1
|
Mayorquín-Torres MC, Simoens A, Bonneure E, Stevens CV. Synthetic Methods for Azaheterocyclic Phosphonates and Their Biological Activity: An Update 2004-2024. Chem Rev 2024; 124:7907-7975. [PMID: 38809666 DOI: 10.1021/acs.chemrev.4c00090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
The increasing importance of azaheterocyclic phosphonates in the agrochemical, synthetic, and medicinal field has provoked an intense search in the development of synthetic routes for obtaining novel members of this family of compounds. This updated review covers methodologies established since 2004, focusing on the synthesis of azaheterocyclic phosphonates, of which the phosphonate moiety is directly substituted onto to the azaheterocyclic structure. Emphasizing recent advances, this review classifies newly developed synthetic approaches according to the ring size and providing information on biological activities whenever available. Furthermore, this review summarizes information on various methods for the formation of C-P bonds, examining sustainable approaches such as the Michaelis-Arbuzov reaction, the Michaelis-Becker reaction, the Pudovik reaction, the Hirao coupling, and the Kabachnik-Fields reaction. After analyzing the biological activities and applications of azaheterocyclic phosphonates investigated in recent years, a predominant focus on the evaluation of these compounds as anticancer agents is evident. Furthermore, emerging applications underline the versatility and potential of these compounds, highlighting the need for continued research on synthetic methods to expand this interesting family.
Collapse
Affiliation(s)
- Martha C Mayorquín-Torres
- SynBioC Research Group, Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Andreas Simoens
- SynBioC Research Group, Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Eli Bonneure
- SynBioC Research Group, Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Christian V Stevens
- SynBioC Research Group, Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| |
Collapse
|
2
|
Forlani G, Sabbioni G, Barera S, Funck D. A complex array of factors regulate the activity of Arabidopsis thaliana δ 1 -pyrroline-5-carboxylate synthetase isoenzymes to ensure their specific role in plant cell metabolism. PLANT, CELL & ENVIRONMENT 2024; 47:1348-1362. [PMID: 38223941 DOI: 10.1111/pce.14817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/20/2023] [Accepted: 01/02/2024] [Indexed: 01/16/2024]
Abstract
The first and committed step in proline synthesis from glutamate is catalyzed by δ1 -pyrroline-5-carboxylate synthetase (P5CS). Two P5CS genes have been found in most angiosperms, one constitutively expressed to satisfy proline demand for protein synthesis, the other stress-induced. Despite the number of papers to investigate regulation at the transcriptional level, to date, the properties of the enzymes have been subjected to limited study. The isolation of Arabidopsis thaliana P5CS isoenzymes was achieved through heterologous expression and affinity purification. The two proteins were characterized with respect to kinetic and biochemical properties. AtP5CS2 showed KM values in the micro- to millimolar range, and its activity was inhibited by NADP+ , ADP and proline, and by glutamine and arginine at high levels. Mg2+ ions were required for activity, which was further stimulated by K+ and other cations. AtP5CS1 displayed positive cooperativity with glutamate and was almost insensitive to inhibition by proline. In the presence of physiological, nonsaturating concentrations of glutamate, proline was slightly stimulatory, and glutamine strongly increased the catalytic rate. Data suggest that the activity of AtP5CS isoenzymes is differentially regulated by a complex array of factors including the concentrations of proline, glutamate, glutamine, monovalent cations and pyridine dinucleotides.
Collapse
Affiliation(s)
- Giuseppe Forlani
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Giuseppe Sabbioni
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Simone Barera
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Dietmar Funck
- Department of Chemistry, University of Konstanz, Konstanz, Germany
| |
Collapse
|
3
|
Abd Elghany El‐Samahy F, Ahmed Ezet Eldeken G, Mostafa Zayed E, Hassan Osman F, Elgemeie G. A Novel Phosphonates Synthesized from Schiff's Base Indenoquinoxaline Derivatives and its Biological Activity. ChemistrySelect 2023. [DOI: 10.1002/slct.202300639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Fatma Abd Elghany El‐Samahy
- Department of Green Chemistry Chemical Industries Research Institute National Research Centre Dokki Giza Egypt
| | - G. Ahmed Ezet Eldeken
- Department of Green Chemistry Chemical Industries Research Institute National Research Centre Dokki Giza Egypt
| | - Ehab Mostafa Zayed
- Department of Green Chemistry Chemical Industries Research Institute National Research Centre Dokki Giza Egypt
| | - Fayez Hassan Osman
- Department of Green Chemistry Chemical Industries Research Institute National Research Centre Dokki Giza Egypt
| | - Galal Elgemeie
- Chemistry Department Helwan University Helwan Cairo Egypt
| |
Collapse
|
4
|
Kumar Sharma S. The Importance of Organocatalysis (Asymmetric and Non‐Asymmetric) in Agrochemicals. ChemistrySelect 2023. [DOI: 10.1002/slct.202300204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
5
|
Sun JT, Li X, Yang TY, Lv M, Chen LY, Wei BG. In(OTf) 3-catalyzed N-α phosphonylation of N, O-acetals with triethyl phosphite. Org Biomol Chem 2022; 20:6571-6581. [PMID: 35904891 DOI: 10.1039/d2ob01196d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A practical approach to α-aminophosphonates has been developed through an In(OTf)3-catalyzed N-α phosphonylation of N,O-acetals with triethyl phosphite 7. Indoline and isoindoline N,O-acetals 6a-6j and 9a-9j and chain N,O-acetals 11a-11p were subjected to a Lewis acid catalyzed N-α phosphonylation process. As a result, the desired α-aminophosphonates 8a-8j, 10a-10j and 12a-12p were obtained in moderate to good yields.
Collapse
Affiliation(s)
- Jian-Ting Sun
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China. .,School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai, 201620 China.
| | - Xin Li
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China.
| | - Tian-Yu Yang
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China.
| | - Min Lv
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China.
| | - Ling-Yan Chen
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai, 201620 China.
| | - Bang-Guo Wei
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China.
| |
Collapse
|
6
|
Forlani G, Sabbioni G, Ragno D, Petrollino D, Borgatti M. Phenyl-substituted aminomethylene-bisphosphonates inhibit human P5C reductase and show antiproliferative activity against proline-hyperproducing tumour cells. J Enzyme Inhib Med Chem 2021; 36:1248-1257. [PMID: 34107832 PMCID: PMC8205077 DOI: 10.1080/14756366.2021.1919890] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/09/2021] [Accepted: 04/15/2021] [Indexed: 12/11/2022] Open
Abstract
In certain cancers, such as breast, prostate and some lung and skin cancers, the gene for the enzyme catalysing the second and last step in proline synthesis, δ1-pyrroline-5-carboxylate (P5C) reductase, has been found upregulated. This leads to a higher proline content that exacerbates the effects of the so-called proline-P5C cycle, with tumour cells effectively using this method to increase cell survival. If a method of reducing or inhibiting P5C reductase could be discovered, it would provide new means of treating cancer. To address this point, the effect of some phenyl-substituted derivatives of aminomethylene-bisphosphonic acid, previously found to interfere with the catalytic activity of plant and bacterial P5C reductases, was evaluated in vitro on the human isoform 1 (PYCR1), expressed in E. coli and affinity purified. The 3.5-dibromophenyl- and 3.5-dichlorophenyl-derivatives showed a remarkable effectiveness, with IC50 values lower than 1 µM and a mechanism of competitive type against both P5C and NADPH. The actual occurrence in vivo of enzyme inhibition was assessed on myelogenous erythroleukemic K562 and epithelial breast cancer MDA-MB-231 cell lines, whose growth was progressively impaired by concentrations of the dibromo derivative ranging from 10-6 to 10-4 M. Interestingly, growth inhibition was not relieved by the exogenous supply of proline, suggesting that the effect relies on the interference with the proline-P5C cycle, and not on proline starvation.
