1
|
Mohanty C, Kumar V, Bisoi S, M ASJ, Das PK, Farzana, Ahmad M, Selvaraj CI, Ratha BN, Nanda S, Gangwar SP. Ecological implications of chromium-contaminated effluents from Indian tanneries and their phytoremediation: a sustainable approach. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:995. [PMID: 39352585 DOI: 10.1007/s10661-024-13122-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 09/13/2024] [Indexed: 10/20/2024]
Abstract
Industrial activities are paramount to sustaining the economy in a rapidly developing nation and global powerhouse like India. Leather industries are important in the country's economic map due to the high revenue and employment generation opportunities. Several of these industries contribute largely to environmental pollution. The pollution of the environment is mainly caused by improper disposal of the tannery effluents that are highly rich in hexavalent chromium, a potent human carcinogen. Hexavalent chromium imparts toxic effects on the biotic components, which include plants, animals, and humans. The review portrays the current status of the Indian leather tanning sector and its impact on the Indian economy. The process of chromium tanning and its adverse effects on the environmental biotic components have been briefly discussed. Phytoremediation of these effluents using suitable hyperaccumulating plants has been suggested as an eco-friendly and cost-effective approach for the sustainable restoration of the polluted environment. The mechanism behind the remediation approach and the factors influencing it have been detailed. The manuscript briefly discusses some important advancements in the field of phytoremediation and emerging technologies and concludes by emphasizing further research for sustainable management of tannery wastes.
Collapse
Affiliation(s)
- Chirasmita Mohanty
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Vinay Kumar
- M.S. Swaminathan School of Agriculture, Centurion University of Technology and Management, Paralakhemundi, Odisha, 761211, India
| | - Sabita Bisoi
- Department of Phytopharmaceuticals, School of Agricultural and Bio-Engineering (SoABE), Centurion University of Technology and Management, Paralakhemundi, Odisha, 761211, India
| | - Anto Simon Joseph M
- Department of Biotechnology, Sri Krishna Arts and Science College, Bharathiar University, Tamil Nadu, Coimbatore, 641008, India
| | - Pratyush Kumar Das
- Department of Phytopharmaceuticals, School of Agricultural and Bio-Engineering (SoABE), Centurion University of Technology and Management, Paralakhemundi, Odisha, 761211, India.
| | - Farzana
- Department of Plant Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Mushtaq Ahmad
- Department of Plant Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan.
| | - Chinnadurai Immanuel Selvaraj
- Department of Genetics and Plant Breeding, VIT School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Tamil Nadu, Vellore, 632014, India.
| | - Bhisma Narayan Ratha
- Department of Phytopharmaceuticals, School of Agricultural and Bio-Engineering (SoABE), Centurion University of Technology and Management, Paralakhemundi, Odisha, 761211, India
| | - Satyabrata Nanda
- School of Biotechnology, Centurion University of Technology and Management, Bhubaneswar, Odisha, 752050, India.
| | - Surender Pal Gangwar
- Department of Zoology, Thakur Roshan Singh Constituent Government College, Uttar Pradesh, Katra, Shahjahanpur, India
| |
Collapse
|
2
|
Kanwal H, Raza SH, Ali S, Iqbal M, Shad MI. Effect of riboflavin on redox balance, osmolyte accumulation, methylglyoxal generation and nutrient acquisition in indian squash (Praecitrullus fistulosus L.) under chromium toxicity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:20881-20897. [PMID: 38381295 DOI: 10.1007/s11356-024-32516-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/13/2024] [Indexed: 02/22/2024]
Abstract
The presence of high chromium (Cr) levels induces the buildup of reactive oxygen species (ROS), resulting in hindered plant development. Riboflavin (vitamin B2) is produced by plants, fungi, and microbes. It serves as a precursor to the coenzymes flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN), which play a crucial role in cellular metabolism. The objective of this work was to clarify the underlying mechanisms by which riboflavin alleviates Cr stress in Praecitrullus fistulosus L. Further, the role of riboflavin in growth, ions homeostasis, methylglyoxal detoxification, and antioxidant defense mechanism are not well documented in plants under Cr toxicity. We found greater biomass and minimal production of ROS in plants pretreated with riboflavin under Cr stress. Results manifested a clear abridge in growth, chlorophyll content, and nutrient uptake in Indian squash plants exposed to Cr stress. Findings displayed that Cr stress visibly enhanced oxidative injury reflected as higher malondialdehyde (MDA), hydrogen peroxide (H2O2), superoxide radical (O2•‒), methylglyoxal (MG) levels alongside vivid lipoxygenase activity. Riboflavin strengthened antioxidant system, enhanced osmolyte production and improved membrane integrity. Riboflavin diminished Cr accumulation in aerial parts that led to improved nutrient acquisition. Taken together, riboflavin abridged Cr phytotoxic effects by improving redox balance because plants treated with riboflavin had strong antioxidant system that carried out effective ROS detoxification. Riboflavin protected membrane integrity that, in turn, improved nutrient uptake in plants.
Collapse
Affiliation(s)
- Habiba Kanwal
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Syed Hammad Raza
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan
- Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan
| | - Muhammad Iqbal
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Mudassir Iqbal Shad
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| |
Collapse
|
3
|
Alsherif EA, Hajjar D, AbdElgawad H. Future Climate CO 2 Reduces the Tungsten Effect in Rye Plants: A Growth and Biochemical Study. PLANTS (BASEL, SWITZERLAND) 2023; 12:1924. [PMID: 37653841 PMCID: PMC10222005 DOI: 10.3390/plants12101924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 09/02/2023]
Abstract
Heavy metal pollution is one of the major agronomic challenges. Tungsten (W) exposure leads to its accumulation in plants, which in turn reduces plant growth, inhibits photosynthesis and induces oxidative damage. In addition, the predicted increase in CO2 could boost plant growth under both optimal and heavy metal stress conditions. The aim of the present study was to investigate the effect of W on growth, photosynthetic parameters, oxidative stress and redox status in rye plants under ambient and elevated (eCO2) levels. To this end, rye plants were grown under the following conditions: ambient CO2 (aCO2, 420 ppm), elevated CO2 (eCO2, 720 ppm), W stress (350 mg kg-1 soil) and W+eCO2. W stress induced significant (p < 0.05) decreases in growth and photosynthesis, increases in oxidative damages (lipid peroxidation) and the antioxidant defense system, i.e., ascorbate (ASC), reduced glutathione (GSH), GSH reductase (GR), peroxidase (POX), catalase (CAT), superoxide dismutase (SOD), ASC peroxide (APX) and dehydroascorbate reductase (DHAR). On the other hand, eCO2 decreased W uptake and improved photosynthesis, which sequentially improved plant growth. The obtained results showed that eCO2 can decrease the phytotoxicity risks of W in rye plants. This positive impact of eCO2 on reducing the negative effects of soil W was related to their ability to enhance plant photosynthesis, which in turn provided energy and a carbon source for scavenging the reactive oxygen species (ROS) accumulation caused by soil W stress.
Collapse
Affiliation(s)
- Emad A. Alsherif
- Biology Department, College of Science and Arts at Khulis, University of Jeddah, Jeddah 21959, Saudi Arabia
| | - Dina Hajjar
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah 21959, Saudi Arabia;
| | - Hamada AbdElgawad
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, 2018 Antwerp, Belgium;
| |
Collapse
|
4
|
Alsherif EA, AbdElgawad H. Elevated CO 2 Suppresses the Vanadium Stress in Wheat Plants under the Future Climate CO 2. PLANTS (BASEL, SWITZERLAND) 2023; 12:1535. [PMID: 37050160 PMCID: PMC10096617 DOI: 10.3390/plants12071535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
Increases in atmospheric CO2 is known to promote plant growth under heavy metals stress conditions. However, vanadium (V) stress mitigating the impact of eCO2 as well as the physiological and biochemical bases of this stress mitigation have not been well studied. To this end, this study investigated the growth, photosynthetic parameters, oxidative damages antioxidants, and antioxidants enzymes in wheat plants grown under ambient (420 PPM) and high eCO2 (720 ppm) levels. Exposing wheat plants to higher V increased its accumulation in plants which consequentially inhibited plant growth and induced oxidative damage. An increase in antioxidant and detoxification defense systems was observed but it was not enough to reduce V stress toxicity. On the other hand, wheat growth was improved as a result of reduced V uptake and toxicity on photosynthesis under eCO2. To reduce V uptake, wheat accumulated citric acid, and oxalic acid in soil preferentially under both treatments but to more extend under V and eCO2. Additionally, improved photosynthesis induced high carbon availability that was directed to produce chelating proteins (metallothioneins, phytochelatin) and antioxidants (phenolics, flavonoids, total antioxidant capacity). This study advances our knowledge of the processes behind the variations in the physiological and biochemical responses of the wheat crop under V and eCO2 conditions.
Collapse
Affiliation(s)
- Emad A. Alsherif
- Biology Department, College of Science and Arts at Khulis, University of Jeddah, Jeddah 21959, Saudi Arabia
| | - Hamada AbdElgawad
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, 2180 Antwerp, Belgium
| |
Collapse
|
5
|
Zulfiqar U, Haider FU, Ahmad M, Hussain S, Maqsood MF, Ishfaq M, Shahzad B, Waqas MM, Ali B, Tayyab MN, Ahmad SA, Khan I, Eldin SM. Chromium toxicity, speciation, and remediation strategies in soil-plant interface: A critical review. FRONTIERS IN PLANT SCIENCE 2023; 13:1081624. [PMID: 36714741 PMCID: PMC9880494 DOI: 10.3389/fpls.2022.1081624] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/16/2022] [Indexed: 06/18/2023]
Abstract
In recent decades, environmental pollution with chromium (Cr) has gained significant attention. Although chromium (Cr) can exist in a variety of different oxidation states and is a polyvalent element, only trivalent chromium [Cr(III)] and hexavalent chromium [Cr(VI)] are found frequently in the natural environment. In the current review, we summarize the biogeochemical procedures that regulate Cr(VI) mobilization, accumulation, bioavailability, toxicity in soils, and probable risks to ecosystem are also highlighted. Plants growing in Cr(VI)-contaminated soils show reduced growth and development with lower agricultural production and quality. Furthermore, Cr(VI) exposure causes oxidative stress due to the production of free radicals which modifies plant morpho-physiological and biochemical processes at tissue and cellular levels. However, plants may develop extensive cellular and physiological defensive mechanisms in response to Cr(VI) toxicity to ensure their survival. To cope with Cr(VI) toxicity, plants either avoid absorbing Cr(VI) from the soil or turn on the detoxifying mechanism, which involves producing antioxidants (both enzymatic and non-enzymatic) for scavenging of reactive oxygen species (ROS). Moreover, this review also highlights recent knowledge of remediation approaches i.e., bioremediation/phytoremediation, or remediation by using microbes exogenous use of organic amendments (biochar, manure, and compost), and nano-remediation supplements, which significantly remediate Cr(VI)-contaminated soil/water and lessen possible health and environmental challenges. Future research needs and knowledge gaps are also covered. The review's observations should aid in the development of creative and useful methods for limiting Cr(VI) bioavailability, toxicity and sustainably managing Cr(VI)-polluted soils/water, by clear understanding of mechanistic basis of Cr(VI) toxicity, signaling pathways, and tolerance mechanisms; hence reducing its hazards to the environment.
