharmaceutical Sciences, Beethovenstraße 8, 8010, Graz, Austria.
| | - Timo Thumann
- University of Graz, Institute of Pharmaceutical Sciences, Beethovenstraße 8, 8010, Graz, Austria.
| | - Christine Moissl-Eichinger
- Medical University Graz, Diagnostic & Research Institute of Hygiene, Microbiology and Environmental Medicine, Neue Stiftingtalstraße 6 (MC1.B.)/III, 8010, Graz, Austria; BioTechMed- Graz, Mozartgasse 12/II, 8010, Graz, Austria.
| | - Rudolf Bauer
- University of Graz, Institute of Pharmaceutical Sciences, Beethovenstraße 8, 8010, Graz, Austria; BioTechMed- Graz, Mozartgasse 12/II, 8010, Graz, Austria.
| |
Collapse
|
4
|
Li Q, Stautemas J, Omondi Onyango S, De Mey M, Duchi D, Tuenter E, Hermans N, Calders P, Van de Wiele T. Human gut microbiota stratified by (+)-catechin metabolism dynamics reveals colon region-dependent metabolic profile. Food Chem 2023; 408:135203. [PMID: 36565551 DOI: 10.1016/j.foodchem.2022.135203] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/28/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
Catechins have proven to have several health benefits, yet a huge interindividual variability occurs. The metabolic potency of the colonic microbiota towards catechin is a key determinant of this variability. Microbiota from two donors - previously characterized as a fast and a slow converter- were incubated with (+)-catechin in vitro. The robustness of in vitro metabolic profiles was verified by well-fitted human trials. The colon region-dependent and donor-dependent patterns were reflected in both metabolic features and colonic microbiota composition. Upstream and downstream metabolites were mainly detected in the proximal and distal colons, respectively, and were considered important explanatory variables for microbiota clustering in the corresponding colon regions. Higher abundances of two catechin-metabolizing bacteria, Eggerthella and Flavonifractor were found in the distal colon compared to the proximal colon and in slow converter than fast converter. Additionally, these two bacteria were enriched in treatment samples compared to sham treatment samples.
Collapse
Affiliation(s)
- Qiqiong Li
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Jan Stautemas
- Department of Rehabilitation Sciences, Ghent University, 9000 Ghent, Belgium
| | - Stanley Omondi Onyango
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Marjan De Mey
- Center for Synthetic Biology (CSB), Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Dries Duchi
- Center for Synthetic Biology (CSB), Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Emmy Tuenter
- Natural Products and Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Nina Hermans
- Natural Products and Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Patrick Calders
- Department of Rehabilitation Sciences, Ghent University, 9000 Ghent, Belgium
| | - Tom Van de Wiele
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
5
|
Xie C, Li J, Fang Y, Ma R, Dang Z, Yang F. Proanthocyanins and anthocyanins in chestnut (Castanea mollissima) shell extracts: biotransformation in the simulated gastrointestinal model and interaction with gut microbiota in vitro. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3659-3673. [PMID: 36754602 DOI: 10.1002/jsfa.12480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 12/20/2022] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Chestnut (Castanea mollissima) shell is rich in flavonoids and our previous studies showed that proanthocyanins and anthocyanins were the two markedly varied flavonoids in chestnut shell extracts (CSE) during digestion. Here, the biotransformation of proanthocyanins and anthocyanins in a simulated gastrointestinal model, and the interactions between non-absorption CSE (NACSE) and gut microbiota in vitro, were investigated by ultra-high-performance liquid chromatography combined with triple-quadrupole mass spectrometry and 16S rRNA sequencing. RESULTS Chestnut shell was richer in proanthocyanins and anthocyanins, while the loss of proanthocyanins was greater after digestion. Additionally, the content of anthocyanin decreased after gastric digestion but increased after intestinal digestion and remained stable after fermentation. After fermentation, delphinidin-3-O-sambubioside and pelargonidin-3-O-galactoside were newly formed. Furthermore, microbiome profiling indicated that NACSE promoted the proliferation of beneficial bacteria, while inhibiting pathogenic bacteria. CONCLUSION All these data suggest that CSE may be a promising candidate to protect gut health. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chenyang Xie
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Jie Li
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Yihe Fang
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Renyi Ma
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Zhixiong Dang
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Fang Yang
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China
- Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan, China
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, China
| |
Collapse
|
6
|
Dietary Polyphenols as Prospective Natural-Compound Depression Treatment from the Perspective of Intestinal Microbiota Regulation. Molecules 2022; 27:molecules27217637. [PMID: 36364464 PMCID: PMC9657699 DOI: 10.3390/molecules27217637] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022] Open
Abstract
The broad beneficial effects of dietary polyphenols on human health have been confirmed. Current studies have shown that dietary polyphenols are important for maintaining the homeostasis of the intestinal microenvironment. Moreover, the corresponding metabolites of dietary polyphenols can effectively regulate intestinal micro-ecology and promote human health. Although the pathogenesis of depression has not been fully studied, it has been demonstrated that dysfunction of the microbiota-gut-brain axis may be its main pathological basis. This review discusses the interaction between dietary polyphenols and intestinal microbiota to allow us to better assess the potential preventive effects of dietary polyphenols on depression by modulating the host gut microbiota.
Collapse
|
7
|
Li Q, Van Herreweghen F, Onyango SO, De Mey M, Van de Wiele T. In Vitro Microbial Metabolism of (+)-Catechin Reveals Fast and Slow Converters with Individual-Specific Microbial and Metabolite Markers. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10405-10416. [PMID: 35420423 DOI: 10.1021/acs.jafc.2c00551] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The bioavailability of catechin highly relies on gut microbiota which may determine its metabolic profile, resulting in different health outcomes. Here, we investigated in vitro (+)-catechin metabolism by human microbial communities. There were substantial interindividual differences in the metabolic profiles of (+)-catechin, with 5-(3',4'-dihydroxyphenyl)-γ-valerolactone being the major contributor. Furthermore, the microbial metabolic rate of catechin enabled stratification of 12 participants (fast, medium, and slow converters), despite the interference from the strong intrinsic interindividual variability in fecal microbiota. Correlations were established between this stratified population and microbiota features, such as ecosystem diversity. Additionally, fast converters had significantly higher prevalences of amplicon sequence variants (ASVs) with potential capacity of C-ring cleavage (ASV233_Eggerthella and ASV402_Eubacterium), B-ring dihydroxylation (ASV402_Eubacterium), and short-chain fatty acid (SCFA)-producing ASVs. In conclusion, metabolic-capability-based stratification allows us to uncover differences in microbial composition between fast and slow converters, which could help to elucidate interindividual variabilities in the health benefits of catechins.
Collapse
Affiliation(s)
- Qiqiong Li
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Florence Van Herreweghen
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Stanley Omondi Onyango
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Marjan De Mey
- Centre for Synthetic Biology (CSB), Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Tom Van de Wiele
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
8
|
Abstract
Flavonoids are natural polyphenol secondary metabolites that are widely produced in planta. Flavonoids are ubiquities in human dietary intake and exhibit a myriad of health benefits. Flavonoids-induced biological activities are strongly influenced by their in situ availability in the human GI tract, as well as the levels of which are modulated by interaction with the gut bacteria. As such, assessing flavonoids–microbiome interactions is considered a key to understand their physiological activities. Here, we review the interaction between the various classes of dietary flavonoids (flavonols, flavones, flavanones, isoflavones, flavan-3-ols and anthocyanins) and gut microbiota. We aim to provide a holistic overview of the nature and identity of flavonoids on diet and highlight how flavonoids chemical structure, metabolism and impact on humans and their microbiomes are interconnected. Emphasis is placed on how flavonoids and their biotransformation products affect gut microbiota population, influence gut homoeostasis and induce measurable physiological changes and biological benefits.
Collapse
|
9
|
Morzel M, Canon F, Guyot S. Interactions between Salivary Proteins and Dietary Polyphenols: Potential Consequences on Gastrointestinal Digestive Events. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6317-6327. [PMID: 35583948 DOI: 10.1021/acs.jafc.2c01183] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The present review documents the current knowledge and hypotheses on how polyphenols-saliva interactions may modulate the bioaccessibility or bioavailability of nutrients and highlights research prospects in the field. After an updated description of the different classes of dietary polyphenols and their modifications by food processing or digestion, an overview of interactions between salivary proteins and polyphenols (with an emphasis on tannins) is provided. In vitro studies show that the solubility of salivary protein-tannin complexes in gastric conditions depends on the degree of tannin polymerization, while complexes are partly solubilized by bile salts. Salivary proteins-polyphenols interactions may affect digestive processes. For example, polyphenols can bind to and inhibit salivary amylase, with downstream consequences on starch digestion. Some salivary proteins (PRPs) prevent tannin-induced reduced protein digestibility, probably through binding tannins before they interact with digestive proteases. Salivary proteins may also act as scavenger molecules to limit the intestinal uptake of tannins.
Collapse
Affiliation(s)
| | - Francis Canon
- Centre des Sciences du Goût et de l'Alimentation, UMR 1324 INRAE, UMR 6265 CNRS, Université de Bourgogne Franche-Comté, F-21000 Dijon, France
| | | |
Collapse
|
10
|
Wang M, Li J, Hu T, Zhao H. Metabolic fate of tea polyphenols and their crosstalk with gut microbiota. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Wang W, Ohland C, Jobin C, Sang S. Gut Microbiota as a Novel Tool to Dissect the Complex Structures of Black Tea Polymers. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5005-5014. [PMID: 35420414 PMCID: PMC10092905 DOI: 10.1021/acs.jafc.2c00995] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Thearubigins, polymers of tea catechins, account for more than 20% of the black tea polyphenols and have been reported to be the active components in black tea. However, the chemical structures and underlying mechanisms regarding how the thearubigins, being poorly bioavailable, generate in vivo health benefits are still largely unknown. Using germ-free and specific pathogen-free husbandry conditions combined with LC/MS-based nontargeted and targeted metabolomic analyses, we investigated the role of intestinal bacteria in thearubigin metabolism. Theaflavins and theasinensins were identified as the major microbial metabolites of thearubigins, suggesting that these molecules are the building units for the complex thearubigins. To further confirm this, thearubigin depolymerization was done using menthofuran in an acidic condition. Menthofuran-conjugated theaflavins, theasinensins, and catechins as well as their free forms were detected as the major degradation products of thearubigins. This indicated that theaflavins and theasinensins could be further polymerized through B-type proanthocyanidin linkages. Furthermore, four microbial degradation products were able to be detected in urine samples, suggesting that they can be absorbed into the circulatory system. Using the combination of microbial degradation, metabolomics, and chemical degradation, our results demonstrate that thearubigins are the complex polymers of theaflavins, theasinensins, and catechins and can be metabolized by gut microbiota to their corresponding bioactive and bioavailable smaller molecular metabolites.
