1
|
Liu C, Han J, Li S. Elucidating the metabolic roles of isoflavone synthase-mediated protein-protein interactions in yeast. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.24.620109. [PMID: 39484494 PMCID: PMC11527116 DOI: 10.1101/2024.10.24.620109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Transient plant enzyme complexes formed via protein-protein interactions (PPIs) play crucial regulatory roles in secondary metabolism. Complexes assembled on cytochrome P450s (CYPs) are challenging to characterize metabolically due to difficulties in decoupling the PPIs' metabolic impacts from the CYPs' catalytic activities. Here, we developed a yeast-based synthetic biology approach to elucidate the metabolic roles of PPIs between a soybean-derived CYP, isoflavone synthase (GmIFS2), and other enzymes in isoflavonoid metabolism. By reconstructing multiple complex variants with an inactive GmIFS2 in yeast, we found that GmIFS2-mediated PPIs can regulate metabolic flux between two competing pathways producing deoxyisoflavonoids and isoflavonoids. Specifically, GmIFS2 can recruit chalcone synthase (GmCHS7) and chalcone reductase (GmCHR5) to enhance deoxyisoflavonoid production or GmCHS7 and chalcone isomerase (GmCHI1B1) to enhance isoflavonoid production. Additionally, we identified and characterized two novel isoflavone O-methyltransferases interacting with GmIFS2. This study highlights the potential of yeast synthetic biology for characterizing CYP-mediated complexes.
Collapse
Affiliation(s)
- Chang Liu
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Jianing Han
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Sijin Li
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
2
|
Kaur K, Al-Khazaleh AK, Bhuyan DJ, Li F, Li CG. A Review of Recent Curcumin Analogues and Their Antioxidant, Anti-Inflammatory, and Anticancer Activities. Antioxidants (Basel) 2024; 13:1092. [PMID: 39334750 PMCID: PMC11428508 DOI: 10.3390/antiox13091092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
Curcumin, as the main active component of turmeric (Curcuma longa), has been demonstrated with various bioactivities. However, its potential therapeutic applications are hindered by challenges such as poor solubility and bioavailability, rapid metabolism, and pan-assay interference properties. Recent advancements have aimed to overcome these limitations by developing novel curcumin analogues and modifications. This brief review critically assesses recent studies on synthesising different curcumin analogues, including metal complexes, nano particulates, and other curcumin derivatives, focused on the antioxidant, anti-inflammatory, and anticancer effects of curcumin and its modified analogues. Exploring innovative curcumin derivatives offers promising strategies to address the challenges associated with its bioavailability and efficacy and valuable insights for future research directions.
Collapse
Affiliation(s)
- Kirandeep Kaur
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia
| | - Ahmad K Al-Khazaleh
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia
| | - Deep Jyoti Bhuyan
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia
| | - Feng Li
- School of Science, Western Sydney University, Parramatta, NSW 2150, Australia
| | - Chun Guang Li
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia
| |
Collapse
|
3
|
Shi J, Zhang K, Li T, Wu L, Yang Y, Zhang Y, Tu P, Liu W, Song Y. Differentiation of isomeric chalcone and dihydroflavone using liquid chromatography coupled with hydrogen-deuterium exchange tandem mass spectrometry (HDX-MS/MS): An application for flavonoids-focused characterization of Snow chrysanthemum. J Chromatogr A 2024; 1720:464773. [PMID: 38432106 DOI: 10.1016/j.chroma.2024.464773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/08/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
Although the co-occurrences of isomeric chalcones and dihydroflavones widely appear in medicinal plants, the differentiation of such isomerism seldom succeeds using MS/MS, attributing to totally identical MS/MS spectra. Here, efforts were paid to pursue an eligible tool allowing to address the technical challenge. Being inspired by that one more proton signal is observed in 1H NMR spectrum of isoliquiritigenin than liquiritigenin when employing DMSO‑d6 as solvent, hydrogen-deuterium exchange (HDX)-MS/MS was evaluated towards differentiating isomeric chalcones and dihydroflavones through replacing H2O with D2O to prepare the mobile phase. As a result, differences were observed for either MS1 or MS2 spectrum when comparing two pairs of isomers, such as liquiritigenin vs. isoliquiritigenin and liquiritin vs. isoliquiritin, because the isomeric precursor and fragment ion species owned different amounts of hydroxyl protons and those reactive protons could be partially or completely substituted by deuterium protons at the exposure in D2O to result in n × 1.006 mass increments. Moreover, utmost four hydrogen/deuterium exchanges occurred for a single glucosyl moiety. Thereafter, HDX-MS/MS was applied to characterize the flavonoids of Snow chrysanthemum, a precious edible herbal medicine that is rich in isomeric chalcones and dihydroflavones. Through paying special attention to the deuterium labeling styles of (de)protonated molecules as well as those featured fragment ions, five pairs of isomeric chalcones and dihydroflavones were confirmatively differentiated, in addition to that 28 flavonoids were structurally annotated by applying those well-defined mass fragmentation rules. Hence, this study offered an in-depth insight towards the flavonoids-focused characterization of Snow chrysanthemum, and more importantly, HDX-MS/MS is a superior tool to differentiate, but not limited to, isomeric chalcones and dihydroflavones.
Collapse
Affiliation(s)
- Jingjing Shi
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ke Zhang
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ting Li
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Lijuan Wu
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yang Yang
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yuan Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Pengfei Tu
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wenjing Liu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China.
| | - Yuelin Song
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
4
|
Kostikova VA, Petrova NV, Chernonosov AA, Koval VV, Kovaleva ER, Wang W, Erst AS. Chemical Composition of Methanol Extracts from Leaves and Flowers of Anemonopsis macrophylla (Ranunculaceae). Int J Mol Sci 2024; 25:989. [PMID: 38256067 PMCID: PMC10816090 DOI: 10.3390/ijms25020989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Anemonopsis Siebold et Zucc. is an unstudied single-species genus belonging to the tribe Cimicifugeae (Ranunculaceae). The only species of this genus-Anemonopsis macrophylla Siebold and Zucc.-is endemic to Japan. There are no data on its chemical composition. This work is the first to determine (with liquid chromatography-high-resolution mass spectrometry, LC-HRMS) the chemical composition of methanol extracts of leaves and flowers of A. macrophylla. More than 100 compounds were identified. In this plant, the classes of substances are coumarins (13 compounds), furocoumarins (3), furochromones (2), phenolic acids (21), flavonoids (27), and fatty acids and their derivatives (15 compounds). Isoferulic acid (detected in extracts from this plant) brings this species closer to plants of the genus Cimicifuga, one of the few genera containing this acid and ferulic acid at the same time. Isoferulic acid is regarded as a reference component of a quality indicator of Cimicifuga raw materials. The determined profiles of substances are identical between the leaf and flower methanol extracts. Differences in levels of some identified substances were revealed between the leaf and flower extracts of A. macrophylla; these differences may have a substantial impact on the manifestation of the biological and pharmacological effects of the extracts in question.
Collapse
Affiliation(s)
- Vera A. Kostikova
- Central Siberian Botanical Garden, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia;
| | - Natalia V. Petrova
- Komarov Botanical Institute of Russian Academy of Sciences, St. Petersburg 197022, Russia;
| | - Alexander A. Chernonosov
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk 630090, Russia; (A.A.C.); (V.V.K.)
| | - Vladimir V. Koval
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk 630090, Russia; (A.A.C.); (V.V.K.)
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Evgeniia R. Kovaleva
- Central Siberian Botanical Garden, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia;
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Wei Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Andrey S. Erst
- Central Siberian Botanical Garden, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia;
| |
Collapse
|
5
|
Kamei T, Miyazaki J, Hori R, Saito H, Takahashi T, Shinohara KI, Miura M, Suzuki H. Spectral and HPLC Analyses of Synthesized Butin and Butein. Chem Pharm Bull (Tokyo) 2024; 72:648-657. [PMID: 38972722 DOI: 10.1248/cpb.c24-00239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Butin and butein are significant bioactive flavanones derived from plants, existing as tautomers of each other. However, their physicochemical attributes, such as their spectral profiles under varying experimental conditions in aqueous solutions and established chromatographic methods for distinguishing between them, remain undetermined. In this study, we determined the basic properties of butin and butein using conventional spectroscopic, reversed-phase, and chiral HPLC analyses. The spectra of the synthesized butin and butein were analyzed using a UV-Vis spectrophotometer in several solvents with different polarities as well as in aqueous solutions at various pH values. Furthermore, the behavior of the measured spectra was reproduced by calculations to reveal the effects of the solvent and pH on the spectra of butin and butein in organic and aqueous solutions. Subsequently, we assessed the structural stability of butin and butein using reversed-phase HPLC, which revealed that butein is unstable compared with butin in a general culture medium. The synthesized butin was effectively separated into R- and S-isomers with positive and negative Cotton effects, respectively, via HPLC using a chiral column. These findings will aid in uncovering the individual properties of both butin and butein that may have been concealed by their tautomerism and enable the synthesis of S-butin, which is typically challenging and time-consuming to isolate.
Collapse
Affiliation(s)
- Takashi Kamei
- Faculty of Pharmaceutical Sciences, Hokuriku University
- Healthy Aging Research Group, Hokuriku University
| | - Jun Miyazaki
- Department of Natural Sciences, School of Engineering, Tokyo Denki University
| | - Ryoga Hori
- School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST)
| | - Hiroaki Saito
- Faculty of Pharmaceutical Sciences, Hokuriku University
| | - Tatsuo Takahashi
- Faculty of Pharmaceutical Sciences, Hokuriku University
- Healthy Aging Research Group, Hokuriku University
| | - Ken-Ichi Shinohara
- School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST)
| | - Masakazu Miura
- Faculty of Pharmaceutical Sciences, Hokuriku University
- Healthy Aging Research Group, Hokuriku University
| | - Hirokazu Suzuki
- Faculty of Pharmaceutical Sciences, Hokuriku University
- Healthy Aging Research Group, Hokuriku University
| |
Collapse
|
6
|
Seigler DS, Friesen JB, Bisson J, Graham JG, Bedran-Russo A, McAlpine JB, Pauli GF. Do Certain Flavonoid IMPS Have a Vital Function? Front Nutr 2021; 8:762753. [PMID: 34926546 PMCID: PMC8672243 DOI: 10.3389/fnut.2021.762753] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 10/25/2021] [Indexed: 11/22/2022] Open
Abstract
Flavonoids are a vast group of metabolites that are essential for vascular plant physiology and, thus, occur ubiquitously in plant-based/-derived foods. The solitary designation of thousands of known flavonoids hides the fact that their metabolomes are structurally highly diverse, consist of disparate subgroups, yet undergo a certain degree of metabolic interconversion. Unsurprisingly, flavonoids have been an important theme in nutrition research. Already in the 1930s, it was discovered that the ability of synthetic Vitamin C to treat scurvy was inferior to that of plant extracts containing Vitamin C. Subsequent experimental evidence led to the proposal of Vitamin P (permeability) as an essential phytochemical nutrient. However, attempts to isolate and characterize Vitamin P gave confusing and sometimes irreproducible results, which today can be interpreted as rooted in the unrecognized (residual) complexity of the intervention materials. Over the years, primarily flavonoids (and some coumarins) were known as having Vitamin P-like activity. More recently, in a NAPRALERT meta-analysis, essentially all of these Vitamin P candidates were identified as IMPs (Invalid/Improbable/Interfering Metabolic Panaceas). While the historic inability to define a single compound and specific mode of action led to general skepticism about the Vitamin P proposition for "bioflavonoids," the more logical conclusion is that several abundant and metabolically labile plant constituents fill this essential role in human nutrition at the interface of vitamins, cofactors, and micronutrients. Reviewing 100+ years of the multilingual Vitamin P and C literature provides the rationales for this conclusion and new perspectives for future research.
Collapse
Affiliation(s)
- David S. Seigler
- Department of Plant Biology, University of Illinois at Urbana Champaign, Champaign, IL, United States
| | - J. Brent Friesen
- Center for Natural Products Technologies, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, United States
- Pharmacognosy Institute, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, United States
- Physical Sciences Department, Dominican University, River Forest, IL, United States
| | - Jonathan Bisson
- Center for Natural Products Technologies, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, United States
- Pharmacognosy Institute, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, United States
| | - James G. Graham
- Center for Natural Products Technologies, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, United States
- Pharmacognosy Institute, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, United States
| | - Ana Bedran-Russo
- Pharmacognosy Institute, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, United States
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, Chicago, IL, United States
| | - James B. McAlpine
- Center for Natural Products Technologies, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, United States
- Pharmacognosy Institute, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, United States
| | - Guido F. Pauli
- Center for Natural Products Technologies, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, United States
- Pharmacognosy Institute, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
7
|
Zhang X, Guo X, Zhao P, Zhang X, Gao W, Li X. Chemometric analysis of active compounds and antioxidant and α-glucosidase inhibitory activities for the quality evaluation of licorice from different origins. Biomed Chromatogr 2021; 35:e5215. [PMID: 34269469 DOI: 10.1002/bmc.5215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/27/2021] [Accepted: 07/09/2021] [Indexed: 11/07/2022]
Abstract
Contents of total flavonoids (TFc), total phenolics (TPc), and total crude polysaccharide (TCPc) in licorice from different origins were determined by optimized colorimetric methods, whereas five monomer ingredients (liquiritin [LQ], isoliquiritin [ILQ], liquiritigenin [LQG], isoliquiritigenin [ILQG], and glycyrrhizic acid [GA]) were simultaneously identified and quantified by HPLC-MS and HPLC. The results indicated that the contents of chemical compounds in licorice showed significant difference in different origins. Hierarchical cluster analysis and principal component analysis further proved that producing area indeed affected the quality including compounds and pharmacological activity in licorice. Licorice from Inner Mongolia exhibited the excellent DPPH assay, whereas samples from Gansu and Xinjiang showed high scavenging capacity to OH and ABTS free radicals. Meanwhile, α-Glu inhibitory activity of licorice samples was four times higher than the antioxidant activity. Correlation analysis made clear that TFc and TCPc both strongly contribute to DPPH scavenge capacity at P < 0.01 level, whereas TCPc contributed to α-Glu inhibitory activity at P < 0.05 level. This study would contribute to the comprehensive quality evaluation based on the compounds and pharmacological activity of licorice, and provide a reference for the choice of producing area to ensure the quality of licorice as a medicine.