Collapse
Affiliation(s)
- Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Fasih Ullah Haider
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| | - Muhammad Ahmad
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Saddam Hussain
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | | | - Muhammad Ishfaq
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Babar Shahzad
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
| | - Muhammad Mohsin Waqas
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology (KFUEIT), Rahim Yar Khan, Pakistan
| | - Basharat Ali
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology (KFUEIT), Rahim Yar Khan, Pakistan
| | | | - Syed Amjad Ahmad
- Department of Mechanical Engineering, NFC IEFR, Faisalabad, Pakistan
| | - Ilyas Khan
- Department of Mathematics, College of Science Al-Zulfi, Majmaah University, Al-Majmaah, Saudi Arabia
| | - Sayed M. Eldin
- Center of Research, Faculty of Engineering, Future University in Egypt, New Cairo, Egypt
| |
Collapse
|
6
|
Kumar S, Wang M, Fahad S, Qayyum A, Chen Y, Zhu G. Chromium Induces Toxicity at Different Phenotypic, Physiological, Biochemical, and Ultrastructural Levels in Sweet Potato ( Ipomoea batatas L.) Plants. Int J Mol Sci 2022; 23:13496. [PMID: 36362283 PMCID: PMC9656234 DOI: 10.3390/ijms232113496] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 10/23/2023] Open
Abstract
Crop productivity is enormously exposed to different environmental stresses, among which chromium (Cr) stress raises considerable concerns and causes a serious threat to plant growth. This study explored the toxic effect of Cr on sweet potato plants. Plants were hydroponically grown, and treatments of 0, 25, 50, 100, and 200 µM Cr were applied for seven days. This study exhibited that a low level of Cr treatment (25 µM) enhanced the growth, biomass, photosynthesis, osmolytes, antioxidants, and enzyme activities. However, significant deleterious effects in growth, biomass, photosynthetic attributes, antioxidants, and enzymes were observed at higher levels of Cr treatment. The remarkable reduction in plant growth traits was associated with the over-accumulation of H2O2 and MDA contents (410% and 577%, respectively) under the highest rate of Cr (200 µM). Under 200 µM Cr, the uptake in the roots were 27.4 mg kg-1 DW, while in shoots were 11 mg kg-1 DW with the highest translocation rate from root to shoot was 0.40. The results showed that the higher accumulation of Cr negatively correlated with the phenotypic and physiological parameters. It may be proposed that Cr toxicity causes oxidative damage as sustained by augmented lipid peroxidation, reactive oxygen species, and reduced photosynthetic rate, chlorophyll, and stomatal traits. The chloroplastic ultrastructure was damaged, and more apparent damage and size reduction were observed at higher Cr levels. Furthermore, aggregated Cr concentration positively correlates with the increase of osmolytes and superoxide dismutase (SOD) activity in the leaves of sweet potato. Moreover, improved osmolytes and SOD do not help protect sweet potato against high Cr stress. Overall, these findings will improve the understanding of the defense mechanisms of sweet potato to Cr stress.
Collapse
Affiliation(s)
- Sunjeet Kumar
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| | - Mengzhao Wang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| | - Shah Fahad
- Department of Agronomy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Abdul Qayyum
- Department of Agronomy, The University of Haripur, Haripur 22620, Pakistan
| | - Yanli Chen
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| | - Guopeng Zhu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| |
Collapse
|
7
|
AbdElgawad H, Sheteiwy MS, Saleh AM, Mohammed AE, Alotaibi MO, Beemster GTS, Madany MMY, van Dijk JR. Elevated CO 2 differentially mitigates chromium (VI) toxicity in two rice cultivars by modulating mineral homeostasis and improving redox status. CHEMOSPHERE 2022; 307:135880. [PMID: 35964713 DOI: 10.1016/j.chemosphere.2022.135880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/05/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Chromium (Cr) contamination reduces crop productivity worldwide. On the other hand, the expected increase in the future CO2 levels (eCO2) would improve plant growth under diverse growth conditions. However, the synergetic effect of eCO2 has not been investigated at both physiological and biochemical levels in Cr-contaminated soil. This study aims to analyze the mitigating effect of eCO2 on Cr VI phytotoxicity in two rice cultivars (Giza 181 and Sakha 106). Plants are exposed to different Cr concentrations (0, 200 and 400 mg Cr/kg Soil) at ambient (aCO2) and eCO2 (410 and 620 ppm, respectively). Unlike the stress parameters (MDA, H2O2 and protein oxidation), growth and photosynthetic reactions significantly dropped with increasing Cr concentration. However, in eCO2 conditions, plants were able to mitigate the Cr stress by inducing antioxidants as well as higher concentrations of phytochelatins to detoxify Cr. Notably, the expression levels of the genes involved in mineral nutrition i.e., OsNRAMP1, OsRT1, OsHMA3, OsLCT1 and iron chelate reductase were upregulated in Cr-stressed Giza 181 plants grown under eCO2. Mainly in Sakha 106, eCO2 induced ascorbate-glutathione (ASC/GSH)-mediated antioxidative defense system. The present study brings the first ever comprehensive assessment of how future eCO2 differentially mitigated Cr toxicity in rice.
Collapse
Affiliation(s)
- Hamada AbdElgawad
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, Belgium; Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Mohamed S Sheteiwy
- Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura, 35516, Egypt.
| | - Ahmed M Saleh
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Afrah E Mohammed
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia.
| | - Modhi O Alotaibi
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Gerrit T S Beemster
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Mahmoud M Y Madany
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Jesper R van Dijk
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, Belgium; Geobiology, Department of Biology, University of Antwerp, Antwerp, Universiteitsplein 1, Wilrijk, B-2610, Belgium
| |
Collapse
|
8
|
Saud S, Wang D, Fahad S, Javed T, Jaremko M, Abdelsalam NR, Ghareeb RY. The impact of chromium ion stress on plant growth, developmental physiology, and molecular regulation. FRONTIERS IN PLANT SCIENCE 2022; 13:994785. [PMID: 36388512 PMCID: PMC9651928 DOI: 10.3389/fpls.2022.994785] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/10/2022] [Indexed: 05/27/2023]
Abstract
In recent years, heavy metals-induced soil pollution has increased due to the widespread usage of chromium (Cr) in chemical industries. The release of Cr into the environment has reached its peak causing hazardous environmental pollution. Heavy metal-induced soil pollution is one of the most important abiotic stress affecting the dynamic stages of plant growth and development. In severe cases, it can kill the plants and their derivatives and thereby pose a potential threat to human food safety. The chromium ion effect on plants varies and depends upon its severity range. It mainly impacts the numerous regular activities of the plant's life cycle, by hindering the germination of plant seeds, inhibiting the growth of hypocotyl and epicotyl parts of the plants, as well as damaging the chloroplast cell structures. In this review article, we tried to summarize the possible effects of chromium-induced stress on plant growth, developmental physiology, biochemistry, and molecular regulation and provided the important theoretical basis for selecting remedial plants in chromium-induced contaminated soils, breeding of low toxicity tolerant varieties, and analyzing the mechanism of plant resistance mechanisms in response to heavy metal stress.
Collapse
Affiliation(s)
- Shah Saud
- College of Life Sciences, Linyi University, Linyi, China
| | - Depeng Wang
- College of Life Sciences, Linyi University, Linyi, China
| | - Shah Fahad
- Department of Agronomy, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Talha Javed
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mariusz Jaremko
- Division of Biological and Environmental Sciences and Engineering, Smart-Health Initiative and Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Nader R. Abdelsalam
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Rehab Y. Ghareeb
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, The City of Scientific Research and Technological Applications, New Borg El Arab, Egypt
| |
Collapse
|
9
|
Basit F, Nazir MM, Shahid M, Abbas S, Javed MT, Naqqash T, Liu Y, Yajing G. Application of zinc oxide nanoparticles immobilizes the chromium uptake in rice plants by regulating the physiological, biochemical and cellular attributes. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:1175-1190. [PMID: 35910447 PMCID: PMC9334463 DOI: 10.1007/s12298-022-01207-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/25/2022] [Accepted: 06/30/2022] [Indexed: 05/13/2023]
Abstract
Zinc oxide nano particles (ZnO NPs) have been employed as a novel strategy to regulate plant tolerance and alleviate heavy metal stress, but our scanty knowledge regarding the systematic role of ZnO NPs to ameliorate chromium (Cr) stress especially in rice necessitates an in-depth investigation. An experiment was performed to evaluate the effect of different concentrations of ZnO NPs (e.g., 0, 25, 50, 100 mg/L) in ameliorating the Cr toxicity and accumulation in rice seedlings in hydroponic system. Our results demonstrated that Cr (100 µM) severely inhibited the rice seedling growth, whereas exogenous treatment of ZnO NPs significantly alleviated Cr toxicity stress and promoted the plant growth. Moreover, application of ZnO NPs significantly augmented the germination energy, germination percentage, germination index, and vigor index. In addition, biomass accumulation, antioxidants (SOD, CAT, POD), nutrient acquisition (Zn, Fe) was also improved in ZnO NPs-treated plants, while the lipid peroxidation (MDA, H2O2), electrolyte leakage as well as Cr uptake and in-planta accumulation was significantly decreased. The burgeoning effects were more apparent at ZnO NPs (100 mg/L) suggesting the optimum treatment to ameliorate Cr induced oxidative stress in rice plants. Furthermore, the treatment of ZnO NPs (100 mg/L) reduced the level of endogenous abscisic acid (ABA) and stimulated the growth regulator hormones such as brassinosteroids (BRs) possibly linked with enhanced phytochelatins (PCs) levels. The ultrastructure analysis at cellular level of rice revealed that the application of 100 mg/L ZnO NPs protected the chloroplast integrity and other cell organells via improvement in plant ionomics, antioxidant activities and down regulating Cr induced oxidative stress in rice plants. Conclusively, observations of the current study will be helpful in developing stratigies to decrease Cr contamination in food chain by employing ZnO NPs and to mitigate the drastic effects of Cr in plants for the sustainable crop growth.