Collapse
Affiliation(s)
- Weixin Wang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, 500 Laureate Way, Kannapolis, North Carolina 28081, United States
| | - Christina Ohland
- Department of Medicine, University of Florida, Gainesville, Florida 32611, United States
| | - Christian Jobin
- Department of Medicine, University of Florida, Gainesville, Florida 32611, United States
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, Florida 32611, United States
| | - Shengmin Sang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, 500 Laureate Way, Kannapolis, North Carolina 28081, United States
| |
Collapse
|
12
|
Narduzzi L, Agulló V, Favari C, Tosi N, Mignogna C, Crozier A, Rio DD, Mena P. (Poly)phenolic compounds and gut microbiome: new opportunities for personalized nutrition. MICROBIOME RESEARCH REPORTS 2022; 1:16. [PMID: 38046361 PMCID: PMC10688808 DOI: 10.20517/mrr.2022.06] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/01/2022] [Accepted: 04/12/2022] [Indexed: 12/05/2023]
Abstract
For decades, (poly)phenols have been linked to cardiometabolic health, but population heterogeneity limits their apparent efficacy and the development of tailored, practical protocols in dietary interventions. This heterogeneity is likely determined by the existence of different metabotypes, sub-populations of individuals metabolizing some classes of (poly)phenols differently. The gut microbiota plays a major role in this process. The impact of microbiota-related phenolic metabotypes on cardiometabolic health is becoming evident, although the picture is still incomplete, and data are absent for some classes of (poly)phenols. The lack of a complete understanding of the main microbial actors involved in the process complicates the picture. Elucidation of the mechanisms behind phenolic metabotypes requires novel experimental designs that can dissect the inter-individual variability. This paper, in addition to providing an overview on the current state-of-the-art, proposes wider metabotyping approaches as a means of paving the way towards effective personalized nutrition with dietary (poly)phenols.
Collapse
Affiliation(s)
- Luca Narduzzi
- Human Nutrition Unit, Department of Food & Drug, University of Parma, Parma 43125, Italy
| | - Vicente Agulló
- Human Nutrition Unit, Department of Food & Drug, University of Parma, Parma 43125, Italy
- Phytochemistry and Healthy Foods Lab (LabFAS), Food Science and Technology Department (CEBAS-CSIC), University Campus of Espinardo, Murcia 30100, Spain
| | - Claudia Favari
- Human Nutrition Unit, Department of Food & Drug, University of Parma, Parma 43125, Italy
| | - Nicole Tosi
- Human Nutrition Unit, Department of Food & Drug, University of Parma, Parma 43125, Italy
| | - Cristiana Mignogna
- Human Nutrition Unit, Department of Food & Drug, University of Parma, Parma 43125, Italy
| | - Alan Crozier
- Department of Chemistry, King Saud University, Riyadh 11451, Saudi Arabia
- School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Daniele Del Rio
- Human Nutrition Unit, Department of Food & Drug, University of Parma, Parma 43125, Italy
- Microbiome Research Hub, University of Parma, Parco Area delle Scienze 11/A, Parma 43124, Italy
| | - Pedro Mena
- Human Nutrition Unit, Department of Food & Drug, University of Parma, Parma 43125, Italy
- Microbiome Research Hub, University of Parma, Parco Area delle Scienze 11/A, Parma 43124, Italy
| |
Collapse
|
13
|
The Donor-Dependent and Colon-Region-Dependent Metabolism of (+)-Catechin by Colonic Microbiota in the Simulator of the Human Intestinal Microbial Ecosystem. MOLECULES (BASEL, SWITZERLAND) 2021; 27:molecules27010073. [PMID: 35011305 PMCID: PMC8746996 DOI: 10.3390/molecules27010073] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/17/2021] [Accepted: 12/21/2021] [Indexed: 02/07/2023]
Abstract
The intestinal absorption of dietary catechins is quite low, resulting in most of them being metabolized by gut microbiota in the colon. It has been hypothesized that microbiota-derived metabolites may be partly responsible for the association between catechin consumption and beneficial cardiometabolic effects. Given the profound differences in gut microbiota composition and microbial load between individuals and across different colon regions, this study examined how microbial (+)-catechin metabolite profiles differ between colon regions and individuals. Batch exploration of the interindividual variability in (+)-catechin microbial metabolism resulted in a stratification based on metabolic efficiency: from the 12 tested donor microbiota, we identified a fast- and a slow-converting microbiota that was subsequently inoculated to SHIME, a dynamic model of the human gut. Monitoring of microbial (+)-catechin metabolites from proximal and distal colon compartments with UHPLC-MS and UPLC-IMS-Q-TOF-MS revealed profound donor-dependent and colon-region-dependent metabolite profiles with 5-(3',4'-dihydroxyphenyl)-γ-valerolactone being the largest contributor to differences between the fast- and slow-converting microbiota and the distal colon being a more important region for (+)-catechin metabolism than the proximal colon. Our findings may contribute to further understanding the role of the gut microbiota as a determinant of interindividual variation in pharmacokinetics upon (+)-catechin ingestion.
Collapse
|
14
|
Chen W, Zhang L, Zhao L, Yan F, Zhu X, Lu Q, Liu R. Metabolomic profiles of A-type procyanidin dimer and trimer with gut microbiota in vitro. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104637] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
15
|
Pharmacology of Catechins in Ischemia-Reperfusion Injury of the Heart. Antioxidants (Basel) 2021; 10:antiox10091390. [PMID: 34573022 PMCID: PMC8465198 DOI: 10.3390/antiox10091390] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 11/17/2022] Open
Abstract
Catechins represent a group of polyphenols that possesses various beneficial effects in the cardiovascular system, including protective effects in cardiac ischemia-reperfusion (I/R) injury, a major pathophysiology associated with ischemic heart disease, myocardial infarction, as well as with cardioplegic arrest during heart surgery. In particular, catechin, (−)-epicatechin, and epigallocatechin gallate (EGCG) have been reported to prevent cardiac myocytes from I/R-induced cell damage and I/R-associated molecular changes, finally, resulting in improved cell viability, reduced infarct size, and improved recovery of cardiac function after ischemic insult, which has been widely documented in experimental animal studies and cardiac-derived cell lines. Cardioprotective effects of catechins in I/R injury were mediated via multiple molecular mechanisms, including inhibition of apoptosis; activation of cardioprotective pathways, such as PI3K/Akt (RISK) pathway; and inhibition of stress-associated pathways, including JNK/p38-MAPK; preserving mitochondrial function; and/or modulating autophagy. Moreover, regulatory roles of several microRNAs, including miR-145, miR-384-5p, miR-30a, miR-92a, as well as lncRNA MIAT, were documented in effects of catechins in cardiac I/R. On the other hand, the majority of results come from cell-based experiments and healthy small animals, while studies in large animals and studies including comorbidities or co-medications are rare. Human studies are lacking completely. The dosages of compounds also vary in a broad scale, thus, pharmacological aspects of catechins usage in cardiac I/R are inconclusive so far. Therefore, the aim of this focused review is to summarize the most recent knowledge on the effects of catechins in cardiac I/R injury and bring deep insight into the molecular mechanisms involved and dosage-dependency of these effects, as well as to outline potential gaps for translation of catechin-based treatments into clinical practice.
Collapse
|
16
|
Hakeem Said I, Heidorn C, Petrov DD, Retta MB, Truex JD, Haka S, Ullrich MS, Kuhnert N. LC-MS based metabolomic approach for the efficient identification and relative quantification of bioavailable cocoa phenolics in human urine. Food Chem 2021; 364:130198. [PMID: 34256277 DOI: 10.1016/j.foodchem.2021.130198] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 01/02/2023]
Abstract
This study was designed to investigate the rate and extent of urinary excretion of cocoa phenolic metabolites after human intake using metabolomics approach. In this context, a feeding trial was conducted where urine samples were collected at different time points over 48-h period. Several biomarkers were highlighted in LC-MS based chemometrics using principal component (PCA) and partial least squares discriminant analysis (PLS-DA), which revealed the presence of both epicatechin and gut microbial phenyl-γ-valerolactones (PVLs) conjugated analogues. The presences of these metabolites segregated and grouped the samples based on cocoa and non-cocoa ingestion. Furthermore, semi quantification of major bioavailable metabolites was performed to determine the interindividual differences and assess the relative bioavailability of cocoa compounds in the human body. Our approach presented here is unique in displaying a combination of LC-MS based chemometrics visualization strategies, which revealed and identified significant biomarkers that could reduce the problems associated with data screening complexity.
Collapse
Affiliation(s)
| | | | | | - Mihella B Retta
- Campus Ring 1, Jacobs University Bremen, 28759 Bremen, Germany
| | | | - Sara Haka
- Campus Ring 1, Jacobs University Bremen, 28759 Bremen, Germany
| | | | - Nikolai Kuhnert
- Campus Ring 1, Jacobs University Bremen, 28759 Bremen, Germany.
| |
Collapse
|
17
|
Khojaste E, Ahmadizadeh C. Catechin Metabolites along with Curcumin Inhibit Proliferation and Induce Apoptosis in Cervical Cancer Cells by Regulating VEGF Expression In-Vitro. Nutr Cancer 2021; 74:1048-1057. [PMID: 34121550 DOI: 10.1080/01635581.2021.1936082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cervical cancer is the fourth most common cancer and the second cause of cancer-related death among women. Over the past two decades, green tea catechins and curcumin have received much attention for their role in preventing carcinogenesis. In this study, we evaluated the effects of the catechin metabolites and curcumin on cervical cancer cell proliferation and apoptosis. For this aim, the Ca Ski cell line was treated with different doses of catechin metabolites and curcumin. MTT assay and Flow cytometry were employed to investigate the cytotoxic effects of catechin metabolites and curcumin on the Ca Ski cell line. Real-time PCR and western blot were performed to evaluate the VEGF expression. Also, Real-Time PCR was performed to determine the expression level of microRNAs. Results showed that catechin metabolites along with curcumin reduce the VEGF expression. Further, miR-210 and miR-21 as oncogenic microRNAs were down-regulated, while it was reverse for miR-126 as a tumor-suppressor microRNA. Besides, MTT and Flow cytometry results showed that after using catechin metabolites with curcumin, cell survival was reduced by inducing apoptosis. In conclusion, catechin metabolites produced by intestinal microbiota besides the curcumin could serve as a promising therapeutic approach for women with cervical cancer.