Collapse
Affiliation(s)
- Xuemei Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Xinhua Guo
- Key Laboratory of Product Packaging and Logistics of Guangdong Higher Education Institutes, Zhuhai Campus, Jinan University, Zhuhai, China
| | - Ping Zhao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Xuemin Zhang
- Key Laboratory of Modern Chinese Medicine Resources Research Enterprises, Tianjin, China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Xia Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
8
|
Malca-Garcia GR, Liu Y, Dong H, Nikolić D, Friesen JB, Lankin DC, McAlpine J, Chen SN, Dietz BM, Pauli GF. Auto-hydrolysis of red clover as "green" approach to (iso)flavonoid enriched products. Fitoterapia 2021; 152:104878. [PMID: 33757846 DOI: 10.1016/j.fitote.2021.104878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 02/06/2023]
Abstract
Optimal parameters for the auto-hydrolysis of (iso)flavone glycosides to aglycones in ground Trifolium pratense L. plant material were established as a "green" method for the production of a reproducible red clover extract (RCE). The process utilized 72-h fermentation in DI water at 25 and 37 °C. The aglycones obtained at 25 °C, as determined by UHPLC-UV and quantitative 1H NMR (qHNMR), increased significantly in the auto-hydrolyzed (ARCE) (6.2-6.7% w/w biochanin A 1, 6.1-9.9% formononetin 2) vs a control ethanol (ERCE) extract (0.24% 1, 0.26% 2). After macerating ARCE with 1:1 (v/v) diethyl ether/hexanes (ARCE-d/h), 1 and 2 increased to 13.1-16.7% and 14.9-18.4% w, respectively, through depletion of fatty components. The final extracts showed chemical profiles similar to that of a previous clinical RCE. Biological standardization revealed that the enriched ARCE-d/h extracts produced the strongest estrogenic activity in ERα positive endometrial cells (Ishikawa cells), followed by the precursor ARCE. The glycoside-rich ERCE showed no estrogenic activity. The estrogenicity of ARCE-d/h was similar to that of the clinical RCE. The lower potency of the ARCE compared to the prior clinical RCE indicated that substantial amounts of fatty acids/matter likely reduce the estrogenicity of crude hydrolyzed preparations. The in vitro dynamic residual complexity of the conversion of biochanin A to genistein was evaluated by LC-MS-MS. The outcomes help advance translational research with red clover and other (iso)flavone-rich botanicals by inspiring the preparation of (iso)flavone aglycone-enriched extracts for the exploration of new in vitro and ex vivo bioactivities that are unachievable with genuine, glycoside-containing extracts.
Collapse
Affiliation(s)
- Gonzalo R Malca-Garcia
- UIC/NIH Center for Botanical Dietary Supplements Research, Program for Collaborative Research in the Pharmaceutical Sciences and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL 60612, United States
| | - Yang Liu
- UIC/NIH Center for Botanical Dietary Supplements Research, Program for Collaborative Research in the Pharmaceutical Sciences and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL 60612, United States
| | - Huali Dong
- UIC/NIH Center for Botanical Dietary Supplements Research, Program for Collaborative Research in the Pharmaceutical Sciences and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL 60612, United States
| | - Dejan Nikolić
- UIC/NIH Center for Botanical Dietary Supplements Research, Program for Collaborative Research in the Pharmaceutical Sciences and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL 60612, United States
| | - J Brent Friesen
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL 60612, United States; Physical Sciences Department, Rosary College of Arts and Sciences, Dominican University, 7900 W. Division, River Forest, IL 60305, United States
| | - David C Lankin
- UIC/NIH Center for Botanical Dietary Supplements Research, Program for Collaborative Research in the Pharmaceutical Sciences and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL 60612, United States; Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL 60612, United States
| | - James McAlpine
- Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL 60612, United States
| | - Shao-Nong Chen
- UIC/NIH Center for Botanical Dietary Supplements Research, Program for Collaborative Research in the Pharmaceutical Sciences and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL 60612, United States; Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL 60612, United States
| | - Birgit M Dietz
- UIC/NIH Center for Botanical Dietary Supplements Research, Program for Collaborative Research in the Pharmaceutical Sciences and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL 60612, United States
| | - Guido F Pauli
- UIC/NIH Center for Botanical Dietary Supplements Research, Program for Collaborative Research in the Pharmaceutical Sciences and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL 60612, United States; Center for Natural Product Technologies (CENAPT), Program for Collaborative Research in the Pharmaceutical Sciences and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL 60612, United States.
| |
Collapse
|
9
|
Liquiritigenin reduces osteoclast activity in zebrafish model of glucocorticoid-induced osteoporosis. J Pharmacol Sci 2020; 143:300-306. [PMID: 32534995 DOI: 10.1016/j.jphs.2020.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/11/2020] [Accepted: 05/28/2020] [Indexed: 02/07/2023] Open
Abstract
Drug and therapies currently used to treat human bone diseases have a lot of severe side effects. Liquiritigenin is a flavonoid extracted from Glycyrrhiza glabra roots which has been reported to have positive effects in vitro on osteoblasts activity and bone mineralization as well as inhibitory effect on osteoclasts differentiation and activity in vitro. The present study was aimed to evaluate the in vivo effects of liquiritigenin on bone structure and metabolism in physiological and pathological conditions using Danio rerio as experimental animal model. Treatments with liquiritigenin were performed on embryos to evaluate the osteogenesis during skeletal development. Other treatments were performed on adult fish affected by glucocorticoid-induced osteoporosis to assay the therapeutic potential of liquiritigenin in the reversion of bone-loss phenotype in scale model. Liquiritigenin treatment of zebrafish embryo significantly enhances the osteogenesis during development in a dose-dependent manner. In addition, liquiritigenin inhibits the formation of the osteoporotic phenotype in adult zebrafish model of glucocorticoid-induced osteoporosis preventing osteoclast activation in scales. Interestingly, liquiritigenin does not counteract the loss of osteoblastic activity in scales. The liquiritigenin exhibits in vivo anti-osteoporotic activity on adult fish scale model. It can be considered a good candidate to develop new drugs against osteoporosis.
Collapse
|
10
|
Kim KU, Lee SJ, Lee I. Development of an Improved Menopausal Symptom-Alleviating Licorice ( Glycyrrhiza uralensis) by Biotransformation Using Monascus albidulus. J Microbiol Biotechnol 2020; 30:178-186. [PMID: 31752065 PMCID: PMC9728325 DOI: 10.4014/jmb.1909.09037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Licorice (Glycyrrhiza uralensis) contains several compounds that have been reported to alleviate menopausal symptoms via interacting with estrogen receptors (ERs). The compounds exist mainly in the form of glycosides, which exhibit low bioavailability and function. To bioconvert liquiritin and isoliquiritin, the major estrogenic compounds, to the corresponding deglycosylated liquiritigenin and isoliquiritigenin, respectively, licorice was fermented with Monascus, which has been demonstrated to deglycosylate other substances. The contents of liquiritigenin and isoliquiritigenin in Monascus-fermented licorice increased by 10.46-fold (from 38.03 µM to 379.75 µM) and 12.50-fold (from 5.53 µM to 69.14 µM), respectively, compared with their contents in non-fermented licorice. Monascus-fermented licorice exhibited 82.5% of the ERβ binding activity of that observed in the positive control (17 β-estradiol), whereas the non-fermented licorice exhibited 54.1% of the binding activity in an in vivo ER binding assay. The increase in the ERβ binding activity was associated with increases in liquiritigenin and isoliquiritigenin contents. Liquiritigenin acts as a selective ligand for ERβ, which alleviates menopausal symptoms with fewer side effects, such as heart disease and hypertension, compared with a ligand for ERα. In addition, Monascus-fermented licorice contained 731 mg/kg of monacolin K, one of the metabolites produced by Monascus that reduces serum cholesterol. Therefore, Monascus-fermented licorice is a promising material for the prevention and treatment of menopausal syndrome with fewer side effects.
Collapse
Affiliation(s)
- Kang Uk Kim
- Department of Bio and Fermentation Convergence Technology, BK2 PLUS Project, Kookmin University, Seoul 02707, Republic of Korea
| | - Sung-Jin Lee
- Food R&D Center, SK Bioland Co., Ltd., Gyeonggi 15407, Republic of Korea
| | - Inhyung Lee
- Department of Bio and Fermentation Convergence Technology, BK2 PLUS Project, Kookmin University, Seoul 02707, Republic of Korea,Corresponding author Phone: +82-2-910-4771 Fax: +82-2-910-5739 E-mail:
| |
Collapse
|
11
|
Palko-Łabuz A, Kostrzewa-Susłow E, Janeczko T, Środa-Pomianek K, Poła A, Uryga A, Michalak K. Cyclization of flavokawain B reduces its activity against human colon cancer cells. Hum Exp Toxicol 2019; 39:262-275. [PMID: 31640425 DOI: 10.1177/0960327119882986] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Chalcones are naturally occurring compounds exhibiting biological activity through multiple mechanisms. Flavokawain B is one of chalcones found in kava plant. In our studies, we focused on the anticancer activity of flavokawain B in colorectal cancer cells LoVo and its resistant to doxorubicin subline-LoVo/Dx. Strong cytotoxic activity of flavokawain B and its ability to inhibit the proliferation in both cell lines was detected. These effects accompanied with induction cell cycle arrest in G2/M phase and the presence of SubG1 fraction. Flavokawain B at low concentration led to increase of caspase-3 activity. The chalcone-induced apoptosis was also confirmed by DNA fragmentation. In our work, the conversion of flavokawain B to corresponding flavanone-5,7-dimetoxyflavanone-was shown to be more extensive in cancer than in non-cancer cells. We found that the cyclization of the chalcone was related to the significant decrease in the cytotoxicity. Cell proliferation and cell cycle progression were not impaired significantly in the studied cancer cells incubated with 5,7-dimethoxyflavanone. We did not observe apoptosis in the cells incubated with flavanone. The results from biological studies agreed with the theoretical activity that emerges from structural parameters.
Collapse
Affiliation(s)
- A Palko-Łabuz
- Department of Biophysics, Wroclaw Medical University, Wrocław, Poland
| | - E Kostrzewa-Susłow
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - T Janeczko
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - K Środa-Pomianek
- Department of Biophysics, Wroclaw Medical University, Wrocław, Poland
| | - A Poła
- Department of Biophysics, Wroclaw Medical University, Wrocław, Poland
| | - A Uryga
- Department of Biophysics, Wroclaw Medical University, Wrocław, Poland
| | - K Michalak
- Department of Biophysics, Wroclaw Medical University, Wrocław, Poland
| |
Collapse
|
12
|
Malca-Garcia GR, Zagal D, Graham J, Nikolić D, Friesen JB, Lankin DC, Chen SN, Pauli GF. Dynamics of the isoflavone metabolome of traditional preparations of Trifolium pratense L. JOURNAL OF ETHNOPHARMACOLOGY 2019; 238:111865. [PMID: 30981705 PMCID: PMC6549234 DOI: 10.1016/j.jep.2019.111865] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 03/10/2019] [Accepted: 04/03/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The flowering tops of Trifolium pratense L., popularly known as red clover, are used in ethnic Western and Traditional Chinese medicine, in a variety of preparations, including infusions, decoctions and tinctures. Red clover has been reported to be helpful for treatment of menopausal symptoms, premenstrual syndrome, mastalgia, high cholesterol, and other conditions. AIMS OF THE STUDY The aims were to compare the chemical dynamics between traditional preparations of infusions, decoctions, and tinctures, as well as to identify the chemical variability over time in a traditional red clover tincture. For this purpose, eight isoflavone aglycones as well as two glucosides, ononin and sissotrin, were used as marker compounds. MATERIALS AND METHODS Quantitative NMR (qHNMR), LC-MS-MS, and UHPLC-UV methods were used to identify and quantitate the major phenolic compounds found within each extract. RESULTS Infusions, decoctions and tinctures were shown to produce different chemical profiles. Biochanin A and formononetin were identified and quantified in infusion, decoction, and tinctures of red clover. Both infusion and decoction showed higher concentrations of isoflavonoid glucosides, such as ononin and sissotrin, than 45% ethanolic tinctures. Dynamic chemical variability ("dynamic residual complexity") of the red clover tincture was observed over time (one-month), with biochanin A and formononetin reaching peak concentrations at around six days. CONCLUSIONS Insight was gained into why different formulation methods (infusions, decoctions, and tinctures) are traditionally used to treat different health conditions. Moreover, the outcomes show that tinctures, taken over a period of time, are dynamic medicinal formulations that allow for time-controlled release of bioactive compounds.
Collapse
Affiliation(s)
- Gonzalo R Malca-Garcia
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL, 60612, USA
| | - Daniel Zagal
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL, 60612, USA
| | - James Graham
- Center for Natural Product Technologies (CENAPT), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL, 60612, USA
| | - Dejan Nikolić
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL, 60612, USA
| | - J Brent Friesen
- Center for Natural Product Technologies (CENAPT), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL, 60612, USA; Physical Sciences Department, Rosary College of Arts and Sciences, Dominican University, River Forest, IL, 60305, USA
| | - David C Lankin
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL, 60612, USA; Center for Natural Product Technologies (CENAPT), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL, 60612, USA
| | - Shao-Nong Chen
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL, 60612, USA; Center for Natural Product Technologies (CENAPT), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL, 60612, USA
| | - Guido F Pauli
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL, 60612, USA; Center for Natural Product Technologies (CENAPT), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL, 60612, USA.
| |
Collapse
|
13
|
Wolf NM, Lee H, Choules MP, Pauli GF, Phansalkar R, Anderson JR, Gao W, Ren J, Santarsiero BD, Lee H, Cheng J, Jin YY, Ho NA, Duc NM, Suh JW, Abad-Zapatero C, Cho S. High-Resolution Structure of ClpC1-Rufomycin and Ligand Binding Studies Provide a Framework to Design and Optimize Anti-Tuberculosis Leads. ACS Infect Dis 2019; 5:829-840. [PMID: 30990022 DOI: 10.1021/acsinfecdis.8b00276] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Addressing the urgent need to develop novel drugs against drug-resistant Mycobacterium tuberculosis ( M. tb) strains, ecumicin (ECU) and rufomycin I (RUFI) are being explored as promising new leads targeting cellular proteostasis via the caseinolytic protein ClpC1. Details of the binding topology and chemical mode of (inter)action of these cyclopeptides help drive further development of novel potency-optimized entities as tuberculosis drugs. ClpC1 M. tb protein constructs with mutations driving resistance to ECU and RUFI show reduced binding affinity by surface plasmon resonance (SPR). Despite certain structural similarities, ECU and RUFI resistant mutation sites did not overlap in their SPR binding patterns. SPR competition experiments show ECU prevents RUFI binding, whereas RUFI partially inhibits ECU binding. The X-ray structure of the ClpC1-NTD-RUFI complex reveals distinct differences compared to the previously reported ClpC1-NTD-cyclomarin A structure. Surprisingly, the complex structure revealed that the epoxide moiety of RUFI opened and covalently bound to ClpC1-NTD via the sulfur atom of Met1. Furthermore, RUFI analogues indicate that the epoxy group of RUFI is critical for binding and bactericidal activity. The outcomes demonstrate the significance of ClpC1 as a novel target and the importance of SAR analysis of identified macrocyclic peptides for drug discovery.