Collapse
Affiliation(s)
- Farwa Basit
- Seed Science Center, Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058 China
| | - Muhammad Mudassir Nazir
- Seed Science Center, Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058 China
| | - Muhammad Shahid
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, 38000 Pakistan
| | - Saghir Abbas
- Department of Botany, Government College University, Faisalabad, 38000 Pakistan
| | | | - Tahir Naqqash
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, 60800 Pakistan
| | - Yihan Liu
- Seed Science Center, Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058 China
| | - Guan Yajing
- Seed Science Center, Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058 China
| |
Collapse
|
10
|
Li R, Wu L, Shao Y, Hu Q, Zhang H. Melatonin alleviates copper stress to promote rice seed germination and seedling growth via crosstalk among various defensive response pathways. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 179:65-77. [PMID: 35316694 DOI: 10.1016/j.plaphy.2022.03.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/24/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Copper (Cu) contamination dramatically affects crop growth and thus threatens crop production; while applications of melatonin (MT) serve as an effective way to tolerate Cu stress for plant development, the underlying mechanism remains largely unknown in rice. Here, we found that Cu toxicity remarkably decreased germination rates and seedling growth compared to the untreated control (CK), while seed priming with a solution of 100 μM MT significantly alleviated the adverse effects on Cu-stressed seeds. In addition, the MT treatment decreased the accumulation of Cu in seedlings at 7 days after imbibition (DAI), possibly through enhanced Cu sequestration, and improved reserve mobilization through the promoted activity of α-amylase and protease in seeds under Cu stress. Interestingly, gibberellin (GA) synthesis was restored to or even exceeded the CK levels in the MT presoaking treatment, while the abscisic acid (ABA) content decreased compared to those of the Cu-stressed seeds, suggesting crosstalk between MT and other phytohormones, e.g., GA and ABA. More importantly, MT pretreatment also significantly promoted the growth of postgermination seedlings. This was largely ascribed to the MT-ameliorated antioxidant system, which consequently reduced the accumulation of Cu stress-induced oxidative products, e.g., hydrogen peroxide (H2O2), malondialdehyde (MDA), and superoxide (O2·_). Collectively, these results demonstrate that seed priming with MT could greatly mitigate the adverse effects of Cu stress on seed germination and subsequent postgermination growth through crosstalk among various defensive response pathways. This study provides vital guidance for applications of MT in agronomic production.
Collapse
Affiliation(s)
- Ruiqing Li
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, PR China
| | - Liquan Wu
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, PR China
| | - Yafang Shao
- State Key Laboratory of Rice Biology and Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311400, PR China
| | - Qunwen Hu
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, PR China
| | - Huali Zhang
- State Key Laboratory of Rice Biology and Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311400, PR China.
| |
Collapse
|
11
|
AbhijnaKrishna R, Velmathi S. A review on fluorimetric and colorimetric detection of metal ions by chemodosimetric approach 2013–2021. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214401] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
12
|
Zarinkamar F, Moradi A, Davoodpour M. Ecophysiological, anatomical, and apigenin changes due to uptake and accumulation of cadmium in Matricaria chamomilla L. flowers in hydroponics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:55154-55165. [PMID: 34128167 DOI: 10.1007/s11356-021-14000-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 04/14/2021] [Indexed: 05/06/2023]
Abstract
Cadmium (Cd) is one of the most important heavy metals in the environment which has several effects on the morphology, physiology, and anatomy of plants. It is a mobile heavy metal that can be transferred easily into plants, thus entering into the human food chain. Chamomile (Matricaria chamomilla L.) as an important medicinal plant can uptake and accumulate Cd in its root and aerial organs. In this research, the effects of different concentrations of Cd (90, 180, and 360 μM) were investigated on the growth parameters, anatomical features, and enzymatic antioxidant activities in flowers of chamomile after 7 days of exposure. The content of apigenin, a flavone compound mostly synthesizing in chamomile flowers, was also analyzed after 72 h from Cd treatment. The results showed that all concentrations of Cd reduced the length and biomass of roots and shoots, the diameter of flowers, as well as the number of pollen grains in tubular florets, while increased trichome density on the florets. Cd-treated plants showed an increase in antioxidant enzymes, superoxide dismutase (SOD), and peroxidase (POX) activities. After 7 days of treatment to Cd major concentration, flowers accumulated Cd and enhanced the apigenin production with the increase of Cd contamination in hydroponic solution. This increase of apigenin is most likely due to its antioxidant and sequestering property as a resistance response to Cd excess.
Collapse
Affiliation(s)
- Fatemeh Zarinkamar
- Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Azar Moradi
- Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maryam Davoodpour
- Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
13
|
Lei K, Sun S, Zhong K, Li S, Hu H, Sun C, Zheng Q, Tian Z, Dai T, Sun J. Seed soaking with melatonin promotes seed germination under chromium stress via enhancing reserve mobilization and antioxidant metabolism in wheat. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 220:112241. [PMID: 34000501 DOI: 10.1016/j.ecoenv.2021.112241] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 05/10/2023]
Abstract
Chromium (Cr) pollution has serious harm to crop growth, while little is known on the role of melatonin (MT) on seed germination and physiology in Cr-stressed wheat. The effects of seed soaking with MT on growth, reserve mobilization, osmotic regulation and antioxidant capacity of wheat seeds during germination under hexavalent chromium (100 μM) stress were investigated. The results indicated that Cr toxicity decreased the seed germination rate by 16% and suppressed the growth of germinated seeds compared to unstressed seeds. MT in the concentration-dependent manner increased germination rate and promoted subsequent growth when seeds were exposed to Cr stress, but the effect could be counteracted at high concentration. Seed soaking with MT (100 μM) markedly decreased Cr accumulation in seeds, radicals and coleoptiles by 15%, 6% and 15%, respectively, and enhanced α-amylase activity and soluble sugar and free amino acids content in seeds to improve reserve mobilization under Cr stress, compared with Cr treatment. Furthermore, decreasing the level of osmotic regulators (soluble sugar and soluble protein) in radicles under MT combined with Cr treatment confirmed the reduction of osmotic stress caused by Cr stress. Importantly, MT pretreatment reduced H2O2 content by 19% and O2·- release rate by 45% in radicles under Cr toxicity compared with Cr-stressed wheat, in terms of promoting scavenging ability and decreasing production ability, which was to upregulate the activities and encoding genes expression levels of superoxide dismutase (SOD), catalase (CAT), ascorbic acid peroxidase (APX) and peroxidase (POD) and to downregulate plasma membrane-bound NADPH oxidase (NOX) encoding genes (TaRbohD, TaRbohF) expression, respectively. In all, these results provided evidence that seed soaking with MT could be a potentially method to protect wheat seeds from Cr toxicity, which effectively ameliorated germination under Cr stress by enhancing reserve mobilization and antioxidant metabolism in wheat.
Collapse
Affiliation(s)
- Kangqi Lei
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, PR China
| | - Shuzhen Sun
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, PR China
| | - Kaitai Zhong
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, PR China
| | - Shiyu Li
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, PR China
| | - Hang Hu
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, PR China
| | - Chuanjiao Sun
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, PR China
| | - Qiaomei Zheng
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, PR China
| | - Zhongwei Tian
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, PR China
| | - Tingbo Dai
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, PR China
| | - Jianyun Sun
- College of Life Sciences Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, PR China.
| |
Collapse
|
14
|
Mardazad N, Khorshidi A, Fallah Shojaei A. Efficient one-pot synthesis and dehydrogenation of tricyclic dihydropyrimidines catalyzed by OMS-2-SO 3H, and application of the functional-chromophore products as colorimetric chemosensors. RSC Adv 2021; 11:12349-12360. [PMID: 35423781 PMCID: PMC8697086 DOI: 10.1039/d1ra01005k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 03/23/2021] [Indexed: 11/04/2022] Open
Abstract
An efficient and convenient one-pot multicomponent reaction (MCR) for the synthesis and dehydrogenation of tricyclic dihydropyrimidine derivatives, catalyzed by –SO3H functionalized octahedral manganese oxide molecular sieves (OMS-2-SO3H) as a novel solid acid catalyst, is reported. All of the organic products and the catalyst were unambiguously characterized with conventional techniques including Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction analysis (XRD), 1H NMR, and 13C NMR spectroscopy. The targeted dehydrogenated chromophore compounds were successfully used as colorimetric chemosensors for detection of transition metals in aqueous solution. For example, 1-[4-(4-hydroxy-3-methoxy-phenyl)-2-methyl-benzo[4,5]imidazo[1,2-a]pyrimidin-3-yl]-ethanone (7d), exhibited high sensitivity and selectivity toward detection of Cr3+ over a panel of other transition metal cations. The interference of foreign ions was found to be negligible. It was found that a 1 : 1 complex of Cr3+ and 7d is responsible for the color change of the solution from ochre to brown. These newly devised chemosensors can also exhibit significant wavelength shifts (up to 100 nm) when used as pH indicators. 7d for example, showed a vivid and sharp color change from pink to yellow in the pH range of 4 to 6. Hyperconjugated products of dihydropyrimidines may act as colorimetric chemosensors.![]()
Collapse
Affiliation(s)
- Neda Mardazad
- Department of Chemistry
- Faculty of Sciences
- University of Guilan
- Rasht
- Iran
| | - Alireza Khorshidi
- Department of Chemistry
- Faculty of Sciences
- University of Guilan
- Rasht
- Iran
| | | |
Collapse
|
15
|
Christou A, Georgiadou EC, Zissimos AM, Christoforou IC, Christofi C, Neocleous D, Dalias P, Torrado SOCA, Argyraki A, Fotopoulos V. Hexavalent chromium leads to differential hormetic or damaging effects in alfalfa (Medicago sativa L.) plants in a concentration-dependent manner by regulating nitro-oxidative and proline metabolism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115379. [PMID: 32841910 DOI: 10.1016/j.envpol.2020.115379] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/16/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
Chromium has been proven to be extremely phytotoxic. This study explored the impacts of increasing Cr(VI) exposure (up to 10 mg L-1 K2Cr2O7) on the growth and development of alfalfa plants and adaptation responses employed, in an environmentally relevant context. The threshold concentration of K2Cr2O7 in irrigation water beyond which stress responses are initiated is 1 mg L-1. Lower Cr(VI) exposure (0.5 mg L-1 K2Cr2O7) induced hormesis, evident through increased biomass and larger leaves, likely mediated by increased NO content (supported by elevated NR enzymatic activity and overexpression of NR and ndh genes). Elevated Cr(VI) exposure (5 and 10 mg L-1 K2Cr2O7) resulted in reduced biomass and smaller leaves, and lower levels of photosynthetic pigment (10 mg L-1 K2Cr2O7). Higher levels of lipid peroxidation, H2O2 and NO contents in these plants suggested nitro-oxidative stress. Stress responses included increased SOD and CAT enzymatic activities, further supported to some extent by MnSOD, FeSOD, Cu/ZnSOD and CAT transcripts levels. GST7 and GST17 gene expression patterns, as well as proline content, P5CS enzymatic activity and corresponding P5CS and P5CR gene expression levels emphasized the role of proline and GSTs in the adaptation responses. Results highlight the importance of managing Cr(VI) levels in irrigation water.