Collapse
Affiliation(s)
- Elnaz Khojaste
- Department of molecular genetics, Ahar Branch Islamic Azad University, Ahar, Iran
| | | |
Collapse
|
18
|
Vamanu E, Dinu LD, Pelinescu DR, Gatea F. Therapeutic Properties of Edible Mushrooms and Herbal Teas in Gut Microbiota Modulation. Microorganisms 2021; 9:microorganisms9061262. [PMID: 34200833 PMCID: PMC8230450 DOI: 10.3390/microorganisms9061262] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/06/2021] [Accepted: 06/08/2021] [Indexed: 12/14/2022] Open
Abstract
Edible mushrooms are functional foods and valuable but less exploited sources of biologically active compounds. Herbal teas are a range of products widely used due to the therapeutic properties that have been demonstrated by traditional medicine and a supplement in conventional therapies. Their interaction with the human microbiota is an aspect that must be researched, the therapeutic properties depending on the interaction with the microbiota and the consequent fermentative activity. Modulation processes result from the activity of, for example, phenolic acids, which are a major component and which have already demonstrated activity in combating oxidative stress. The aim of this mini-review is to highlight the essential aspects of modulating the microbiota using edible mushrooms and herbal teas. Although the phenolic pattern is different for edible mushrooms and herbal teas, certain non-phenolic compounds (polysaccharides and/or caffeine) are important in alleviating chronic diseases. These specific functional compounds have modulatory properties against oxidative stress, demonstrating health-beneficial effects in vitro and/or In vivo. Moreover, recent advances in improving human health via gut microbiota are presented. Plant-derived miRNAs from mushrooms and herbal teas were highlighted as a potential strategy for new therapeutic effects.
Collapse
Affiliation(s)
- Emanuel Vamanu
- Faculty of Biotechnology, University of Agronomic Science and Veterinary Medicine, 59 Marasti Blvd, 1 District, 011464 Bucharest, Romania;
- Correspondence: ; Tel.: +40-742218240
| | - Laura Dorina Dinu
- Faculty of Biotechnology, University of Agronomic Science and Veterinary Medicine, 59 Marasti Blvd, 1 District, 011464 Bucharest, Romania;
| | - Diana Roxana Pelinescu
- Department of Genetics, University of Bucharest, 36-46 Bd. M. Kogalniceanu, 5th District, 050107 Bucharest, Romania;
| | - Florentina Gatea
- Centre of Bioanalysis, National Institute for Biological Sciences, 296 Spl. Independentei, 060031 Bucharest, Romania;
| |
Collapse
|
19
|
Liu C, Vervoort J, Beekmann K, Baccaro M, Kamelia L, Wesseling S, Rietjens IMCM. Interindividual Differences in Human Intestinal Microbial Conversion of (-)-Epicatechin to Bioactive Phenolic Compounds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:14168-14181. [PMID: 33216536 PMCID: PMC7716348 DOI: 10.1021/acs.jafc.0c05890] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/26/2020] [Accepted: 11/10/2020] [Indexed: 06/11/2023]
Abstract
To quantify interindividual differences in the human intestinal microbial metabolism of (-)-epicatechin (EC), in vitro anaerobic incubations with fecal inocula from 24 healthy donors were conducted. EC-derived colonic microbial metabolites were qualitatively and quantitively analyzed by liquid chromatography triple quadrupole mass spectrometry (LC-TQ-MS) and liquid chromatography time-of-flight mass spectrometry (LC-TOF-MS). Quantitative microbiota characterization was achieved by 16S rRNA analysis. The results obtained show 1-(3',4'-dihydroxyphenyl)-3-(2″,4″,6″-dihydroxyphenyl)-2-propanol (3,4-diHPP-2-ol) and 5-(3',4'-dihydroxyphenyl)-γ-valerolactone (3,4-diHPV) to be key intermediate microbial metabolites of EC and also revealed the substantial interindividual differences in both the rate of EC conversion and the time-dependent EC metabolite pattern. Furthermore, substantial differences in microbiota composition among different individuals were detected. Correlations between specific microbial phylotypes and formation of certain metabolites were established. It is concluded that interindividual differences in the intestinal microbial metabolism of EC may contribute to interindividual differences in potential health effects of EC-abundant dietary foods or drinks.
Collapse
Affiliation(s)
- Chen Liu
- Division
of Toxicology, Wageningen University and
Research, Wageningen 6708 WE, The Netherlands
| | - Jacques Vervoort
- Laboratory
of Biochemistry, Wageningen University and
Research, Wageningen 6708 WE, The Netherlands
| | - Karsten Beekmann
- Division
of Toxicology, Wageningen University and
Research, Wageningen 6708 WE, The Netherlands
| | - Marta Baccaro
- Division
of Toxicology, Wageningen University and
Research, Wageningen 6708 WE, The Netherlands
| | - Lenny Kamelia
- Division
of Toxicology, Wageningen University and
Research, Wageningen 6708 WE, The Netherlands
| | - Sebas Wesseling
- Division
of Toxicology, Wageningen University and
Research, Wageningen 6708 WE, The Netherlands
| | | |
Collapse
|
20
|
Liu Z, de Bruijn WJC, Bruins ME, Vincken JP. Reciprocal Interactions between Epigallocatechin-3-gallate (EGCG) and Human Gut Microbiota In Vitro. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9804-9815. [PMID: 32808768 PMCID: PMC7496747 DOI: 10.1021/acs.jafc.0c03587] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Interaction of tea phenolics with gut microbiota may play an integral role in the health benefits of these bioactive compounds, yet this interaction is not fully understood. Here, the metabolic fate of epigallocatechin-3-gallate (EGCG) and its impact on gut microbiota were integrally investigated via in vitro fermentation. As revealed by ultrahigh performance liquid chromatography hybrid quadrupole Orbitrap mass spectrometry (UHPLC-Q-Orbitrap-MS), EGCG was promptly degraded into a series of metabolites, including 4-phenylbutyric acid, 3-(3',4'-dihydroxyphenyl)propionic acid, and 3-(4'-hydroxyphenyl)propionic acid, through consecutive ester hydrolysis, C-ring opening, A-ring fission, dehydroxylation, and aliphatic chain shortening. Microbiome profiling indicated that, compared to the blank, EGCG treatment resulted in stimulation of the beneficial bacteria Bacteroides, Christensenellaceae, and Bifidobacterium. Additionally, the pathogenic bacteria Fusobacterium varium, Bilophila, and Enterobacteriaceae were inhibited. Furthermore, changes in concentrations of metabolites, including 4-phenylbutyric acid and phenylacetic acid, were strongly correlated with changes in the abundance of specific gut microbiota. These reciprocal interactions between EGCG and gut microbiota may collectively contribute to the health benefits of EGCG.
Collapse
Affiliation(s)
- Zhibin Liu
- Laboratory of Food
Chemistry, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands
- Institute
of Food Science & Technology, Fuzhou
University, Fuzhou 350108, P. R. China
| | - Wouter J. C. de Bruijn
- Laboratory of Food
Chemistry, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Marieke E. Bruins
- Food &
Biobased Research, Wageningen University
& Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Jean-Paul Vincken
- Laboratory of Food
Chemistry, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands
- . Tel: +31-317482234
| |
Collapse
|
21
|
Fellows R, Varga-Weisz P. Chromatin dynamics and histone modifications in intestinal microbiota-host crosstalk. Mol Metab 2020; 38:100925. [PMID: 31992511 PMCID: PMC7300386 DOI: 10.1016/j.molmet.2019.12.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 12/08/2019] [Accepted: 12/10/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The microbiota in the human gut are an important component of normal physiology that has co-evolved from the earliest multicellular organisms. Therefore, it is unsurprising that there is intimate crosstalk between the microbial world in the gut and the host. Genome regulation through microbiota-host interactions not only affects the host's immunity, but also metabolic health and resilience against cancer. Chromatin dynamics of the host epithelium involving histone modifications and other facets of the epigenetic machinery play an important role in this process. SCOPE OF REVIEW This review discusses recent findings relevant to how chromatin dynamics shape the crosstalk between the microbiota and its host, with a special focus on the role of histone modifications. MAJOR CONCLUSIONS Host-microbiome interactions are important evolutionary drivers and are thus expected to be hardwired into and mould the epigenetic machinery in multicellular organisms. Microbial-derived short-chain fatty acids (SCFA) are dominant determinants of microbiome-host interactions, and the inhibition of histone deacetylases (HDACs) by SCFA is a key mechanism in this process. The discovery of alternative histone acylations, such as crotonylation, in addition to the canonical histone acetylation reveals a new layer of complexity in this crosstalk.
Collapse
Affiliation(s)
| | - Patrick Varga-Weisz
- Babraham Institute, Babraham, Cambridge, CB22 3AT, UK; School of Life Sciences, University of Essex, Colchester, CO4 3SQ, UK.
| |
Collapse
|
22
|
Dey P, Olmstead BD, Sasaki GY, Vodovotz Y, Yu Z, Bruno RS. Epigallocatechin gallate but not catechin prevents nonalcoholic steatohepatitis in mice similar to green tea extract while differentially affecting the gut microbiota. J Nutr Biochem 2020; 84:108455. [PMID: 32688217 DOI: 10.1016/j.jnutbio.2020.108455] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 05/15/2020] [Accepted: 06/14/2020] [Indexed: 02/06/2023]
Abstract
Catechin-rich green tea extract (GTE) protects against nonalcoholic steatohepatitis (NASH) by alleviating gut-derived endotoxin translocation and hepatic Toll-like receptor-4 (TLR4)-nuclear factor κB (NFκB) inflammation. We hypothesized that intact GTE would attenuate NASH-associated responses along the gut-liver axis to a greater extent than purified (-)-epigallocatechin gallate (EGCG) or (+)-catechin (CAT). Male C57BL/6J mice were fed a low-fat diet, a high-fat (HF) diet, or the HF diet with 2% GTE, 0.3% EGCG or 0.3% CAT for 8 weeks prior to assessing NASH relative to endotoxemia, hepatic and intestinal inflammation, intestinal tight junction proteins (TJPs) and gut microbial ecology. GTE prevented HF-induced obesity to a greater extent than EGCG and CAT, whereas GTE and EGCG more favorably attenuated insulin resistance. GTE, EGCG and CAT similarly attenuated serum alanine aminotransferase and serum endotoxin, but only GTE and EGCG fully alleviated HF-induced NASH. However, hepatic TLR4/NFκB inflammatory responses that were otherwise increased in HF mice were similarly attenuated by GTE, EGCG and CAT. Each treatment also similarly prevented the HF-induced loss in expression of intestinal TJPs and hypoxia inducible factor-1α and the otherwise increased levels of ileal and colonic TNFα mRNA and fecal calprotectin protein concentrations. Gut microbial diversity that was otherwise lowered in HF mice was maintained by GTE and CAT only. Further, microbial metabolic functions were more similar between GTE and CAT. Collectively, GTE catechins similarly protect against endotoxin-TLR4-NFκB inflammation in NASH, but EGCG and CAT exert differential prebiotic and antimicrobial activities suggesting that catechin-mediated shifts in microbiota composition are not entirely responsible for their benefits along the gut-liver axis.
