1
|
Qiu M, Tian M, Sun Y, Li H, Huang W, Ouyang H, Lin S, Zhang C, Wang M, Wang Y. Decoding the biochemical dialogue: metabolomic insights into soybean defense strategies against diverse pathogens. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2234-2250. [PMID: 38965141 DOI: 10.1007/s11427-023-2596-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/15/2024] [Indexed: 07/06/2024]
Abstract
Soybean, a crucial global leguminous crop, confronts persistent threats from diverse pathogens, exerting a profound impact on global yields. While genetic dimensions of soybean-pathogen interactions have garnered attention, the intricate biochemical responses remain poorly elucidated. In this study, we applied targeted and untargeted liquid chromatography coupled to mass spectrometry (LC-MS) metabolite profiling to dissect the complex interplay between soybeans and five distinct pathogens. Our analysis uncovered 627 idMS/MS spectra, leading to the identification of four main modules, encompassing flavonoids, isoflavonoids, triterpenoids, and amino acids and peptides, alongside other compounds such as phenolics. Profound shifts were observed in both primary and secondary metabolism in response to pathogenic infections. Particularly notable were the bidirectional changes in total flavonoids across diverse pathogenic inoculations, while triterpenoids exhibited a general declining trend. Noteworthy among the highly inducible total flavonoids were known representative anti-pathogen compounds (glyceollin I), backbone forms of isoflavonoids (daidzein, genistein, glycitein, formononetin), and newly purified compounds in this study (prunin). Subsequently, we delved into the biological roles of these five compounds, validating their diverse functions against pathogens: prunin significantly inhibited the vegetative growth and virulence of Phytophthora sojae; genistein exhibited a pronounced inhibitory effect on the vegetative growth and virulence of Phomopsis longicolla; daidzein and formononetin displayed significant repressive effects on the virulence of P. longicolla. This study underscores the potent utility of metabolomic tools, providing in-depth insights into plant-pathogen interactions from a biochemical perspective. The findings not only contribute to plant pathology but also offer strategic pathways for bolstering plant resistance against diseases on a broader scale.
Collapse
Affiliation(s)
- Min Qiu
- Sanya Institute of Nanjing Agricultural University, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Mengjun Tian
- Sanya Institute of Nanjing Agricultural University, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yaru Sun
- Sanya Institute of Nanjing Agricultural University, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Huaibo Li
- Sanya Institute of Nanjing Agricultural University, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenwen Huang
- Sanya Institute of Nanjing Agricultural University, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haibing Ouyang
- Sanya Institute of Nanjing Agricultural University, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shaoyan Lin
- China State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chen Zhang
- Sanya Institute of Nanjing Agricultural University, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ming Wang
- Sanya Institute of Nanjing Agricultural University, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China.
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China.
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China.
| | - Yuanchao Wang
- Sanya Institute of Nanjing Agricultural University, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China.
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China.
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
2
|
Elattar MM, Darwish RS, Hammoda HM, Dawood HM. An ethnopharmacological, phytochemical, and pharmacological overview of onion (Allium cepa L.). JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117779. [PMID: 38262524 DOI: 10.1016/j.jep.2024.117779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/16/2023] [Accepted: 01/15/2024] [Indexed: 01/25/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Onion (Allium cepa L.) is one of the most widely distributed species within the Allium genus of family Amaryllidaceae. Onion has been esteemed for its medicinal properties since antiquity. It has been consumed for centuries in various indigenous cultures for the management of several ailments including microbial infections, respiratory, gastrointestinal, skin and cardio-vascular disorders, diabetes, renal colic, rheumatism, sexual impotence, menstrual pain, and headache. However, so far, there is a scarcity of recent data that compiles the plant chemistry, traditional practices, biological features, and toxicity. AIM OF THE WORK The aim of this review is to provide a comprehensive and analytical overview of ethnopharmacological uses, phytochemistry, pharmacology, industrial applications, quality control, and toxicology of onion, to offer new perspectives and broad scopes for future studies. MATERIALS AND METHODS The information gathered in this review was obtained from various sources including books, scientific databases such as Science Direct, Wiley, PubMed, Google Scholar, and other domestic and foreign literature. RESULTS Onion has a long history of use as a traditional medicine for management of various conditions including infectious, inflammatory, respiratory, cardiovascular diseases, diabetes, and erectile dysfunction. More than 400 compounds have been identified in onion including flavonoids, phenolic acids, amino acids, peptides, saponins and fatty acids. The plant extracts and compounds showed various pharmacological activities such as antimicrobial, antidiabetic, anti-inflammatory, anti-hyperlipidemic, anticancer, aphrodisiac, cardioprotective, and neuroprotective activities. In addition to its predominant medicinal uses, onion has found various applications in the functional food industry. CONCLUSION Extensive literature analysis reveals that onion extracts and bioactive constituents possess diverse pharmacological activities that can be beneficial for treating various diseases. However, the current research primarily revolves around the documentation of ethnic pharmacology and predominantly consists of in vitro studies, with relatively limited in vivo and clinical studies. Consequently, it is imperative for future investigations to prioritize and expand the scope of in vivo and clinical research. Additionally, it is strongly recommended to direct further research efforts towards toxicity studies and quality control of the plant. These studies will help bridge the current knowledge gaps and establish a solid basis for exploring the plant's potential uses in a clinical setting.