Collapse
Affiliation(s)
- Giuseppe Forlani
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Giuseppe Sabbioni
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Daniele Ragno
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Davide Petrollino
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Monica Borgatti
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
7
|
Huang WB, Qiu LQ, Ren FY, He LN. Facile synthesis of α-aminophosphine oxides from diarylphosphine oxides, arynes and formamides. Chem Commun (Camb) 2021; 57:9578-9581. [PMID: 34546268 DOI: 10.1039/d1cc04101k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The straightforward synthesis of α-amino phosphine oxides via three-component reactions involving arynes, formamides and diarylphosphine oxides is disclosed. This method employs the aryne to activate formamide, without an external activating reagent, which is operationally simple under mild conditions with high efficiency. Furthermore, mechanistic perception suggests a cascade sequence including formal [2 + 2] cycloaddition of the aryne with a CO bond, and a 1,4-addition of the H-P(O) compounds to the enamine intermediates.
Collapse
Affiliation(s)
- Wen-Bin Huang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | - Li-Qi Qiu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | - Fang-Yu Ren
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | - Liang-Nian He
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
| |
Collapse
|
8
|
Chen ZD, Xu WK, Guo JM, Chen L, Wei BG, Si CM, Lin GQ. A One-Pot Approach to 2-Substituted-2-(Dimethoxyphosphoryl)-Pyrrolidines from Substituted tert-Butyl 4-Oxobutylcarbamates and Trimethyl Phosphite. J Org Chem 2021; 86:11442-11455. [PMID: 34479405 DOI: 10.1021/acs.joc.1c00935] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A novel approach to 2-substituted-2-(dimethoxyphosphoryl)-pyrrolidines 7a-7o and 9a-9r has been developed, which features a TMSOTf-mediated one-pot intramolecular cyclization and phosphonylation of substituted tert-butyl 4-oxobutylcarbamates. The major advantages of this method include simple operation under mild reaction conditions, the use of cheap Lewis acid, and good to excellent yields with high diastereoselectivities (dr up to 99:1).
Collapse
Affiliation(s)
- Zhao-Dan Chen
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Wen-Ke Xu
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Jia-Ming Guo
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Ling Chen
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Bang-Guo Wei
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Chang-Mei Si
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Guo-Qiang Lin
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China.,Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
9
|
Il’in A, Gubaev A, Antonova A, Khannanov A, Galkin V. Phosphine catalyzed addition of long-chain dialkyl phosphites to electron-deficient alkenes. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1799015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Anton Il’in
- A.M. Butlerov Institute of Chemistry, Kazan Federal University, Kazan, Russian Federation
| | - Arthur Gubaev
- A.M. Butlerov Institute of Chemistry, Kazan Federal University, Kazan, Russian Federation
| | - Anna Antonova
- A.M. Butlerov Institute of Chemistry, Kazan Federal University, Kazan, Russian Federation
| | - Arthur Khannanov
- A.M. Butlerov Institute of Chemistry, Kazan Federal University, Kazan, Russian Federation
| | - Vladimir Galkin
- A.M. Butlerov Institute of Chemistry, Kazan Federal University, Kazan, Russian Federation
| |
Collapse
|
10
|
Lemouzy S, Giordano L, Hérault D, Buono G. Introducing Chirality at Phosphorus Atoms: An Update on the Recent Synthetic Strategies for the Preparation of Optically Pure P-Stereogenic Molecules. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000406] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Sébastien Lemouzy
- Aix Marseille Univ; CNRS, Centrale Marseille, iSm2; Marseille France
| | - Laurent Giordano
- Aix Marseille Univ; CNRS, Centrale Marseille, iSm2; Marseille France
| | - Damien Hérault
- Aix Marseille Univ; CNRS, Centrale Marseille, iSm2; Marseille France
| | - Gérard Buono
- Aix Marseille Univ; CNRS, Centrale Marseille, iSm2; Marseille France
| |
Collapse
|
11
|
Wang J, Deng G, Liu C, Chen Z, Yu K, Chen W, Zhang H, Yang X. Transition Metal‐Free Synthesis of α‐Aminophosphine Oxides through C(
sp
3
)−P Coupling of 2‐Azaallyls. Adv Synth Catal 2020. [DOI: 10.1002/adsc.201901553] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Jing Wang
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and TechnologyYunnan University Kunming 650091 People's Republic of China
| | - Guogang Deng
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and TechnologyYunnan University Kunming 650091 People's Republic of China
| | - Chunxiang Liu
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and TechnologyYunnan University Kunming 650091 People's Republic of China
| | - Zhuo Chen
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and TechnologyYunnan University Kunming 650091 People's Republic of China
| | - Kaili Yu
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and TechnologyYunnan University Kunming 650091 People's Republic of China
| | - Wen Chen
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and TechnologyYunnan University Kunming 650091 People's Republic of China
| | - Hongbin Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and TechnologyYunnan University Kunming 650091 People's Republic of China
| | - Xiaodong Yang
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and TechnologyYunnan University Kunming 650091 People's Republic of China
| |
Collapse
|
12
|
Forlani G, Funck D. A Specific and Sensitive Enzymatic Assay for the Quantitation of L-Proline. FRONTIERS IN PLANT SCIENCE 2020; 11:582026. [PMID: 33193529 PMCID: PMC7642206 DOI: 10.3389/fpls.2020.582026] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/30/2020] [Indexed: 05/08/2023]
Abstract
Because proline accumulates rapidly in response to several stress conditions such as drought and excess salt, increased intracellular levels of free proline are considered a hallmark of adaptive reactions in plants, particularly in response to water stress. Proline quantitation is easily achievable by reaction with ninhydrin, since under acidic conditions peculiar red or yellow reaction products form with this unique cyclic amino acid. However, little attention has been paid to date to cross-reaction of ninhydrin with other amino acids at high levels, or with structurally related compounds that may also be present at significant concentrations in plant tissues, possibly leading to proline overestimation. In vitro at high pH values, δ1-pyrroline-5-carboxylate reductase, the enzyme catalyzing the second and last step in proline synthesis from glutamate, was early found to catalyze the reverse oxidation of proline with the concomitant reduction of NAD(P)+ to NAD(P)H. Here we characterized this reverse reaction using recombinant enzymes from Arabidopsis thaliana and Oryza sativa, and demonstrated its utility for the specific quantification of L-proline. By optimizing the reaction conditions, fast, easy, and reproducible measurement of L-proline concentration was achieved, with similar sensitivity but higher specificity than the commonly used ninhydrin methods.