Collapse
Affiliation(s)
- Nina M. Wolf
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612, United States
| | - Hyun Lee
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612, United States
- Biophysics Core at the Research Resource Center, University of Illinois at Chicago, 1100 S. Ashland Street, Chicago, Illinois 60612, United States
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612, United States
| | - Mary P. Choules
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612, United States
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612, United States
| | - Guido F. Pauli
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612, United States
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612, United States
| | - Rasika Phansalkar
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612, United States
| | - Jeffrey R. Anderson
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612, United States
| | - Wei Gao
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612, United States
| | - Jinhong Ren
- Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, 900 S. Ashland Street, Chicago, Illinois 60612, United States
| | - Bernard D. Santarsiero
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612, United States
- Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, 900 S. Ashland Street, Chicago, Illinois 60612, United States
| | - Hanki Lee
- Center for Nutraceutical and Pharmaceutical Materials, College of Natural Sciences, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin-si, Gyeonggi-do 17058, Republic of Korea
| | - Jinhua Cheng
- Center for Nutraceutical and Pharmaceutical Materials, College of Natural Sciences, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin-si, Gyeonggi-do 17058, Republic of Korea
- Division of Bioscience and Bioinformatics, College of Natural Sciences, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin-si, Gyeonggi-do 17058, Republic of Korea
| | - Ying-Yu Jin
- Center for Nutraceutical and Pharmaceutical Materials, College of Natural Sciences, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin-si, Gyeonggi-do 17058, Republic of Korea
- Division of Bioscience and Bioinformatics, College of Natural Sciences, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin-si, Gyeonggi-do 17058, Republic of Korea
| | - Ngoc Anh Ho
- Center for Nutraceutical and Pharmaceutical Materials, College of Natural Sciences, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin-si, Gyeonggi-do 17058, Republic of Korea
| | - Nguyen Minh Duc
- Center for Nutraceutical and Pharmaceutical Materials, College of Natural Sciences, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin-si, Gyeonggi-do 17058, Republic of Korea
| | - Joo-Won Suh
- Center for Nutraceutical and Pharmaceutical Materials, College of Natural Sciences, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin-si, Gyeonggi-do 17058, Republic of Korea
- Division of Bioscience and Bioinformatics, College of Natural Sciences, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin-si, Gyeonggi-do 17058, Republic of Korea
| | - Celerino Abad-Zapatero
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612, United States
- Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, 900 S. Ashland Street, Chicago, Illinois 60612, United States
| | - Sanghyun Cho
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612, United States
| |
Collapse
|
14
|
Carnovali M, Luzi L, Terruzzi I, Banfi G, Mariotti M. Liquiritigenin Reduces Blood Glucose Level and Bone Adverse Effects in Hyperglycemic Adult Zebrafish. Nutrients 2019; 11:nu11051042. [PMID: 31075971 PMCID: PMC6566992 DOI: 10.3390/nu11051042] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/24/2019] [Accepted: 05/02/2019] [Indexed: 12/21/2022] Open
Abstract
Diabetes mellitus is a metabolic disease characterized by chronic hyperglycemia that induces other pathologies including diabetic retinopathy and bone disease. Adult Danio rerio (zebrafish) represents a powerful model to study both glucose and bone metabolism. Then, the aim of this study was to evaluate the effects of liquiritigenin (LTG) on blood glucose level and diabetes complications in hyperglycemic adult zebrafish. LTG is a flavonoid extracted from Glycyrrhiza glabra roots which possess important antioxidant, anti-inflammatory, and anti-diabetic properties. During four weeks of glucose treatment, LTG significantly prevented the onset of the hyperglycemia in adult zebrafish. Moreover, hyperglycemic fish showed increased advanced glycation end-products (AGEs) and parathormone levels whereas LTG completely prevented both of these metabolic alterations. Large bone-loss areas were found in the scales of glucose-treated fish whereas only small resorption lacunae were detected after glucose/LTG treatment. Biochemical and histological tartrate resistant acid phosphatase (TRAP) assays performed on explanted scales confirmed that LTG prevented the increase of osteoclastic activity in hyperglycemic fish. The osteoblastic alkaline phosphatase (ALP) activity was clearly lost in scales of glucose-treated fish whereas the co-treatment with LTG completely prevented such alteration. Gene expression analysis showed that LTG prevents the alteration in crucial bone regulatory genes. Our study confirmed that LTG is a very promising natural therapeutic approach for blood glucose lowering and to contrast the development of bone complications correlated to chronic hyperglycemia.
Collapse
Affiliation(s)
- Marta Carnovali
- Gruppo Ospedaliero San Donato Foundation, 20122 Milan, Italy.
| | - Livio Luzi
- Policlinico San Donato IRCCS, 20097 Milan, Italy.
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy.
| | - Ileana Terruzzi
- Diabetes Research Institute, Metabolism, Nutrigenomics and Cellular Differentiation Unit, San Raffaele Scientific Institute, 20132 Milan, Italy.
| | - Giuseppe Banfi
- IRCCS Orthopedic Institute Galeazzi, 20161 Milan, Italy.
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, 20122 Milan, Italy.
| | - Massimo Mariotti
- IRCCS Orthopedic Institute Galeazzi, 20161 Milan, Italy.
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy.
| |
Collapse
|
15
|
Ramalingam M, Kim H, Lee Y, Lee YI. Phytochemical and Pharmacological Role of Liquiritigenin and Isoliquiritigenin From Radix Glycyrrhizae in Human Health and Disease Models. Front Aging Neurosci 2018; 10:348. [PMID: 30443212 PMCID: PMC6221911 DOI: 10.3389/fnagi.2018.00348] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/15/2018] [Indexed: 01/09/2023] Open
Abstract
The increasing lifespan in developed countries results in age-associated chronic diseases. Biological aging is a complex process associated with accumulated cellular damage by environmental or genetic factors with increasing age. Aging results in marked changes in brain structure and function. Age-related neurodegenerative diseases and disorders (NDDs) represent an ever-growing socioeconomic challenge and lead to an overall reduction in quality of life around the world. Alzheimer’s disease (AD) and Parkinson’s disease (PD) are most common degenerative neurological disorders of the central nervous system (CNS) in aging process. The low levels of acetylcholine and dopamine are major neuropathological feature of NDDs in addition to oxidative stress, intracellular calcium ion imbalance, mitochondrial dysfunction, ubiquitin-proteasome system impairment and endoplasmic reticulum stress. Current treatments minimally influence these diseases and are ineffective in curing the multifunctional pathological mechanisms. Synthetic neuroprotective agents sometimes have negative reactions as an adverse effect in humans. Recently, numerous ethnobotanical studies have reported that herbal medicines for the treatment or prevention of NDDs are significantly better than synthetic drug treatment. Medicinal herbs have traditionally been used around the world for centuries. Radix Glycyrrhizae (RG) is the dried roots and rhizomes of Glycyrrhiza uralensis or G. glabra or G. inflata from the Leguminosae/Fabaceae family. It has been used for centuries in traditional medicine as a life enhancer, for the treatment of coughs and influenza, and for detoxification. Diverse chemical constituents from RG have reported including flavanones, chalcones, triterpenoid saponins, coumarines, and other glycosides. Among them, flavanone liquiritigenin (LG) and its precursor and isomer chalcone isoliquiritigenin (ILG) are the main bioactive constituents of RG. In the present review, we summarize evidence in the literature on the structure and phytochemical properties and pharmacological applications of LG and ILG in age-related diseases to establish new therapeutics to improve human health and lifespan.
Collapse
Affiliation(s)
- Mahesh Ramalingam
- Well Aging Research Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Hyojung Kim
- Division of Pharmacology, Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Yunjong Lee
- Division of Pharmacology, Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Yun-Il Lee
- Well Aging Research Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea.,Companion Diagnostics and Medical Technology Research Group, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| |
Collapse
|
16
|
Wang S, Dunlap TL, Huang L, Liu Y, Simmler C, Lantvit DD, Crosby J, Howell CE, Dong H, Chen SN, Pauli GF, van Breemen RB, Dietz BM, Bolton JL. Evidence for Chemopreventive and Resilience Activity of Licorice: Glycyrrhiza Glabra and G. Inflata Extracts Modulate Estrogen Metabolism in ACI Rats. Cancer Prev Res (Phila) 2018; 11:819-830. [PMID: 30287522 DOI: 10.1158/1940-6207.capr-18-0178] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/17/2018] [Accepted: 10/03/2018] [Indexed: 11/16/2022]
Abstract
Women are increasingly using botanical dietary supplements (BDS) to reduce menopausal hot flashes. Although licorice (Glycyrrhiza sp.) is one of the frequently used ingredients in BDS, the exact plant species is often not identified. We previously showed that in breast epithelial cells (MCF-10A), Glycyrrhiza glabra (GG) and G. inflata (GI), and their compounds differentially modulated P450 1A1 and P450 1B1 gene expression, which are responsible for estrogen detoxification and genotoxicity, respectively. GG and isoliquiritigenin (LigC) increased CYP1A1, whereas GI and its marker compound, licochalcone A (LicA), decreased CYP1A1 and CYP1B1 The objective of this study was to determine the distribution of the bioactive licorice compounds, the metabolism of LicA, and whether GG, GI, and/or pure LicA modulate NAD(P)H quinone oxidoreductase (NQO1) in an ACI rat model. In addition, the effect of licorice extracts and compounds on biomarkers of estrogen chemoprevention (CYP1A1) as well as carcinogenesis (CYP1B1) was studied. LicA was extensively glucuronidated and formed GSH adducts; however, free LicA as well as LigC were bioavailable in target tissues after oral intake of licorice extracts. GG, GI, and LicA caused induction of NQO1 activity in the liver. In mammary tissue, GI increased CYP1A1 and decreased CYP1B1, whereas GG only increased CYP1A1 LigC may have contributed to the upregulation of CYP1A1 after GG and GI administration. In contrast, LicA was responsible for GI-mediated downregulation of CYP1B1 These studies highlight the polypharmacologic nature of botanicals and the importance of standardization of licorice BDS to specific Glycyrrhiza species and to multiple constituents.
Collapse
Affiliation(s)
- Shuai Wang
- UIC/NIH Center for Botanical Dietary Supplements Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Tareisha L Dunlap
- UIC/NIH Center for Botanical Dietary Supplements Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Lingyi Huang
- UIC/NIH Center for Botanical Dietary Supplements Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Yang Liu
- UIC/NIH Center for Botanical Dietary Supplements Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Charlotte Simmler
- UIC/NIH Center for Botanical Dietary Supplements Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
- Center for Natural Product Technologies, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Daniel D Lantvit
- UIC/NIH Center for Botanical Dietary Supplements Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Jenna Crosby
- UIC/NIH Center for Botanical Dietary Supplements Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Caitlin E Howell
- UIC/NIH Center for Botanical Dietary Supplements Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Huali Dong
- UIC/NIH Center for Botanical Dietary Supplements Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Shao-Nong Chen
- UIC/NIH Center for Botanical Dietary Supplements Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
- Center for Natural Product Technologies, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Guido F Pauli
- UIC/NIH Center for Botanical Dietary Supplements Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
- Center for Natural Product Technologies, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Richard B van Breemen
- UIC/NIH Center for Botanical Dietary Supplements Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon
| | - Birgit M Dietz
- UIC/NIH Center for Botanical Dietary Supplements Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois.
| | - Judy L Bolton
- UIC/NIH Center for Botanical Dietary Supplements Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois.
| |
Collapse
|
17
|
Kundu P, Korol DL, Bandara S, Monaikul S, Ondera CE, Helferich WG, Khan IA, Doerge DR, Schantz SL. Licorice root components mimic estrogens in an object location task but not an object recognition task. Horm Behav 2018; 103:97-106. [PMID: 29920269 PMCID: PMC6086590 DOI: 10.1016/j.yhbeh.2018.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/13/2018] [Accepted: 06/02/2018] [Indexed: 01/24/2023]
Abstract
This study investigated the efficacy of components of licorice root to alter performance on two different recognition tasks, a hippocampus-sensitive metric change in object location (MCOL) task and a striatum-sensitive double object recognition (DOR) task. Isoliquiritigenin (ISL), licorice root extract (LRE), and whole licorice root powder (LRP) were assessed. Young adult female rats were ovariectomized (OVX) and exposed to ISL, LRE or LRP at 0.075%, 0.5% or 5% respectively in the diet. An estradiol group was included as a positive control based on our prior findings. Rats were allowed to explore two objects for three 5-min study trials (separated by 3-min intervals) before a fourth 5-min test trial where the objects were moved closer together (MCOL task) or replaced with two new objects (DOR task). Rats typically habituate to the objects across the three study trials. An increase in object exploration time in the test trial suggests the rat detected the change. Estradiol improved MCOL performance and impaired DOR performance, similar to previously shown effects of estradiol and other estrogens, which tend to improve learning and memory on hippocampus-sensitive tasks and impair striatum-sensitive cognition. LRP had no effect on recognition while exposure to ISL and LRE improved MCOL performance. Exposure to ISL, LRE and LRP failed to attenuate DOR, contrary to effects of estradiol shown here and to previous reports in young-adult OVX rats. These findings suggest components of licorice root may prove to be effective therapies targeting memory enhancement without unintended deleterious cognitive effects.