Collapse
Affiliation(s)
- Anastasis Christou
- Agricultural Research Institute, Ministry of Agriculture, Rural Development and Environment, 1516, Nicosia, Cyprus.
| | - Egli C Georgiadou
- Agricultural Research Institute, Ministry of Agriculture, Rural Development and Environment, 1516, Nicosia, Cyprus; Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3603, Lemesos, Cyprus
| | - Andreas M Zissimos
- Geological Survey Department, Ministry of Agriculture, Rural Development and Environment, 1301, Nicosia, Cyprus
| | - Irene C Christoforou
- Geological Survey Department, Ministry of Agriculture, Rural Development and Environment, 1301, Nicosia, Cyprus
| | - Christos Christofi
- Geological Survey Department, Ministry of Agriculture, Rural Development and Environment, 1301, Nicosia, Cyprus
| | - Damianos Neocleous
- Agricultural Research Institute, Ministry of Agriculture, Rural Development and Environment, 1516, Nicosia, Cyprus
| | - Panagiotis Dalias
- Agricultural Research Institute, Ministry of Agriculture, Rural Development and Environment, 1516, Nicosia, Cyprus
| | - Sofia O C A Torrado
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3603, Lemesos, Cyprus
| | - Ariadne Argyraki
- Department of Geology and Geoenvironment, National and Kapodistrian University of Athens, Panepistimiopolis, Zographou, 15784, Athens, Greece
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3603, Lemesos, Cyprus
| |
Collapse
|
16
|
Singh S, Mohan Prasad S, Pratap Singh V. Additional calcium and sulfur manages hexavalent chromium toxicity in Solanum lycopersicum L. and Solanum melongena L. seedlings by involving nitric oxide. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:122607. [PMID: 32768852 DOI: 10.1016/j.jhazmat.2020.122607] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 03/24/2020] [Accepted: 03/27/2020] [Indexed: 05/27/2023]
Abstract
In recent years, nutrient management has gained much attention for mitigating metal stress. But, role of nutrients like calcium (Ca) and sulfur (S) in mitigating Cr(VI) toxicity along with their mechanism of action are still limited. Therefore, the present study was performed to explore role of Ca and S in ameliorating Cr(VI) toxicity in 21 days old seedlings of Solanum lycopersicum L. and Solanum melongena L. Chromium (VI) reduced tolerance index and altered root traits due to greater Cr accumulation in the cell wall and cellular organelles due to down-regulation in thiols and phytochelatins that lead to alterations in photosynthesis. However, Ca or S stimulated vacuolar sequestration of Cr(VI) and reduced its uptake at the cell wall. This was coincided with up-regulation in glutathione-S-transferase activity, and amounts of thiols and phytochelatins. Cr(VI) caused oxidative stress together with up-regulation in superoxide dismutase and catalase, and proline metabolism while Ca and S reversed these effects. Chromium (VI) inhibited nitrate reductase activity while Ca and S reversed this response. NG-nitro-l-arginine methyl ester augmented Cr(VI) toxicity but sodium nitroprusside (SNP) mitigated Cr(VI) toxicity. Overall results show that Ca and S both are able in ameliorating Cr(VI) toxicity and require nitric oxide for this task.
Collapse
Affiliation(s)
- Samiksha Singh
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Prayagraj, 211002, India
| | - Sheo Mohan Prasad
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Prayagraj, 211002, India.
| | - Vijay Pratap Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj, 211002, India
| |
Collapse
|
17
|
Cao X, Tian S, Fu M, Li Y, Sun Y, Liu J, Liu Y. Resveratrol protects human bronchial epithelial cells against nickel-induced toxicity via suppressing p38 MAPK, NF-κB signaling, and NLRP3 inflammasome activation. ENVIRONMENTAL TOXICOLOGY 2020; 35:609-618. [PMID: 31943712 DOI: 10.1002/tox.22896] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/24/2019] [Accepted: 12/27/2019] [Indexed: 06/10/2023]
Abstract
Nickel is a common environmental pollutant that can impair the lung, but the underlying mechanisms have not yet been fully elucidated. Furthermore, natural products are generally used to inhibit cell damage induced by heavy metal. Resveratrol possesses wide biological activities, including anti-inflammation and antioxidative stress. This study was conducted to explore the toxicity of nickel on human bronchial epithelial (BEAS-2B) cells and evaluate the protective effect of resveratrol. The results showed that nickel could induce cell apoptosis, increase oxidative stress, and promote the expression of pro-inflammatory cytokines, including tumor necrosis factor-α, interleukin (IL)-1β, IL-6, IL-8, C-reaction protein. Western blot analysis showed that nickel activated p38 mitogen-activated protein kinase (MAPK), nuclear factor-kappa B, and nucleotide-binding oligomerization domain-like receptor pyrin-domain-containing protein 3 pathways, while resveratrol could reverse these effects. Our results suggested that resveratrol could protect BEAS-2B cells from nickel-induced cytotoxicity. Therefore, resveratrol is a potential chemopreventive agent against nickel-induced lung disease.
Collapse
Affiliation(s)
- Xiangyu Cao
- School of Life Science, Liaoning University, Shenyang, China
| | - Siqi Tian
- School of Life Science, Liaoning University, Shenyang, China
| | - Mingyang Fu
- School of Life Science, Liaoning University, Shenyang, China
| | - Yanmei Li
- Department of Mine, Metallurgy and Geology Engineering, University of Guanajuato, Guanajuato, Mexico
| | - Yueling Sun
- School hospital, Liaoning University, Shenyang, China
| | - Jianli Liu
- School of Life Science, Liaoning University, Shenyang, China
| | - Yue Liu
- School of Life Science, Liaoning University, Shenyang, China
| |
Collapse
|
18
|
Lv Y, Jiang H, Li S, Han B, Liu Y, Yang D, Li J, Yang Q, Wu P, Zhang Z. Sulforaphane prevents chromium-induced lung injury in rats via activation of the Akt/GSK-3β/Fyn pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 259:113812. [PMID: 31884211 DOI: 10.1016/j.envpol.2019.113812] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 06/10/2023]
Abstract
Chromium (Cr) is an internationally recognized carcinogenic hazard that causes serious pulmonary toxicity. However, Cr-induced pulmonary toxicity lacks effective treatment to date. Sulforaphane (SFN), a well-known organosulfur compound, has gained increasing attention because of its unique biological function. This study investigates if SFN could decrease K2Cr2O7-induced pulmonary toxicity and a potential mechanism involved using a rat 35-day Cr-induced pulmonary toxicity model and the mouse alveolar type II epithelial cell line (MLE-12). The results showed that SFN prevented Cr-induced oxidative stress, histopathological lesions, inflammation, apoptosis, and changes in protein kinase B (Akt) and glycogen synthase kinase 3 beta (GSK-3β) levels in vivo and in vitro. However, SFN can not play the protective effect against K2Cr2O7-induced cell injury after treating by an Akt-specific inhibitor (MK-2206 2HCl) in MLE-12 cells. Furthermore, SFN increased the expression of nuclear factor-E2-related factor-2 (Nrf2) phase II detoxification enzymes. Collectively, this study demonstrates that SFN prevents K2Cr2O7-induced lung toxicity in rats through enhancing Nrf2-mediated exogenous antioxidant defenses via activation of the Akt/GSK-3β/Fyn signaling pathway. SFN may be a novel natural substance to cure Cr-induced lung toxicity.
Collapse
Affiliation(s)
- Yueying Lv
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, 150030, China
| | - Huijie Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, 150030, China
| | - Siyu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Bing Han
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Yan Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Daqian Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Jiayi Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Qingyue Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Pengfei Wu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Zhigang Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, 150030, China.
| |
Collapse
|
19
|
Kushwaha BK, Singh VP. Glutathione and hydrogen sulfide are required for sulfur-mediated mitigation of Cr(VI) toxicity in tomato, pea and brinjal seedlings. PHYSIOLOGIA PLANTARUM 2020; 168:406-421. [PMID: 31503325 DOI: 10.1111/ppl.13024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/05/2019] [Accepted: 09/05/2019] [Indexed: 06/10/2023]
Abstract
In plants, investigation on heavy metal toxicity and its mitigation by nutrient elements have gained much attention. However, mechanism(s) associated with nutrients-mediated mitigation of metal toxicity remain elusive. In this study, we have investigated the role and interrelation of glutathione (GSH) and hydrogen sulfide (H2 S) in the regulation of hexavalent chromium [Cr(VI)] toxicity in tomato (Solanum lycopersicum), pea (Pisum sativum) and brinjal (Solanum melongena) seedlings, supplemented with additional sulfur (S). The results show that Cr(VI) significantly reduced growth, total chlorophyll and photosynthetic quantum yield of tomato, pea and brinjal seedlings which was accompanied by enhanced intracellular accumulation of Cr(VI) in roots. Moreover, Cr(VI) enhanced the generation of reactive oxygen species in the studied vegetables, while antioxidant defense system exhibited differential responses. However, additional supply of S alleviated Cr(VI) toxicity. Interestingly, addition of l-buthionine sulfoximine (BSO, a glutathione biosynthesis inhibitor) further increased Cr(VI) toxicity even in the presence of additional S but GSH addition reverses the effect of BSO. Under similar condition, endogenous H2 S, l-cysteine desulfhydrase (DES) activity and cysteine content did not significantly differ when compared to controls. Hydroxylamine (HA, an inhibitor of DES) also increased Cr(VI) toxicity even in the presence of additional S but sodium hydrosulfide (NaHS, an H2 S donor) reverses the effect of HA. Moreover, Cr(VI) toxicity amelioration by NaHS was reversed by the addition of hypotaurine (HT, an H2 S scavenger). Taken together, the results show that GSH which might be derived from supplied S is involved in the mitigation of Cr(VI) toxicity in which H2 S signaling preceded GSH biosynthesis.