Collapse
Affiliation(s)
- Giuseppe Forlani
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
- *Correspondence: Giuseppe Forlani,
| | - Dietmar Funck
- Laboratory of Plant Physiology and Biochemistry, Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
13
|
Green synthesis, molecular docking, anti-oxidant and anti-inflammatory activities of α-aminophosphonates. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02411-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
14
|
Tripolszky A, Zoboki L, Bálint E, Kóti J, Keglevich G. Microwave-assisted synthesis of α-aminophosphine oxides by the Kabachnik-Fields reaction applying amides as the starting materials. SYNTHETIC COMMUN 2019. [DOI: 10.1080/00397911.2019.1584675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Anna Tripolszky
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Lili Zoboki
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Erika Bálint
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Budapest, Hungary
| | | | - György Keglevich
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Budapest, Hungary
| |
Collapse
|
15
|
Forlani G, Bertazzini M, Cagnano G. Stress-driven increase in proline levels, and not proline levels themselves, correlates with the ability to withstand excess salt in a group of 17 Italian rice genotypes. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21:336-342. [PMID: 30253007 DOI: 10.1111/plb.12916] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 09/19/2018] [Indexed: 05/23/2023]
Abstract
In most plant species, a rapid increase in free proline content occurs following exposure to hyperosmotic stress conditions. However, inconsistent results were reported concerning the role of such an increase on the plant response to water shortage or excess salt. Therefore, the possibility that proline accumulation may help the cell to withstand stress conditions, or that it simply represents a stress marker, is still a matter of debate. A possible relationship between proline accumulation and salt tolerance was investigated in a set of 17 Italian rice varieties. Rice seedlings were exposed to increasing salt concentrations during germination and early growth. The resulting levels of free proline were measured separately in shoots and roots and compared to those in untreated controls. Results were related to the corresponding ability of a given genotype to tolerate stress conditions. Neither absolute proline levels in untreated or in salt-stressed seedlings showed a straightforward relationship to the relative tolerance to salt, estimated as conductivity values able to reduce growth by 10 or 50%. Conversely, a highly significant correlation was found between the increase in proline levels in shoots and the ability to withstand stress. The results strengthen a recent hypothesis suggesting than an increase in proline metabolic rates, more than the resulting proline content, may help the cell to counteract the effects of abiotic stress conditions.
Collapse
Affiliation(s)
- G Forlani
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| | - M Bertazzini
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| | - G Cagnano
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
16
|
Burda-Grabowska M, Macegoniuk K, Flick R, Nocek BP, Joachimiak A, Yakunin AF, Mucha A, Berlicki Ł. Bisphosphonic acids and related compounds as inhibitors of nucleotide- and polyphosphate-processing enzymes: A PPK1 and PPK2 case study. Chem Biol Drug Des 2018; 93:1197-1206. [PMID: 30484959 DOI: 10.1111/cbdd.13439] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/18/2018] [Accepted: 10/28/2018] [Indexed: 12/26/2022]
Abstract
Bisphosphonic acids, which are structural analogs of pyrophosphate, constitute a class of compounds with very high potential for the construction of effective inhibitors of enzymes operating on oligo- and polyphosphates. The bisphosphonate-based methodology was applied for the discovery of inhibitors of two families of polyphosphate kinases (PPK1 and PPK2). Screening of thirty-two structurally diverse bisphosphonic acids and related compounds revealed several micromolar inhibitors of both enzymes. Importantly, selectivity of bisphosphonates could be achieved by application of the appropriate side chain.
Collapse
Affiliation(s)
- Małgorzata Burda-Grabowska
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Katarzyna Macegoniuk
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Robert Flick
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Boguslaw P Nocek
- Department of Biosciences, Midwest Center for Structural Genomics and Structural Biology Center, Argonne National Laboratory, Argonne, Illinois
| | - Andrzej Joachimiak
- Department of Biosciences, Midwest Center for Structural Genomics and Structural Biology Center, Argonne National Laboratory, Argonne, Illinois
| | - Alexander F Yakunin
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Artur Mucha
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Łukasz Berlicki
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| |
Collapse
|
17
|
Bertazzini M, Sacchi GA, Forlani G. A differential tolerance to mild salt stress conditions among six Italian rice genotypes does not rely on Na + exclusion from shoots. JOURNAL OF PLANT PHYSIOLOGY 2018; 226:145-153. [PMID: 29758379 DOI: 10.1016/j.jplph.2018.04.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 05/15/2023]
Abstract
Rice is very sensitive to salt stress at the seedling level, with consequent poor crop establishment. A natural variability in susceptibility to moderate saline environments was found in a group of six Italian temperate japonica rice cultivars, and the physiological determinants for salt tolerance were investigated. Cation (Na+, K+ and Mg++) levels were determined in shoots from individual rice plantlets grown in the absence or in the presence of inhibitory, yet sublethal salt levels, and at increasing time after salt treatments. Significant variations were found among genotypes, but these were unrelated to the relative tolerance, which seems to result from neither mechanism(s) for reduced Na+ translocation to the aerial part, nor its increased retrieval from the xylem mediating Na+ exclusion from leaves. Accordingly, thiobarbituric acid reactive substance levels raised in leaf tissues of salt-treated seedlings, and osmo-induced proline accumulation was found in all genotypes. Data suggest that the difference in salt tolerance most likely depends on mechanisms for osmotic adjustment and/or antioxidative defence.
Collapse
Affiliation(s)
- Michele Bertazzini
- Department of Life Science and Biotechnology, University of Ferrara, via L. Borsari 46, I-44121 Ferrara, Italy
| | - Gian Attilio Sacchi
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, University of Milan, Via G. Celoria 2, 20133 Milan, Italy
| | - Giuseppe Forlani
- Department of Life Science and Biotechnology, University of Ferrara, via L. Borsari 46, I-44121 Ferrara, Italy.
| |
Collapse
|
18
|
Qian R, Kalina T, Horak J, Giberti S, Forlani G, Hammerschmidt F. Preparation of Phosphonic Acid Analogues of Proline and Proline Analogues and Their Biological Evaluation as δ 1-Pyrroline-5-carboxylate Reductase Inhibitors. ACS OMEGA 2018; 3:4441-4452. [PMID: 31458671 PMCID: PMC6641291 DOI: 10.1021/acsomega.8b00354] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/11/2018] [Indexed: 05/03/2023]
Abstract
Racemic 1-hydroxy-3-butenyl-, 3-chloro-1-hydroxypropyl-, and 3-bromo-1-hydroxypropylphosphonate and the corresponding (S)-enantiomers obtained by lipase-catalyzed resolution of the respective racemic chloroacetates were subjected to functional group manipulations. These comprised ozonolysis, Mitsunobu reactions with hydrazoic acid and N-hydroxyphthalimide, alkylation of hydrazine derivative, removal of phthaloyl group followed by intramolecular substitution, and global deprotection to deliver the racemates and (R)-enantiomers (ee 92-99% by chiral high-performance liquid chromatography) of pyrrolidin-2-yl-, oxazolidin-3-yl-, oxazolidin-5-yl-, pyrazolidin-3-yl-, and 1,2-oxazinan-3-ylphosphonic acids. These phosphonic acids were evaluated as analogues of proline and proline analogues for the ability to inhibit γ-glutamyl kinase, δ1-pyrroline-5-carboxylate synthetase, and δ1-pyrroline-5-carboxylate reductase. Only the latter enzyme was inhibited by two of them at concentrations exceeding 1 mM.