Collapse
Affiliation(s)
- Priyankar Dey
- Human Nutrition Program, The Ohio State University, Columbus, OH, USA; Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India
| | - Bryan D Olmstead
- Human Nutrition Program, The Ohio State University, Columbus, OH, USA
| | - Geoffrey Y Sasaki
- Human Nutrition Program, The Ohio State University, Columbus, OH, USA
| | - Yael Vodovotz
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, USA
| | - Zhongtang Yu
- Department of Animal Sciences, The Ohio State University, Columbus, OH, USA
| | - Richard S Bruno
- Human Nutrition Program, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
23
|
C-ring cleavage metabolites of catechin and epicatechin enhanced antioxidant activities through intestinal microbiota. Food Res Int 2020; 135:109271. [PMID: 32527491 DOI: 10.1016/j.foodres.2020.109271] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 04/17/2020] [Accepted: 04/21/2020] [Indexed: 11/23/2022]
Abstract
The changes in DPPH radical-scavenging capability of catechin and epicatechin during 24 h incubation with fecal microbiota in vitro and the targeted analysis of the characteristic metabolites by using UPLC-Q-TOF indicated that increase in antioxidant activity was synchronous with the accumulation of C-ring cleavage metabolites. Therefore, C-ring cleavage metabolite, 1-(3',4'-Dihydroxyphenyl)-3-(2'',4'',6''-trihydroxyphenyl)propan-2-ol (3,4-DHPP-2-ol), was separated from incubation liquid. The antioxidant activities of this metabolite and other 11 metabolites were examined through DPPH and ABTS free radical scavenging capacity and ferric reducing antioxidant capability (FRAC). The results indicated that all metabolites with the structure of 3',4'-dihydroxylated had high antioxidant activity, especially 3,4-DHPP-2-ol, whose EC50 was 5.97 μM in DPPH assay, 2 times as high as that of catechin, and 1.8 times as high as that of epicatechin. But the metabolites with the structure of monohydroxylated or unhydroxylated on the benzene ring hardly exhibited antioxidant activity.
Collapse
|
24
|
Concise Synthesis of Catechin Metabolites 5-(3',4'-Dihydroxyphenyl)-γ-valerolactones (DHPV) in Optically Pure Form and Their Stereochemical Effects on Skin Wrinkle-Reducing Activities. Molecules 2020; 25:molecules25081970. [PMID: 32340245 PMCID: PMC7221625 DOI: 10.3390/molecules25081970] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 04/21/2020] [Indexed: 01/27/2023] Open
Abstract
A concise and scalable synthetic route for optically pure (4S) and (4R)-5-(3′,4′-dihydroxyphenyl)-γ-valerolactones (DHPVs), catechin metabolites, has been developed via the efficient construction of a γ-valerolactone moiety from hexenol. Noticeably, the different skin wrinkle-reducing activities of each metabolite were revealed via our unique syntheses of DHPVs in an enantiomerically pure form.
Collapse
|
25
|
LC-MS/MS based molecular networking approach for the identification of cocoa phenolic metabolites in human urine. Food Res Int 2020; 132:109119. [PMID: 32331646 DOI: 10.1016/j.foodres.2020.109119] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 12/17/2022]
Abstract
Dietary phenolic compounds are often transformed by gut microbiota prior to absorption. This transformation may modify their structures, producing novel gut flora metabolites associated with numerous health benefits. Traditional mass spectrometry (MS) based approaches for assessing dietary exposure of cocotea (cocoa, coffee and tea) products provided very little information about the modification and fate of dietary phenolics after ingestion, mainly due to limitation of complex sample nature and their data analyses. Mass spectrometry techniques are well-suited to a high-throughput characterization of natural products, however, analyzing MS based data of complex biological matrix is still considered a challenge. In order to overcome such limitations and simplify the analysis of complex MS data, a cocotea based human trial was conducted where MS based molecular networking approach was implemented. To demonstrate the utility of this approach in one of the specific cocotea diets, we have applied it to a diverse collection of human (n = 15) urine samples, who consumed cocoa rich in polyphenols over a 48-h period. This approach illustrated the power of the new strategy, allowing the rapid identification of new analogues of cocoa metabolites after human consumption. Analysis of human urine samples after cocoa consumption revealed (by assignment of unknown metabolites based on the network similarities) that monomeric flavanols are mainly absorbed and transformed directly into their glucuronide and sulfated moieties. Subsequently, the hydroxy and methoxy phenyl-g-velerolactone as well as their smaller metabolites (such as hydroxyphenyl valeric acids, hydroxy and methoxy phenyl propionic acids and their derivates) are indicative of bacterial metabolism of cocoa major flavanols. For the first time, our study exemplifies and highlight the implementation of MS based molecular networking approach in illustrating the tracking of various structural motifs of ingested cocoa phenolics in human based study.
Collapse
|
26
|
Maini Rekdal V, Nol Bernadino P, Luescher MU, Kiamehr S, Le C, Bisanz JE, Turnbaugh PJ, Bess EN, Balskus EP. A widely distributed metalloenzyme class enables gut microbial metabolism of host- and diet-derived catechols. eLife 2020; 9:e50845. [PMID: 32067637 PMCID: PMC7028382 DOI: 10.7554/elife.50845] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 01/03/2020] [Indexed: 12/23/2022] Open
Abstract
Catechol dehydroxylation is a central chemical transformation in the gut microbial metabolism of plant- and host-derived small molecules. However, the molecular basis for this transformation and its distribution among gut microorganisms are poorly understood. Here, we characterize a molybdenum-dependent enzyme from the human gut bacterium Eggerthella lenta that dehydroxylates catecholamine neurotransmitters. Our findings suggest that this activity enables E. lenta to use dopamine as an electron acceptor. We also identify candidate dehydroxylases that metabolize additional host- and plant-derived catechols. These dehydroxylases belong to a distinct group of largely uncharacterized molybdenum-dependent enzymes that likely mediate primary and secondary metabolism in multiple environments. Finally, we observe catechol dehydroxylation in the gut microbiotas of diverse mammals, confirming the presence of this chemistry in habitats beyond the human gut. These results suggest that the chemical strategies that mediate metabolism and interactions in the human gut are relevant to a broad range of species and habitats.
Collapse
Affiliation(s)
- Vayu Maini Rekdal
- Department of Chemistry and Chemical BiologyHarvard UniversityCambridgeUnited States
| | - Paola Nol Bernadino
- Department of Chemistry and Molecular BiologyUniversity of California, IrvineIrvineUnited States
- Department of Chemistry and Molecular BiochemistryUniversity of California, IrvineIrvineUnited States
| | - Michael U Luescher
- Department of Chemistry and Chemical BiologyHarvard UniversityCambridgeUnited States
| | - Sina Kiamehr
- Department of Chemistry and Chemical BiologyHarvard UniversityCambridgeUnited States
| | - Chip Le
- Department of Chemistry and Chemical BiologyHarvard UniversityCambridgeUnited States
| | - Jordan E Bisanz
- Department of Microbiology and ImmunologyUniversity of California, San FranciscoSan FranciscoUnited States
| | - Peter J Turnbaugh
- Department of Microbiology and ImmunologyUniversity of California, San FranciscoSan FranciscoUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - Elizabeth N Bess
- Department of Chemistry and Molecular BiologyUniversity of California, IrvineIrvineUnited States
- Department of Chemistry and Molecular BiochemistryUniversity of California, IrvineIrvineUnited States
| | - Emily P Balskus
- Department of Chemistry and Chemical BiologyHarvard UniversityCambridgeUnited States
| |
Collapse
|
27
|
Arai MA, Morita K, Kawano H, Makita Y, Hashimoto M, Suganami A, Tamura Y, Sadhu SK, Ahmed F, Ishibashi M. Target protein-oriented isolation of Hes1 dimer inhibitors using protein based methods. Sci Rep 2020; 10:1381. [PMID: 31992824 PMCID: PMC6987128 DOI: 10.1038/s41598-020-58451-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 01/15/2020] [Indexed: 12/14/2022] Open
Abstract
Natural products isolation using protein based methods is an attractive for obtaining bioactive compounds. To discover neural stem cell (NSC) differentiation activators, we isolated eight inhibitors of Hes1 dimer formation from Psidium guajava using the Hes1-Hes1 interaction fluorescent plate assay and one inhibitor from Terminalia chebula using the Hes1-immobilized beads method. Of the isolated compounds, gallic acid (8) and 4-O-(4”-O-galloyl-α-L-rhamnopyranosyl)ellagic acid (11) showed potent Hes1 dimer formation inhibitory activity, with IC50 values of 10.3 and 2.53 μM, respectively. Compound 11 accelerated the differentiation activity of C17.2 NSC cells dose dependently, increasing the number of neurons with a 125% increase (5 μM) compared to the control.
Collapse
Affiliation(s)
- Midori A Arai
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan.
| | - Kaori Morita
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan
| | - Haruka Kawano
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan
| | - Yuna Makita
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan
| | - Manami Hashimoto
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan
| | - Akiko Suganami
- Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Yutaka Tamura
- Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Samir K Sadhu
- Pharmacy Discipline, Khulna University, Khulna, 9208, Bangladesh
| | - Firoj Ahmed
- Department of Pharmaceutical Chemistry, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Masami Ishibashi
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan.
| |
Collapse
|
28
|
Mena P, Bresciani L, Brindani N, Ludwig IA, Pereira-Caro G, Angelino D, Llorach R, Calani L, Brighenti F, Clifford MN, Gill CIR, Crozier A, Curti C, Del Rio D. Phenyl-γ-valerolactones and phenylvaleric acids, the main colonic metabolites of flavan-3-ols: synthesis, analysis, bioavailability, and bioactivity. Nat Prod Rep 2019; 36:714-752. [PMID: 30468210 DOI: 10.1039/c8np00062j] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Covering: 1958 to June 2018 Phenyl-γ-valerolactones (PVLs) and their related phenylvaleric acids (PVAs) are the main metabolites of flavan-3-ols, the major class of flavonoids in the human diet. Despite their presumed importance, these gut microbiota-derived compounds have, to date, in terms of biological activity, been considered subordinate to their parent dietary compounds, the flavan-3-ol monomers and proanthocyanidins. In this review, the role and prospects of PVLs and PVAs as key metabolites in the understanding of the health features of flavan-3-ols have been critically assessed. Among the topics covered, are proposals for a standardised nomenclature for PVLs and PVAs. The formation, bioavailability and pharmacokinetics of PVLs and PVAs from different types of flavan-3-ols are discussed, taking into account in vitro and animal studies, as well as inter-individual differences and the existence of putative flavan-3-ol metabotypes. Synthetic strategies used for the preparation of PVLs are considered and the methodologies for their identification and quantification assessed. Metabolomic approaches unravelling the role of PVLs and PVAs as biomarkers of intake are also described. Finally, the biological activity of these microbial catabolites in different experimental models is summarised. Knowledge gaps and future research are considered in this key area of dietary (poly)phenol research.