Collapse
Affiliation(s)
- Mariam M Elattar
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Egypt.
| | - Reham S Darwish
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Egypt
| | - Hala M Hammoda
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Egypt
| | - Hend M Dawood
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Egypt
| |
Collapse
|
3
|
Sakane K, Kunimoto M, Furumoto K, Shigyo M, Sasaki K, Ito SI. The SIX5 Protein in Fusarium oxysporum f. sp. cepae Acts as an Avirulence Effector toward Shallot ( Allium cepa L. Aggregatum Group). Microorganisms 2023; 11:2861. [PMID: 38138005 PMCID: PMC10745378 DOI: 10.3390/microorganisms11122861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
Fusarium oxysporum f. sp. cepae (Foc) causes basal rot disease in Allium species, including onions (Allium cepa L.) and shallots (A. cepa L. Aggregatum group). Among Allium species, shallots can be crossbred with onions and are relatively more resistant to Foc than onions. Thus, shallots are considered a potential disease-resistant resource for onions. However, the mechanisms underlying the molecular interactions between shallots and Foc remain unclear. This study demonstrated that SIX5, an effector derived from Foc (FocSIX5), acts as an avirulence effector in shallots. We achieved this by generating a FocSIX5 gene knockout mutant in Foc, for which experiments which revealed that it caused more severe wilt symptoms in Foc-resistant shallots than the wild-type Foc and FocSIX5 gene complementation mutants. Moreover, we demonstrated that a single amino acid substitution (R67K) in FocSIX5 was insufficient to overcome shallot resistance to Foc.
Collapse
Affiliation(s)
- Kosei Sakane
- The United Graduate School of Agricultural Sciences, Tottori University, Tottori 680-8553, Japan;
| | - Masaaki Kunimoto
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Japan; (M.K.); (K.F.); (M.S.)
| | - Kazuki Furumoto
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Japan; (M.K.); (K.F.); (M.S.)
| | - Masayoshi Shigyo
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Japan; (M.K.); (K.F.); (M.S.)
| | - Kazunori Sasaki
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Japan; (M.K.); (K.F.); (M.S.)
- Research Center for Thermotolerant Microbial Resources (RCTMR), Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Shin-ichi Ito
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Japan; (M.K.); (K.F.); (M.S.)
- Research Center for Thermotolerant Microbial Resources (RCTMR), Yamaguchi University, Yamaguchi 753-8515, Japan
| |
Collapse
|
4
|
Oliete B, Lubbers S, Fournier C, Jeandroz S, Saurel R. Effect of biotic stress on the presence of secondary metabolites in field pea grains. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:4942-4948. [PMID: 35275406 DOI: 10.1002/jsfa.11861] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/23/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The presence of secondary metabolites responsible for off-flavours in peas may influence consumers' acceptance. These undesirable compounds may increase due to biotic stress or cultivar. Therefore, grains from two pea (Pisum sativum L.) cultivars (Crécerelle and Firenza) exposed to biotic stress were studied in terms of protein content, electrophoretic polypeptide profile, lipoxygenase activity, saponin content and volatile compounds. RESULTS No differences were observed in the electrophoretic polypeptide profile of pea samples across cultivar or biotic stress. The cultivar noticeably affected the volatile compounds and lipoxygenase activity. The biotic stress significantly increased the saponin content. CONCLUSION The cultivar showed more noticeable impact on the presence of off-flavour compounds than the biotic stress. The development of pea protein ingredients needs the thorough choice of raw materials in terms of cultivar and control of biotic stress in order to ensure acceptance by consumers. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Bonastre Oliete
- Université Bourgogne Franche-Comté, Institut Agro, PAM UMR A 02.102, Dijon, France
| | - Samuel Lubbers
- Université Bourgogne Franche-Comté, Institut Agro, PAM UMR A 02.102, Dijon, France
| | - Carine Fournier
- Agroécologie, CNRS, INRAE, Institut Agro, Université de Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Sylvain Jeandroz
- Agroécologie, CNRS, INRAE, Institut Agro, Université de Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Rémi Saurel
- Université Bourgogne Franche-Comté, Institut Agro, PAM UMR A 02.102, Dijon, France
| |
Collapse
|
5
|
de Almeida Pinto Bracarense A, Ascari J, de Souza GG, Oliveira TS, Ruano-González A, Pinto AA, Boaventura MAD, Takahashi JA, Collado IG, Durán-Patrón R, Macías-Sánchez AJ. Synthesis, Fungitoxic Activity against Botrytis cinerea and Phytotoxicity of Alkoxyclovanols and Alkoxyisocaryolanols. J Fungi (Basel) 2021; 7:jof7121079. [PMID: 34947063 PMCID: PMC8709304 DOI: 10.3390/jof7121079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 11/16/2022] Open
Abstract
Clovane and isocaryolane derivatives have been proven to show several levels of activity against the phytopathogenic fungus Botrytis cinerea. Both classes of sesquiterpenes are reminiscent of biosynthetic intermediates of botrydial, a virulence factor of B. cinerea. Further development of both classes of antifungal agent requires exploration of the structure–activity relationships for the antifungal effects on B. cinerea and phytotoxic effects on a model crop. In this paper, we report on the preparation of a series of alkoxy-clovane and -isocaryolane derivatives, some of them described here for the first time (2b, 2d, 2f–2h, and 4c–4e); the evaluation of their antifungal properties against B. cinerea, and their phytotoxic activites on the germination of seeds and the growth of radicles and shoots of Lactuca sativa (lettuce). Both classes of compound show a correlation of antifungal activity with the nature of side chains, with the best activity against B. cinerea for 2d, 2h, 4c and 4d. In general terms, while 2-alkoxyclovan-9-ols (2a–2e) exert a general phytotoxic effect, this is not the case for 2-arylalkoxyclovan-9-ols (2f–2i) and 8-alkoxyisocaryolan-9-ols (4a–4d), where stimulating effects would make them suitable candidates for application to plants.