Collapse
Affiliation(s)
- Payel Kundu
- University of Illinois at Urbana-Champaign, Neuroscience Program, 405 N Mathews Ave, Urbana, IL 61801, USA.
| | - Donna L Korol
- Syracuse University, Department of Biology, 107 College Place, Syracuse, NY 13244, USA.
| | - Suren Bandara
- University of Illinois at Urbana-Champaign, Neuroscience Program, 405 N Mathews Ave, Urbana, IL 61801, USA
| | - Supida Monaikul
- University of Illinois at Urbana-Champaign, Neuroscience Program, 405 N Mathews Ave, Urbana, IL 61801, USA
| | - Caitlin E Ondera
- University of Illinois at Urbana-Champaign, Department of Comparative Biosciences, College of Veterinary Medicine, 2001 S Lincoln Ave, Urbana, IL 61802, USA.
| | - William G Helferich
- University of Illinois at Urbana-Champaign, Department of Food Science and Human Nutrition, 905 S. Goodwin, Urbana, IL 61801, USA.
| | - Ikhlas A Khan
- The University of Mississippi, 1558 University Circle, P.O. Box 1848, University, MS 38677, USA.
| | - Daniel R Doerge
- National Center for Toxicological Research, U.S. Food & Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA.
| | - Susan L Schantz
- University of Illinois at Urbana-Champaign, Neuroscience Program, 405 N Mathews Ave, Urbana, IL 61801, USA; University of Illinois at Urbana-Champaign, Department of Comparative Biosciences, College of Veterinary Medicine, 2001 S Lincoln Ave, Urbana, IL 61802, USA; University of Illinois at Urbana-Champaign, Beckman Institute, 405 N Mathews Ave, Urbana, IL 61801, USA.
| |
Collapse
|
18
|
Popłoński J, Turlej E, Sordon S, Tronina T, Bartmańska A, Wietrzyk J, Huszcza E. Synthesis and Antiproliferative Activity of Minor Hops Prenylflavonoids and New Insights on Prenyl Group Cyclization. Molecules 2018; 23:E776. [PMID: 29597299 PMCID: PMC6017146 DOI: 10.3390/molecules23040776] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 03/22/2018] [Accepted: 03/27/2018] [Indexed: 12/22/2022] Open
Abstract
Synthesis of minor prenylflavonoids found in hops and their non-natural derivatives were performed. The antiproliferative activity of the obtained compounds against some human cancer cell lines was investigated. Using xanthohumol isolated from spent hops as a lead compound, a series of minor hop prenylflavonoids and synthetic derivatives were obtained by isomerization, cyclisation, oxidative-cyclisation, oxidation, reduction and demethylation reactions. Three human cancer cell lines-breast (MCF-7), prostate (PC-3) and colon (HT-29)-were used in antiproliferative assays, with cisplatin as a control compound. Five minor hop prenyl flavonoids and nine non-natural derivatives of xanthohumol have been synthetized. Syntheses of xanthohumol K, its dihydro- and tetrahydro-derivatives and 1″,2″,α,β-tetrahydroxanthohumol C were described for the first time. All of the minor hops prenyl flavonoids exhibited strong to moderate antiproliferative activity in vitro. The minor hops flavonoids xanthohumol C and 1″,2″-dihydroxanthohumol K and non-natural 2,3-dehydroisoxanthohumol exhibited the activity comparable to cisplatin. Results described in the article suggest that flavonoids containing chromane- and chromene-like moieties, especially chalcones, are potent antiproliferative agents. The developed new efficient, regioselective cyclisation reaction of the xanthohumol prenyl group to 1″,2″-dihydroxantohumol K may be used in the synthesis of other compounds with the chromane moiety.
Collapse
Affiliation(s)
- Jarosław Popłoński
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland.
| | - Eliza Turlej
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wrocław, Poland.
| | - Sandra Sordon
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland.
| | - Tomasz Tronina
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland.
| | - Agnieszka Bartmańska
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland.
| | - Joanna Wietrzyk
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wrocław, Poland.
| | - Ewa Huszcza
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland.
| |
Collapse
|
19
|
Kundu P, Neese SL, Bandara S, Monaikul S, Helferich WG, Doerge DR, Khan IA, Schantz SL. The effects of the botanical estrogen, isoliquiritigenin on delayed spatial alternation. Neurotoxicol Teratol 2018; 66:55-62. [PMID: 29408209 PMCID: PMC5856646 DOI: 10.1016/j.ntt.2018.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/18/2017] [Accepted: 02/01/2018] [Indexed: 10/18/2022]
Abstract
Age-related declines in cognitive function can impair working memory, reduce speed of processing, and alter attentional resources. In particular, menopausal women may show an acceleration in the rate of cognitive decline as well as an increased vulnerability to brain diseases as estrogens may play a neuroprotective and neurotrophic role in the brain. To treat menopausal symptoms, many women turn to botanical estrogens that are promoted as a safe and natural alternative to traditional hormone replacement therapy. However, the majority of these compounds have not been systematically evaluated for efficacy and safety. The current study investigated the efficacy of the commercially available botanical estrogenic compound isoliquiritigenin (ISL) to alter performance on an operant working memory task, delayed spatial alternation (DSA). ISL is a compound found in licorice root that has been shown to have a wide range of effects on different biological systems, including estrogenic properties. This botanical is currently being used in over the counter dietary supplements. Middle-aged (12-month old) Long-Evans female rats were ovariectomized and orally dosed with either 0 mg, 6 mg, 12 mg or 24 mg of ISL 60 min before testing on the DSA task. The DSA task required the rat to alternate its responses between two retractable levers in order to earn food rewards. Random delays of 0, 3, 6, 9 or 18 s were imposed between opportunities to press. ISL treatment failed to alter DSA performance. Previous work from our research group has found that estrogenic compounds, including 17β-estradiol and the botanical estrogen genistein impair performance on the DSA task. The goal of our botanical estrogens research is to find compounds that offer some of the beneficial effects of estrogen supplementation, without the harmful effects. This work suggests that ISL may not carry the cognitive risks associated with most other estrogenic compounds tested to date.
Collapse
Affiliation(s)
- Payel Kundu
- University of Illinois at Urbana-Champaign, Beckman Institute, 405 N Mathews Ave, Urbana, IL 61801, USA; University of Illinois at Urbana-Champaign, Neuroscience Program, USA.
| | - Steven L Neese
- University of Illinois at Urbana-Champaign, Beckman Institute, 405 N Mathews Ave, Urbana, IL 61801, USA.
| | - Suren Bandara
- University of Illinois at Urbana-Champaign, Beckman Institute, 405 N Mathews Ave, Urbana, IL 61801, USA.
| | - Supida Monaikul
- University of Illinois at Urbana-Champaign, Beckman Institute, 405 N Mathews Ave, Urbana, IL 61801, USA.
| | - William G Helferich
- University of Illinois at Urbana-Champaign, Department of Food Science and Human Nutrition, 905 S. Goodwin, Urbana, IL 61801, USA.
| | - Daniel R Doerge
- National Center for Toxicological Research, U.S. Food & Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA.
| | - Ikhlas A Khan
- The University of Mississippi, 1558 University Circle, P.O. Box 1848, University, MS 38677, USA.
| | - Susan L Schantz
- University of Illinois at Urbana-Champaign, Beckman Institute, 405 N Mathews Ave, Urbana, IL 61801, USA; University of Illinois at Urbana-Champaign, Department of Comparative Biosciences, Neuroscience Program, Veterinary Medicine Basic Sciences Bldg. 2001 South Lincoln Avenue Urbana, IL 61802, USA.
| |
Collapse
|
20
|
Dietz B, Chen SN, Alvarenga RF, Dong H, Nikolić D, Biendl M, van Breemen RB, Bolton JL, Pauli GF. DESIGNER Extracts as Tools to Balance Estrogenic and Chemopreventive Activities of Botanicals for Women's Health. JOURNAL OF NATURAL PRODUCTS 2017; 80:2284-2294. [PMID: 28812892 PMCID: PMC5765536 DOI: 10.1021/acs.jnatprod.7b00284] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Indexed: 05/22/2023]
Abstract
Botanical dietary supplements contain multiple bioactive compounds that target numerous biological pathways. The lack of uniform standardization requirements is one reason that inconsistent clinical effects are reported frequently. The multifaceted biological interactions of active principles can be disentangled by a coupled pharmacological/phytochemical approach using specialized ("knock-out") extracts. This is demonstrated for hops, a botanical for menopausal symptom management. Employing targeted, adsorbent-free countercurrent separation, Humulus lupulus extracts were designed for pre- and postmenopausal women by containing various amounts of the phytoestrogen 8-prenylnaringenin (8-PN) and the chemopreventive constituent xanthohumol (XH). Analysis of their estrogenic (alkaline phosphatase), chemopreventive (NAD(P)H-quinone oxidoreductase 1 [NQO1]), and cytotoxic bioactivities revealed that the estrogenicity of hops is a function of 8-PN, whereas their NQO1 induction and cytotoxic properties depend on XH levels. Antagonization of the estrogenicity of 8-PN by elevated XH concentrations provided evidence for the interdependence of the biological effects. A designed postmenopausal hop extract was prepared to balance 8-PN and XH levels for both estrogenic and chemopreventive properties. An extract designed for premenopausal women contains reduced 8-PN levels and high XH concentrations to minimize estrogenic while retaining chemopreventive properties. This study demonstrates the feasibility of modulating the concentrations of bioactive compounds in botanical extracts for potentially improved efficacy and safety.
Collapse
Affiliation(s)
- Birgit
M. Dietz
- UIC/NIH
Center for Botanical Dietary Supplements Research and Center for Natural
Product Technologies, Department of Medicinal Chemistry and Pharmacognosy,
College of Pharmacy, University of Illinois
at Chicago, 833 S. Wood
Street, M/C 781, Chicago, Illinois 60612, United
States
| | - Shao-Nong Chen
- UIC/NIH
Center for Botanical Dietary Supplements Research and Center for Natural
Product Technologies, Department of Medicinal Chemistry and Pharmacognosy,
College of Pharmacy, University of Illinois
at Chicago, 833 S. Wood
Street, M/C 781, Chicago, Illinois 60612, United
States
| | - René F.
Ramos Alvarenga
- UIC/NIH
Center for Botanical Dietary Supplements Research and Center for Natural
Product Technologies, Department of Medicinal Chemistry and Pharmacognosy,
College of Pharmacy, University of Illinois
at Chicago, 833 S. Wood
Street, M/C 781, Chicago, Illinois 60612, United
States
| | - Huali Dong
- UIC/NIH
Center for Botanical Dietary Supplements Research and Center for Natural
Product Technologies, Department of Medicinal Chemistry and Pharmacognosy,
College of Pharmacy, University of Illinois
at Chicago, 833 S. Wood
Street, M/C 781, Chicago, Illinois 60612, United
States
| | - Dejan Nikolić
- UIC/NIH
Center for Botanical Dietary Supplements Research and Center for Natural
Product Technologies, Department of Medicinal Chemistry and Pharmacognosy,
College of Pharmacy, University of Illinois
at Chicago, 833 S. Wood
Street, M/C 781, Chicago, Illinois 60612, United
States
| | - Martin Biendl
- Hopsteiner,
Hallertauer Hopfenveredelung GmbH, Auhofstrasse 16, 84048 Mainburg, Germany
| | - Richard B. van Breemen
- UIC/NIH
Center for Botanical Dietary Supplements Research and Center for Natural
Product Technologies, Department of Medicinal Chemistry and Pharmacognosy,
College of Pharmacy, University of Illinois
at Chicago, 833 S. Wood
Street, M/C 781, Chicago, Illinois 60612, United
States
| | - Judy L. Bolton
- UIC/NIH
Center for Botanical Dietary Supplements Research and Center for Natural
Product Technologies, Department of Medicinal Chemistry and Pharmacognosy,
College of Pharmacy, University of Illinois
at Chicago, 833 S. Wood
Street, M/C 781, Chicago, Illinois 60612, United
States
| | - Guido F. Pauli
- UIC/NIH
Center for Botanical Dietary Supplements Research and Center for Natural
Product Technologies, Department of Medicinal Chemistry and Pharmacognosy,
College of Pharmacy, University of Illinois
at Chicago, 833 S. Wood
Street, M/C 781, Chicago, Illinois 60612, United
States
| |
Collapse
|
21
|
Li G, Simmler C, Chen L, Nikolic D, Chen SN, Pauli GF, van Breemen RB. Cytochrome P450 inhibition by three licorice species and fourteen licorice constituents. Eur J Pharm Sci 2017; 109:182-190. [PMID: 28774812 DOI: 10.1016/j.ejps.2017.07.034] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/09/2017] [Accepted: 07/30/2017] [Indexed: 02/04/2023]
Abstract
The potential of licorice dietary supplements to interact with drug metabolism was evaluated by testing extracts of three botanically identified licorice species (Glycyrrhiza glabra L., Glycyrrhiza uralensis Fish. ex DC. and Glycyrrhiza inflata Batalin) and 14 isolated licorice compounds for inhibition of 9 cytochrome P450 enzymes using a UHPLC-MS/MS cocktail assay. G. glabra showed moderate inhibitory effects against CYP2B6, CYP2C8, CYP2C9, and CYP2C19, and weak inhibition against CYP3A4 (testosterone). In contrast, G. uralensis strongly inhibited CYP2B6 and moderately inhibited CYP2C8, CYP2C9 and CYP2C19, and G. inflata strongly inhibited CYP2C enzymes and moderately inhibited CYP1A2, CYP2B6, CYP2D6, and CYP3A4 (midazolam). The licorice compounds isoliquiritigenin, licoricidin, licochalcone A, 18β-glycyrrhetinic acid, and glycycoumarin inhibited one or more members of the CYP2C family of enzymes. Glycycoumarin and licochalcone A inhibited CYP1A2, but only glycycoumarin inhibited CYP2B6. Isoliquiritigenin, glabridin and licoricidin competitively inhibited CYP3A4, while licochalcone A (specific to G. inflata roots) was a mechanism-based inhibitor. The three licorice species commonly used in botanical dietary supplements have varying potential for drug-botanical interactions as inhibitors of cytochrome P450 isoforms. Each species of licorice displays a unique profile of constituents with potential for drug interactions.