Collapse
Affiliation(s)
- Pedro Mena
- Department of Food & Drugs, University of Parma, Via Volturno 39, 43125 Parma, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Krishnamoorthy R, Adisa AR, Periasamy VS, Athinarayanan J, Pandurangan SB, Alshatwi AA. Colonic Bacteria-Transformed Catechin Metabolite Response to Cytokine Production by Human Peripheral Blood Mononuclear Cells. Biomolecules 2019; 9:biom9120830. [PMID: 31817548 PMCID: PMC6995598 DOI: 10.3390/biom9120830] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/12/2019] [Accepted: 11/29/2019] [Indexed: 12/15/2022] Open
Abstract
Human gut microbes are a profitable tool for the modification of food compounds into biologically active metabolites. The biological properties of catechins have been extensively investigated. However, the bioavailability of catechin in human blood plasma is very low. This study aimed to determine the biotransformed catechin metabolites and their bioactive potentials for modulating the immune response of human peripheral blood mononuclear cells (PBMCs). Biotransformation of catechin was carried out using in-vitro gut microbial biotransformation method, the transformed metabolites were identified and confirmed by gas chromatography-mass spectrometry (GC–MS) and high-performance liquid chromatography-mass spectrometry (HPLC–MS). Present observations confirmed that the catechin was biotransformed into 11 metabolites upon microbial dehydroxylation and C ring cleavage. Further, immunomodulatory potential of catechin metabolites was analyzed in peripheral blood mononuclear cells (PBMCs). We found up-regulation of anti-inflammatory cytokine (IL-4, IL-10) and down-regulation of pro-inflammatory (IL-16, IL-12B) cytokine may be due to Th2 immune response. In conclusion, biotransformed catechin metabolites enhance anti-inflammatory cytokines which is beneficial for overcoming inflammatory disorders.
Collapse
Affiliation(s)
| | - Abdulraheem R. Adisa
- Correspondence: (A.R.A.); (A.A.A.); Tel.: +966-543617783 (A.R.A.); +966-504236535 (A.A.A.)
| | | | | | | | - Ali A. Alshatwi
- Correspondence: (A.R.A.); (A.A.A.); Tel.: +966-543617783 (A.R.A.); +966-504236535 (A.A.A.)
| |
Collapse
|
30
|
Thumann TA, Pferschy-Wenzig EM, Moissl-Eichinger C, Bauer R. The role of gut microbiota for the activity of medicinal plants traditionally used in the European Union for gastrointestinal disorders. JOURNAL OF ETHNOPHARMACOLOGY 2019; 245:112153. [PMID: 31408679 DOI: 10.1016/j.jep.2019.112153] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/09/2019] [Accepted: 08/09/2019] [Indexed: 05/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Many medicinal plants have been traditionally used for the treatment of gastrointestinal disorders. According to the monographs published by the Committee on Herbal Medicinal Products (HMPC) at the European Medicines Agency, currently 44 medicinal plants are recommended in the European Union for the treatment of gastrointestinal disorders based on traditional use. The main indications are functional and chronic gastrointestinal disorders, such as functional dyspepsia and irritable bowel syndrome (IBS), and typical effects of these plants are stimulation of gastric secretion, spasmolytic and carminative effects, soothing effects on the gastrointestinal mucosa, laxative effects, adstringent or antidiarrheal activities, and anti-inflammatory effects. A possible interaction with human gut microbiota has hardly been considered so far, although it is quite likely. AIM OF THE STUDY In this review, we aimed to identify and evaluate published studies which have investigated interactions of these plants with the gut microbiome. RESULTS According to this survey, only a minor portion of the 44 medicinal plants considered in EMA monographs for the treatment of gastrointestinal diseases has been studied so far with regard to potential interactions with gut microbiota. We could identify eight relevant in vitro studies that have been performed with six of these medicinal plants, 17 in vivo studies performed in experimental animals involving seven of the medicinal plants, and three trials in humans performed with two of the plants. The most robust evidence exists for the use of inulin as a prebiotic, and in this context also the prebiotic activity of chicory root has been investigated quite intensively. Flaxseed dietary fibers are also known to be fermented by gut microbiota to short chain fatty acids, leading to prebiotic effects. This could cause a health-beneficial modulation of gut microbiota by flaxseed supplementation. In flaxseed, also other compound classes like lignans and polyunsaturated fatty acids are present, that also have been shown to interact with gut microbiota. Drugs rich in tannins and anthocyanins also interact intensively with gut microbiota, since these compounds reach the colon at high levels in unchanged form. Tannins and anthocyanins are intensively metabolized by certain gut bacteria, leading to the generation of small, bioavailable and potentially bioactive metabolites. Moreover, interaction with these compounds may exert a prebiotic-like effect on gut microbiota. Gut microbial metabolization has also been shown for certain licorice constituents, but their potential effects on gut microbiota still need to be investigated in detail. Only a limited amount of studies investigated the interactions of essential oil- and secoiridoid-containing drugs with human gut microbiota. However, other constituents present in some of these drugs, like curcumin (curcuma), shogaol (ginger), and rosmarinic acid have been shown to be metabolized by human gut microbiota, and preliminary data also indicate potential gut microbiome modulatory effects. To conclude, the interaction with gut microbiota is still not fully investigated for many herbal drugs traditionally used for gastrointestinal disorders, which offers a vast field for future research.
Collapse
Affiliation(s)
- Timo A Thumann
- Institute of Pharmaceutical Sciences, University of Graz, Universitätsplatz 4, 8010, Graz, Austria; BioTechMed, Mozartgasse 12, 8010, Graz, Austria.
| | - Eva-Maria Pferschy-Wenzig
- Institute of Pharmaceutical Sciences, University of Graz, Universitätsplatz 4, 8010, Graz, Austria; BioTechMed, Mozartgasse 12, 8010, Graz, Austria.
| | - Christine Moissl-Eichinger
- BioTechMed, Mozartgasse 12, 8010, Graz, Austria; Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria.
| | - Rudolf Bauer
- Institute of Pharmaceutical Sciences, University of Graz, Universitätsplatz 4, 8010, Graz, Austria; BioTechMed, Mozartgasse 12, 8010, Graz, Austria.
| |
Collapse
|
31
|
Guo T, Song D, Cheng L, Zhang X. Interactions of tea catechins with intestinal microbiota and their implication for human health. Food Sci Biotechnol 2019; 28:1617-1625. [PMID: 31807334 PMCID: PMC6859143 DOI: 10.1007/s10068-019-00656-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/13/2019] [Accepted: 07/19/2019] [Indexed: 01/08/2023] Open
Abstract
Tea catechins have attracted strong interests in pharmacological field for their extensive biological activities; however, their bioavailability in vivo is relatively low. Recent studies have shown tea catechins can modulate the composition of intestinal microbiota and help to improve hosts' health. Meanwhile, the gut flora plays a crucial role in regulating the production of the metabolites of tea catechins and their biological activity. Although the activities of tea catechins to promote intestinal micro-ecology have been extensively studied, little is known about the two-way phenol-microbial interactions. This review focuses on the modulatory effect of tea catechins on intestinal microbiota as well as the microbial degradation of tea catechins and the metabolites formed. Finally, the potential effects of tea catechins on chronic intestinal inflammation are emphasized.
Collapse
Affiliation(s)
- Tongtong Guo
- Department of Food Science and Engineering, Ningbo University, Ningbo, 315211 People’s Republic of China
| | - Dan Song
- Department of Food Science and Engineering, Ningbo University, Ningbo, 315211 People’s Republic of China
| | - Lu Cheng
- Department of Food Science, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901 USA
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo, 315211 People’s Republic of China
| |
Collapse
|
32
|
Effects of (+)-catechin on the differentiation and lipid metabolism of 3T3-L1 adipocytes. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103558] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
33
|
Tu PC, Liang YC, Kao MC, Chao LK, Tseng MH, Lu TL, Sung PJ, Kuo YH. Phenylpropanoids and lignoids from the whole plant of Vaccinium emarginatum and their cytotoxicity against prostate cancer cells. Nat Prod Res 2019; 35:2028-2036. [PMID: 31496280 DOI: 10.1080/14786419.2019.1655412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
One new naturally occurring quinone, 3',4'-dihydroxy-1,2,6-trimethoxy-[1,1'-biphenyl]-4(1H)-one (1), one new diarylpropane, emarginone A (2), and one new neolignan, emarginone B (3), along with eighteen known compounds have been isolated from the chemical investigation of the EtOAc-soluble fraction of the Vaccinium emarginatum whole plant methanolic extract. The new structures were elucidated by combined analysis of spectroscopic analytical methods and comparison with the literature data obtained from known analogues. In addition, the cytotoxicity of compounds 2, 4, and 14-20 against Du145 and PC-3 prostate cancer cell lines using MTT cell proliferation assay was evaluated. Compounds 2 and 19 showed most potent cytotoxicity against Du145 with IC50 values of 7.53 and 6.63 μg/mL, respectively. Furthermore, compounds 2, 17, and 19 also exhibited significant cytotoxicity against PC-3 with IC50 values ranging from 3.44-6.64 μg/mL.
Collapse
Affiliation(s)
- Ping-Chen Tu
- The Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung, Taiwan
| | - Yu-Chia Liang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan
| | - Ming-Ching Kao
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | | | - Mei-Hwei Tseng
- Department of Applied Physics and Chemistry, Taipei Municipal University of Education, Taipei, Taiwan
| | - Te-Ling Lu
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Ping-Jyun Sung
- National Museum of Marine Biology and Aquarium, Pingtung, Taiwan.,Graduate Institute of Marine Biology, National Dong Hwa University, Hualien, Taiwan
| | - Yueh-Hsiung Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan.,Department of Biotechnology, Asia University, Taichung, Taiwan.,Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
| |
Collapse
|
34
|
Pervin M, Unno K, Takagaki A, Isemura M, Nakamura Y. Function of Green Tea Catechins in the Brain: Epigallocatechin Gallate and its Metabolites. Int J Mol Sci 2019; 20:ijms20153630. [PMID: 31349535 PMCID: PMC6696481 DOI: 10.3390/ijms20153630] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/22/2019] [Accepted: 07/22/2019] [Indexed: 12/11/2022] Open
Abstract
Over the last three decades, green tea has been studied for its beneficial effects, including anti-cancer, anti-obesity, anti-diabetes, anti-inflammatory, and neuroprotective effects. At present, a number of studies that have employed animal, human and cell cultures support the potential neuroprotective effects of green tea catechins against neurological disorders. However, the concentration of (−)-epigallocatechin gallate (EGCG) in systemic circulation is very low and EGCG disappears within several hours. EGCG undergoes microbial degradation in the small intestine and later in the large intestine, resulting in the formation of various microbial ring-fission metabolites which are detectable in the plasma and urine as free and conjugated forms. Recently, in vitro experiments suggested that EGCG and its metabolites could reach the brain parenchyma through the blood–brain barrier and induce neuritogenesis. These results suggest that metabolites of EGCG may play an important role, alongside the beneficial activities of EGCG, in reducing neurodegenerative diseases. In this review, we discuss the function of EGCG and its microbial ring-fission metabolites in the brain in suppressing brain dysfunction. Other possible actions of EGCG metabolites will also be discussed.