Collapse
Affiliation(s)
- Bishwajit K Kushwaha
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, University of Allahabad, Prayagraj, India
| | - Vijay Pratap Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, University of Allahabad, Prayagraj, India
| |
Collapse
|
20
|
Wakeel A, Xu M, Gan Y. Chromium-Induced Reactive Oxygen Species Accumulation by Altering the Enzymatic Antioxidant System and Associated Cytotoxic, Genotoxic, Ultrastructural, and Photosynthetic Changes in Plants. Int J Mol Sci 2020; 21:ijms21030728. [PMID: 31979101 PMCID: PMC7037945 DOI: 10.3390/ijms21030728] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 11/24/2022] Open
Abstract
Chromium (Cr) is one of the top seven toxic heavy metals, being ranked 21st among the abundantly found metals in the earth’s crust. A huge amount of Cr releases from various industries and Cr mines, which is accumulating in the agricultural land, is significantly reducing the crop development, growth, and yield. Chromium mediates phytotoxicity either by direct interaction with different plant parts and metabolic pathways or it generates internal stress by inducing the accumulation of reactive oxygen species (ROS). Thus, the role of Cr-induced ROS in the phytotoxicity is very important. In the current study, we reviewed the most recent publications regarding Cr-induced ROS, Cr-induced alteration in the enzymatic antioxidant system, Cr-induced lipid peroxidation and cell membrane damage, Cr-induced DNA damage and genotoxicity, Cr-induced ultrastructural changes in cell and subcellular level, and Cr-induced alterations in photosynthesis and photosynthetic apparatus. Taken together, we conclude that Cr-induced ROS and the suppression of the enzymatic antioxidant system actually mediate Cr-induced cytotoxic, genotoxic, ultrastructural, and photosynthetic changes in plants.
Collapse
Affiliation(s)
- Abdul Wakeel
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, College of Environment and Planning, Henan University, Kaifeng 475004, China;
| | - Ming Xu
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, College of Environment and Planning, Henan University, Kaifeng 475004, China;
- Correspondence: (M.X.); (Y.G.)
| | - Yinbo Gan
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Correspondence: (M.X.); (Y.G.)
| |
Collapse
|
21
|
Sharma A, Kapoor D, Wang J, Shahzad B, Kumar V, Bali AS, Jasrotia S, Zheng B, Yuan H, Yan D. Chromium Bioaccumulation and Its Impacts on Plants: An Overview. PLANTS (BASEL, SWITZERLAND) 2020; 9:E100. [PMID: 31941115 PMCID: PMC7020214 DOI: 10.3390/plants9010100] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 02/07/2023]
Abstract
Chromium (Cr) is an element naturally occurring in rocky soils and volcanic dust. It has been classified as a carcinogen agent according to the International Agency for Research on Cancer. Therefore, this metal needs an accurate understanding and thorough investigation in soil-plant systems. Due to its high solubility, Cr (VI) is regarded as a hazardous ion, which contaminates groundwater and can be transferred through the food chain. Cr also negatively impacts the growth of plants by impairing their essential metabolic processes. The toxic effects of Cr are correlated with the generation of reactive oxygen species (ROS), which cause oxidative stress in plants. The current review summarizes the understanding of Cr toxicity in plants via discussing the possible mechanisms involved in its uptake, translocation and sub-cellular distribution, along with its interference with the other plant metabolic processes such as chlorophyll biosynthesis, photosynthesis and plant defensive system.
Collapse
Affiliation(s)
- Anket Sharma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Dhriti Kapoor
- School of Bioengineering & Biosciences, Lovely Professional University, Punjab 144411, India
| | - Junfeng Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Babar Shahzad
- School of Land and Food, University of Tasmania, Hobart, Tasmania 7005, Australia
| | - Vinod Kumar
- State Higher Education Department, Jammu and Kashmir 180001, India
| | | | - Shivam Jasrotia
- Department of Zoology, Guru Nanak Dev University, Amritsar 143005, India
| | - Bingsong Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Huwei Yuan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Daoliang Yan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
22
|
Upadhyay S, Singh A, Sinha R, Omer S, Negi K. Colorimetric chemosensors for d-metal ions: A review in the past, present and future prospect. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.05.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
23
|
Gonzalez Ibarra AA, Wrobel K, Yanez Barrientos E, Corrales Escobosa AR, Gutierrez Corona JF, Enciso Donis I, Wrobel K. Impact of Cr(VI) on the oxidation of polyunsaturated fatty acids in Helianthus annuus roots studied by metabolomic tools. CHEMOSPHERE 2019; 220:442-451. [PMID: 30594795 DOI: 10.1016/j.chemosphere.2018.12.145] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/27/2018] [Accepted: 12/19/2018] [Indexed: 05/28/2023]
Abstract
The impact of Cr(VI) in sunflower roots has been studied, focusing on the oxidation of polyunsaturated fatty acids. Plants were grown hydroponically in the presence of 0, 1.0, 5.0 and 25 mgCr L-1. Methanolic root extracts were analyzed by capillary liquid chromatography coupled through negative electrospray ionization to a quadrupole-time of flight mass spectrometry (capHPLC-ESI-QTOF-MS). Using partial least squares algorithm, eighteen features strongly affected by Cr(VI) were detected and annotated as linoleic acid (LA), alpha-linolenic acid (ALA) and sixteen oxidation products containing hydroperoxy-, epoxy-, keto-, epoxyketo- or hydroxy-functionalities, all of them classified as oxylipins. Inspection of the MS/MS spectra acquired for features eluting at different retention times but assigned as a sole compound, confirmed isomers formation: three hydroperoxy-octadecadienoic acids (HpODE), two oxo-octadecadienoic acids (OxoODE) and four epoxyketo-octadecenoic acids (EKODE). Around 70% of metabolites in sunflower LA metabolic pathway were affected by Cr(VI) stress and additionally, four EKODE isomers not included in this pathway were found in the exposed roots. Among ALA-derived oxylipins, 13-epi-12-oxo-phytodienoic acid (OPDA) is of relevance, because of its participation in the activation of secondary metabolism. The abundances of all oxylipins were directly dependent on the Cr(VI) concentration in medium; furthermore, autooxidation of LA to HpODE isomers was observed after incubation with Cr(VI). These results point to the direct involvement of Cr(VI) in non-enzymatic oxidation of fatty acids; since oxylipins are signaling molecules important in plant defensive response, their synthesis under Cr(VI) exposure sustains the ability of sunflower to grow in Cr(VI)-contaminated environments.
Collapse
Affiliation(s)
| | - Katarzyna Wrobel
- Chemistry Department, University of Guanajuato, L. de Retana 5, 36000 Guanajuato, Mexico
| | | | | | | | - Israel Enciso Donis
- Chemistry Department, University of Guanajuato, L. de Retana 5, 36000 Guanajuato, Mexico
| | - Kazimierz Wrobel
- Chemistry Department, University of Guanajuato, L. de Retana 5, 36000 Guanajuato, Mexico.
| |
Collapse
|
24
|
Yao H, Wang J, Zhou Q, Guan XW, Fan YQ, Zhang YM, Wei TB, Lin Q. Acylhydrazone functionalized benzimidazole-based metallogel for the efficient detection and separation of Cr 3. SOFT MATTER 2018; 14:8390-8394. [PMID: 30310908 DOI: 10.1039/c8sm01789a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Chromium(iii) is a kind of microelement and can be converted to the more toxic chromium(vi), which is a carcinogen, by redox cycling. Thus, the development of novel materials for the detection and removal of Cr3+ is a very important issue. A novel metallogel chemosensor (BMG-Fe) based on functionalized benzimidazole (BM) and Fe3+ was constructed, which could fluorescently detect and separate Cr3+. The detection limit of BMG-Fe for Cr3+ is 2.62 × 10-8 M, and it exhibited high sensitivity and selectivity for Cr3+. Meanwhile, the absorbing percentage of BMG-Fe for Cr3+ is 96.36%, indicating a high separation rate. Interestingly, the sensitivity and ingestion capacity of BMG-Fe for Cr3+ are better than that of the simple organogel (BMG). So, the metallogel BMG-Fe could be utilized for the efficient removal of heavy metal ions from waste water.
Collapse
Affiliation(s)
- Hong Yao
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China.
| | - Jiao Wang
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China.
| | - Qi Zhou
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China.
| | - Xiao-Wen Guan
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China.
| | - Yan-Qing Fan
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China.
| | - You-Ming Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China.
| | - Tai-Bao Wei
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China.
| | - Qi Lin
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China.