Collapse
Affiliation(s)
- Guannan Li
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois College of Pharmacy, Chicago, IL 60612, United States
| | - Charlotte Simmler
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois College of Pharmacy, Chicago, IL 60612, United States
| | - Luying Chen
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois College of Pharmacy, Chicago, IL 60612, United States
| | - Dejan Nikolic
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois College of Pharmacy, Chicago, IL 60612, United States
| | - Shao-Nong Chen
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois College of Pharmacy, Chicago, IL 60612, United States
| | - Guido F Pauli
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois College of Pharmacy, Chicago, IL 60612, United States
| | - Richard B van Breemen
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois College of Pharmacy, Chicago, IL 60612, United States.
| |
Collapse
|
22
|
Simmler C, Lankin DC, Nikolić D, van Breemen RB, Pauli GF. Isolation and structural characterization of dihydrobenzofuran congeners of licochalcone A. Fitoterapia 2017. [PMID: 28647482 DOI: 10.1016/j.fitote.2017.06.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In an effort to explore the residual complexity of naturally occurring chalcones from the roots of Glycyrrhiza inflata (Fabaceae), two new licochalcone A (LicA) derivatives were isolated as trace metabolites from enriched fractions. Both constituents contain a dihydrofuran moiety linked to carbons C-4 and C-5 of the retrochalcone core. Compound 1 (LicAF1) represents a new chemical entity, whereas compound 2 (LicAF2) has previously been reported as a Lewis acid catalyzed rearrangement of LicA. Evaluation of chirality revealed that both dihydrofuran derivatives existed as a mixture of R and S enantiomers. Interestingly, when solutions were exposed to sunlight, both dihydrofuran retrochalcones, initially isolated as trans isomers, were found to rapidly isomerize yielding trans and cis isomers. Analysis of the 1D 1H NMR spectra of the photolysis products revealed the presence of two sets of proton resonances ascribed to each of the geometric isomers. An up-field shift of all proton resonances arising from the cis isomer was observed, suggesting that anisotropic shielding effects were introduced through an overall perturbation of the 3-dimensional structure upon photoisomerization. Similar up-field shifts were observed in the 13C spectrum of the cis isomer, except for the CO, C-α, and C-6 carbons, which experienced downfield shifts. Analogous NMR results were observed for LicA. Hence, the results presented herein encompass the isolation and full characterization of LicAF analogs 1 and 2, and observations of their trans-to-cis photoisomerization through the systematic analysis of their NMR spectra.
Collapse
Affiliation(s)
- Charlotte Simmler
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, College of Pharmacy, 833 S. Wood Street, Chicago, IL 60612, USA.
| | - David C Lankin
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, College of Pharmacy, 833 S. Wood Street, Chicago, IL 60612, USA
| | - Dejan Nikolić
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, College of Pharmacy, 833 S. Wood Street, Chicago, IL 60612, USA
| | - Richard B van Breemen
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, College of Pharmacy, 833 S. Wood Street, Chicago, IL 60612, USA
| | - Guido F Pauli
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, College of Pharmacy, 833 S. Wood Street, Chicago, IL 60612, USA
| |
Collapse
|
23
|
Biała W, Banasiak J, Jarzyniak K, Pawela A, Jasiński M. Medicago truncatula ABCG10 is a transporter of 4-coumarate and liquiritigenin in the medicarpin biosynthetic pathway. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3231-3241. [PMID: 28369642 PMCID: PMC5853973 DOI: 10.1093/jxb/erx059] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/06/2017] [Indexed: 05/18/2023]
Abstract
The ABCG10 protein of the model legume Medicago truncatula is required for efficient de novo production of the phenylpropanoid-derived phytoalexin medicarpin. Silencing the expression of MtABCG10 results, inter alia, in a lower accumulation of medicarpin and its precursors. In this study, we demonstrate that the impairment of medicarpin biosynthesis can be partially averted by the exogenous application of 4-coumarate, an early precursor of the core phenylpropanoid pathway, and the deoxyisoflavonoid formononetin. Experiments conducted using HPLC/MS in a heterologous system as well as in vitro transport assays with labelled substrate revealed that MtABCG10 is responsible for the membrane translocation of 4-coumarate and liquiritigenin, molecules representing key branching points in the phenylpropanoid pathway. The identification of transporters participating in the distribution of precursors is an important step in understanding phenylpropanoid biosynthesis.
Collapse
Affiliation(s)
- Wanda Biała
- Department of Natural Products Biochemistry, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Department of Biochemistry and Biotechnology, Poznan University of Life Sciences,Poznan, Poland
| | - Joanna Banasiak
- Department of Natural Products Biochemistry, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Karolina Jarzyniak
- Department of Natural Products Biochemistry, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Department of Biochemistry and Biotechnology, Poznan University of Life Sciences,Poznan, Poland
| | - Aleksandra Pawela
- Department of Natural Products Biochemistry, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Michał Jasiński
- Department of Natural Products Biochemistry, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Department of Biochemistry and Biotechnology, Poznan University of Life Sciences,Poznan, Poland
- Correspondence:
| |
Collapse
|
24
|
Nelson KM, Dahlin JL, Bisson J, Graham J, Pauli GF, Walters MA. Curcumin May (Not) Defy Science. ACS Med Chem Lett 2017; 8:467-470. [PMID: 28523093 DOI: 10.1021/acsmedchemlett.7b00139] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 04/06/2017] [Indexed: 02/03/2023] Open
Affiliation(s)
- Kathryn M. Nelson
- Institute
for Therapeutics Discovery and Development, Department of Medicinal
Chemistry, University of Minnesota, Minneapolis, Minnesota 55414, United States
| | - Jayme L. Dahlin
- Department
of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts 02115, United States
| | - Jonathan Bisson
- Center
for Natural Product Technologies, Department of Medicinal Chemistry
and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| | - James Graham
- Center
for Natural Product Technologies, Department of Medicinal Chemistry
and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| | - Guido F. Pauli
- Center
for Natural Product Technologies, Department of Medicinal Chemistry
and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
- Institute
for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| | - Michael A. Walters
- Institute
for Therapeutics Discovery and Development, Department of Medicinal
Chemistry, University of Minnesota, Minneapolis, Minnesota 55414, United States
| |
Collapse
|
25
|
Phansalkar RS, Simmler C, Bisson J, Chen SN, Lankin DC, McAlpine JB, Niemitz M, Pauli GF. Evolution of Quantitative Measures in NMR: Quantum Mechanical qHNMR Advances Chemical Standardization of a Red Clover (Trifolium pratense) Extract. JOURNAL OF NATURAL PRODUCTS 2017; 80:634-647. [PMID: 28067513 PMCID: PMC5368683 DOI: 10.1021/acs.jnatprod.6b00923] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Indexed: 05/09/2023]
Abstract
Chemical standardization, along with morphological and DNA analysis ensures the authenticity and advances the integrity evaluation of botanical preparations. Achievement of a more comprehensive, metabolomic standardization requires simultaneous quantitation of multiple marker compounds. Employing quantitative 1H NMR (qHNMR), this study determined the total isoflavone content (TIfCo; 34.5-36.5% w/w) via multimarker standardization and assessed the stability of a 10-year-old isoflavone-enriched red clover extract (RCE). Eleven markers (nine isoflavones, two flavonols) were targeted simultaneously, and outcomes were compared with LC-based standardization. Two advanced quantitative measures in qHNMR were applied to derive quantities from complex and/or overlapping resonances: a quantum mechanical (QM) method (QM-qHNMR) that employs 1H iterative full spin analysis, and a non-QM method that uses linear peak fitting algorithms (PF-qHNMR). A 10 min UHPLC-UV method provided auxiliary orthogonal quantitation. This is the first systematic evaluation of QM and non-QM deconvolution as qHNMR quantitation measures. It demonstrates that QM-qHNMR can account successfully for the complexity of 1H NMR spectra of individual analytes and how QM-qHNMR can be built for mixtures such as botanical extracts. The contents of the main bioactive markers were in good agreement with earlier HPLC-UV results, demonstrating the chemical stability of the RCE. QM-qHNMR advances chemical standardization by its inherent QM accuracy and the use of universal calibrants, avoiding the impractical need for identical reference materials.
Collapse
Affiliation(s)
- Rasika S. Phansalkar
- UIC/NIH Center for
Botanical Dietary Supplements Research and Center for Natural Product Technologies, Department of Medicinal Chemistry
and Pharmacognosy, University of Illinois
at Chicago, College of Pharmacy, 833 S. Wood Street, Chicago, Illinois 60612, United
States
| | - Charlotte Simmler
- UIC/NIH Center for
Botanical Dietary Supplements Research and Center for Natural Product Technologies, Department of Medicinal Chemistry
and Pharmacognosy, University of Illinois
at Chicago, College of Pharmacy, 833 S. Wood Street, Chicago, Illinois 60612, United
States
| | - Jonathan Bisson
- UIC/NIH Center for
Botanical Dietary Supplements Research and Center for Natural Product Technologies, Department of Medicinal Chemistry
and Pharmacognosy, University of Illinois
at Chicago, College of Pharmacy, 833 S. Wood Street, Chicago, Illinois 60612, United
States
| | - Shao-Nong Chen
- UIC/NIH Center for
Botanical Dietary Supplements Research and Center for Natural Product Technologies, Department of Medicinal Chemistry
and Pharmacognosy, University of Illinois
at Chicago, College of Pharmacy, 833 S. Wood Street, Chicago, Illinois 60612, United
States
| | - David C. Lankin
- UIC/NIH Center for
Botanical Dietary Supplements Research and Center for Natural Product Technologies, Department of Medicinal Chemistry
and Pharmacognosy, University of Illinois
at Chicago, College of Pharmacy, 833 S. Wood Street, Chicago, Illinois 60612, United
States
| | - James B. McAlpine
- UIC/NIH Center for
Botanical Dietary Supplements Research and Center for Natural Product Technologies, Department of Medicinal Chemistry
and Pharmacognosy, University of Illinois
at Chicago, College of Pharmacy, 833 S. Wood Street, Chicago, Illinois 60612, United
States
| | | | - Guido F. Pauli
- UIC/NIH Center for
Botanical Dietary Supplements Research and Center for Natural Product Technologies, Department of Medicinal Chemistry
and Pharmacognosy, University of Illinois
at Chicago, College of Pharmacy, 833 S. Wood Street, Chicago, Illinois 60612, United
States
| |
Collapse
|
26
|
Nelson KM, Dahlin JL, Bisson J, Graham J, Pauli GF, Walters MA. The Essential Medicinal Chemistry of Curcumin. J Med Chem 2017; 60:1620-1637. [PMID: 28074653 PMCID: PMC5346970 DOI: 10.1021/acs.jmedchem.6b00975] [Citation(s) in RCA: 1135] [Impact Index Per Article: 141.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Curcumin
is a constituent (up to ∼5%) of the traditional
medicine known as turmeric. Interest in the therapeutic use of turmeric
and the relative ease of isolation of curcuminoids has led to their
extensive investigation. Curcumin has recently been classified as
both a PAINS (pan-assay interference compounds) and an IMPS (invalid
metabolic panaceas) candidate. The likely false activity of curcumin
in vitro and in vivo has resulted in >120
clinical trials of curcuminoids against several diseases. No double-blinded,
placebo controlled clinical trial of curcumin has been successful.
This manuscript reviews the essential medicinal chemistry of curcumin
and provides evidence that curcumin is an unstable, reactive, nonbioavailable
compound and, therefore, a highly improbable lead. On the basis of
this in-depth evaluation, potential new directions for research on
curcuminoids are discussed.
Collapse
Affiliation(s)
- Kathryn M Nelson
- Department of Medicinal Chemistry, Institute for Therapeutics Discovery and Development, University of Minnesota , Minneapolis, Minnesota 55414, United States
| | - Jayme L Dahlin
- Department of Pathology, Brigham and Women's Hospital , Boston, Massachusetts 02115, United States
| | - Jonathan Bisson
- Center for Natural Product Technologies, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago , 833 South Wood Street, Chicago, Illinois 60612, United States
| | - James Graham
- Center for Natural Product Technologies, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago , 833 South Wood Street, Chicago, Illinois 60612, United States
| | - Guido F Pauli
- Center for Natural Product Technologies, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago , 833 South Wood Street, Chicago, Illinois 60612, United States.,Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago , 833 South Wood Street, Chicago, Illinois 60612, United States
| | - Michael A Walters
- Department of Medicinal Chemistry, Institute for Therapeutics Discovery and Development, University of Minnesota , Minneapolis, Minnesota 55414, United States
| |
Collapse
|
27
|
Li G, Nikolic D, van Breemen RB. Identification and Chemical Standardization of Licorice Raw Materials and Dietary Supplements Using UHPLC-MS/MS. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:8062-8070. [PMID: 27696846 PMCID: PMC5378676 DOI: 10.1021/acs.jafc.6b02954] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Defined as the roots and underground stems of principally three Glycyrrhiza species, Glycyrrhiza glabra L., Glycyrrhiza uralensis Fish. ex DC., and Glycyrrhiza inflata Batalin, licorice has been used as a medicinal herb for millennia and is marketed as root sticks, powders, and extracts. Identity tests described in most pharmacopeial monographs enabled the distinction of Glycyrrhiza species. Accordingly, an ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) assay using the method of standard addition was developed to quantify 14 licorice components (liquiritin, isoliquiritin, liquiritin apioside, isoliquiritin apioside, licuraside, liquiritigenin, isoliquiritigenin, glycyrrhizin, glycyrrhetinic acid, glabridin, glycycoumarin, licoricidin, licochalcone A, and p-hydroxybenzylmalonic acid), representing several natural product classes including chalcones, flavanones, saponins, and isoflavonoids. Using this approach, G. glabra, G. uralensis, and G. inflata in a variety of forms including root powders and extracts as well as complex dietary supplements could be differentiated and chemically standardized without concerns due to matrix effects.
Collapse
Affiliation(s)
- Guannan Li
- UIC/NIH Center for Botanical Dietary Supplements Research, Chicago Mass Spectrometry Laboratory, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois College of Pharmacy , Chicago, Illinois 60612, United States
| | - Dejan Nikolic
- UIC/NIH Center for Botanical Dietary Supplements Research, Chicago Mass Spectrometry Laboratory, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois College of Pharmacy , Chicago, Illinois 60612, United States
| | - Richard B van Breemen
- UIC/NIH Center for Botanical Dietary Supplements Research, Chicago Mass Spectrometry Laboratory, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois College of Pharmacy , Chicago, Illinois 60612, United States
| |
Collapse
|
28
|
Dietz BM, Hajirahimkhan A, Dunlap TL, Bolton JL. Botanicals and Their Bioactive Phytochemicals for Women's Health. Pharmacol Rev 2016; 68:1026-1073. [PMID: 27677719 PMCID: PMC5050441 DOI: 10.1124/pr.115.010843] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Botanical dietary supplements are increasingly popular for women's health, particularly for older women. The specific botanicals women take vary as a function of age. Younger women will use botanicals for urinary tract infections, especially Vaccinium macrocarpon (cranberry), where there is evidence for efficacy. Botanical dietary supplements for premenstrual syndrome (PMS) are less commonly used, and rigorous clinical trials have not been done. Some examples include Vitex agnus-castus (chasteberry), Angelica sinensis (dong quai), Viburnum opulus/prunifolium (cramp bark and black haw), and Zingiber officinale (ginger). Pregnant women have also used ginger for relief from nausea. Natural galactagogues for lactating women include Trigonella foenum-graecum (fenugreek) and Silybum marianum (milk thistle); however, rigorous safety and efficacy studies are lacking. Older women suffering menopausal symptoms are increasingly likely to use botanicals, especially since the Women's Health Initiative showed an increased risk for breast cancer associated with traditional hormone therapy. Serotonergic mechanisms similar to antidepressants have been proposed for Actaea/Cimicifuga racemosa (black cohosh) and Valeriana officinalis (valerian). Plant extracts with estrogenic activities for menopausal symptom relief include Glycine max (soy), Trifolium pratense (red clover), Pueraria lobata (kudzu), Humulus lupulus (hops), Glycyrrhiza species (licorice), Rheum rhaponticum (rhubarb), Vitex agnus-castus (chasteberry), Linum usitatissimum (flaxseed), Epimedium species (herba Epimedii, horny goat weed), and Medicago sativa (alfalfa). Some of the estrogenic botanicals have also been shown to have protective effects against osteoporosis. Several of these botanicals could have additional breast cancer preventive effects linked to hormonal, chemical, inflammatory, and/or epigenetic pathways. Finally, although botanicals are perceived as natural safe remedies, it is important for women and their healthcare providers to realize that they have not been rigorously tested for potential toxic effects and/or drug/botanical interactions. Understanding the mechanism of action of these supplements used for women's health will ultimately lead to standardized botanical products with higher efficacy, safety, and chemopreventive properties.