Collapse
Affiliation(s)
- Renzhe Qian
- Institute
of Organic Chemistry, University of Vienna, Währingerstrasse 38, A-1090 Vienna, Austria
| | - Thomas Kalina
- Institute
of Organic Chemistry, University of Vienna, Währingerstrasse 38, A-1090 Vienna, Austria
| | - Jeannie Horak
- Institute
of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, Eberhard-Karls-University Tübingen, Auf der Morgensstelle 8, 72076 Tübingen, Germany
| | - Samuele Giberti
- Department
of Life Science and Biotechnology, University
of Ferrara, via L. Borsari
46, 44121 Ferrara, Italy
| | - Giuseppe Forlani
- Department
of Life Science and Biotechnology, University
of Ferrara, via L. Borsari
46, 44121 Ferrara, Italy
| | - Friedrich Hammerschmidt
- Institute
of Organic Chemistry, University of Vienna, Währingerstrasse 38, A-1090 Vienna, Austria
- E-mail: (F.H.)
| |
Collapse
|
19
|
Perfluorophenyl phosphonate analogues of aromatic amino acids: Synthesis, X-ray and DFT studies. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.01.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Karpowicz R, Lewkowski J, Stasiak M, Czopor A, Tokarz P, Król A, Rogacz D, Rychter P. Synthesis of novel N-(p-toluenesulfonyl)aminophosphonates and evaluation of their biological properties. PHOSPHORUS SULFUR 2018. [DOI: 10.1080/10426507.2018.1424712] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Rafał Karpowicz
- Department of Organic Chemistry, Faculty of Chemistry, University of Łódź, Tamka, Łódź, Poland
| | - Jarosław Lewkowski
- Department of Organic Chemistry, Faculty of Chemistry, University of Łódź, Tamka, Łódź, Poland
| | - Małgorzata Stasiak
- Department of Organic Chemistry, Faculty of Chemistry, University of Łódź, Tamka, Łódź, Poland
| | - Aleksandra Czopor
- Department of Organic Chemistry, Faculty of Chemistry, University of Łódź, Tamka, Łódź, Poland
| | - Paulina Tokarz
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska, Łódź, Poland
| | - Adrianna Król
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska, Łódź, Poland
| | - Diana Rogacz
- Faculty of Mathematics and Natural Science, Jan Długosz University in Częstochowa, Armii Krajowej Av., Częstochowa, Poland
| | - Piotr Rychter
- Faculty of Mathematics and Natural Science, Jan Długosz University in Częstochowa, Armii Krajowej Av., Częstochowa, Poland
| |
Collapse
|
21
|
Lewkowski J, Morawska M, Karpowicz R, Rychter P, Rogacz D, Lewicka K, Dobrzyński P. Evaluation of ecotoxicological impact of new pyrrole-derived aminophosphonates using selected bioassay battery. ECOTOXICOLOGY (LONDON, ENGLAND) 2017; 26:914-929. [PMID: 28560496 DOI: 10.1007/s10646-017-1821-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/23/2017] [Indexed: 06/07/2023]
Abstract
Six new dimethyl N-arylamino(2-pyrrolyl)methylphosphonates 2a-f were synthesized by the modified aza-Pudovik reaction. Their ecotoxicological impact using battery of bioassay was assessed using Microtox and Ostracodtoxit tests as well as phytotoxicity towards two plants, dicotyledonous radish (Raphanus sativus) and monocotyledonous oat (Avena sativa) following the OECD 208 Guideline. Ecotoxicological properties of compounds 2a-f in aspect of acute and chronic toxicity were evaluated using Heterocypris incongruens and Aliivibrio fisheri tests. The obtained results showed that tested aminophosphonates 2a-f have moderate-to-high phyto- and ecotoxicological impact. They are toxic for both plants but more toxic against dicotyledonous. The investigated compounds showed important ecotoxicity against Heterocypris incongruens crustaceans and Aliivibrio fisheri bacteria. It was found that the substituents of the phenyl ring plays a key role in the degree of toxicity. Results showed that investigated compounds are ecologically toxic and that any of their application should be implemented with care.
Collapse
Affiliation(s)
- Jarosław Lewkowski
- Department of Organic Chemistry, Faculty of Chemistry, University of Łódź, Tamka 12, Łódź, 91-403, Poland.
| | - Marta Morawska
- Department of Organic Chemistry, Faculty of Chemistry, University of Łódź, Tamka 12, Łódź, 91-403, Poland
| | - Rafał Karpowicz
- Department of Organic Chemistry, Faculty of Chemistry, University of Łódź, Tamka 12, Łódź, 91-403, Poland
| | - Piotr Rychter
- Faculty of Mathematics and Natural Science, Jan Długosz University in Częstochowa, 13/15 Armii Krajowej Av., Częstochowa, 42-200, Poland.
| | - Diana Rogacz
- Faculty of Mathematics and Natural Science, Jan Długosz University in Częstochowa, 13/15 Armii Krajowej Av., Częstochowa, 42-200, Poland
| | - Kamila Lewicka
- Faculty of Mathematics and Natural Science, Jan Długosz University in Częstochowa, 13/15 Armii Krajowej Av., Częstochowa, 42-200, Poland
| | - Piotr Dobrzyński
- Faculty of Mathematics and Natural Science, Jan Długosz University in Częstochowa, 13/15 Armii Krajowej Av., Częstochowa, 42-200, Poland
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowskiej 34, Zabrze, 41-819, Poland
| |
Collapse
|
22
|
Forlani G, Nocek B, Chakravarthy S, Joachimiak A. Functional Characterization of Four Putative δ 1-Pyrroline-5-Carboxylate Reductases from Bacillus subtilis. Front Microbiol 2017; 8:1442. [PMID: 28824574 PMCID: PMC5539093 DOI: 10.3389/fmicb.2017.01442] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 07/17/2017] [Indexed: 11/21/2022] Open
Abstract
In most living organisms, the amino acid proline is synthesized starting from both glutamate and ornithine. In prokaryotes, in the absence of an ornithine cyclodeaminase that has been identified to date only in a small number of soil and plant bacteria, these pathways share the last step, the reduction of δ1-pyrroline-5-carboxylate (P5C) catalyzed by P5C reductase (EC 1.5.1.2). In several species, multiple forms of P5C reductase have been reported, possibly reflecting the dual function of proline. Aside from its common role as a building block of proteins, proline is indeed also involved in the cellular response to osmotic and oxidative stress conditions. Genome analysis of Bacillus subtilis identifies the presence of four genes (ProH, ProI, ProG, and ComER) that, based on bioinformatic and phylogenic studies, were defined as respectively coding a putative P5C reductase. Here we describe the cloning, heterologous expression, functional analysis and small-angle X-ray scattering studies of the four affinity-purified proteins. Results showed that two of them, namely ProI and ComER, lost their catalytic efficiency or underwent subfunctionalization. In the case of ComER, this could be likely explained by the loss of the ability to form a dimer, which has been previously shown to be an essential structural feature of the catalytically active P5C reductase. The properties of the two active enzymes are consistent with a constitutive role for ProG, and suggest that ProH expression may be beneficial to satisfy an increased need for proline.