Collapse
Affiliation(s)
- Monira Pervin
- Tea Science Center, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 422-8526, Japan.
| | - Keiko Unno
- Tea Science Center, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 422-8526, Japan.
| | - Akiko Takagaki
- R&D group, Mitsui Norin Co. Ltd., Shizuoka 426-0133, Japan
| | - Mamoru Isemura
- Tea Science Center, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Yoriyuki Nakamura
- Tea Science Center, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| |
Collapse
|
35
|
Dey P. Gut microbiota in phytopharmacology: A comprehensive overview of concepts, reciprocal interactions, biotransformations and mode of actions. Pharmacol Res 2019; 147:104367. [PMID: 31344423 DOI: 10.1016/j.phrs.2019.104367] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/11/2019] [Accepted: 07/19/2019] [Indexed: 02/07/2023]
Abstract
The dynamic and delicate interactions amongst intestinal microbiota, metabolome and metabolism dictates human health and disease. In recent years, our understanding of gut microbial regulation of intestinal immunometabolic and redox homeostasis have evolved mainly out of in vivo studies associated with high-fat feeding induced metabolic diseases. Techniques utilizing fecal transplantation and germ-free mice have been instrumental in reproducibly demonstrating how the gut microbiota affects disease pathogenesis. However, the pillars of modern drug discovery i.e. evidence-based pharmacological studies critically lack focus on intestinal microflora. This is primarily due to targeted in vitro molecular-approaches at cellular-level that largely overlook the etiology of disease pathogenesis from the physiological perspective. Thus, this review aims to provide a comprehensive understanding of the key notions of intestinal microbiota and dysbiosis, and highlight the microbiota-phytochemical bidirectional interactions that affects bioavailability and bioactivity of parent phytochemicals and their metabolites. Potentially by focusing on the three major aspects of gut microbiota i.e. microbial abundance, diversity, and functions, I will discuss phytochemical-microbiota reciprocal interactions, biotransformation of phytochemicals and plant-derived drugs, and pre-clinical and clinical efficacies of herbal medicine on dysbiosis. Additionally, in relation to phytochemical pharmacology, I will briefly discuss the role of dietary-patterns associated with changes in microbial profiles and review pharmacological study models considering possible microbial effects. This review therefore, emphasize on the timely and critically needed evidence-based phytochemical studies focusing on gut microbiota and will provide newer insights for future pre-clinical and clinical phytopharmacological interventions.
Collapse
Affiliation(s)
- Priyankar Dey
- Human Nutrition Program, Department of Human Sciences, The Ohio State University, Columbus, Ohio, USA.
| |
Collapse
|
36
|
Gleńsk M, Hurst WJ, Glinski VB, Bednarski M, Gliński JA. Isolation of 1-(3',4'-Dihydroxyphenyl)-3-(2″,4″,6″-trihydroxyphenyl)-propan-2-ol from Grape Seed Extract and Evaluation of its Antioxidant and Antispasmodic Potential. Molecules 2019; 24:molecules24132466. [PMID: 31277501 PMCID: PMC6651082 DOI: 10.3390/molecules24132466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/02/2019] [Accepted: 07/02/2019] [Indexed: 01/22/2023] Open
Abstract
HPLC profiling of phenolics in grape seed extracts revealed a prominent peak of an unknown substance with concentrations up to 5.3%. Spectroscopic data allowed the identification of the compound 1 as 1-(3′,4′-dihydroxyphenyl)-3-(2″,4″,6″-trihydroxyphenyl)-propan-2-ol. 1 is known to be produced from catechin and epicatechin through anaerobic bacteria from human, as well as the rat, intestines. It was hypothesized that the marc remaining after expression of juice from grapes became infested during storage, resulting in the production of 1. Because compound 1 is infrequently found in nature and has never been found in grape seeds, its presence may be considered a marker of an unwanted anaerobic bacterial process occurring during production. The antioxidant potential of 1 was determined by DPPH, ABTS, and FRAP (ferric reducing antioxidant power) assays and compared to the potential of the following compounds: phloroglucine, pyrogallol, gallic acid, catechin, and epicatechin. Furthermore, it was established that 1 significantly reduced guinea pig ileum contraction induced by histamine.
Collapse
Affiliation(s)
- Michał Gleńsk
- Department of Pharmacognosy and Herbal Medicines, Wroclaw Medical University, 50-556 Wrocław, Poland.
| | | | | | - Marek Bednarski
- Department of Pharmacological Screening, Chair of Pharmacodynamics, Jagiellonian University Medical College, 30-688 Kraków, Poland
| | | |
Collapse
|
37
|
Kawabata K, Yoshioka Y, Terao J. Role of Intestinal Microbiota in the Bioavailability and Physiological Functions of Dietary Polyphenols. Molecules 2019; 24:E370. [PMID: 30669635 PMCID: PMC6359708 DOI: 10.3390/molecules24020370] [Citation(s) in RCA: 360] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/17/2019] [Accepted: 01/17/2019] [Indexed: 12/29/2022] Open
Abstract
Polyphenols are categorized as plant secondary metabolites, and they have attracted much attention in relation to human health and the prevention of chronic diseases. In recent years, a considerable number of studies have been published concerning their physiological function in the digestive tract, such as their prebiotic properties and their modification of intestinal microbiota. It has also been suggested that several hydrolyzed and/or fission products, derived from the catabolism of polyphenols by intestinal bacteria, exert their physiological functions in target sites after transportation into the body. Thus, this review article focuses on the role of intestinal microbiota in the bioavailability and physiological function of dietary polyphenols. Monomeric polyphenols, such as flavonoids and oligomeric polyphenols, such as proanthocyanidins, are usually catabolized to chain fission products by intestinal bacteria in the colon. Gallic acid and ellagic acid derived from the hydrolysis of gallotannin, and ellagitannin are also subjected to intestinal catabolism. These catabolites may play a large role in the physiological functions of dietary polyphenols. They may also affect the microbiome, resulting in health promotion by the activation of short chain fatty acids (SCFA) excretion and intestinal immune function. The intestinal microbiota is a key factor in mediating the physiological functions of dietary polyphenols.
Collapse
Affiliation(s)
- Kyuichi Kawabata
- Faculty of Clinical Nutrition and Dietetics, Konan Women's University, 6-2-23 Morikita-machi, Higashinada-ku, Kobe City, Hyogo 658-0001, Japan.
| | - Yasukiyo Yoshioka
- Faculty of Clinical Nutrition and Dietetics, Konan Women's University, 6-2-23 Morikita-machi, Higashinada-ku, Kobe City, Hyogo 658-0001, Japan.
| | - Junji Terao
- Faculty of Clinical Nutrition and Dietetics, Konan Women's University, 6-2-23 Morikita-machi, Higashinada-ku, Kobe City, Hyogo 658-0001, Japan.
| |
Collapse
|
38
|
Kleber Silveira A, Moresco KS, Mautone Gomes H, da Silva Morrone M, Kich Grun L, Pens Gelain D, de Mattos Pereira L, Giongo A, Rodrigues De Oliveira R, Fonseca Moreira JC. Guarana (Paullinia cupana Mart.) alters gut microbiota and modulates redox status, partially via caffeine in Wistar rats. Phytother Res 2018; 32:2466-2474. [PMID: 30277282 DOI: 10.1002/ptr.6185] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/05/2018] [Accepted: 08/11/2018] [Indexed: 12/28/2022]
Abstract
Microbiota alterations are observed in pathological conditions, and their regulation is a subject of great interest. Gut microbes are affected by diet, and plant polyphenols may have positive effect on gut microbiota; however, plant-derived extracts may have toxic effects. Guarana (Paullinia cupana Mart.) is a nontraditional medicinal plant applied worldwide. Guarana yields an alkaloid and polyphenol-rich seed with antimicrobial, antioxidant, and anti-inflammatory properties, where caffeine is the major compound. We evaluated the effects of guarana seed powder (GSP) and purified caffeine on gut microbial composition and redox and inflammatory parameters in Wistar rats after 21 days of treatment. Fecal microbiota was analyzed utilizing 16S rDNA sequencing. Antioxidant enzymes activities from liver, kidney, and colon, as well as oxidative damage markers, were evaluated. Total nonenzymatic antioxidant potential was also evaluated. Microbiota was altered by both treatments, GSP and caffeine, without loss of diversity. In the liver, the kidney, and the colon, we observed a decrease in the antioxidant enzymes activities in the GSP group with no increase in the expression of oxidative damage markers, although some enzymes were also regulated by caffeine. Taken together, these results suggested that GSP ameliorates redox parameters but negatively affected gut microbiota, partially via caffeine.
Collapse
Affiliation(s)
- Alexandre Kleber Silveira
- Department of Biochemistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Karla Suzana Moresco
- Department of Biochemistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Henrique Mautone Gomes
- Department of Biochemistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Maurílio da Silva Morrone
- Department of Biochemistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Lucas Kich Grun
- Department of Biochemistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Daniel Pens Gelain
- Department of Biochemistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Leandro de Mattos Pereira
- Institute of Petroleum and Natural Resources, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Adriana Giongo
- Institute of Petroleum and Natural Resources, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Rafael Rodrigues De Oliveira
- Institute of Petroleum and Natural Resources, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | | |
Collapse
|
39
|
Hara-Terawaki A, Takagaki A, Kobayashi H, Nanjo F. Inhibitory Activity of Catechin Metabolites Produced by Intestinal Microbiota on Proliferation of HeLa Cells. Biol Pharm Bull 2018; 40:1331-1335. [PMID: 28769014 DOI: 10.1248/bpb.b17-00127] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Eleven kinds of catechin metabolites produced from (-)-epigallocatechin (EGC) and (-)-epigallocatechin gallate (EGCg) by intestinal microbiota were evaluated for inhibitory activity on the proliferation of HeLa cells, which are human cervical cancer cells. Among the catechin metabolites, 1-(3,4,5-trihydroxyphenyl)-3-(2,4,6-trihydroxyphenyl)propan-2-ol (EGC-M2), 4-hydroxy-5-(3,4,5-trihydroxyphenyl)valeric acid (EGC-M7), and 5-(3,4,5-trihydroxyphenyl)valeric acid (EGC-M9) were found to show inhibitory activity on HeLa cell proliferation as compared with control. The results suggested that three adjacent hydroxyl groups in the phenyl moiety may play an important role in the inhibitory activity. In addition, the inhibitory activity was also examined with four (-)-epicatechin (EC) metabolites possessing two adjacent hydroxyl groups in the phenyl moiety. Only 5-(3,4-dihydroxyphenyl)valeric acid (EC-M9) showed inhibitory activity and therefore valeric acid moiety likely contributes to the inhibitory activity. EGC-M9 showed the strongest inhibitory activity with IC50 of 5.58 µM. Thus, in this study it was found for the first time that several catechin metabolites derived from EGC, EGCg, and EC inhibit the proliferation of cervical cancer cells.