Collapse
Affiliation(s)
- Birgit M Dietz
- University of Illinois at Chicago/National Institutes of Health Center for Botanical Dietary Supplements, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Atieh Hajirahimkhan
- University of Illinois at Chicago/National Institutes of Health Center for Botanical Dietary Supplements, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Tareisha L Dunlap
- University of Illinois at Chicago/National Institutes of Health Center for Botanical Dietary Supplements, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Judy L Bolton
- University of Illinois at Chicago/National Institutes of Health Center for Botanical Dietary Supplements, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
29
|
CRF receptor 1 antagonism and brain distribution of active components contribute to the ameliorative effect of rikkunshito on stress-induced anorexia. Sci Rep 2016; 6:27516. [PMID: 27273195 PMCID: PMC4897628 DOI: 10.1038/srep27516] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 05/09/2016] [Indexed: 02/07/2023] Open
Abstract
Rikkunshito (RKT), a Kampo medicine, has been reported to show an ameliorative effect on sustained hypophagia after novelty stress exposure in aged mice through serotonin 2C receptor (5-HT2CR) antagonism. We aimed to determine (1) whether the activation of anorexigenic neurons, corticotropin-releasing factor (CRF), and pro-opiomelanocortin (POMC) neurons, is involved in the initiation of hypophagia induced by novelty stress in aged mice; (2) whether the ameliorative effect of RKT is associated with CRF and POMC neurons and downstream signal transduction; and (3) the plasma and brain distribution of the active components of RKT. The administration of RKT or 5-HT2CR, CRF receptor 1 (CRFR1), and melanocortin-4 receptor antagonists significantly restored the decreased food intake observed in aged male C57BL/6 mice in the early stage after novelty stress exposure. Seven components of RKT exhibited antagonistic activity against CRFR1. Hesperetin and isoliquiritigenin, which showed antagonistic effects against both CRFR1 and 5-HT2CR, were distributed in the plasma and brain of male Sprague-Dawley rats after a single oral administration of RKT. In conclusion, the ameliorative effect of RKT in this model is assumed to be at least partly due to brain-distributed active components possessing 5-HT2CR and CRFR1 antagonistic activities.
Collapse
|
30
|
Boonmuen N, Gong P, Ali Z, Chittiboyina AG, Khan I, Doerge DR, Helferich WG, Carlson KE, Martin T, Piyachaturawat P, Katzenellenbogen JA, Katzenellenbogen BS. Licorice root components in dietary supplements are selective estrogen receptor modulators with a spectrum of estrogenic and anti-estrogenic activities. Steroids 2016; 105:42-9. [PMID: 26631549 PMCID: PMC4714869 DOI: 10.1016/j.steroids.2015.11.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 11/09/2015] [Accepted: 11/18/2015] [Indexed: 12/29/2022]
Abstract
Licorice root extracts are often consumed as botanical dietary supplements by menopausal women as a natural alternative to pharmaceutical hormone replacement therapy. In addition to their components liquiritigenin (Liq) and isoliquiritigenin (Iso-Liq), known to have estrogenic activity, licorice root extracts also contain a number of other flavonoids, isoflavonoids, and chalcones. We have investigated the estrogenic activity of 7 of these components, obtained from an extract of Glycyrrhiza glabra powder, namely Glabridin (L1), Calycosin (L2), Methoxychalcone (L3), Vestitol (L4), Glyasperin C (L5), Glycycoumarin (L6), and Glicoricone (L7), and compared them with Liq, Iso-Liq, and estradiol (E2). All components, including Liq and Iso-Liq, have low binding affinity for estrogen receptors (ERs). Their potency and efficacy in stimulating the expression of estrogen-regulated genes reveal that Liq and Iso-Liq and L2, L3, L4, and L6 are estrogen agonists. Interestingly, L3 and L4 have an efficacy nearly equivalent to E2 but with a potency ca. 10,000-fold less. The other components, L1, L5 and L7, acted as partial estrogen antagonists. All agonist activities were reversed by the antiestrogen, ICI 182,780, or by knockdown of ERα with siRNA, indicating that they are ER dependent. In HepG2 hepatoma cells stably expressing ERα, only Liq, Iso-Liq, and L3 stimulated estrogen-regulated gene expression, and in all cases gene stimulation did not occur in HepG2 cells lacking ERα. Collectively, these findings classify the components of licorice root extracts as low potency, mixed ER agonists and antagonists, having a character akin to that of selective estrogen receptor modulators or SERMs.
Collapse
Affiliation(s)
- Nittaya Boonmuen
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Ping Gong
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Zulfiqar Ali
- National Center for Natural Products Research, University of Mississippi, Oxford, MS 38677, United States
| | - Amar G Chittiboyina
- National Center for Natural Products Research, University of Mississippi, Oxford, MS 38677, United States
| | - Ikhlas Khan
- National Center for Natural Products Research, University of Mississippi, Oxford, MS 38677, United States
| | - Daniel R Doerge
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, United States
| | - William G Helferich
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Kathryn E Carlson
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Teresa Martin
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Pawinee Piyachaturawat
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Chakri Naruebodindra Medical Institute, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - John A Katzenellenbogen
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Benita S Katzenellenbogen
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.
| |
Collapse
|
31
|
Madak-Erdogan Z, Gong P, Zhao YC, Xu L, Wrobel KU, Hartman JA, Wang M, Cam A, Iwaniec UT, Turner RT, Twaddle NC, Doerge DR, Khan IA, Katzenellenbogen JA, Katzenellenbogen BS, Helferich WG. Dietary licorice root supplementation reduces diet-induced weight gain, lipid deposition, and hepatic steatosis in ovariectomized mice without stimulating reproductive tissues and mammary gland. Mol Nutr Food Res 2015; 60:369-80. [PMID: 26555669 DOI: 10.1002/mnfr.201500445] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 09/04/2015] [Accepted: 09/23/2015] [Indexed: 01/24/2023]
Abstract
SCOPE We studied the impact of dietary supplementation with licorice root components on diet-induced obesity, fat accumulation, and hepatic steatosis in ovariectomized C57BL/6 mice as a menopause model. MATERIALS AND METHODS We evaluated the molecular and physiological effects of dietary licorice root administered to ovariectomized C57BL/6 mice as root powder (LRP), extracts (LRE), or isolated isoliquiritigenin (ILQ) on reproductive (uterus and mammary gland) and nonreproductive tissues important in regulating metabolism (liver, perigonadal, perirenal, mesenteric, and subcutaneous fat). Quantitative outcome measures including body weight, fat distribution (magnetic resonance imaging), food consumption, bone density and weight (Dual-energy X-ray absorptiometry), and gene expression were assessed by the degree of restoration to the preovariectomized health state. We characterized histological (H&E and oil red O staining) and molecular properties (expression of certain disease markers) of these tissues, and correlated these with metabolic phenotype as well as blood levels of bioactives. CONCLUSION Although LRE and ILQ provided some benefit, LRP was the most effective in reducing body weight gain, overall fat deposition, liver steatosis, and expression of hepatic lipid synthesis genes following ovariectomy. Our data demonstrate that licorice root provided improvement of multiple metabolic parameters under conditions of low estrogen and high-fat diets without stimulating reproductive tissues.
Collapse
Affiliation(s)
- Zeynep Madak-Erdogan
- Botanical Research Center, Departments of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Ping Gong
- Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Yiru Chen Zhao
- Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Liwen Xu
- Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Kinga U Wrobel
- Botanical Research Center, Departments of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - James A Hartman
- Botanical Research Center, Departments of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Michelle Wang
- Botanical Research Center, Departments of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Anthony Cam
- Botanical Research Center, Departments of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Urszula T Iwaniec
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, USA
| | - Russell T Turner
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, USA
| | | | - Daniel R Doerge
- National Center for Toxicological Research, Jefferson, AR, USA
| | - Ikhlas A Khan
- National Center for Natural Product Research, School of Pharmacy, University of Mississippi University, MS, USA.,Division of Pharmacognosy Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi University, MS, USA
| | | | | | - William G Helferich
- Botanical Research Center, Departments of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
32
|
Hajirahimkhan A, Simmler C, Dong H, Lantvit DD, Li G, Chen SN, Nikolić D, Pauli GF, van Breemen RB, Dietz BM, Bolton JL. Induction of NAD(P)H:Quinone Oxidoreductase 1 (NQO1) by Glycyrrhiza Species Used for Women's Health: Differential Effects of the Michael Acceptors Isoliquiritigenin and Licochalcone A. Chem Res Toxicol 2015; 28:2130-41. [PMID: 26473469 DOI: 10.1021/acs.chemrestox.5b00310] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
UNLABELLED For the alleviation of menopausal symptoms, women frequently turn to botanical dietary supplements, such as licorice and hops. In addition to estrogenic properties, these botanicals could also have chemopreventive effects. We have previously shown that hops and its Michael acceptor xanthohumol (XH) induced the chemoprevention enzyme, NAD(P)H quinone oxidoreductase 1 (NQO1), in vitro and in vivo. Licorice species could also induce NQO1, as they contain the Michael acceptors isoliquiritigenin (LigC) found in Glycyrrhiza glabra (GG), G. uralensis (GU), G. inflata (GI), and licochalcone A (LicA) which is only found in GI. These licorice species and hops induced NQO1 activity in murine hepatoma (Hepa1c1c7) cells; hops ≫ GI > GG ≅ GU. Similar to the known chemopreventive compounds curcumin (turmeric), sulforaphane (broccoli), and XH, LigC and LicA were active dose-dependently; sulforaphane ≫ XH > LigC > LicA ≅ curcumin ≫ liquiritigenin (LigF). Induction of the antioxidant response element luciferase in human hepatoma (HepG2-ARE-C8) cells suggested involvement of the Keap1-Nrf2 pathway. GG, GU, and LigC also induced NQO1 in nontumorigenic breast epithelial MCF-10A cells. In female Sprague-Dawley rats treated with GG and GU, LigC and LigF were detected in the liver and mammary gland. GG weakly enhanced NQO1 activity in the mammary tissue but not in the liver. Treatment with LigC alone did not induce NQO1 in vivo most likely due to its conversion to LigF, extensive metabolism, and its low bioavailability in vivo. These data show the chemopreventive potential of licorice species in vitro could be due to LigC and LicA and emphasize the importance of chemical and biological standardization of botanicals used as dietary supplements. Although the in vivo effects in the rat model after four-day treatment are minimal, it must be emphasized that menopausal women take these supplements for extended periods of time and long-term beneficial effects are quite possible.
Collapse
Affiliation(s)
- Atieh Hajirahimkhan
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago , 833 South Wood Street M/C 781, Chicago, Illinois 60612-7231, United States
| | - Charlotte Simmler
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago , 833 South Wood Street M/C 781, Chicago, Illinois 60612-7231, United States
| | - Huali Dong
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago , 833 South Wood Street M/C 781, Chicago, Illinois 60612-7231, United States
| | - Daniel D Lantvit
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago , 833 South Wood Street M/C 781, Chicago, Illinois 60612-7231, United States
| | - Guannan Li
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago , 833 South Wood Street M/C 781, Chicago, Illinois 60612-7231, United States
| | - Shao-Nong Chen
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago , 833 South Wood Street M/C 781, Chicago, Illinois 60612-7231, United States
| | - Dejan Nikolić
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago , 833 South Wood Street M/C 781, Chicago, Illinois 60612-7231, United States
| | - Guido F Pauli
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago , 833 South Wood Street M/C 781, Chicago, Illinois 60612-7231, United States
| | - Richard B van Breemen
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago , 833 South Wood Street M/C 781, Chicago, Illinois 60612-7231, United States
| | - Birgit M Dietz
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago , 833 South Wood Street M/C 781, Chicago, Illinois 60612-7231, United States
| | - Judy L Bolton
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago , 833 South Wood Street M/C 781, Chicago, Illinois 60612-7231, United States
| |
Collapse
|
33
|
Bisson J, McAlpine JB, Friesen JB, Chen SN, Graham J, Pauli GF. Can Invalid Bioactives Undermine Natural Product-Based Drug Discovery? J Med Chem 2015; 59:1671-90. [PMID: 26505758 PMCID: PMC4791574 DOI: 10.1021/acs.jmedchem.5b01009] [Citation(s) in RCA: 178] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
High-throughput biology has contributed
a wealth of data on chemicals,
including natural products (NPs). Recently, attention was drawn to
certain, predominantly synthetic, compounds that are responsible for
disproportionate percentages of hits but are false actives. Spurious
bioassay interference led to their designation as pan-assay interference
compounds (PAINS). NPs lack comparable scrutiny,
which this study aims to rectify. Systematic mining of 80+ years of
the phytochemistry and biology literature, using the NAPRALERT database,
revealed that only 39 compounds represent the NPs most reported by
occurrence, activity, and distinct activity. Over 50% are not explained
by phenomena known for synthetic libraries, and all had manifold ascribed
bioactivities, designating them as invalid metabolic panaceas (IMPs). Cumulative
distributions of ∼200,000 NPs uncovered that NP research follows
power-law characteristics typical for behavioral phenomena. Projection
into occurrence–bioactivity–effort space produces the
hyperbolic black hole of NPs, where IMPs populate the high-effort
base.