Collapse
Affiliation(s)
- Giuseppe Forlani
- Department of Life Science and Biotechnology, University of FerraraFerrara, Italy
| | - Boguslaw Nocek
- Center for Structural Genomics of Infectious Diseases, University of ChicagoChicago, IL, United States
| | - Srinivas Chakravarthy
- Argonne National Laboratory, BioCAT, Center for Synchrotron Radiation Research and InstrumentationArgonne, IL, United States
- Department of Biological and Chemical Sciences, Illinois Institute of TechnologyChicago, IL, United States
| | - Andrzej Joachimiak
- Center for Structural Genomics of Infectious Diseases, University of ChicagoChicago, IL, United States
| |
Collapse
|
23
|
Lewkowski J, Morawska M, Kaczmarek A, Rogacz D, Rychter P. Novel N-Arylaminophosphonates Bearing a Pyrrole Moiety and Their Ecotoxicological Properties. Molecules 2017; 22:E1132. [PMID: 28686206 PMCID: PMC6152063 DOI: 10.3390/molecules22071132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 07/04/2017] [Accepted: 07/05/2017] [Indexed: 01/28/2023] Open
Abstract
A wide range of biological activities of aminophosphonates predisposes them to find applications as anticancer, antiviral, antimicrobial, antifungal, or herbicidal agents. Despite a number of positive aspects of the use of aminophosphonates, their applications may cause a risk to the environment, which is well exemplified by the case of glyphosate. Therefore, scientists see a pressing need to rate ecotoxicity of aminophosphonates. Nowadays, it is recommended to use comprehensive tools to carry out appropriate and effective risk assessments of toxic substances. For these purposes, tests based on the acute toxicity of the luminescent bacteria Aliivibrio fischeri, as well as the measurement of sub-chronic toxicity of the crustacean Heterocypris incongruens seem to be the most convenient. A series of five diphenyl N-arylamino(pyrrole-2-yl)methylphosphonates was synthesized and preliminary evaluation of their ecotoxicological properties was performed. In order to carry out such investigations, we applied the two biotests mentioned above. Results showed that the N-(4-nitrophenyl) derivative was the most toxic for bacteria in comparison to other tested compounds. As for crustaceans, N-phenyl and N-naphthyl derivatives were found to be the most harmful, simultaneously being relatively harmless for bacteria. Such a phenomenon are discussed in correlation with the literature, while its reason is discussed with respect to the aspect of structure of the tested compounds.
Collapse
Affiliation(s)
- Jarosław Lewkowski
- Department of Organic Chemistry, Faculty of Chemistry, University of Łódź, Tamka 12, 91-403 Łódź, Poland.
| | - Marta Morawska
- Department of Organic Chemistry, Faculty of Chemistry, University of Łódź, Tamka 12, 91-403 Łódź, Poland.
| | - Anna Kaczmarek
- Department of Organic Chemistry, Faculty of Chemistry, University of Łódź, Tamka 12, 91-403 Łódź, Poland.
- M.Sc. Student at the Faculty of Chemistry, University of Łódź, Tamka 12, 91-403 Łódź, Poland.
| | - Diana Rogacz
- Faculty of Mathematics and Natural Science, Jan Długosz University in Częstochowa, 13/15 Armii Krajowej Av., 42-200 Częstochowa, Poland.
| | - Piotr Rychter
- Faculty of Mathematics and Natural Science, Jan Długosz University in Częstochowa, 13/15 Armii Krajowej Av., 42-200 Częstochowa, Poland.
| |
Collapse
|
24
|
Giberti S, Bertazzini M, Liboni M, Berlicki Ł, Kafarski P, Forlani G. Phytotoxicity of aminobisphosphonates targeting both δ 1 -pyrroline-5-carboxylate reductase and glutamine synthetase. PEST MANAGEMENT SCIENCE 2017; 73:435-443. [PMID: 27103608 DOI: 10.1002/ps.4299] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 04/19/2016] [Accepted: 04/19/2016] [Indexed: 05/20/2023]
Abstract
BACKGROUND Dual-target inhibitors may contribute to the management of herbicide-resistant weeds and avoid or delay the selection of resistant biotypes. Some aminobisphosphonates inhibit the activity of both glutamine synthetase and δ1 -pyrroline-5-carboxylate (P5C) reductase in vitro, but the relevance of the latter in vivo has yet to be proven. This study aimed at demonstrating that these compounds can also block proline synthesis in planta. RESULTS Two aminophosphonates, namely 3,5-dichlorophenylamino-methylenebisphosphonic acid and 3,5-dibromophenylaminomethylenebis phosphonic acid (Br2 PAMBPA), showed inverse effectiveness against the two partially purified target enzymes from rapeseed. The compounds showed equipotency in inhibiting the growth of rapeseed seedlings and cultured cells. The analysis of amino acid content in treated cells showed a strong reduction in glutamate and glutamate-related amino acid pools, but a milder effect on free proline. In the case of Br2 PAMBPA, toxic P5C levels accumulated in treated seedlings, proving that the inhibition of P5C reductase takes place in situ. CONCLUSIONS Phenyl-substituted aminobisphosphonates may be regarded as true dual-target inhibitors. Their use to develop new active principles for crop protection could consequently represent a tool to address the problem of target-site resistance among weeds. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Samuele Giberti
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Michele Bertazzini
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Mattia Liboni
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Łukasz Berlicki
- Department of Bioorganic Chemistry, Wrocław University of Technology, Wrocław, Poland
| | - Paweł Kafarski
- Department of Bioorganic Chemistry, Wrocław University of Technology, Wrocław, Poland
| | - Giuseppe Forlani
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
25
|
Bálint E, Tajti Á, Ádám A, Csontos I, Karaghiosoff K, Czugler M, Ábrányi-Balogh P, Keglevich G. The synthesis of α-aryl-α-aminophosphonates and α-aryl-α-aminophosphine oxides by the microwave-assisted Pudovik reaction. Beilstein J Org Chem 2017; 13:76-86. [PMID: 28179951 PMCID: PMC5238548 DOI: 10.3762/bjoc.13.10] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 12/15/2016] [Indexed: 12/05/2022] Open
Abstract
A family of α-aryl-α-aminophosphonates and α-aryl-α-aminophosphine oxides was synthesized by the microwave-assisted solvent-free addition of dialkyl phosphites and diphenylphosphine oxide, respectively, to imines formed from benzaldehyde derivatives and primary amines. After optimization, the reactivity was mapped, and the fine mechanism was evaluated by DFT calculations. Two α-aminophosphonates were subjected to an X-ray study revealing a racemic dimer formation made through a N-H···O=P intermolecular hydrogen bridges pair.