Collapse
Affiliation(s)
- Adriana de Almeida Pinto Bracarense
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil; (A.d.A.P.B.); (J.A.); (G.G.d.S.); (T.S.O.); (M.A.D.B.); (J.A.T.)
- Departamento de Química, Centro Federal de Educação Tecnológica de Minas Gerais, Av. Amazonas, 5253, Belo Horizonte 30421-169, MG, Brazil
| | - Jociani Ascari
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil; (A.d.A.P.B.); (J.A.); (G.G.d.S.); (T.S.O.); (M.A.D.B.); (J.A.T.)
- Coordenaçao Ciências Biológicas, Universidade Tecnológica Federal do Paraná, Prolongamento da Rua Cerejeira, s/n, Santa Helena 85892-000, PR, Brazil
| | - Giovanni Gontijo de Souza
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil; (A.d.A.P.B.); (J.A.); (G.G.d.S.); (T.S.O.); (M.A.D.B.); (J.A.T.)
| | - Thays Silva Oliveira
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil; (A.d.A.P.B.); (J.A.); (G.G.d.S.); (T.S.O.); (M.A.D.B.); (J.A.T.)
| | - Antonio Ruano-González
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain; (A.R.-G.); (A.A.P.); (I.G.C.)
| | - Ana A. Pinto
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain; (A.R.-G.); (A.A.P.); (I.G.C.)
| | - Maria Amélia Diamantino Boaventura
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil; (A.d.A.P.B.); (J.A.); (G.G.d.S.); (T.S.O.); (M.A.D.B.); (J.A.T.)
| | - Jacqueline Aparecida Takahashi
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil; (A.d.A.P.B.); (J.A.); (G.G.d.S.); (T.S.O.); (M.A.D.B.); (J.A.T.)
| | - Isidro G. Collado
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain; (A.R.-G.); (A.A.P.); (I.G.C.)
- Instituto de Investigación en Biomoléculas (INBIO), Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain
| | - Rosa Durán-Patrón
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain; (A.R.-G.); (A.A.P.); (I.G.C.)
- Correspondence: (R.D.-P.); (A.J.M.-S.); Tel.: +35-956-012704 (A.J.M.-S.)
| | - Antonio J. Macías-Sánchez
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain; (A.R.-G.); (A.A.P.); (I.G.C.)
- Instituto de Investigación en Biomoléculas (INBIO), Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain
- Correspondence: (R.D.-P.); (A.J.M.-S.); Tel.: +35-956-012704 (A.J.M.-S.)
| |
Collapse
|
6
|
Geng P, Chen P, Lin LZ, Sun J, Harrington P, Harnly JM. Classification of structural characteristics facilitate identifying steroidal saponins in Alliums using ultra-high performance liquid chromatography high-resolution mass spectrometry. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.103994] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Sugiyama A. Flavonoids and saponins in plant rhizospheres: roles, dynamics, and the potential for agriculture. Biosci Biotechnol Biochem 2021; 85:1919-1931. [PMID: 34113972 DOI: 10.1093/bbb/zbab106] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 06/04/2021] [Indexed: 01/13/2023]
Abstract
Plants are in constant interaction with a myriad of soil microorganisms in the rhizosphere, an area of soil in close contact with plant roots. Recent research has highlighted the importance of plant-specialized metabolites (PSMs) in shaping and modulating the rhizosphere microbiota; however, the molecular mechanisms underlying the establishment and function of the microbiota mostly remain unaddressed. Flavonoids and saponins are a group of PSMs whose biosynthetic pathways have largely been revealed. Although these PSMs are abundantly secreted into the rhizosphere and exert various functions, the secretion mechanisms have not been clarified. This review summarizes the roles of flavonoids and saponins in the rhizosphere with a special focus on interactions between plants and the rhizosphere microbiota. Furthermore, this review introduces recent advancements in the dynamics of these metabolites in the rhizosphere and indicates potential applications of PSMs for crop production and discusses perspectives in this emerging research field.