Collapse
Affiliation(s)
| | | | | | - Fumio Nanjo
- Food Research Laboratories, Mitsui Norin Co., Ltd
| |
Collapse
|
40
|
Cui Q, Pan Y, Zhang W, Zhang Y, Ren S, Wang D, Wang Z, Liu X, Xiao W. Metabolites of Dietary Acteoside: Profiles, Isolation, Identification, and Hepatoprotective Capacities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:2660-2668. [PMID: 29478321 DOI: 10.1021/acs.jafc.7b04650] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In recent years, cistanche tea has been increasingly used as a major herbal supplement in functional drinks, and it has attracted a growing number of consumers because of its excellent tonic effects and medicinal properties. Acteoside (ACT), which is the principal bioactive component of Chinese cistanche tea, possesses various pharmacological effects. This study profiled, isolated, identified, and investigated the hepatoprotective capacities of metabolites in rat urine after the administration of ACT. Eleven metabolites, including one new compound (M8), were obtained and identified by nuclear magnetic resonance (NMR) spectroscopy for the first time. Compared with native ACT, ACT metabolites such as hydroxytyrosol (HT), 3-hydroxyphenylpropionic acid (3-HPP), and caffeic acid (CA) exhibited higher hepatoprotective activities by regulating oxidative stress, lipid peroxidation, and inflammatory responses in a GalN/LPS-induced-acute-hepatic-injury mouse model. The HT treatment markedly reduced the levels of TNF-α to 280 ± 14.3 ng/L compared with the model group (429 ± 9.20 ng/L, p < 0.01). The results obtained indicated that cistanche tea could be developed as a functional drink for the prevention of hepatic injuries and that ACT metabolites could be responsible for the potent hepatoprotective activity as well as the other therapeutic effects.
Collapse
Affiliation(s)
- Qingling Cui
- School of Traditional Chinese Medicine , Shenyang Pharmaceutical University , 103 Wenhua Road , Shenyang 110016 , China
| | - Yingni Pan
- School of Traditional Chinese Medicine , Shenyang Pharmaceutical University , 103 Wenhua Road , Shenyang 110016 , China
- Jiangsu Kanion Pharmaceutical Company Ltd. , Lianyungang 222001 , China
| | - Wei Zhang
- School of Traditional Chinese Medicine , Shenyang Pharmaceutical University , 103 Wenhua Road , Shenyang 110016 , China
| | - Yanan Zhang
- School of Traditional Chinese Medicine , Shenyang Pharmaceutical University , 103 Wenhua Road , Shenyang 110016 , China
| | - Shumeng Ren
- School of Traditional Chinese Medicine , Shenyang Pharmaceutical University , 103 Wenhua Road , Shenyang 110016 , China
| | - Dongmei Wang
- School of Pharmacy , Shenyang Pharmaceutical University , 103 Wenhua Road , Shenyang 110016 , China
| | - Zhenzhong Wang
- Jiangsu Kanion Pharmaceutical Company Ltd. , Lianyungang 222001 , China
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process , Lianyungang 222001 , China
| | - Xiaoqiu Liu
- School of Traditional Chinese Medicine , Shenyang Pharmaceutical University , 103 Wenhua Road , Shenyang 110016 , China
| | - Wei Xiao
- Jiangsu Kanion Pharmaceutical Company Ltd. , Lianyungang 222001 , China
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process , Lianyungang 222001 , China
| |
Collapse
|
41
|
Pferschy-Wenzig EM, Koskinen K, Moissl-Eichinger C, Bauer R. A Combined LC-MS Metabolomics- and 16S rRNA Sequencing Platform to Assess Interactions between Herbal Medicinal Products and Human Gut Bacteria in Vitro: a Pilot Study on Willow Bark Extract. Front Pharmacol 2017; 8:893. [PMID: 29326584 PMCID: PMC5733343 DOI: 10.3389/fphar.2017.00893] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/22/2017] [Indexed: 12/24/2022] Open
Abstract
Herbal preparations are complex mixtures of natural products, many of which are able to reach the distal gut due to low oral bioavailability. There, they can influence the microbial communities, and can be metabolized into potentially absorbable bioactive compounds by the intestinal bacteria. This aspect has often been disregarded when searching for the active principles of medicinal plants and herbal medicinal products. The aim of this study was to establish an interdisciplinary platform to unravel interactions of herbal medicine and intestinal microbiota, using a combined LC-MS metabolomics and 16S rRNA microbiome sequencing approach. Willow bark extract (WBE), a herbal medicinal product with a long history of traditional use and a well-established anti-inflammatory activity, was incubated with human fecal suspension under anoxic conditions. Samples were taken after 0.5, 4, and 24 h of incubation. Microbiome analyses revealed that incubation with WBE had a marked effect on microbial community composition and functions. For example, the proportion of Bacteroides sp. was clearly enhanced when the fecal sample used in this study was incubated with WBE. LC-MS analysis showed that WBE constituents were readily metabolized by fecal bacteria. Numerous microbial metabolites could be annotated, allowing the construction of putative microbial degradation pathways for the main groups of WBE constituents. We suggest that studies of this type help to increase the knowledge on bioactive principles of medicinal plants, since gut microbial metabolites might have been underestimated as a source of bioactive compounds in the past.
Collapse
Affiliation(s)
- Eva-Maria Pferschy-Wenzig
- Department of Pharmacognosy, Institute of Pharmaceutical Sciences, Universtity of Graz, Graz, Austria
| | - Kaisa Koskinen
- Section of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Christine Moissl-Eichinger
- Section of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Rudolf Bauer
- Department of Pharmacognosy, Institute of Pharmaceutical Sciences, Universtity of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
42
|
Ng KW, Cao ZJ, Chen HB, Zhao ZZ, Zhu L, Yi T. Oolong tea: A critical review of processing methods, chemical composition, health effects, and risk. Crit Rev Food Sci Nutr 2017; 58:2957-2980. [PMID: 28678527 DOI: 10.1080/10408398.2017.1347556] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Oolong tea (OT) is a traditional Chinese tea (Camellia sinensis) and is especially popular in south China. This review is to comprehensively summarize the miscellaneous research that has been done towards to the processing, phytochemistry, health benefit, and risk of OT. These literatures were carried out not only from different electronic databases but also from text books written in English, Japanese, and Chinese, including those traditional records tracing back to the Tang Dynasty (A.D. 618-907). The full process OT producing is depicted below in this review. The phytochemistry of OT has been comprehensively investigated. More than 100 chemical compositions have been isolated and identified. In health benefit, OT performs outstandingly in reducing obesity and controlling diabetes explained by modern pharmacological studies. (-)-Epigallocatechin-3-gallate (6) in OT prevention of cancerous cells developing. OT can also improve and reduce on heart and vascular disease, protect teeth and bone, function as anti-oxidative and antibacterial agents. This review also mentioned the risk, summarized briefly on various forms of toxicity and harmful associated with OT. In short, this review can provided a natural product library of OT, gave inspirations for further new garden systems, designed idea on quality, bioactivity-oriented screening. In addition, it is suggested more scientists and education is necessary to guarantee the stability and safety of drinking OT.
Collapse
Affiliation(s)
- Kwan-Wai Ng
- a School of Chinese Medicine , Hong Kong Baptist University, Hong Kong Special Administrative Region , China
| | - Zi-Jun Cao
- a School of Chinese Medicine , Hong Kong Baptist University, Hong Kong Special Administrative Region , China
| | - Hu-Biao Chen
- a School of Chinese Medicine , Hong Kong Baptist University, Hong Kong Special Administrative Region , China
| | - Zhong-Zhen Zhao
- a School of Chinese Medicine , Hong Kong Baptist University, Hong Kong Special Administrative Region , China
| | - Lin Zhu
- a School of Chinese Medicine , Hong Kong Baptist University, Hong Kong Special Administrative Region , China
| | - Tao Yi
- a School of Chinese Medicine , Hong Kong Baptist University, Hong Kong Special Administrative Region , China
| |
Collapse
|
43
|
Saito A. Challenges and complexity of functionality evaluation of flavan-3-ol derivatives. Biosci Biotechnol Biochem 2017; 81:1055-1060. [PMID: 28345490 DOI: 10.1080/09168451.2017.1295801] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Flavan-3-ol derivatives are common plant-derived bioactive compounds. In particular, (-)-epigallocatechin-3-O-gallate shows various moderate biological activities without severe toxicity, and its health-promoting effects have been widely studied because it is a main ingredient in green tea and is commercially available at low cost. Although various biologically active flavan-3-ol derivatives are present as minor constituents in plants as well as in green tea, their biological activities have yet to be revealed, mainly due to their relative unavailability. Here, I outline the major factors contributing to the complexity of functionality studies of flavan-3-ol derivatives, including proanthocyanidins and oligomeric flavan-3-ols. I emphasize the importance of conducting structure-activity relationship studies using synthesized flavan-3-ol derivatives that are difficult to obtain from plant extracts in pure form to overcome this challenge. Further discovery of these minor constituents showing strong biological activities is expected to produce useful information for the development of functional health foods.
Collapse
Affiliation(s)
- Akiko Saito
- a Graduate School of Engineering , Osaka Electro-communication University (OECU) , Osaka , Japan
| |
Collapse
|
44
|
Otsuka Y, Matsuda M, Sonoki T, Sato-Izawa K, Goodell B, Jelison J, Navarro RR, Murata H, Nakamura M. Enzymatic activity of cell-free extracts from Burkholderia oxyphila OX-01 bio-converts (+)-catechin and (−)-epicatechin to (+)-taxifolin. Biosci Biotechnol Biochem 2016; 80:2473-2479. [DOI: 10.1080/09168451.2016.1220822] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Abstract
This study characterized the enzymatic ability of a cell-free extract from an acidophilic (+)-catechin degrader Burkholderia oxyphila (OX-01). The crude OX-01 extracts were able to transform (+)-catechin and (−)-epicatechin into (+)-taxifolin via a leucocyanidin intermediate in a two-step oxidation. Enzymatic oxidation at the C-4 position was carried out anaerobically using H2O as an oxygen donor. The C-4 oxidation occurred only in the presence of the 2R-catechin stereoisomer, with the C-3 stereoisomer not affecting the reaction. These results suggest that the OX-01 may have evolved to target both (+)-catechin and (−)-epicatechin, which are major structural units in plants.