Collapse
Affiliation(s)
- Erika Bálint
- MTΑ-BME Research Group for Organic Chemical Technology, 1521 Budapest, Hungary
| | - Ádám Tajti
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1521 Budapest, Hungary
| | - Anna Ádám
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1521 Budapest, Hungary
| | - István Csontos
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1521 Budapest, Hungary
| | | | - Mátyás Czugler
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1521 Budapest, Hungary
| | - Péter Ábrányi-Balogh
- Hungarian Academy of Sciences, Research Centre for Natural Sciences, Institute of Organic Chemistry, 1519 Budapest, Hungary
| | - György Keglevich
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1521 Budapest, Hungary
| |
Collapse
|
26
|
Lewkowski J, Karpowicz R, Morawska M, Rychter P, Rogacz D, Lewicka K, Dobrzyński P. Synthesis and ecotoxicological impact of ferrocene-derived amino-phosphonates using a battery of bioassays. RSC Adv 2017. [DOI: 10.1039/c7ra06079c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Ferrocene-derived aminophosphonates showed their various ecotoxicological impact on terrestrial higher plants, freshwater ostracods and marine bacteria.
Collapse
Affiliation(s)
- J. Lewkowski
- Department of Organic Chemistry
- Faculty of Chemistry
- University of Łódź
- 91-403 Łódź
- Poland
| | - R. Karpowicz
- Department of Organic Chemistry
- Faculty of Chemistry
- University of Łódź
- 91-403 Łódź
- Poland
| | - M. Morawska
- Department of Organic Chemistry
- Faculty of Chemistry
- University of Łódź
- 91-403 Łódź
- Poland
| | - P. Rychter
- Institute of Chemistry
- Environmental Protection and Biotechnology
- Jan Długosz University in Częstochowa
- 42-200 Częstochowa
- Poland
| | - D. Rogacz
- Institute of Chemistry
- Environmental Protection and Biotechnology
- Jan Długosz University in Częstochowa
- 42-200 Częstochowa
- Poland
| | - K. Lewicka
- Institute of Chemistry
- Environmental Protection and Biotechnology
- Jan Długosz University in Częstochowa
- 42-200 Częstochowa
- Poland
| | - P. Dobrzyński
- Institute of Chemistry
- Environmental Protection and Biotechnology
- Jan Długosz University in Częstochowa
- 42-200 Częstochowa
- Poland
| |
Collapse
|
27
|
Chmielewska E, Kafarski P. Synthetic Procedures Leading towards Aminobisphosphonates. Molecules 2016; 21:molecules21111474. [PMID: 27827924 PMCID: PMC6273145 DOI: 10.3390/molecules21111474] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 10/28/2016] [Accepted: 11/02/2016] [Indexed: 11/21/2022] Open
Abstract
Growing interest in the biological activity of aminobisphosphonates has stimulated the development of methods for their synthesis. Although several general procedures were previously elaborated to reach this goal, aminobisphosphonate chemistry is still developing quite substantially. Thus, innovative modifications of the existing commonly used reactions, as well as development of new procedures, are presented in this review, concentrating on recent achievements. Additionally, selected examples of aminobisphosphonate derivatization illustrate their usefulness for obtaining new diagnostic and therapeutic agents.
Collapse
Affiliation(s)
- Ewa Chmielewska
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław 50-370, Poland.
| | - Paweł Kafarski
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław 50-370, Poland.
| |
Collapse
|
28
|
Bálint E, Tóth RE, Keglevich G. Synthesis of alkyl α-aminomethyl-phenylphosphinates andN,N-bis(alkoxyphenylphosphinylmethyl)amines by the microwave-assisted Kabachnik-Fields reaction. HETEROATOM CHEMISTRY 2016. [DOI: 10.1002/hc.21343] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Erika Bálint
- MTA-BME Research Group for Organic Chemical Technology; Budapest Hungary
| | - Regina Eszter Tóth
- Department of Organic Chemistry and Technology; Budapest University of Technology and Economics; Budapest Hungary
| | - György Keglevich
- Department of Organic Chemistry and Technology; Budapest University of Technology and Economics; Budapest Hungary
| |
Collapse
|
29
|
Bálint E, Tajti Á, Dzielak A, Hägele G, Keglevich G. Microwave-assisted synthesis of (aminomethylene)bisphosphine oxides and (aminomethylene)bisphosphonates by a three-component condensation. Beilstein J Org Chem 2016; 12:1493-502. [PMID: 27559402 PMCID: PMC4979732 DOI: 10.3762/bjoc.12.146] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 06/17/2016] [Indexed: 11/23/2022] Open
Abstract
A practical method was elaborated for the synthesis of (aminomethylene)bisphosphine oxides comprising the catalyst- and solvent-free microwave-assisted three-component condensation of primary amines, triethyl orthoformate and two equivalents of diphenylphosphine oxide. The method is also suitable for the preparation of (aminomethylene)bisphosphonates using (MeO)2P(O)H/(MeO)3CH or (EtO)2P(O)H/(EtO)3CH reactant pairs and even secondary amines. Several intermediates referring to the reaction mechanism together with a few by-products could also be identified.
Collapse
Affiliation(s)
- Erika Bálint
- MTA-BME Research Group for Organic Chemical Technology, 1521 Budapest, Hungary
| | - Ádám Tajti
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1521 Budapest, Hungary
| | - Anna Dzielak
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1521 Budapest, Hungary
| | - Gerhard Hägele
- Institute of Inorganic Chemistry, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - György Keglevich
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1521 Budapest, Hungary
| |
Collapse
|
30
|
The Effect of New Thiophene-Derived Aminophosphonic Derivatives on Growth of Terrestrial Plants: A Seedling Emergence and Growth Test. Molecules 2016; 21:molecules21060694. [PMID: 27248990 PMCID: PMC6272962 DOI: 10.3390/molecules21060694] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 05/22/2016] [Accepted: 05/23/2016] [Indexed: 11/26/2022] Open
Abstract
The aim of this work was to synthesize selected thiophene-derived aminophosphonic systems and evaluate the phytotoxicity of newly obtained products according to the OECD 208 Guideline. Seven new thiophene-derived N-substituted dimethyl aminomethylphosphonic acid esters 2a–h were synthesized by the addition of an appropriate phosphite to azomethine bond of starting Schiff bases 1a–h, and NMR spectroscopic properties of aminophosphonates were investigated. These eight compounds were analyzed in regard to their phytotoxicity towards two plants, radish (Raphanus sativus) and oat (Avena sativa). On the basis of the obtained results, it was found that tested aminophosphonates 2a–h showed an ecotoxicological impact against selected plants, albeit to various degrees.