Collapse
Affiliation(s)
- Akifumi Sugiyama
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Japan
| |
Collapse
|
8
|
Vázquez-Fuentes S, Pelagio-Flores R, López-Bucio J, Torres-Gavilán A, Campos-García J, de la Cruz HR, López-Bucio JS. N-vanillyl-octanamide represses growth of fungal phytopathogens in vitro and confers postharvest protection in tomato and avocado fruits against fungal-induced decay. PROTOPLASMA 2021; 258:729-741. [PMID: 33410981 DOI: 10.1007/s00709-020-01586-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
Plant diseases caused by pathogenic fungi result in considerable losses in agriculture. The use of fungicides is an important alternative to combat these pathogens, but may affect both the environment and human health. Plants produce many bioactive compounds to defend themselves from biotic challenges and an increasing number of secondary metabolites have been identified, which may be used to control fungal infections. Here, the bioactivity of a synthetic capsaicinoid, N-vanillyl-octanamide, also termed ABX-I, in the growth of five phytopathogenic fungi was assessed in vitro. The compound inhibited growth of Colletotrichum gloeosporioides, Botrytis cinerea, Colletotrichum acutatum, Fusarium sp., and Rhizoctonia solani AG2, while the magnitude of this effect differed from capsaicin. To investigate if ABX-I could effectively protect crops against phytopathogens, fungal challenges were performed in tomato leaves and fruits, as well as avocado fruits co-infiltrated with Botrytis cinerea or Colletotrichum gloeosporioides, respectively. In both tomato leaves and fruits and avocado fruits, ABX-I decreased the fungal damage not only in vegetative but also in edible tissues, and diminished decay symptoms compared with untreated fruits, which were highly sensitive to the pathogens. Furthermore, ABX-I spray application to tomato or avocado plants did not compromise growth and development, whereas it repressed spore germination and growth of C. gloeosporioides, which suggests its potential as an affordable and promising resource to control fungal diseases in the agronomic sector.
Collapse
Affiliation(s)
- Saúl Vázquez-Fuentes
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, C. P., 58030, Morelia, Michoacán, Mexico
| | - Ramón Pelagio-Flores
- Facultad de Químico Farmacobiología, Universidad Michoacana de San Nicolás de Hidalgo, Tzintzuntzan 173, Matamoros, C. P., 58240, Morelia, Michoacán, Mexico
| | - José López-Bucio
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, C. P., 58030, Morelia, Michoacán, Mexico
| | | | - Jesús Campos-García
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, C. P., 58030, Morelia, Michoacán, Mexico
| | - Homero Reyes de la Cruz
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, C. P., 58030, Morelia, Michoacán, Mexico
| | - Jesús Salvador López-Bucio
- CONACYT-Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, C. P., 58030, Morelia, Michoacán, Mexico.
| |
Collapse
|
9
|
Zaynab M, Sharif Y, Abbas S, Afzal MZ, Qasim M, Khalofah A, Ansari MJ, Khan KA, Tao L, Li S. Saponin toxicity as key player in plant defense against pathogens. Toxicon 2021; 193:21-27. [PMID: 33508310 DOI: 10.1016/j.toxicon.2021.01.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/24/2020] [Accepted: 01/20/2021] [Indexed: 12/31/2022]
Abstract
Microbial pathogens attack every plant tissue, including leaves, roots, shoots, and flowers during all growth stages. Thus, they cause several diseases resulting in a plant's failure or loss of the whole crop in severe cases. To combat the pathogens attack, plants produce some biologically active toxic compounds known as saponins. The saponins are secondary metabolic compounds produced in healthy plants with potential anti-pathogenic activity and serve as potential chemical barriers against pathogens. Saponins are classified into two major groups the steroidal and terpenoid saponins. Here, we reported the significance of saponin toxins in the war against insect pests, fungal, and bacterial pathogens. Saponins are present in both cultivated (chilies, spinach, soybean, quinoa, onion, oat, tea, etc.) and wild plant species. As they are natural toxic constituents of plant defense, breeders and plant researchers aiming to boost plant imm unity should focus on transferring these compounds in cash crops.
Collapse
Affiliation(s)
- Madiha Zaynab
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China; Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Sciences, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518071, China; Shenzhen Environmental Monitoring Center, Shenzhen, 518049, Guangdong, China
| | - Yasir Sharif
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Safdar Abbas
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Zohaib Afzal
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Muhammad Qasim
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects,Institute of Insect Science,Zhejiang University, Hangzhou, 310058, China
| | - Ahlam Khalofah
- Department of Biology, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad (MJP Rohilkhand University Bareilly), 244001, India
| | - Khalid Ali Khan
- Department of Biology, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia; Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Li Tao
- Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen, China
| | - Shuangfei Li
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Sciences, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518071, China.