| |
Collapse
|
25
|
Kundu D, Dey S, Raychaudhuri SS. Chromium (VI) - induced stress response in the plant Plantago ovata Forsk in vitro. Genes Environ 2018; 40:21. [PMID: 30349616 PMCID: PMC6192006 DOI: 10.1186/s41021-018-0109-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 09/19/2018] [Indexed: 12/17/2022] Open
Abstract
Background Plants experience severe physiological stress from heavy metal pollution caused by improper discarding of the industrial wastes. Hexavalent chromium [Cr (VI)] is one of the major heavy metal pollutants in India and is present particularly in some regions where Plantago ovata grows to a great extent. This study was aimed at finding the effects of Cr (VI) on P. ovata and manoeuvres of the plant to combat such heavy metal exposure in vitro. Methods Potassium dichromate was used as a source of Cr (VI) to induce the heavy metal stress. Range of Cr (VI) sublethal doses [0 mM (control), 0.1 mM, 0.3 mM, 0.5 mM, 1 mM, 1.5 mM and1.8 mM] was used to observe its effect on the plant. The seeds of the plant were grown on sucrose-agar media with different concentrations of potassium dichromate, and ten-day old seedlings were then harvested and examined. Results The germination rate reduced below 50% at 1.9 mM Cr (VI) concentration and thus, 0 mM–1.8 mM concentration ranges were found to be suitable for sublethal dose. Morphological changes namely, reduction of the shoot-root length and multiple root development were caused by Cr (VI) in a dose-dependent manner. The plant showed elevated responses against Cr (VI), up to 1.5 mM (10 days treated) in terms of increasing accumulation of secondary metabolites like polyphenols, chlorophyll content (chlorophyll a, b and total chlorophyll), carotenoids and total antioxidant activity. DPPH radical scavenging activity along with malondialdehyde (MDA) content was not significantly elevated with the increase in Cr (VI) concentration indicating that the lipid peroxidation rate within the tissue was low. Phenylalanine ammonia lyase (PAL) and polyphenol oxidase (PPO) gene expressions were upregulated by 1 mM Cr (VI) concentration, which decreased at higher concentrations. The atomic absorption spectroscopy analysis also showed significant accumulation of Cr (VI) in the shoot and root with an increase in the potassium dichromate concentration. Conclusion Cr (VI) reduced the shoot-root length and seed germination in a dose-dependent manner. The plant system tried to combat the Cr (VI) stress by upregulating the stress response genes in the phenylpropanoid pathway along with an increase in polyphenol and antioxidant contents, which were evident from the lowering of lipid peroxidation rate and increase in PAL and PPO gene expressions. Electronic supplementary material The online version of this article (10.1186/s41021-018-0109-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Debangana Kundu
- Department of Biophysics, Molecular Biology, and Bioinformatics, University of Calcutta, 92, APC Road, Kolkata, 700009 India
| | - Sankalan Dey
- Department of Biophysics, Molecular Biology, and Bioinformatics, University of Calcutta, 92, APC Road, Kolkata, 700009 India
| | - Sarmistha Sen Raychaudhuri
- Department of Biophysics, Molecular Biology, and Bioinformatics, University of Calcutta, 92, APC Road, Kolkata, 700009 India
| |
Collapse
|
26
|
Highly Selective Detection of Cr 3 + Ion with Colorimetric & Fluorescent Response Via Chemodosimetric Approach in Aqueous Medium. J Fluoresc 2018; 28:663-670. [PMID: 29654524 DOI: 10.1007/s10895-018-2228-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 03/29/2018] [Indexed: 10/17/2022]
Abstract
So far, very few numbers of chemosensors for Cr3+ ion have been reported. However, the main drawback of reported receptors are the lack of selectivity and other trivalent cations such as Fe3+, Al3+ and anions like F- and -OAc frequently interfere with such assays. This paper present the synthesis, characterization & sensor studies of Schiff base containing naphthalene moiety which selectively detect Cr3+ ion by chemodosimetric approach. Using FT-IR, 1H NMR, 13C NMR and ESI mass spectroscopic techniques the probe was characterized. This receptor exhibit more selectivity and sensitivity towards Cr3+ than other divalent and trivalent cations like Mn2+, Zn2+, Co2+, Ni2+, Cd2+, Cu2+, Hg2+, Fe3+, and Al3+ ions. After the addition of chromium ion the receptor get change from yellow to colorless in aqueous medium. But no color change was observed on the addition of other metal ions. Using UV-Vis and PL studies, it was confirmed that the selective hydrolysis of imine group of receptor by Cr3+ ions takes place with high fluorescence enhancement that is corresponding to 1-naphthylamine. Receptor acts as selective chemodosimeter for Cr3+ ions with 2:1 stoichiometry and micro molar detection limit. This chemodosimetric approach was applied successfully for bio-imaging of HeLa cells.
Collapse
|
27
|
Mahmud JA, Hasanuzzaman M, Nahar K, Rahman A, Hossain MS, Fujita M. Maleic acid assisted improvement of metal chelation and antioxidant metabolism confers chromium tolerance in Brassica juncea L. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 144:216-226. [PMID: 28624590 DOI: 10.1016/j.ecoenv.2017.06.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 05/19/2017] [Accepted: 06/02/2017] [Indexed: 05/21/2023]
Abstract
Chromium (Cr) is a highly toxic environmental pollutant that negatively affects plant growth and development. Thus, remediating Cr from soil or increasing plant tolerance against Cr stress is urgent. Organic acids are recognized as agents of phytoremediation and as exogenous protectants, but using maleic acid (MA) to attain these results has not yet been studied. Therefore, our study investigated the effects of MA on Cr uptake and mitigation of Cr toxicity. We treated 8-d-old Indian mustard (Brassica juncea L.) seedlings with Cr (0.15mM and 0.3mM K2CrO4, 5 days) alone and in combination with MA (0.25mM) in a semi-hydroponic medium. Under Cr stress, plants accumulated Cr in both the roots and shoots in a dose-dependent manner, where the roots showed higher accumulation. Chromium stress reduced the growth and biomass of the Indian mustard plants by reducing water status and photosynthetic pigments, and increased oxidative damage due to generation of toxic reactive oxygen species (ROS) and methylglyoxal (MG). Chromium stress also interfered with the function of the antioxidant defense and glyoxalase systems. However, using MA in the Cr-stressed plants further increased Cr uptake in the roots, but it slightly reduced the translocation of Cr from the roots to the shoots at a lower dose of Cr and significantly at a higher dose. Moreover, MA also increased the other non-protein thiols (NPTs) containing phytochelatin (PC) content of the seedlings, which reduced Cr toxicity. Supplementing the stressed plants with MA upregulated the non-enzymatic antioxidants (ascorbate, AsA; glutathione, GSH); the activities of the enzymatic antioxidants including ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), glutathione reductase (GR), glutathione peroxidase (GPX), superoxide dismutase (SOD), and catalase (CAT); and the enzymes of the glyoxalase system including glyoxalase I (Gly I) and glyoxalase II (Gly II); and finally reduced oxidative damage and increased the chlorophyll content and water status as well the growth and biomass of the plants. Our findings suggested two potential uses of MA: first, enhancing phytoremediation, principally phytostabilization and second, working as an exogenous protectant to enhance Cr tolerance.
Collapse
Affiliation(s)
- Jubayer Al Mahmud
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan; Department of Agroforestry and Environmental Science, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh.
| | - Kamrun Nahar
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan; Department of Agricultural Botany, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh
| | - Anisur Rahman
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan; Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh
| | - Md Shahadat Hossain
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan.
| |
Collapse
|
28
|
Mahmud JA, Hasanuzzaman M, Nahar K, Rahman A, Hossain MS, Fujita M. γ-aminobutyric acid (GABA) confers chromium stress tolerance in Brassica juncea L. by modulating the antioxidant defense and glyoxalase systems. ECOTOXICOLOGY (LONDON, ENGLAND) 2017; 26:675-690. [PMID: 28409415 DOI: 10.1007/s10646-017-1800-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/30/2017] [Indexed: 05/19/2023]
Abstract
Chromium (Cr) toxicity is hazardous to the seed germination, growth, and development of plants. γ-aminobutyric acid (GABA) is a non-protein amino acid and is involved in stress tolerance in plants. To investigate the effects of GABA in alleviating Cr toxicity, we treated eight-d-old mustard (Brassica juncea L.) seedlings with Cr (0.15 and 0.3 mM K2CrO4, 5 days) alone and in combination with GABA (125 µM) in a semi-hydroponic medium. The roots and shoots of the seedlings accumulated Cr in a dose-dependent manner, which led to an increase in oxidative damage [lipid peroxidation; hydrogen peroxide (H2O2) content; superoxide (O2•-) generation; lipoxygenase (LOX) activity], methylglyoxal (MG) content, and disrupted antioxidant defense and glyoxalase systems. Chromium stress also reduced growth, leaf relative water content (RWC), and chlorophyll (chl) content but increased phytochelatin (PC) and proline (Pro) content. Furthermore, supplementing the Cr-treated seedlings with GABA reduced Cr uptake and upregulated the non-enzymatic antioxidants (ascorbate, AsA; glutathione, GSH) and the activities of the enzymatic antioxidants including ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), glutathione reductase (GR), glutathione peroxidase (GPX), superoxide dismutase (SOD), catalase (CAT), glyoxalase I (Gly I), and glyoxalase II (Gly II), and finally reduced oxidative damage. Adding GABA also increased leaf RWC and chl content, decreased Pro and PC content, and restored plant growth. These findings shed light on the effect of GABA in improving the physiological mechanisms of mustard seedlings in response to Cr stress.
Collapse
Affiliation(s)
- Jubayer Al Mahmud
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa, 761-0795, Japan
- Department of Agroforestry and Environmental Science, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka, 1207, Bangladesh
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka, 1207, Bangladesh
| | - Kamrun Nahar
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa, 761-0795, Japan
- Department of Agricultural Botany, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka, 1207, Bangladesh
| | - Anisur Rahman
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa, 761-0795, Japan
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka, 1207, Bangladesh
| | - Md Shahadat Hossain
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa, 761-0795, Japan
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa, 761-0795, Japan.
| |
Collapse
|
29
|
Gomes MADC, Hauser-Davis RA, Suzuki MS, Vitória AP. Plant chromium uptake and transport, physiological effects and recent advances in molecular investigations. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 140:55-64. [PMID: 28231506 DOI: 10.1016/j.ecoenv.2017.01.042] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 01/20/2017] [Accepted: 01/24/2017] [Indexed: 05/13/2023]
Abstract
Increasingly, anthropogenic perturbations of the biosphere manifest in a broad array of global phenomena, causing widespread contamination of most ecosystems, with high dispersion rates of many contaminants throughout different environmental compartments, including metals. Chromium (Cr) contamination in particular, is, increasingly, posing a serious threat to the environment, emerging as a major health hazard to the biota. However, although the molecular and physiological mechanisms of plant responses to many heavy metals, especially lead (Pb) and cadmium (Cd), have been focused upon in recent years, chromium has attracted significantly less attention. In this context, this review discusses aspects of Cr uptake and transport, some physiological and biochemical effects of Cr exposure in plants, and molecular defense mechanisms against this metal. Recent advances in determining these responses, in fields of knowledge such as genomics, proteomics and metallomics, are discussed herein.