Collapse
Affiliation(s)
| | | | - J Brent Friesen
- Physical Sciences Department, Rosary College of Arts and Sciences, Dominican University , River Forest, Illinois 60305, United States
| | | | | | | |
Collapse
|
34
|
Simmler C, Anderson JR, Gauthier L, Lankin DC, McAlpine JB, Chen SN, Pauli GF. Metabolite Profiling and Classification of DNA-Authenticated Licorice Botanicals. JOURNAL OF NATURAL PRODUCTS 2015; 78:2007-22. [PMID: 26244884 PMCID: PMC4553119 DOI: 10.1021/acs.jnatprod.5b00342] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Raw licorice roots represent heterogeneous materials obtained from mainly three Glycyrrhiza species. G. glabra, G. uralensis, and G. inflata exhibit marked metabolite differences in terms of flavanones (Fs), chalcones (Cs), and other phenolic constituents. The principal objective of this work was to develop complementary chemometric models for the metabolite profiling, classification, and quality control of authenticated licorice. A total of 51 commercial and macroscopically verified samples were DNA authenticated. Principal component analysis and canonical discriminant analysis were performed on (1)H NMR spectra and area under the curve values obtained from UHPLC-UV chromatograms, respectively. The developed chemometric models enable the identification and classification of Glycyrrhiza species according to their composition in major Fs, Cs, and species specific phenolic compounds. Further key outcomes demonstrated that DNA authentication combined with chemometric analyses enabled the characterization of mixtures, hybrids, and species outliers. This study provides a new foundation for the botanical and chemical authentication, classification, and metabolomic characterization of crude licorice botanicals and derived materials. Collectively, the proposed methods offer a comprehensive approach for the quality control of licorice as one of the most widely used botanical dietary supplements.
Collapse
Affiliation(s)
- Charlotte Simmler
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois, United States
| | - Jeffrey R. Anderson
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois, United States
| | - Laura Gauthier
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois, United States
| | - David C. Lankin
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois, United States
| | - James B. McAlpine
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois, United States
| | - Shao-Nong Chen
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois, United States
| | - Guido F. Pauli
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois, United States
| |
Collapse
|
35
|
Assembly of a novel biosynthetic pathway for production of the plant flavonoid fisetin in Escherichia coli. Metab Eng 2015; 31:84-93. [PMID: 26192693 DOI: 10.1016/j.ymben.2015.07.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 04/29/2015] [Accepted: 07/09/2015] [Indexed: 01/13/2023]
Abstract
Plant secondary metabolites are an underutilized pool of bioactive molecules for applications in the food, pharma and nutritional industries. One such molecule is fisetin, which is present in many fruits and vegetables and has several potential health benefits, including anti-cancer, anti-viral and anti-aging activity. Moreover, fisetin has recently been shown to prevent Alzheimer's disease in mice and to prevent complications associated with diabetes type I. Thus far the biosynthetic pathway of fisetin in plants remains elusive. Here, we present the heterologous assembly of a novel fisetin pathway in Escherichia coli. We propose a novel biosynthetic pathway from the amino acid, tyrosine, utilizing nine heterologous enzymes. The pathway proceeds via the synthesis of two flavanones never produced in microorganisms before--garbanzol and resokaempferol. We show for the first time a functional biosynthetic pathway and establish E. coli as a microbial platform strain for the production of fisetin and related flavonols.
Collapse
|
36
|
Dunlap TL, Wang S, Simmler C, Chen SN, Pauli GF, Dietz BM, Bolton JL. Differential Effects of Glycyrrhiza Species on Genotoxic Estrogen Metabolism: Licochalcone A Downregulates P450 1B1, whereas Isoliquiritigenin Stimulates It. Chem Res Toxicol 2015; 28:1584-94. [PMID: 26134484 DOI: 10.1021/acs.chemrestox.5b00157] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Estrogen chemical carcinogenesis involves 4-hydroxylation of estrone/estradiol (E1/E2) by P450 1B1, generating catechol and quinone genotoxic metabolites that cause DNA mutations and initiate/promote breast cancer. Inflammation enhances this effect by upregulating P450 1B1. The present study tested the three authenticated medicinal species of licorice [Glycyrrhiza glabra (GG), G. uralensis (GU), and G. inflata (GI)] used by women as dietary supplements for their anti-inflammatory activities and their ability to modulate estrogen metabolism. The pure compounds, liquiritigenin (LigF), its chalcone isomer isoliquiritigenin (LigC), and the GI-specific licochalcone A (LicA) were also tested. The licorice extracts and compounds were evaluated for anti-inflammatory activity by measuring inhibition of iNOS activity in macrophage cells: GI ≫ GG > GU and LigC ≅ LicA ≫ LigF. The Michael acceptor chalcone, LicA, is likely responsible for the anti-inflammatory activity of GI. A sensitive LC-MS/MS assay was employed to quantify estrogen metabolism by measuring 2-MeOE1 as nontoxic and 4-MeOE1 as genotoxic biomarkers in the nontumorigenic human mammary epithelial cell line, MCF-10A. GG, GU, and LigC increased 4-MeOE1, whereas GI and LicA inhibited 2- and 4-MeOE1 levels. GG, GU (5 μg/mL), and LigC (1 μM) also enhanced P450 1B1 expression and activities, which was further increased by inflammatory cytokines (TNF-α and IFN-γ). LicA (1, 10 μM) decreased cytokine- and TCDD-induced P450 1B1 gene expression and TCDD-induced xenobiotic response element luciferase reporter (IC50 = 12.3 μM), suggesting an antagonistic effect on the aryl hydrocarbon receptor, which regulates P450 1B1. Similarly, GI (5 μg/mL) reduced cytokine- and TCDD-induced P450 1B1 gene expression. Collectively, these data suggest that, of the three licorice species that are used in botanical supplements, GI represents the most promising chemopreventive licorice extract for women's health. Additionally, the differential effects of the Glycyrrhiza species on estrogen metabolism emphasize the importance of standardization of botanical supplements to species-specific bioactive compounds.
Collapse
Affiliation(s)
- Tareisha L Dunlap
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231, United States
| | - Shuai Wang
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231, United States
| | - Charlotte Simmler
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231, United States
| | - Shao-Nong Chen
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231, United States
| | - Guido F Pauli
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231, United States
| | - Birgit M Dietz
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231, United States
| | - Judy L Bolton
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231, United States
| |
Collapse
|
37
|
Ramos Alvarenga R, Friesen JB, Nikolić D, Simmler C, Napolitano JG, van Breemen R, Lankin D, McAlpine JB, Pauli GF, Chen SN. K-targeted metabolomic analysis extends chemical subtraction to DESIGNER extracts: selective depletion of extracts of hops (Humulus lupulus). JOURNAL OF NATURAL PRODUCTS 2014; 77:2595-604. [PMID: 25437744 PMCID: PMC4280114 DOI: 10.1021/np500376g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Indexed: 05/22/2023]
Abstract
This study introduces a flexible and compound targeted approach to Deplete and Enrich Select Ingredients to Generate Normalized Extract Resources, generating DESIGNER extracts, by means of chemical subtraction or augmentation of metabolites. Targeting metabolites based on their liquid-liquid partition coefficients (K values), K targeting uses countercurrent separation methodology to remove single or multiple compounds from a chemically complex mixture, according to the following equation: DESIGNER extract = total extract ± target compound(s). Expanding the scope of the recently reported depletion of extracts by immunoaffinity or solid phase liquid chromatography, the present approach allows a more flexible, single- or multi-targeted removal of constituents from complex extracts such as botanicals. Chemical subtraction enables both chemical and biological characterization, including detection of synergism/antagonism by both the subtracted targets and the remaining metabolite mixture, as well as definition of the residual complexity of all fractions. The feasibility of the DESIGNER concept is shown by K-targeted subtraction of four bioactive prenylated phenols, isoxanthohumol (1), 8-prenylnaringenin (2), 6-prenylnaringenin (3), and xanthohumol (4), from a standardized hops (Humulus lupulus L.) extract using specific solvent systems. Conversely, adding K-targeted isolates allows enrichment of the original extract and hence provides an augmented DESIGNER material. Multiple countercurrent separation steps were used to purify each of the four compounds, and four DESIGNER extracts with varying depletions were prepared. The DESIGNER approach innovates the characterization of chemically complex extracts through integration of enabling technologies such as countercurrent separation, K-by-bioactivity, the residual complexity concepts, as well as quantitative analysis by (1)H NMR, LC-MS, and HiFSA-based NMR fingerprinting.
Collapse
Affiliation(s)
- René
F. Ramos Alvarenga
- UIC/NIH
Center for Botanical Dietary Supplements Research, Department of Medicinal
Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - J. Brent Friesen
- Department
of Physical Sciences, Rosary College of Art and Sciences, Dominican University, River Forest, Illinois 60305, United States
| | - Dejan Nikolić
- UIC/NIH
Center for Botanical Dietary Supplements Research, Department of Medicinal
Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Charlotte Simmler
- UIC/NIH
Center for Botanical Dietary Supplements Research, Department of Medicinal
Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - José G. Napolitano
- UIC/NIH
Center for Botanical Dietary Supplements Research, Department of Medicinal
Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Richard van Breemen
- UIC/NIH
Center for Botanical Dietary Supplements Research, Department of Medicinal
Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - David
C. Lankin
- UIC/NIH
Center for Botanical Dietary Supplements Research, Department of Medicinal
Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - James B. McAlpine
- UIC/NIH
Center for Botanical Dietary Supplements Research, Department of Medicinal
Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Guido F. Pauli
- UIC/NIH
Center for Botanical Dietary Supplements Research, Department of Medicinal
Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
- G.F.P.:
E-mail: ; Phone: (312) 355-1949; Fax: (312) 355-2693
| | - Shao-Nong Chen
- UIC/NIH
Center for Botanical Dietary Supplements Research, Department of Medicinal
Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
- S.-N.C.: E-mail: ; Phone: (312) 996-7253; Fax: (312) 355-2693
| |
Collapse
|
38
|
Simmler C, Nikolić D, Lankin DC, Yu Y, Friesen JB, van Breemen RB, Lecomte A, Le
Quémener C, Audo G, Pauli G. Orthogonal Analysis Underscores the Relevance of Primary and Secondary Metabolites in Licorice. JOURNAL OF NATURAL PRODUCTS 2014; 77:1806-16. [PMID: 25080313 PMCID: PMC4143180 DOI: 10.1021/np5001945] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Indexed: 05/03/2023]
Abstract
Licorice botanicals are produced from the roots of Glycyrrhiza species (Fabaceae), encompassing metabolites of both plant and rhizobial origin. The composition in both primary and secondary metabolites (1°/2°Ms) reflects the physiologic state of the plant at harvest. Interestingly, the relative abundance of 1°Ms vs 2°Ms in licorice extracts remains undetermined. A centrifugal partition chromatography (CPC) method was developed to purify liquiritin derivatives that represent major bioactive 2°Ms and to concentrate the polar 1°Ms from the crude extract of Glycyrrhiza uralensis. One objective was to determine the purity of the generated reference materials by orthogonal UHPLC-UV/LC-MS and qHNMR analyses. The other objectives were to evaluate the presence of 1°Ms in purified 2°Ms and define their mass balance in a crude botanical extract. Whereas most impurities could be assigned to well-known 1°Ms, p-hydroxybenzylmalonic acid, a new natural tyrosine analogue, was also identified. Additionally, in the most polar fraction, sucrose and proline represented 93% (w/w) of all qHNMR-quantified 1°Ms. Compared to the 2°Ms, accounting for 11.9% by UHPLC-UV, 1°Ms quantified by qHNMR defined an additional 74.8% of G. uralensis extract. The combined orthogonal methods enable the mass balance characterization of licorice extracts and highlight the relevance of 1°Ms, and accompanying metabolites, for botanical quality control.
Collapse
Affiliation(s)
- Charlotte Simmler
- UIC/NIH
Center for Botanical Dietary Supplements Research, Department of Medicinal
Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United
States
| | - Dejan Nikolić
- UIC/NIH
Center for Botanical Dietary Supplements Research, Department of Medicinal
Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United
States
| | - David C. Lankin
- UIC/NIH
Center for Botanical Dietary Supplements Research, Department of Medicinal
Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United
States
| | - Yang Yu
- UIC/NIH
Center for Botanical Dietary Supplements Research, Department of Medicinal
Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United
States
| | - J. Brent Friesen
- Physical
Sciences Department, Rosary College of Arts and Sciences, Dominican University, River Forest, Illinois 60305, United States
| | - Richard B. van Breemen
- UIC/NIH
Center for Botanical Dietary Supplements Research, Department of Medicinal
Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United
States
| | - Alicia Lecomte
- Armen
Instrument, Z.I. de Kermelin, 16 Rue Ampère, F-56890 Saint Avé, France
| | - Céline Le
Quémener
- Armen
Instrument, Z.I. de Kermelin, 16 Rue Ampère, F-56890 Saint Avé, France
| | - Grégoire Audo
- Armen
Instrument, Z.I. de Kermelin, 16 Rue Ampère, F-56890 Saint Avé, France
| | - Guido
F. Pauli
- UIC/NIH
Center for Botanical Dietary Supplements Research, Department of Medicinal
Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United
States
| |
Collapse
|
39
|
Simmler C, Jones T, Anderson JR, Nikolić DC, van Breemen RB, Soejarto DD, Chen SN, Pauli GF. Species-specific Standardisation of Licorice by Metabolomic Profiling of Flavanones and Chalcones. PHYTOCHEMICAL ANALYSIS : PCA 2014; 25:378-88. [PMID: 25859589 PMCID: PMC4391967 DOI: 10.1002/pca.2472] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
INTRODUCTION Major phenolics from licorice roots (Glycyrrhiza sp.) are glycosides of the flavanone liquiritigenin (F) and its 2′-hydroxychalcone isomer, isoliquiritigenin (C). As the F and C contents fluctuate between batches of licorice, both quality control and standardisation of its preparations become complex tasks. OBJECTIVE To characterise the F and C metabolome in extracts from Glycyrrhiza glabra L. and Glycyrrhiza uralensis Fisch. ex DC. by addressing their composition in major F–C pairs and defining the total F:C proportion. MATERIAL AND METHODS Three types of extracts from DNA-authenticated samples were analysed by a validated UHPLC/UV method to quantify major F and C glycosides. Each extract was characterised by the identity of major F–C pairs and the proportion of Fs among all quantified Fs:Cs. RESULTS The F and C compositions and proportions were found to be constant for all extracts from a Glycyrrhiza species. All G. uralensis extracts contained up to 2.5 more Fs than G. glabra extracts. Major F–C pairs were B-ring glycosidated in G. uralensis, and A-/B-ring apiosyl-glucosidated in the G. glabra extracts. The F:C proportion was found to be linked to the glycosidation site: the more B-ring F-C glycosides were present, the higher was the final F:C proportion in the extract. These results enable the chemical differentiation of extracts from G. uralensis and G. glabra, which are characterised by total F:C proportions of 8.37:1.63 and 7.18:2.82, respectively. CONCLUSION Extracts from G. glabra and G. uralensis can be differentiated by their respective F and C compositions and proportions, which are both useful for further standardisation of licorice botanicals.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Guido F. Pauli
- Correspondence to: G. F. Pauli, UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois, 833 S. Wood Street, Chicago, Illinois, 60612, USA.