| |
Collapse
|
10
|
Anti-fungal activity of moso bamboo (Phyllostachys pubescens) leaf extract and its development into a botanical fungicide to control pepper phytophthora blight. Sci Rep 2021; 11:4146. [PMID: 33603051 PMCID: PMC7892876 DOI: 10.1038/s41598-021-83598-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 02/02/2021] [Indexed: 11/23/2022] Open
Abstract
Moso bamboo (Phyllostachys pubescens, Gramineae) is a well-known medicinal and edible plant found in China with various bioactivities, but few systematic studies address the utilization of its anti-fungal activity. The extract of moso bamboo leaf showed good anti-fungal activity to Phytophthora capsici, Fusarium graminearum, Valsa mali Miyabe et Yamada, Botryosphaeria dothidea, Venturia nashicola, and Botrytis cinerea Pers, with inhibitory rate of 100.00%, 75.12%, 60.66%, 57.24%, 44.62%, and 30.16%, respectively. Anti-fungal activity was different by the difference of samples picking time and location. The extract showed good synergistic effects with carbendazim at the ratios of 9:1 and 15:1 (extract : carbendazim), and the co-toxicity coefficients were 124.4 and 139.95. Compound 2 was isolated and identified as the main active component, with the EC50 value of 11.02 mg L−1. Then, the extract was formulated as a 10% emulsion in water, which was stable and had no acute toxic effects. Moreover, a field trial about this formulation was assayed to control pepper phytophthora blight, with the control effect of 85.60%. These data provided a better understanding of the anti-fungal activity and relevant active component of moso bamboo leaf extract. Taken together, our findings illustrated that bamboo leaf extract could be developed and utilized as a botanical fungicide or fungicide adjuvant.
Collapse
|
11
|
Korotky V, Smolin N, Nikolsky A, Ryzhov V, Korotky I. Fungicidal and antistress properties of the preparation based on triterpene acids on spring barley. BIO WEB OF CONFERENCES 2021. [DOI: 10.1051/bioconf/20213602002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The most effective concentration range of the studied preparation synthesized on the basis of triterpene acids is in the range of 0.01-0.005 %. In the conditions of water-salt stress, the studied preparation increased laboratory germination of seeds, length of seedling and root of spring barley compared with the control variant. At a concentration of 0.01-0.005 %, the preparation reduced the intensity of the pathogenic complex development on the seed material of spring barley, but was significantly inferior in effectiveness to the synthetic protectant. At the same time, unlike a fungicide, the preparation did not have a depressing effect on the development of barley in the initial stages of ontogenesis.
Collapse
|
12
|
Simonet AM, Durán AG, Pérez AJ, Macías FA. Features in the NMR spectra of the aglycones of Agave spp. saponins. HMBC method for aglycone identification (HMAI). PHYTOCHEMICAL ANALYSIS : PCA 2021; 32:38-61. [PMID: 32515107 DOI: 10.1002/pca.2946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 05/08/2023]
Abstract
INTRODUCTION The analysis and detection of steroidal saponins is mainly performed using chromatographic techniques coupled with mass spectrometry. However, nuclear magnetic resonance (NMR) spectroscopy is a potential tool that can be combined with these techniques to obtain unambiguous structural characterisation. OBJECTIVE This work provides a review of the carbon-13 (13 C)- and proton (1 H)-NMR spectroscopic data of aglycones from Agave saponins reported in the literature and also the development of an easy identification method for these natural products. METHODS The database Scifinder was used for spectroscopic data collection in addition to data obtained from the Cadiz Allelopathy research group. The keywords used were Agave, spirostanic, furostanic, and saponin. RESULTS The shielding variations produced by functional groups on the aglycone core and the structural features of the most representative aglycones from Agave species are described. The effects are additive for up to four long-range connectivities. A method for the identification of aglycones (HMAI) is proposed to classify aglycones from Agave spp. through the use of 1 H-NMR and heteronuclear multiple bond correlation (HMBC) experiments. CONCLUSIONS The HMBC spectrum is representative of the structural features of aglycones from Agave spp. The HMBC method for aglycone identification (HMAI) method allowed the identification of pure saponins or mixtures thereof and this method can be used in combination with chromatographic techniques coupled with mass spectrometry to provide a more thorough analysis of Agave samples that contain aglycones.
Collapse
Affiliation(s)
- Ana M Simonet
- Allelopathy Group, Department of Organic Chemistry, Institute of Biomolecules (INBIO), Campus de Excelencia Internacional (ceiA3), School of Science, University of Cadiz, Puerto Real, Cadiz, Spain
| | - Alexandra G Durán
- Allelopathy Group, Department of Organic Chemistry, Institute of Biomolecules (INBIO), Campus de Excelencia Internacional (ceiA3), School of Science, University of Cadiz, Puerto Real, Cadiz, Spain
| | - Andy J Pérez
- Departamento de Análisis Instrumental, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - Francisco A Macías
- Allelopathy Group, Department of Organic Chemistry, Institute of Biomolecules (INBIO), Campus de Excelencia Internacional (ceiA3), School of Science, University of Cadiz, Puerto Real, Cadiz, Spain
| |
Collapse
|
13
|
Chou FP, Hsu WC, Huang SC, Chang CY, Chiou YS, Tsai CT, Lyu JW, Chen WT, Wu TK. Pregnenolonyl-α-glucoside exhibits marked anti-cancer and CYP17A1 enzymatic inhibitory activities. Chem Commun (Camb) 2020; 56:1733-1736. [PMID: 31938799 DOI: 10.1039/c9cc09415f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report here that pregnenolonyl-α-glucoside (2), a steryl glycoside synthesized directly from pregnenolone and glucose via a consecutive multienzyme-catalyzed process, exhibits marked dose-dependent cytotoxic activity against HT29, AGS, and ES-2 cells with IC50 values of 23.5 to 50.9 μM. An in vitro CYP17A1 binding pattern assay and protein-ligand docking model support that 2, like abiraterone, binds in the active site heme iron pocket of CYP17A1.