Collapse
Affiliation(s)
- Maria Angélica da Conceição Gomes
- Laboratório de Ciências Ambientais (LCA), Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense ''Darcy Ribeiro (UENF), Av. Alberto Lamego, 2000, Parque Califórnia, Campos dos Goytacazes, CEP:28013-602 Rio de Janeiro, RJ, Brasil.
| | - Rachel Ann Hauser-Davis
- Centro de Estudos da Saúde do Trabalhador e Ecologia Humana (CESTEH), ENSP, FIOCRUZ, Rua Leopoldo Bulhões, 1480, 21041-210 Rio de Janeiro, RJ, Brasil
| | - Marina Satika Suzuki
- Laboratório de Ciências Ambientais (LCA), Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense ''Darcy Ribeiro (UENF), Av. Alberto Lamego, 2000, Parque Califórnia, Campos dos Goytacazes, CEP:28013-602 Rio de Janeiro, RJ, Brasil
| | - Angela Pierre Vitória
- Laboratório de Ciências Ambientais (LCA), Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense ''Darcy Ribeiro (UENF), Av. Alberto Lamego, 2000, Parque Califórnia, Campos dos Goytacazes, CEP:28013-602 Rio de Janeiro, RJ, Brasil
| |
Collapse
|
30
|
Scoccianti V, Bucchini AE, Iacobucci M, Ruiz KB, Biondi S. Oxidative stress and antioxidant responses to increasing concentrations of trivalent chromium in the Andean crop species Chenopodium quinoa Willd. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 133:25-35. [PMID: 27400061 DOI: 10.1016/j.ecoenv.2016.06.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/16/2016] [Accepted: 06/20/2016] [Indexed: 06/06/2023]
Abstract
Quinoa (Chenopodium quinoa Willd), an ancient Andean seed crop, exhibits exceptional nutritional properties and resistance to abiotic stress. The species' tolerance to heavy metals has, however, not yet been investigated nor its ability to take up and translocate chromium (Cr). This study aimed to investigate the metabolic adjustments occurring upon exposure of quinoa to several concentrations (0.01-5mM) of CrCl3. Young hydroponically grown plants were used to evaluate Cr uptake, growth, oxidative stress, and other biochemical parameters three and/or seven days after treatment. Leaves accumulated the lowest amounts of Cr, while roots and stems accumulated the most at low and at high metal concentrations, respectively. Fresh weight and photosynthetic pigments were reduced only by the higher Cr(III) doses. Substantially increased lipid peroxidation, hydrogen peroxide, and proline levels were observed only with 5mM Cr(III). Except for a significant decrease at day 7 with 5mM Cr(III), total polyphenols and flavonoids maintained control levels in Cr(III)-treated plants, whereas antioxidant activity increased in a dose-dependent manner. Maximum polyamine accumulation was observed in 1mM CrCl3-treated plants. Even though α- and γ-tocopherols also showed enhanced levels only with the 1mM concentration, tyrosine aminotransferase (TAT, EC 2.6.1.5) activity increased under Cr(III) treatment in a dose- and time-dependent manner. Taken together, results suggest that polyamines, tocopherols, and TAT activity could contribute to tolerance to 1mM Cr(III), but not to the highest concentration that, instead, generated oxidative stress.
Collapse
Affiliation(s)
- Valeria Scoccianti
- Dipartimento di Scienze Biomolecolari, Università di Urbino Carlo Bo, via Bramante 28, 61029 Urbino, Italy
| | - Anahi E Bucchini
- Dipartimento di Scienze Biomolecolari, Università di Urbino Carlo Bo, via Bramante 28, 61029 Urbino, Italy
| | - Marta Iacobucci
- Dipartimento di Scienze Biomolecolari, Università di Urbino Carlo Bo, via Bramante 28, 61029 Urbino, Italy
| | - Karina B Ruiz
- Dipartimento BiGeA, Università di Bologna, via Irnerio 42, 40126 Bologna, Italy
| | - Stefania Biondi
- Dipartimento BiGeA, Università di Bologna, via Irnerio 42, 40126 Bologna, Italy.
| |
Collapse
|
31
|
Dias MC, Moutinho-Pereira J, Correia C, Monteiro C, Araújo M, Brüggemann W, Santos C. Physiological mechanisms to cope with Cr(VI) toxicity in lettuce: can lettuce be used in Cr phytoremediation? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:15627-37. [PMID: 27130342 DOI: 10.1007/s11356-016-6735-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 04/20/2016] [Indexed: 06/05/2023]
Abstract
This research aims at identifying the main deleterious effects of Cr(VI) on the photosynthetic apparatus and at selecting the most sensitive endpoints related to photosynthesis. To achieve this goal, we used lettuce (Lactuca sativa), a sensible ecotoxicological crop model. Three-week-old plants were exposed to 0, 50, 150 and 200 mg L(-1) of Cr(VI). These concentrations ranged from levels admitted in irrigation waters to values found in several Cr industry effluents and heavily contaminated environments. After 30 days of exposure, plants accumulated Cr preferably in roots and showed nutritional impairment, with decreases of K, Mg, Fe and Zn in both roots and leaves. Cr(VI)-exposed plants showed decreased levels of chlorophyll (Chl) a and anthocyanins, as well as decreased effective quantum yield of photostystem II (ΦPSII) and photochemical Chl fluorescence quenching (qp), but increases in the non-photochemical Chl fluorescence quenching (NPQ) and in the de-epoxidation state (DEP) of the xanthophyll cycle. Net CO2 assimilation rate (P N ) and RuBisCO activity were mostly impaired in the highest Cr(VI) concentration tested. Concerning the final products of photosynthesis, starch content was not affected, while soluble sugar contents increased. These alterations were accompanied by a reduction in protein content and in plant growth. Our results support that endpoints related to the photosynthesis photochemical processes (ΦPSII and the qp) and the content of anthocyanins are sensitive predictors of Cr(VI) toxicity. The advantages of using these parameters as biomarkers for Cr toxicity in plants are discussed. Finally, we report that, despite showing physiological disorders, L. sativa plants survived and accumulated high doses of Cr, and their use in environmental/decontamination studies is open to debate.
Collapse
Affiliation(s)
- Maria Celeste Dias
- Centre for Functional Ecology (CEF) and Department of Life Science, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal.
- Department of Chemistry and QOPNA, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - José Moutinho-Pereira
- Department of Biology and Environment, Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Apartado 1013, 5001-801, Vila Real, Portugal
| | - Carlos Correia
- Department of Biology and Environment, Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Apartado 1013, 5001-801, Vila Real, Portugal
| | - Cristina Monteiro
- Laboratory of Biotechnology and Cytometry, University Aveiro, 3810-193, Aveiro, Portugal
| | - Márcia Araújo
- Laboratory of Biotechnology and Cytometry, University Aveiro, 3810-193, Aveiro, Portugal
| | - Wolfgang Brüggemann
- Department of Ecology, Evolution and Diversity, Goethe University, Max von Laue Str. 13, 60438, Frankfurt am Main, Germany
- Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325, Frankfurt am Main, Germany
| | - Conceição Santos
- Department of Biology & GreenUP/Citab-UP, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal
| |
Collapse
|
32
|
Huang X, Fan C, Wang Z, Zhan X, Pei M, Lu Z. A ratiometric and on–off fluorescent chemosensor for highly selective detection of Cr3+ ion based on an ICT mechanism. INORG CHEM COMMUN 2015. [DOI: 10.1016/j.inoche.2015.04.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
33
|
Kováčik J, Klejdus B, Babula P, Soares ME, Hedbavny J, de Lourdes Bastos M. Chromium speciation and biochemical changes vary in relation to plant ploidy. J Inorg Biochem 2015; 145:70-8. [DOI: 10.1016/j.jinorgbio.2015.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 01/07/2015] [Accepted: 01/09/2015] [Indexed: 11/28/2022]
|
34
|
Kováčik J, Babula P, Hedbavny J, Kryštofová O, Provaznik I. Physiology and methodology of chromium toxicity using alga Scenedesmus quadricauda as model object. CHEMOSPHERE 2015; 120:23-30. [PMID: 24972306 DOI: 10.1016/j.chemosphere.2014.05.074] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 05/15/2014] [Accepted: 05/23/2014] [Indexed: 06/03/2023]
Abstract
Physiological responses of Scenedesmus quadricauda to Cr(VI) and Cr(III) excess were studied in buffer with circumneutral pH (6.5). Total Cr content was similar in low (1 μM of both oxidation states) but higher in 10 μM Cr(VI) treatment and high accumulation potential was detected (80-82% and 41-65% in 1 and 10 μM treatments, respectively). Specific fluorescence indicator (6-((anthracen-9-yl) methyleneamino)-2H-chromen-2-one) confirmed partial reduction of Cr(VI) to Cr(III) under exposure conditions. Viability and chlorophyll autofluorescence were more depleted by Cr(VI) while Cr(III) stimulated increase in ROS and lipid peroxidation. Antioxidative enzyme activities showed significantly higher values in 10 μM treatments of both Cr oxidation states. Depletion of mitochondrial proteins was not reflected in alteration of total soluble proteins indicating sensitivity of this organelle to Cr and TTC test showed no clear oxidation state-related effect. In this view, "Cr(VI) is not more toxic than Cr(III)" at least for some parameters. Subsequent study with the application of 10 μM Cr(VI) confirmed that HEPES buffer is more suitable exposure solution for toxicological studied than water or inorganic salts (higher chlorophyll autofluorescence was observed) and pH 6.5 is more suitable than low or high pH (4.5 or 8.5) in terms of Cr uptake. Another known Cr(III) fluorescence indicator (naphthalimide-rhodamine) also confirmed partial reduction of Cr(VI) to Cr(III) at acidic pH but only traces were seen at alkaline pH.
Collapse
Affiliation(s)
- Jozef Kováčik
- Institute of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic.
| | - Petr Babula
- Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackého 1/3, 612 42 Brno, Czech Republic
| | - Josef Hedbavny
- Institute of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
| | - Olga Kryštofová
- Institute of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
| | - Ivo Provaznik
- International Clinical Research Center, Center of Biomedical Engineering, St. Anne's University Hospital Brno, Pekařská 53, 656 91 Brno, Czech Republic
| |
Collapse
|
35
|
de Oliveira LM, Lessl JT, Gress J, Tisarum R, Guilherme LRG, Ma LQ. Chromate and phosphate inhibited each other's uptake and translocation in arsenic hyperaccumulator Pteris vittata L. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 197:240-246. [PMID: 25434865 DOI: 10.1016/j.envpol.2014.11.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 10/29/2014] [Accepted: 11/04/2014] [Indexed: 05/27/2023]
Abstract
We investigated the effects of chromate (CrVI) and phosphate (P) on their uptake and translocation in As-hyperaccumulator Pteris vittata (PV). Plants were exposed to 1) 0.10 mM CrVI and 0, 0.25, 1.25, or 2.50 mM P or 2) 0.25 mM P and 0, 0.50, 2.5 or 5.0 mM CrVI for 24 h in hydroponics. PV accumulated 2919 mg/kg Cr in the roots at CrVI₀.₁₀, and 5100 and 3500 mg/kg P in the fronds and roots at P₀.₂₅. When co-present, CrVI and P inhibited each other's uptake in PV. Increasing P concentrations reduced Cr root concentrations by 62-82% whereas increasing CrVI concentrations reduced frond P concentrations by 52-59% but increased root P concentrations by 11-15%. Chromate reduced P transport, with more P being accumulated in PV roots. Though CrVI was supplied, 64-78% and 92-93% CrIII were in PV fronds and roots. Based on X-ray diffraction, Cr₂O₃ was detected in the roots confirming CrVI reduction to CrIII by PV. In short, CrVI and P inhibited each other in uptake and translocation by PV, and CrVI reduction to CrIII in PV roots served as its detoxification mechanism. The finding helps to understand the interactions of P and Cr during their uptake in PV.