| |
Collapse
|
40
|
Pauli GF, Chen SN, Lankin DC, Bisson J, Case RJ, Chadwick LR, Gödecke T, Inui T, Krunic A, Jaki B, McAlpine JB, Mo S, Napolitano JG, Orjala J, Lehtivarjo J, Korhonen SP, Niemitz M. Essential parameters for structural analysis and dereplication by (1)H NMR spectroscopy. JOURNAL OF NATURAL PRODUCTS 2014; 77:1473-87. [PMID: 24895010 PMCID: PMC4076039 DOI: 10.1021/np5002384] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Indexed: 05/12/2023]
Abstract
The present study demonstrates the importance of adequate precision when reporting the δ and J parameters of frequency domain (1)H NMR (HNMR) data. Using a variety of structural classes (terpenoids, phenolics, alkaloids) from different taxa (plants, cyanobacteria), this study develops rationales that explain the importance of enhanced precision in NMR spectroscopic analysis and rationalizes the need for reporting Δδ and ΔJ values at the 0.1-1 ppb and 10 mHz level, respectively. Spectral simulations paired with iteration are shown to be essential tools for complete spectral interpretation, adequate precision, and unambiguous HNMR-driven dereplication and metabolomic analysis. The broader applicability of the recommendation relates to the physicochemical properties of hydrogen ((1)H) and its ubiquity in organic molecules, making HNMR spectra an integral component of structure elucidation and verification. Regardless of origin or molecular weight, the HNMR spectrum of a compound can be very complex and encode a wealth of structural information that is often obscured by limited spectral dispersion and the occurrence of higher order effects. This altogether limits spectral interpretation, confines decoding of the underlying spin parameters, and explains the major challenge associated with the translation of HNMR spectra into tabulated information. On the other hand, the reproducibility of the spectral data set of any (new) chemical entity is essential for its structure elucidation and subsequent dereplication. Handling and documenting HNMR data with adequate precision is critical for establishing unequivocal links between chemical structure, analytical data, metabolomes, and biological activity. Using the full potential of HNMR spectra will facilitate the general reproducibility for future studies of bioactive chemicals, especially of compounds obtained from the diversity of terrestrial and marine organisms.
Collapse
Affiliation(s)
- Guido F. Pauli
- Department
of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
- Institute
for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Shao-Nong Chen
- Department
of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - David C. Lankin
- Department
of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Jonathan Bisson
- Department
of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Ryan J. Case
- Department
of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Lucas R. Chadwick
- Bells Brewery, 8938 Krum Avenue, Kalamazoo, Michigan 49009, United States
| | - Tanja Gödecke
- Department
of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Taichi Inui
- Department
of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
- Institute
for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Aleksej Krunic
- Department
of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Birgit
U. Jaki
- Department
of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
- Institute
for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - James B. McAlpine
- Department
of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
- Institute
for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Shunyan Mo
- Department
of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - José G. Napolitano
- Department
of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
- Institute
for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Jimmy Orjala
- Department
of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Juuso Lehtivarjo
- School of Pharmacy, University of Eastern Finland, P.O.
Box 1627, 70211 Kuopio, Finland
| | | | | |
Collapse
|
41
|
Pinz S, Unser S, Brueggemann S, Besl E, Al-Rifai N, Petkes H, Amslinger S, Rascle A. The synthetic α-bromo-2',3,4,4'-tetramethoxychalcone (α-Br-TMC) inhibits the JAK/STAT signaling pathway. PLoS One 2014; 9:e90275. [PMID: 24595334 PMCID: PMC3940872 DOI: 10.1371/journal.pone.0090275] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 01/27/2014] [Indexed: 11/30/2022] Open
Abstract
Signal transducer and activator of transcription STAT5 and its upstream activating kinase JAK2 are essential mediators of cytokine signaling. Their activity is normally tightly regulated and transient. However, constitutive activation of STAT5 is found in numerous cancers and a driving force for malignant transformation. We describe here the identification of the synthetic chalcone α-Br-2′,3,4,4′-tetramethoxychalcone (α-Br-TMC) as a novel JAK/STAT inhibitor. Using the non-transformed IL-3-dependent B cell line Ba/F3 and its oncogenic derivative Ba/F3-1*6 expressing constitutively activated STAT5, we show that α-Br-TMC targets the JAK/STAT pathway at multiple levels, inhibiting both JAK2 and STAT5 phosphorylation. Moreover, α-Br-TMC alters the mobility of STAT5A/B proteins in SDS-PAGE, indicating a change in their post-translational modification state. These alterations correlate with a decreased association of STAT5 and RNA polymerase II with STAT5 target genes in chromatin immunoprecipitation assays. Interestingly, expression of STAT5 target genes such as Cis and c-Myc was differentially regulated by α-Br-TMC in normal and cancer cells. While both genes were inhibited in IL-3-stimulated Ba/F3 cells, expression of the oncogene c-Myc was down-regulated and that of the tumor suppressor gene Cis was up-regulated in transformed Ba/F3-1*6 cells. The synthetic chalcone α-Br-TMC might therefore represent a promising novel anticancer agent for therapeutic intervention in STAT5-associated malignancies.
Collapse
Affiliation(s)
- Sophia Pinz
- Stat5 Signaling Research Group, Institute of Immunology, University of Regensburg, Regensburg, Germany
| | - Samy Unser
- Stat5 Signaling Research Group, Institute of Immunology, University of Regensburg, Regensburg, Germany
| | - Susanne Brueggemann
- Stat5 Signaling Research Group, Institute of Immunology, University of Regensburg, Regensburg, Germany
| | - Elisabeth Besl
- Stat5 Signaling Research Group, Institute of Immunology, University of Regensburg, Regensburg, Germany
| | - Nafisah Al-Rifai
- Institute of Organic Chemistry, University of Regensburg, Regensburg, Germany
| | - Hermina Petkes
- Institute of Organic Chemistry, University of Regensburg, Regensburg, Germany
| | - Sabine Amslinger
- Institute of Organic Chemistry, University of Regensburg, Regensburg, Germany
- * E-mail: (AR); (SA)
| | - Anne Rascle
- Stat5 Signaling Research Group, Institute of Immunology, University of Regensburg, Regensburg, Germany
- * E-mail: (AR); (SA)
| |
Collapse
|
42
|
Simmler C, Fronczek FR, Pauli GF, Santarsiero BD. Absolute configuration of naturally occurring glabridin. Acta Crystallogr C 2013; 69:1212-6. [PMID: 24192160 PMCID: PMC4028893 DOI: 10.1107/s0108270113018842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 07/08/2013] [Indexed: 11/10/2022] Open
Abstract
The title compound {systematic name: 4-[(3R)-8,8-dimethyl-3,4-dihydro-2H-pyrano[2,3-f]chromen-3-yl]benzene-1,3-diol, commonly named glabridin}, C20H20O4, is a species-specific biomarker from the roots Glycyrrhiza glabra L. (European licorice, Fabaceae). In the present study, this prenylated isoflavan has been purified from an enriched CHCl3 fraction of the extract of the root, using three steps of medium-pressure liquid chromatography (MPLC) by employing HW-40F, Sephadex LH-20 and LiChroCN as adsorbents. Pure glabridin was crystallized from an MeOH-H2O mixture (95:5 v/v) to yield colorless crystals containing one molecule per asymmetric unit (Z' = 1) in the space group P212121. Although the crystal structure has been reported before, the determination of the absolute configuration remained uncertain. Stereochemical analysis, including circular dichroism, NMR data and an X-ray diffraction data set with Bijvoet differences, confirms that glabridin, purified from its natural source, is found only in a C3 R configuration. These results can therefore be used as a reference for the assignment of the configuration and enantiopurity of any isolated or synthetic glabridin sample.
Collapse
Affiliation(s)
- Charlotte Simmler
- Department of Medicinal Chemistry and Pharmacognosy, and UIC/NIH Center for Botanical Dietary Supplements Research, MC-781, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL 60612, USA
| | - Frank R. Fronczek
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Guido F. Pauli
- Department of Medicinal Chemistry and Pharmacognosy, and UIC/NIH Center for Botanical Dietary Supplements Research, MC-781, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL 60612, USA
| | - Bernard D. Santarsiero
- Center for Pharmaceutical Biotechnology and, Department of Medicinal Chemistry and Pharmacognosy, MC-870, College of Pharmacy, University of Illinois at Chicago, 900 S. Ashland Avenue, Chicago, IL 60607, USA
| |
Collapse
|
43
|
Jiang Y, Gong P, Madak-Erdogan Z, Martin T, Jeyakumar M, Carlson K, Khan I, Smillie TJ, Chittiboyina AG, Rotte SCK, Helferich WG, Katzenellenbogen JA, Katzenellenbogen BS. Mechanisms enforcing the estrogen receptor β selectivity of botanical estrogens. FASEB J 2013; 27:4406-18. [PMID: 23882126 DOI: 10.1096/fj.13-234617] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Because little is known about the actions of botanical estrogens (BEs), widely consumed by menopausal women, we investigated the mechanistic and cellular activities of some major BEs. We examined the interactions of genistein, daidzein, equol, and liquiritigenin with estrogen receptors ERα and ERβ, with key coregulators (SRC3 and RIP140) and chromatin binding sites, and the regulation of gene expression and proliferation in MCF-7 breast cancer cells containing ERα and/or ERβ. Unlike the endogenous estrogen, estradiol (E2), BEs preferentially bind to ERβ, but their ERβ-potency selectivity in gene stimulation (340- to 830-fold vs. E2) is enhanced at several levels (coregulator recruitment, chromatin binding); nevertheless, at high (0.1 or 1 μM) concentrations, BEs also fully activate ERα. Because ERα drives breast cancer cell proliferation and ERβ dampens this, the relative levels of these two ERs in target cells and the BE dose greatly affect gene expression and proliferative response and will be crucial determinants of the potential benefits vs. risks of BEs. Our findings reveal key and novel mechanistic differences in the estrogenic activities of BEs vs. E2, with BEs displaying patterns of activity distinctly different from those seen with E2 and provide valuable information to inform future studies.
Collapse
Affiliation(s)
- Yan Jiang
- 1Department of Molecular and Integrative Physiology, University of Illinois and College of Medicine at Urbana-Champaign, Urbana, IL 61801, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Hajirahimkhan A, Simmler C, Yuan Y, Anderson JR, Chen SN, Nikolić D, Dietz BM, Pauli GF, van Breemen RB, Bolton JL. Evaluation of estrogenic activity of licorice species in comparison with hops used in botanicals for menopausal symptoms. PLoS One 2013; 8:e67947. [PMID: 23874474 PMCID: PMC3709979 DOI: 10.1371/journal.pone.0067947] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 05/23/2013] [Indexed: 01/22/2023] Open
Abstract
The increased cancer risk associated with hormone therapies has encouraged many women to seek non-hormonal alternatives including botanical supplements such as hops (Humulus lupulus) and licorice (Glycyrrhiza spec.) to manage menopausal symptoms. Previous studies have shown estrogenic properties for hops, likely due to the presence of 8-prenylnarigenin, and chemopreventive effects mainly attributed to xanthohumol. Similarly, a combination of estrogenic and chemopreventive properties has been reported for various Glycyrrhiza species. The major goal of the current study was to evaluate the potential estrogenic effects of three licorice species (Glycyrrhiza glabra, G. uralensis, and G. inflata) in comparison with hops. Extracts of Glycyrrhiza species and spent hops induced estrogen responsive alkaline phosphatase activity in endometrial cancer cells, estrogen responsive element (ERE)-luciferase in MCF-7 cells, and Tff1 mRNA in T47D cells. The estrogenic activity decreased in the order H. lupulus > G. uralensis > G. inflata > G. glabra. Liquiritigenin was found to be the principle phytoestrogen of the licorice extracts; however, it exhibited lower estrogenic effects compared to 8-prenylnaringenin in functional assays. Isoliquiritigenin, the precursor chalcone of liquiritigenin, demonstrated significant estrogenic activities while xanthohumol, a metabolic precursor of 8-prenylnaringenin, was not estrogenic. Liquiritigenin showed ERβ selectivity in competitive binding assay and isoliquiritigenin was equipotent for ER subtypes. The estrogenic activity of isoliquiritigenin could be the result of its cyclization to liquiritigenin under physiological conditions. 8-Prenylnaringenin had nanomolar estrogenic potency without ER selectivity while xanthohumol did not bind ERs. These data demonstrated that Glycyrrhiza species with different contents of liquiritigenin have various levels of estrogenic activities, suggesting the importance of precise labeling of botanical supplements. Although hops shows strong estrogenic properties via ERα, licorice might have different estrogenic activities due to its ERβ selectivity, partial estrogen agonist activity, and non-enzymatic conversion of isoliquiritigenin to liquiritigenin.
Collapse
Affiliation(s)
- Atieh Hajirahimkhan
- University of Illinois at Chicago/National Institutes of Health Center for Botanical Dietary Supplements, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Charlotte Simmler
- University of Illinois at Chicago/National Institutes of Health Center for Botanical Dietary Supplements, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Yang Yuan
- University of Illinois at Chicago/National Institutes of Health Center for Botanical Dietary Supplements, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Jeffrey R. Anderson
- University of Illinois at Chicago/National Institutes of Health Center for Botanical Dietary Supplements, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Shao-Nong Chen
- University of Illinois at Chicago/National Institutes of Health Center for Botanical Dietary Supplements, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Dejan Nikolić
- University of Illinois at Chicago/National Institutes of Health Center for Botanical Dietary Supplements, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Birgit M. Dietz
- University of Illinois at Chicago/National Institutes of Health Center for Botanical Dietary Supplements, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Guido F. Pauli
- University of Illinois at Chicago/National Institutes of Health Center for Botanical Dietary Supplements, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Richard B. van Breemen
- University of Illinois at Chicago/National Institutes of Health Center for Botanical Dietary Supplements, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Judy L. Bolton
- University of Illinois at Chicago/National Institutes of Health Center for Botanical Dietary Supplements, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|