Collapse
Affiliation(s)
- Feng-Pai Chou
- Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu, Taiwan, Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Di Gioia F, Petropoulos SA. Phytoestrogens, phytosteroids and saponins in vegetables: Biosynthesis, functions, health effects and practical applications. ADVANCES IN FOOD AND NUTRITION RESEARCH 2019; 90:351-421. [PMID: 31445599 DOI: 10.1016/bs.afnr.2019.02.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Phytoestrogens are non-steroidal secondary metabolites with similarities in structure and biological activities with human estrogens divided into various classes of compounds, including lignans, isoflavones, ellagitannins, coumestans and stilbenes. Similarly, phytosteroids are steroidal compounds of plant origin which have estrogenic effects and can act as agonists, antagonists, or have a mixed agonistic/antagonistic activity to animal steroid receptors. On the other hand, saponins are widely distributed plant glucosides divided into triterpenoid and steroidal saponins that contribute to plant defense mechanism against herbivores. They present a great variation from a structural point of view, including compounds from different classes. In this chapter, the main vegetable sources of these compounds will be presented, while details regarding their biosynthesis and plant functions will be also discussed. Moreover, considering the significant bioactive properties that these compounds exhibit, special focus will be given on their health effects, either beneficial or adverse. The practical applications of these compounds in agriculture and phytomedicine will be also demonstrated, as well as the future prospects for related research.
Collapse
Affiliation(s)
- Francesco Di Gioia
- Department of Plant Science, Pennsylvania State University, University Park, PA, United States
| | - Spyridon A Petropoulos
- Department of Crop Production and Rural Environment, University of Thessaly, Volos, Greece.
| |
Collapse
|
15
|
Trdá L, Janda M, Macková D, Pospíchalová R, Dobrev PI, Burketová L, Matušinsky P. Dual Mode of the Saponin Aescin in Plant Protection: Antifungal Agent and Plant Defense Elicitor. FRONTIERS IN PLANT SCIENCE 2019; 10:1448. [PMID: 31850004 PMCID: PMC6893899 DOI: 10.3389/fpls.2019.01448] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/17/2019] [Indexed: 05/13/2023]
Abstract
Being natural plant antimicrobials, saponins have potential for use as biopesticides. Nevertheless, their activity in plant-pathogen interaction is poorly understood. We performed a comparative study of saponins' antifungal activities on important crop pathogens based on their effective dose (EC50) values. Among those saponins tested, aescin showed itself to be the strongest antifungal agent. The antifungal effect of aescin could be reversed by ergosterol, thus suggesting that aescin interferes with fungal sterols. We tested the effect of aescin on plant-pathogen interaction in two different pathosystems: Brassica napus versus (fungus) Leptosphaeria maculans and Arabidopsis thaliana versus (bacterium) Pseudomonas syringae pv tomato DC3000 (Pst DC3000). We analyzed resistance assays, defense gene transcription, phytohormonal production, and reactive oxygen species production. Aescin activated B. napus defense through induction of the salicylic acid pathway and oxidative burst. This defense response led finally to highly efficient plant protection against L. maculans that was comparable to the effect of fungicides. Aescin also inhibited colonization of A. thaliana by Pst DC3000, the effect being based on active elicitation of salicylic acid (SA)-dependent immune mechanisms and without any direct antibacterial effect detected. Therefore, this study brings the first report on the ability of saponins to trigger plant immune responses. Taken together, aescin in addition to its antifungal properties activates plant immunity in two different plant species and provides SA-dependent resistance against both fungal and bacterial pathogens.