Collapse
Affiliation(s)
- Letúzia M de Oliveira
- Soil and Water Science Department, University of Florida, Gainesville, FL 32611, USA
| | - Jason T Lessl
- Soil and Water Science Department, University of Florida, Gainesville, FL 32611, USA
| | - Julia Gress
- Soil and Water Science Department, University of Florida, Gainesville, FL 32611, USA
| | - Rujira Tisarum
- Soil and Water Science Department, University of Florida, Gainesville, FL 32611, USA
| | - Luiz R G Guilherme
- Soil Science Department, Federal University of Lavras, Lavras 37200-000, Brazil
| | - Lena Q Ma
- Soil and Water Science Department, University of Florida, Gainesville, FL 32611, USA; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210046, China.
| |
Collapse
|
36
|
Fan C, Huang X, Black CA, Shen X, Qi J, Yi Y, Lu Z, Nie Y, Sun G. A fast-response, fluorescent ‘turn-on’ chemosensor for selective detection of Cr3+. RSC Adv 2015. [DOI: 10.1039/c5ra11460h] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A highly selective and sensitive chemosensor 3 for Cr3+ detection was designed and synthesized, which showed a fast turn-on fluorescence response under physiological conditions.
Collapse
Affiliation(s)
- Chunhua Fan
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Ximing Huang
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Cory A. Black
- The Australian Wine Research Institute
- Glen Osmond
- Australia
| | - Xingxing Shen
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Organic Solids
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Junjie Qi
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Yuanping Yi
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Organic Solids
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Zhengliang Lu
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Yong Nie
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Guoxin Sun
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| |
Collapse
|
37
|
Kováčik J, Babula P, Klejdus B, Hedbavny J. Comparison of oxidative stress in four Tillandsia species exposed to cadmium. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 80:33-40. [PMID: 24721549 DOI: 10.1016/j.plaphy.2014.03.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 03/17/2014] [Indexed: 05/09/2023]
Abstract
This is first study comparing four morphologically variable species of the genus Tillandsia and therefore various responses to the cadmium (Cd) action were expected. In accordance, Cd accumulation increased in order Tillandsia fasciculata < Tillandsia brachycaulos < Tillandsia pruinosa < Tillandsia capillaris, reaching 29.6 and 197.4 μg g(-1) DW in first and last species after watering with 2 μM Cd(2+) solution over 30 days. Fluorescence visualization of oxidative stress confirmed increase in ROS and especially elevation in hydroperoxides though no visible symptoms appeared on the plants. At the same time, nitric oxide generation and nitroso-glutathione depletion by Cd treatment were typically observed. Fluorescence staining of Cd using two dyes (PhenGreen and Leadmium) showed that Leadmium fits better with AAS quantification. Macro- and micro-nutrients were not considerably affected except for zinc. Reduced glutathione content was the highest in control T. fasciculata while oxidized glutathione in T. capillaris. Ascorbic acid amount revealed extreme quantitative differences among species and decreased in T. fasciculata only. Free amino acids accumulation was similar among species except for T. capillaris and Cd caused both depletion and increase but without high quantitative differences. Data are explanatively discussed in the context of limited literature related to oxidative stress in epiphytic plants and with general responses of plants to cadmium/heavy metals.
Collapse
Affiliation(s)
- Jozef Kováčik
- Institute of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic.
| | - Petr Babula
- Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackého 1/3, 612 42 Brno, Czech Republic
| | - Bořivoj Klejdus
- Institute of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
| | - Josef Hedbavny
- Institute of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
| |
Collapse
|
38
|
Kováčik J, Babula P, Hedbavny J, Klejdus B. Hexavalent chromium damages chamomile plants by alteration of antioxidants and its uptake is prevented by calcium. JOURNAL OF HAZARDOUS MATERIALS 2014; 273:110-7. [PMID: 24727012 DOI: 10.1016/j.jhazmat.2014.03.040] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 03/14/2014] [Accepted: 03/15/2014] [Indexed: 05/18/2023]
Abstract
Toxicity of low (3μM) and high (60 and 120μM) concentrations of hexavalent chromium/Cr(VI) in chamomile plants was studied. Fluorescence staining confirmed reduction of Cr(VI) to Cr(III). Cr was mainly accumulated in the roots with translocation factor <0.007. Notwithstanding this, both shoots and roots revealed increase in oxidative stress and depletion of glutathione, total thiols, ascorbic acid and activities of glutathione reductase and partially ascorbate peroxidase mainly at 120μM Cr. Though some protective mechanisms were detected (elevation of nitric oxide, enhancement of GPX activity and increase in phenols and lignin), this was not sufficient to counteract the oxidative damage. Consequently, soluble proteins, tissue water content and biomass production were considerably depleted. Surprising increase in some mineral nutrients in roots (Ca, Fe, Zn and Cu) was also detected. Subsequent experiment confirmed that exogenous calcium suppressed oxidative symptoms and Cr uptake but growth of chamomile seedlings was not improved. Alteration of naturally present reductants could be a reason for Cr(III) signal detected using specific fluorescence reagent: in vitro assay confirmed disappearance of ascorbic acid in equimolar mixture with dichromate (>96% at pH 4 and 7) while such response of glutathione was substantially less visible.
Collapse
Affiliation(s)
- Jozef Kováčik
- Institute of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic.
| | - Petr Babula
- Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackého 1/3, 612 42 Brno, Czech Republic
| | - Josef Hedbavny
- Institute of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
| | - Bořivoj Klejdus
- Institute of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
| |
Collapse
|
39
|
Kováčik J, Babula P, Klejdus B, Hedbavny J, Jarošová M. Unexpected behavior of some nitric oxide modulators under cadmium excess in plant tissue. PLoS One 2014; 9:e91685. [PMID: 24626462 PMCID: PMC3953596 DOI: 10.1371/journal.pone.0091685] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 02/14/2014] [Indexed: 01/12/2023] Open
Abstract
Various nitric oxide modulators (NO donors - SNP, GSNO, DEA NONOate and scavengers – PTIO, cPTIO) were tested to highlight the role of NO under Cd excess in various ontogenetic stages of chamomile (Matricaria chamomilla). Surprisingly, compared to Cd alone, SNP and PTIO elevated Cd uptake (confirmed also by PhenGreen staining) but depleted glutathione (partially ascorbic acid) and phytochelatins PC2 and PC3 in both older plants (cultured hydroponically) and seedlings (cultured in deionised water). Despite these anomalous impacts, fluorescence staining of NO and ROS confirmed predictable assumptions and revealed reciprocal changes (decrease in NO but increase in ROS after PTIO addition and the opposite after SNP application). Subsequent tests using alternative modulators and seedlings confirmed changes to NO and ROS after application of GSNO and DEA NONOate as mentioned above for SNP while cPTIO altered only NO level (depletion). On the contrary to SNP and PTIO, GSNO, DEA NONOate and cPTIO did not elevate Cd content and phytochelatins (PC2, PC3) were rather elevated. These data provide evidence that various NO modulators are useful in terms of NO and ROS manipulation but interactions with intact plants affect metal uptake and must therefore be used with caution. In this view, cPTIO and DEA NONOate revealed the less pronounced side impacts and are recommended as suitable NO scavenger/donor in plant physiological studies under Cd excess.
Collapse
Affiliation(s)
- Jozef Kováčik
- Institute of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Brno, Czech Republic
- CEITEC – Central European Institute of Technology, Mendel University in Brno, Brno, Czech Republic
- * E-mail:
| | - Petr Babula
- Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Bořivoj Klejdus
- Institute of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Brno, Czech Republic
- CEITEC – Central European Institute of Technology, Mendel University in Brno, Brno, Czech Republic
| | - Josef Hedbavny
- Institute of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Brno, Czech Republic
| | - Markéta Jarošová
- Institute of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Brno, Czech Republic
| |
Collapse
|
40
|
Kováčik J, Babula P, Hedbavny J, Švec P. Manganese-induced oxidative stress in two ontogenetic stages of chamomile and amelioration by nitric oxide. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 215-216:1-10. [PMID: 24388509 DOI: 10.1016/j.plantsci.2013.10.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 10/21/2013] [Accepted: 10/26/2013] [Indexed: 06/03/2023]
Abstract
Impact of manganese (Mn(2+)) excess (100, 500 and 1000 μM over 7 days) on two ontogenetic stages (7-week-old plants and 7-day-old seedlings) of Matricaria chamomilla was compared. Mn excess depressed growth of seedlings (but not germination) and stimulated oxidative stress (ROS and lipid peroxidation) in both plants and seedlings. Growth inhibition could be evoked by higher Mn uptake and higher translocation factor in seedlings than in plants. Total thiols staining revealed elevation in almost all treatments. In 7-week-old plants, activity of peroxidases increased slightly and rather decreased under high Mn doses. Superoxide rather than hydrogen peroxide contributed to visualized ROS presence. Fluorescence of nitric oxide (NO) showed stimulation in plants but decrease in seedlings. Impact of exogenous nitric oxide donor (sodium nitroprusside/SNP) was therefore tested and results showed amelioration of 1000 μM Mn-induced oxidative stress in seedlings (decrease in H2O2 and increase in NO content while antioxidative enzyme activities were variably affected) concomitantly with depleted Mn accumulation. It is concluded that NO participates in tolerance to Mn excess but negative effects of the highest SNP dose were also observed. Extensive fluorescence microscopy is also explanatively discussed.
Collapse
Affiliation(s)
- Jozef Kováčik
- Institute of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic.
| | - Petr Babula
- Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackého 1/3, 612 42 Brno, Czech Republic
| | - Josef Hedbavny
- Institute of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
| | - Pavel Švec
- Institute of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
| |
Collapse
|