Collapse
Affiliation(s)
- Yuichiro Otsuka
- Department of Forest Resource Chemistry, Forestry and Forest Products Research Institute, Tsukuba, Japan
- Department of Sustainable and Biomaterials, Virginia Polytechnic and State University, Blacksburg, VA, USA
| | - Motoki Matsuda
- Department of Biotechnology, Toyama Prefectural University, Imizu, Japan
| | - Tomonori Sonoki
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan
| | - Kanna Sato-Izawa
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Barry Goodell
- Department of Sustainable and Biomaterials, Virginia Polytechnic and State University, Blacksburg, VA, USA
| | - Jody Jelison
- Center for Agriculture, Food and the Environment, University of Massachusetts Amherst, Amherst, MA, USA
| | - Ronald R Navarro
- Department of Forest Resource Chemistry, Forestry and Forest Products Research Institute, Tsukuba, Japan
| | - Hitoshi Murata
- Department of Mushroom Science and Forest Microbiology, Forestry and Forest Products Research Institute, Tsukuba, Japan
| | - Masaya Nakamura
- Department of Forest Resource Chemistry, Forestry and Forest Products Research Institute, Tsukuba, Japan
| |
Collapse
|
45
|
Stevens JF, Maier CS. The Chemistry of Gut Microbial Metabolism of Polyphenols. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2016; 15:425-444. [PMID: 27274718 PMCID: PMC4888912 DOI: 10.1007/s11101-016-9459-z] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 03/02/2016] [Indexed: 05/18/2023]
Abstract
Gut microbiota contribute to the metabolism of dietary polyphenols and affect the bioavailability of both the parent polyphenols and their metabolites. Although there is a large number of reports of specific polyphenol metabolites, relatively little is known regarding the chemistry and enzymology of the metabolic pathways utilized by specific microbial species and taxa, which is the focus of this review. Major classes of dietary polyphenols include monomeric and oligomeric catechins (proanthocyanidins), flavonols, flavanones, ellagitannins, and isoflavones. Gut microbial metabolism of representatives of these polyphenol classes can be classified as A- and C-ring cleavage (retro Claisen reactions), C-ring cleavage mediated by dioxygenases, dehydroxylations (decarboxylation or reduction reactions followed by release of H2O molecules), and hydrogenations of alkene moieties in polyphenols, such as resveratrol, curcumin, and isoflavones (mediated by NADPH-dependent reductases). The qualitative and quantitative metabolic output of the gut microbiota depends to a large extent on the metabolic capacity of individual taxa, which emphasizes the need for assessment of functional analysis in conjunction with determinations of gut microbiota compositions.
Collapse
Affiliation(s)
- Jan F Stevens
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon 97330; Linus Pauling Institute, Oregon State University, Corvallis, Oregon 97330
| | - Claudia S Maier
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97330; Linus Pauling Institute, Oregon State University, Corvallis, Oregon 97330
| |
Collapse
|
46
|
Takagaki A, Nanjo F. Bioconversion of (-)-epicatechin, (+)-epicatechin, (-)-catechin, and (+)-catechin by (-)-epigallocatechin-metabolizing bacteria. Biol Pharm Bull 2016; 38:789-94. [PMID: 25947926 DOI: 10.1248/bpb.b14-00813] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bioconversion of (-)-epicatechin (-EC), (+)-epicatechin (+EC), (-)-catechin (-C), and (+)-catechin (+C) by (-)-epigallocatechin (-EGC)-metabolizing bacteria, Adlercreutzia equolifaciens MT4s-5, Eggerthella lenta JCM 9979, and Flavonifractor plautii MT42, was investigated. A. equolifaciens MT4s-5 could catalyze C ring cleavage to form (2S)-1-(3,4-dihydroxyphenyl)-3-(2,4,6-trihydroxyphenyl)propan-2-ol (1S) from -EC and -C, and (2R)-1-(3,4-dihydroxyphenyl)-3-(2,4,6-trihydroxyphenyl)propan-2-ol (1R) from +C. The C ring cleavage by A. equolifaciens MT4s-5 was accelerated in the presence of hydrogen. E. lenta JCM 9979 also catalyzed C ring cleavage of -EC and +C to produce 1S and 1R, respectively. In the presence of hydrogen or formate, strain JCM 9979 showed not only stimulation of C ring cleavage but also subsequent 4'-dehydroxylation of 1S and 1R to produce (2S)-1-(3-hydroxyphenyl)-3-(2,4,6-trihydroxyphenyl)propan-2-ol (2S) and (2R)-1-(3-hydroxyphenyl)-3-(2,4,6-trihydroxyphenyl)propan-2-ol (2R), respectively. On the other hand, A. equolifaciens MT4s-5 did not show any 4'-dehydroxylation ability even in the presence of hydrogen. F. plautii MT42 could convert 1S, 1R, 2S, and 2R into their corresponding 4-hydroxy-5-hydroxyphenylvaleric acids and 5-hydroxyphenyl-γ-valerolactones simultaneously. Similar bioconversion was observed by F. plautii ATCC 29863 and F. plautii ATCC 49531.
Collapse
|
47
|
Ozdal T, Sela DA, Xiao J, Boyacioglu D, Chen F, Capanoglu E. The Reciprocal Interactions between Polyphenols and Gut Microbiota and Effects on Bioaccessibility. Nutrients 2016; 8:78. [PMID: 26861391 PMCID: PMC4772042 DOI: 10.3390/nu8020078] [Citation(s) in RCA: 485] [Impact Index Per Article: 60.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 01/11/2016] [Indexed: 02/07/2023] Open
Abstract
As of late, polyphenols have increasingly interested the scientific community due to their proposed health benefits. Much of this attention has focused on their bioavailability. Polyphenol-gut microbiota interactions should be considered to understand their biological functions. The dichotomy between the biotransformation of polyphenols into their metabolites by gut microbiota and the modulation of gut microbiota composition by polyphenols contributes to positive health outcomes. Although there are many studies on the in vivo bioavailability of polyphenols, the mutual relationship between polyphenols and gut microbiota is not fully understood. This review focuses on the biotransformation of polyphenols by gut microbiota, modulation of gut microbiota by polyphenols, and the effects of these two-way mutual interactions on polyphenol bioavailability, and ultimately, human health.
Collapse
Affiliation(s)
- Tugba Ozdal
- Department of Food Engineering, Faculty of Engineering and Architecture, Okan Univesity, Tuzla, Istanbul TR-34959, Turkey.
| | - David A Sela
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA.
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau, China.
| | - Dilek Boyacioglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul TR-34469, Turkey.
| | - Fang Chen
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, China Agricultural University, Beijing 100083, China.
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul TR-34469, Turkey.
| |
Collapse
|
48
|
Takagaki A, Nanjo F. Biotransformation of (−)-epicatechin, (+)-epicatechin, (−)-catechin, and (+)-catechin by intestinal bacteria involved in isoflavone metabolism. Biosci Biotechnol Biochem 2016; 80:199-202. [DOI: 10.1080/09168451.2015.1079480] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Abstract
Isoflavone-metabolizing bacteria, Adlercreutzia equolifaciens, Asaccharobacter celatus, Slackia equolifaciens, and Slackia isoflavoniconvertens catalyzed C-ring cleavage of (–)-epicatechin and (+)-catechin, (+)-epicatechin, and (–)-catechin in varying degrees. The cleaving abilities of (–)-epicatechin and (+)-catechin were enhanced by hydrogen, except (+)-catechin cleavage by S. equolifaciens, which was not accelerated. (−)-Catechin cleavage by Ad. equolifaciens was remarkably accelerated by hydrogen.
Collapse
Affiliation(s)
- Akiko Takagaki
- Food Research Laboratories, Mitsui Norin Co., Ltd., Fujieda, Japan
| | - Fumio Nanjo
- Food Research Laboratories, Mitsui Norin Co., Ltd., Fujieda, Japan
| |
Collapse
|
49
|
Curti C, Brindani N, Battistini L, Sartori A, Pelosi G, Mena P, Brighenti F, Zanardi F, Del Rio D. Catalytic, Enantioselective Vinylogous Mukaiyama Aldol Reaction of Furan-Based Dienoxy Silanes: A Chemodivergent Approach to γ-Valerolactone Flavan-3-ol Metabolites and δ-Lactone Analogues. Adv Synth Catal 2015. [DOI: 10.1002/adsc.201500705] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
50
|
Qian Y, Zhao X, Zhao L, Cui L, Liu L, Jiang X, Liu Y, Gao L, Xia T. Analysis of stereochemistry and biosynthesis of epicatechin in tea plants by chiral phase high performance liquid chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 1006:1-7. [PMID: 26519617 DOI: 10.1016/j.jchromb.2015.10.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 10/16/2015] [Accepted: 10/16/2015] [Indexed: 10/22/2022]
Abstract
Tea (Camellia sinensis) is rich in flavan-3-ols (catechins), especially epicatechin (EC), which is the predominant extension unit of polymeric proanthocyanidins (PAs). However, studies assessing EC's stereochemistry are scarce. Here, a high performance liquid chromatography column using amylose tris-(3, 5-dimethylphenylcarbamate) immobilized on silica-gel as chiral stationary phases (CSPs) was applied to explore its stereochemistry and biosynthetic pathway in tea plants. The results revealed (-)-epicatechin [(-)-EC] was the predominant di-hyroxy-non-galloylated-catechins, while (+)-epicatechin [(+)-EC] was not detected. Interestingly, (-)-EC was the only product obtained from cyanidin using the partially purified native C. sinensis anthocyanidin reductase (CsANR) in the presence of reduction nicotinamide adenine dinucleotide phosphate (NADPH); meanwhile, (+)-EC was the main product using recombinant CsANR in the same conditions. In addition, (-)-EC could be obtained from (+)-catechin [(+)-C] using recombinant CsANR, which displayed C3-epimerase activity in the presence of oxidation nicotinamide adenine dinucleotide phosphate (NADP(+)). But the partially purified native CsANR did not possess this function. Finally, (-)-EC could result from the de-gallate acid reaction of epicatechin gallate (ECG) catalyzed by a novel partially purified native galloylated catechins hydrolase (GCH) from tea leaves. In summary, (-)-EC is likely the product of native protein from the tea plants, and (+)-EC is only produced in a reaction catalyzed by recombinant CsANR in vitro.
Collapse
Affiliation(s)
- Yumei Qian
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Rd., Hefei 230036 Anhui, China; School of Biological and Food Engineering, Suzhou University, 49 Middle Bianhe Rd., Suzhou 234000 Anhui, China
| | - Xianqian Zhao
- School of Life Science, Anhui Agricultural University, 130 West Changjiang Rd., Hefei 230036 Anhui, China
| | - Lei Zhao
- College of Horticulture, Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Qingdao Agricultural University, 700Changcheng Rd., Qingdao 266109 Shandong, China
| | - Lilan Cui
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Rd., Hefei 230036 Anhui, China
| | - Li Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Rd., Hefei 230036 Anhui, China
| | - Xiaolan Jiang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Rd., Hefei 230036 Anhui, China
| | - Yajun Liu
- School of Life Science, Anhui Agricultural University, 130 West Changjiang Rd., Hefei 230036 Anhui, China
| | - Liping Gao
- School of Life Science, Anhui Agricultural University, 130 West Changjiang Rd., Hefei 230036 Anhui, China.
| | - Tao Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Rd., Hefei 230036 Anhui, China.
| |
Collapse
|