Collapse
Affiliation(s)
- Lucie Trdá
- Laboratory of Pathological Plant Physiology, Institute of Experimental Botany of The Czech Academy of Sciences, Prague, Czechia
- *Correspondence: Lucie Trdá, ;
| | - Martin Janda
- Laboratory of Pathological Plant Physiology, Institute of Experimental Botany of The Czech Academy of Sciences, Prague, Czechia
- Laboratory of Plant Biochemistry, Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Prague, Czechia
- Department Genetics, Faculty of Biology, Biocenter, Ludwig-Maximilian-University of Munich (LMU), Martinsried, Germany
| | - Denisa Macková
- Laboratory of Pathological Plant Physiology, Institute of Experimental Botany of The Czech Academy of Sciences, Prague, Czechia
- Laboratory of Plant Biochemistry, Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Prague, Czechia
| | - Romana Pospíchalová
- Laboratory of Pathological Plant Physiology, Institute of Experimental Botany of The Czech Academy of Sciences, Prague, Czechia
| | - Petre I. Dobrev
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of The Czech Academy of Sciences, Prague, Czechia
| | - Lenka Burketová
- Laboratory of Pathological Plant Physiology, Institute of Experimental Botany of The Czech Academy of Sciences, Prague, Czechia
| | - Pavel Matušinsky
- Department of Plant Pathology, Agrotest Fyto, Ltd, Kroměrˇíž, Czechia
- Department of Botany, Faculty of Science, Palacký University in Olomouc, Olomouc, Czechia
| |
Collapse
|
16
|
Identification of novel compounds, oleanane- and ursane-type triterpene glycosides, from Trevesia palmata: their biocontrol activity against phytopathogenic fungi. Sci Rep 2018; 8:14522. [PMID: 30266953 PMCID: PMC6162204 DOI: 10.1038/s41598-018-32956-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 09/19/2018] [Indexed: 11/13/2022] Open
Abstract
Plants contain a number of bioactive compounds that exhibit antimicrobial activity, which can be recognized as an important source of agrochemicals for plant disease control. As part of our search for new antimicrobial agents from natural sources, we found that a crude methanol extract of Trevesia palmata exhibited a promising antifungal activity against phytopathogenic fungi, such as Magnaporthe oryzae and Botrytis cinerea. Furthermore, based on activity-guided fractionation, we isolated five antifungal compounds from the methanol extract of T. palmata: two new triterpene glycosides (TPGs), TPG1 (hederagenin-3-O-β-D-glucopyranosyl-(1 → 3)-α-L-rhamnopyranosyl-(1 → 2)-α-L-rhamnopyranosyl-(1 → 2)-α-L-arabinopyranoside) and TPG5 (3-O-α-L-rhamnopyranosyl asiatic acid), along with three known TPGs (TPG2 [macranthoside A], TPG3 [α-hederin], and TPG4 [ilekudinoside D]). The chemical structures of the TPGs were determined by spectroscopic analyses and by comparison with literature data. An in vitro antifungal bioassay revealed that except for TPG4 (ilekudinoside D; IC50 >256 μg/ml), the other TPGs exhibited strong antifungal activities against the rice blast pathogen M. oryzae with IC50 values ranging from 2–5 μg/ml. In particular, when the plants were treated with compound TPG1 (500 μg/ml), disease control values against rice blast, tomato grey mold, tomato late blight, and wheat leaf rust were 84, 82, 88, and 70%, respectively, compared to the non-treatment control. Considering the in vitro and in vivo antifungal activities of the TPGs and the T. palmata methanol extracts, our results suggest that T. palmata can be a useful source to develop new natural fungicides.
Collapse
|
17
|
Phytosterols and their derivatives: Structural diversity, distribution, metabolism, analysis, and health-promoting uses. Prog Lipid Res 2018; 70:35-61. [DOI: 10.1016/j.plipres.2018.04.001] [Citation(s) in RCA: 208] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/03/2018] [Accepted: 04/03/2018] [Indexed: 01/08/2023]
|
18
|
Bahram-Parvar M, Lim LT. Fresh-Cut Onion: A Review on Processing, Health Benefits, and Shelf-Life. Compr Rev Food Sci Food Saf 2018; 17:290-308. [PMID: 33350082 DOI: 10.1111/1541-4337.12331] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 12/06/2017] [Accepted: 12/06/2017] [Indexed: 01/16/2023]
Abstract
The ready-to-eat produce market has grown rapidly because of the health benefits and convenience associated with these products. Onion is widely used as an ingredient in an extensive range of recipes from breakfast to dinner and in nearly every ethnic cuisine. However, cutting/chopping of onion is a nuisance to many consumers due to the lachrymatory properties of the volatiles generated that bring tears to eyes and leave a distinct odor on hands. As a result, there is now an increasing demand for fresh-cut, value-added, and ready-to-eat onion in households, as well as large-scale uses in retail, food service, and various food industries, mainly due to the end-use convenience. Despite these benefits, fresh-cut onion products present considerable challenges due to tissue damage, resulting in chemical and physiological reactions that limit product shelf-life. Intensive discoloration, microbial growth, softening, and off-odor are the typical deteriorations that need to be controlled through the application of suitable preservation methods. This article reviews the literature related to the fresh-cut onion, focusing on its constituents, nutritional and health benefits, production methods, quality changes throughout storage, and technologies available to increase product shelf-life.