Collapse
|
31
|
Hu G, Chen W, Ma D, Zhang Y, Xu P, Gao Y, Zhao Y. Silver-Catalyzed, Aldehyde-Induced α-C–H Functionalization of Tetrahydroisoquinolines with Concurrent C–P Bond Formation/N-Alkylation. J Org Chem 2016; 81:1704-11. [DOI: 10.1021/acs.joc.5b02625] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
| | - Weizhu Chen
- Third
Institute of Oceanography, State Oceanic Administration, Xiamen 361005, Fujian China
| | | | | | | | | | | |
Collapse
|
32
|
Kosikowska P, Bochno M, Macegoniuk K, Forlani G, Kafarski P, Berlicki Ł. Bisphosphonic acids as effective inhibitors of Mycobacterium tuberculosis glutamine synthetase. J Enzyme Inhib Med Chem 2015; 31:931-8. [DOI: 10.3109/14756366.2015.1070846] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Paulina Kosikowska
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Technology, Wrocław, Poland and
| | - Marta Bochno
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Technology, Wrocław, Poland and
| | - Katarzyna Macegoniuk
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Technology, Wrocław, Poland and
| | - Giuseppe Forlani
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Paweł Kafarski
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Technology, Wrocław, Poland and
| | - Łukasz Berlicki
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Technology, Wrocław, Poland and
| |
Collapse
|
33
|
Ruszkowski M, Nocek B, Forlani G, Dauter Z. The structure of Medicago truncatula δ(1)-pyrroline-5-carboxylate reductase provides new insights into regulation of proline biosynthesis in plants. FRONTIERS IN PLANT SCIENCE 2015; 6:869. [PMID: 26579138 PMCID: PMC4626632 DOI: 10.3389/fpls.2015.00869] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 10/01/2015] [Indexed: 05/18/2023]
Abstract
The two pathways for proline biosynthesis in higher plants share the last step, the conversion of δ(1)-pyrroline-5-carboxylate (P5C) to L-proline, which is catalyzed by P5C reductase (P5CR, EC 1.5.1.2) with the use of NAD(P)H as a coenzyme. There is increasing amount of evidence to suggest a complex regulation of P5CR activity at the post-translational level, yet the molecular basis of these mechanisms is unknown. Here we report the three-dimensional structure of the P5CR enzyme from the model legume Medicago truncatula (Mt). The crystal structures of unliganded MtP5CR decamer, and its complexes with the products NAD(+), NADP(+), and L-proline were refined using x-ray diffraction data (at 1.7, 1.85, 1.95, and 2.1 Å resolution, respectively). Based on the presented structural data, the coenzyme preference for NADPH over NADH was explained, and NADPH is suggested to be the only coenzyme used by MtP5CR in vivo. Furthermore, the insensitivity of MtP5CR to feed-back inhibition by proline, revealed by enzymatic analysis, was correlated with structural features. Additionally, a mechanism for the modulation of enzyme activity by chloride anions is discussed, as well as the rationale for the possible development of effective enzyme inhibitors.
Collapse
Affiliation(s)
- Milosz Ruszkowski
- Synchrotron Radiation Research Section, Macromolecular Crystallography Laboratory, National Cancer InstituteArgonne, IL, USA
- *Correspondence: Milosz Ruszkowski
| | - Boguslaw Nocek
- Biosciences Division, Argonne National Laboratory, The Structural Biology CenterArgonne, IL, USA
| | - Giuseppe Forlani
- Department of Life Science and Biotechnology, University of FerraraFerrara, Italy
| | - Zbigniew Dauter
- Synchrotron Radiation Research Section, Macromolecular Crystallography Laboratory, National Cancer InstituteArgonne, IL, USA
| |
Collapse
|
34
|
Forlani G, Bertazzini M, Zarattini M, Funck D, Ruszkowski M, Nocek B. Functional properties and structural characterization of rice δ(1)-pyrroline-5-carboxylate reductase. FRONTIERS IN PLANT SCIENCE 2015; 6:565. [PMID: 26284087 PMCID: PMC4517315 DOI: 10.3389/fpls.2015.00565] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 07/09/2015] [Indexed: 05/20/2023]
Abstract
The majority of plant species accumulate high intracellular levels of proline to cope with hyperosmotic stress conditions. Proline synthesis from glutamate is tightly regulated at both the transcriptional and the translational levels, yet little is known about the mechanisms for post-translational regulation of the enzymatic activities involved. The gene coding in rice (Oryza sativa L.) for δ(1)-pyrroline-5-carboxylate (P5C) reductase, the enzyme that catalyzes the second and final step in this pathway, was isolated and expressed in Escherichia coli. The structural and functional properties of the affinity-purified protein were characterized. As for most species, rice P5C reductase was able to use in vitro either NADH or NADPH as the electron donor. However, strikingly different effects of cations and anions were found depending on the pyridine nucleotide used, namely inhibition of NADH-dependent activity and stimulation of NADPH-dependent activity. Moreover, physiological concentrations of proline and NADP(+) were strongly inhibitory for the NADH-dependent reaction, whereas the NADPH-dependent activity was mildly affected. Our results suggest that only NADPH may be used in vivo and that stress-dependent variations in ion homeostasis and NADPH/NADP(+) ratio could modulate enzyme activity, being functional in promoting proline accumulation and potentially also adjusting NADPH consumption during the defense against hyperosmotic stress. The apparent molecular weight of the native protein observed in size exclusion chromatography indicated a high oligomerization state. We also report the first crystal structure of a plant P5C reductase at 3.40-Å resolution, showing a decameric quaternary assembly. Based on the structure, it was possible to identify dynamic structural differences among rice, human, and bacterial enzymes.
Collapse
Affiliation(s)
- Giuseppe Forlani
- Laboratory of Plant Physiology and Biochemistry, Department of Life Science and Biotechnology, University of FerraraFerrara, Italy
- *Correspondence: Giuseppe Forlani, Laboratory of Plant Physiology and Biochemistry, Department of Life Science and Biotechnology, University of Ferrara, Via Luigi Borsari 46, Ferrara 44121, Italy,
| | - Michele Bertazzini
- Laboratory of Plant Physiology and Biochemistry, Department of Life Science and Biotechnology, University of FerraraFerrara, Italy
- Plant Physiology and Biochemistry, Department of Biology, University of KonstanzKonstanz, Germany
| | - Marco Zarattini
- Laboratory of Plant Physiology and Biochemistry, Department of Life Science and Biotechnology, University of FerraraFerrara, Italy
| | - Dietmar Funck
- Plant Physiology and Biochemistry, Department of Biology, University of KonstanzKonstanz, Germany
| | - Milosz Ruszkowski
- Synchrotron Radiation Research Section, Macromolecular Crystallography Laboratory, National Cancer Institute, Argonne National Laboratory, ArgonneIL, USA
| | - Bogusław Nocek
- Biosciences Division, Argonne National Laboratory, ArgonneIL, USA
| |
Collapse
|
35
|
Forlani G, Bertazzini M, Zarattini M, Funck D. Functional characterization and expression analysis of rice δ(1)-pyrroline-5-carboxylate dehydrogenase provide new insight into the regulation of proline and arginine catabolism. FRONTIERS IN PLANT SCIENCE 2015; 6:591. [PMID: 26300893 PMCID: PMC4525382 DOI: 10.3389/fpls.2015.00591] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/16/2015] [Indexed: 05/21/2023]
Abstract
While intracellular proline accumulation in response to various stress conditions has been investigated in great detail, the biochemistry and physiological relevance of proline degradation in plants is much less understood. Moreover, the second and last step in proline catabolism, the oxidation of δ(1)-pyrroline-5-carboxylic acid (P5C) to glutamate, is shared with arginine catabolism. Little information is available to date concerning the regulatory mechanisms coordinating these two pathways. Expression of the gene coding for P5C dehydrogenase was analyzed in rice by real-time PCR either following the exogenous supply of amino acids of the glutamate family, or under hyperosmotic stress conditions. The rice enzyme was heterologously expressed in E. coli, and the affinity-purified protein was thoroughly characterized with respect to structural and functional properties. A tetrameric oligomerization state was observed in size exclusion chromatography, which suggests a structure of the plant enzyme different from that shown for the bacterial P5C dehydrogenases structurally characterized to date. Kinetic analysis accounted for a preferential use of NAD(+) as the electron acceptor. Cations were found to modulate enzyme activity, whereas anion effects were negligible. Several metal ions were inhibitory in the micromolar range. Interestingly, arginine also inhibited the enzyme at higher concentrations, with a mechanism of uncompetitive type with respect to P5C. This implies that millimolar levels of arginine would increase the affinity of P5C dehydrogenase toward its specific substrate. Results are discussed in view of the involvement of the enzyme in either proline or arginine catabolism.
Collapse
Affiliation(s)
- Giuseppe Forlani
- Department of Life Science and Biotechnology, University of FerraraFerrara, Italy
- *Correspondence: Giuseppe Forlani, Laboratory of Plant Physiology and Biochemistry, Department of Life Science and Biotechnology, University of Ferrara, Via L. Borsari 46, Ferrara, 44121, Italy
| | - Michele Bertazzini
- Department of Life Science and Biotechnology, University of FerraraFerrara, Italy
- Biology Section, Department of Plant Physiology and Biochemistry, University of KonstanzKonstanz, Germany
| | - Marco Zarattini
- Department of Life Science and Biotechnology, University of FerraraFerrara, Italy
| | - Dietmar Funck
- Biology Section, Department of Plant Physiology and Biochemistry, University of KonstanzKonstanz, Germany
| |
Collapse
|
36
|
Giberti S, Funck D, Forlani G. Δ1-Pyrroline-5-carboxylate reductase from Arabidopsis thaliana: stimulation or inhibition by chloride ions and feedback regulation by proline depend on whether NADPH or NADH acts as co-substrate. THE NEW PHYTOLOGIST 2014; 202:911-919. [PMID: 24467670 DOI: 10.1111/nph.12701] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 12/22/2013] [Indexed: 05/20/2023]
Abstract
Δ(1)-pyrroline-5-carboxylate (P5C) reductase (P5CR) catalyses the final step of proline synthesis in plants. In Arabidopsis thaliana, protein levels are correlated neither to the corresponding mRNA copy numbers, nor to intracellular proline concentrations. The occurrence of post-translational regulatory mechanisms has therefore been hypothesized, but never assessed. The purification of A. thaliana P5CR was achieved through either a six-step protocol from cultured cells, or heterologous expression of AtP5CR in Escherichia coli. The protein was characterized with respect to structural, kinetic, and biochemical properties. P5CR was able to use either NADPH or NADH as the electron donor, with contrasting affinities and maximum reaction rates. The presence of equimolar concentrations of NADP(+) completely suppressed the NADH-dependent activity, whereas the NADPH-dependent reaction was mildly affected. Proline inhibited only the NADH-dependent reaction. At physiological values, increasing concentrations of salt progressively inhibited the NADH-dependent activity, but were stimulatory of the NADPH-dependent reaction. The biochemical properties of A. thaliana P5CR suggest a complex regulation of enzyme activity by the redox status of the pyridine nucleotide pools, and the concentrations of proline and chloride in the cytosol. Data support a to date underestimated role of P5CR in controlling stress-induced proline accumulation.
Collapse
Affiliation(s)
- Samuele Giberti
- Department of Life Science and Biotechnology, University of Ferrara, via L. Borsari 46, I-44121, Ferrara, Italy
| | - Dietmar Funck
- Department of Plant Physiology and Biochemistry, Biology Section, University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany
| | - Giuseppe Forlani
- Department of Life Science and Biotechnology, University of Ferrara, via L. Borsari 46, I-44121, Ferrara, Italy
| |
Collapse
|
37
|
McDonald SL, Wang Q. Copper-Catalyzed α-Amination of Phosphonates and Phosphine Oxides: A Direct Approach to α-Amino Phosphonic Acids and Derivatives. Angew Chem Int Ed Engl 2014; 53:1867-71. [DOI: 10.1002/anie.201308890] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Indexed: 01/30/2023]
|
38
|
McDonald SL, Wang Q. Copper-Catalyzed α-Amination of Phosphonates and Phosphine Oxides: A Direct Approach to α-Amino Phosphonic Acids and Derivatives. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201308890] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
39
|
|
40
|
Demuner AJ, Barbosa LCA, Miranda ACM, Geraldo GC, da Silva CM, Giberti S, Bertazzini M, Forlani G. The fungal phytotoxin alternariol 9-methyl ether and some of its synthetic analogues inhibit the photosynthetic electron transport chain. JOURNAL OF NATURAL PRODUCTS 2013; 76:2234-2245. [PMID: 24245962 DOI: 10.1021/np4005882] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Alternariol and monomethylalternariol are natural phytotoxins produced by some fungal strains, such as Nimbya and Alternaria. These substances confer virulence to phytopathogens, yet no information is available concerning their mode of action. Here we show that in the micromolar range alternariol 9-methyl ether is able to inhibit the electron transport chain (IC50 = 29.1 ± 6.5 μM) in isolated spinach chloroplasts. Since its effectiveness is limited by poor solubility in water, several alternariol analogues were synthesized using different aromatic aldehydes. The synthesized 6H-benzo[c]cromen-6-ones, 5H-chromene[4,3-b]pyridin-5-one, and 5H-chromene[4,3-c]pyridin-5-one also showed inhibitory properties, and three 6H-benzo[c]cromen-6-ones were more effective (IC50 = 12.8-22.8 μM) than the lead compound. Their addition to the culture medium of a cyanobacterial model strain was found to inhibit algal growth, with a relative effectiveness that was consistent with their activity in vitro. In contrast, the growth of a nonphotosynthetic plant cell culture was poorly affected. These compounds may represent a novel lead for the development of new active principles targeting photosynthesis.
Collapse
Affiliation(s)
- Antonio Jacinto Demuner
- Department of Chemistry, Federal University of Viçosa , Av. P.H. Rolfs, Viçosa, Minas Geraís, 36570-000, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
41
|
High glucose-induced barrier impairment of human retinal pigment epithelium is ameliorated by treatment with Goji berry extracts through modulation of cAMP levels. Exp Eye Res 2013; 120:50-4. [PMID: 24345371 DOI: 10.1016/j.exer.2013.12.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 10/28/2013] [Accepted: 12/05/2013] [Indexed: 11/23/2022]
Abstract
Human retinal pigment epithelium cells were used to investigate the mechanisms underlying blood-retinal barrier disruption under conditions of chronic hyperglycemia. The treatment with 25 mM glucose caused a rapid drop in the transepithelial electrical resistance (TEER), which was reversed by the addition of either a methanolic extract from Goji (Lycium barbarum L.) berries or its main component, taurine. Intracellular cAMP levels increased concurrently with the high glucose-induced TEER decrease, and were correlated to an increased activity of the cytosolic isoform of the enzyme adenylyl cyclase. The treatment with plant extract or taurine restored control levels. Data are discussed in view of a possible prevention approach for diabetic retinopathy.
Collapse
|