Collapse
Affiliation(s)
| | - Loong-Tak Lim
- Dept. of Food Science, Univ. of Guelph, Guelph, ON N1G2W1, Canada
| |
Collapse
|
19
|
Abdelrahman M, El-Sayed M, Sato S, Hirakawa H, Ito SI, Tanaka K, Mine Y, Sugiyama N, Suzuki M, Yamauchi N, Shigyo M. RNA-sequencing-based transcriptome and biochemical analyses of steroidal saponin pathway in a complete set of Allium fistulosum-A. cepa monosomic addition lines. PLoS One 2017; 12:e0181784. [PMID: 28800607 PMCID: PMC5553718 DOI: 10.1371/journal.pone.0181784] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 07/06/2017] [Indexed: 01/06/2023] Open
Abstract
The genus Allium is a rich source of steroidal saponins, and its medicinal properties have been attributed to these bioactive compounds. The saponin compounds with diverse structures play a pivotal role in Allium’s defense mechanism. Despite numerous studies on the occurrence and chemical structure of steroidal saponins, their biosynthetic pathway in Allium species is poorly understood. The monosomic addition lines (MALs) of the Japanese bunching onion (A. fistulosum, FF) with an extra chromosome from the shallot (A. cepa Aggregatum group, AA) are powerful genetic resources that enable us to understand many physiological traits of Allium. In the present study, we were able to isolate and identify Alliospiroside A saponin compound in A. fistulosum with extra chromosome 2A from shallot (FF2A) and its role in the defense mechanism against Fusarium pathogens. Furthermore, to gain molecular insight into the Allium saponin biosynthesis pathway, high-throughput RNA-Seq of the root, bulb, and leaf of AA, MALs, and FF was carried out using Illumina's HiSeq 2500 platform. An open access Allium Transcript Database (Allium TDB, http://alliumtdb.kazusa.or.jp) was generated based on RNA-Seq data. The resulting assembled transcripts were functionally annotated, revealing 50 unigenes involved in saponin biosynthesis. Differential gene expression (DGE) analyses of AA and MALs as compared with FF (as a control) revealed a strong up-regulation of the saponin downstream pathway, including cytochrome P450, glycosyltransferase, and beta-glucosidase in chromosome 2A. An understanding of the saponin compounds and biosynthesis-related genes would facilitate the development of plants with unique saponin content and, subsequently, improved disease resistance.
Collapse
Affiliation(s)
- Mostafa Abdelrahman
- Laboratory of Vegetable Crop Science, College of Agriculture, Graduate School of Sciences and Technology for Innovation, Japan
- Botany Department, Faculty of Science, Aswan University, Aswan, Egypt
- Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, Japan
| | - Magdi El-Sayed
- Botany Department, Faculty of Science, Aswan University, Aswan, Egypt
| | - Shusei Sato
- Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, Japan
| | | | - Shin-ichi Ito
- Laboratory of Molecular Plant Pathology, College of Agriculture, Graduate School of Sciences and Technology for Innovation, Japan
| | - Keisuke Tanaka
- The NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo, Japan
| | - Yoko Mine
- Department of Agriculture, Faculty of Agriculture, Tokyo University of Agriculture, Tokyo, Japan
| | - Nobuo Sugiyama
- Department of Agriculture, Faculty of Agriculture, Tokyo University of Agriculture, Tokyo, Japan
| | - Minoru Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Naoki Yamauchi
- Laboratory of Vegetable Crop Science, College of Agriculture, Graduate School of Sciences and Technology for Innovation, Japan
| | - Masayoshi Shigyo
- Laboratory of Vegetable Crop Science, College of Agriculture, Graduate School of Sciences and Technology for Innovation, Japan
- * E-mail:
| |
Collapse
|
20
|
Abdelrahman M, Mahmoud HYAH, El-Sayed M, Tanaka S, Tran LS. Isolation and characterization of Cepa2, a natural alliospiroside A, from shallot (Allium cepa L. Aggregatum group) with anticancer activity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 116:167-173. [PMID: 28577504 DOI: 10.1016/j.plaphy.2017.05.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 05/16/2017] [Accepted: 05/16/2017] [Indexed: 06/07/2023]
Abstract
Exploration of new and promising anticancer compounds continues to be one of the main tasks of cancer research because of the drug resistance, high cytotoxicity and limitations of tumor selectivity. Natural products represent a better choice for cancer treatment in comparison with synthetic compounds because of their pharmacokinetic properties and lower side effects. In the current study, we isolated a steroidal saponin, named Cepa2, from the dry roots of shallot (Allium cepa L. Aggregatum group), and determined its structure by using two-dimensional nuclear manganic resonance (2D NMR). The 1H NMR and 13C NMR data revealed that the newly isolated Cepa2 compound is identical to alliospiroside A (C38H60O12) [(25S)-3β-hydroxyspirost-5-en-1β-yl-2-O-(6-deoxy-α-L-mannopyranosyl)-α-L-arabinopyranoside], whose anticancer activity remains elusive. Our in vitro examination of the cytotoxic activity of the identified Cepa2 against P3U1 myeloma cancer cell line showed its high efficiency as an anticancer with 91.13% reduction in P3U1 cell viability 12 h post-treatment. The reduction of cell viability was correlated with the increase in reactive oxygen species levels in Cepa2-treated P3U1 cells, as compared with untreated cells. Moreover, scanning electron microscope results demonstrated apoptosis of the Cepa2-treated P3U1 cells in a time course-dependent manner. The results of our study provide evidence for the anticancer properties of the natural Cepa2/alliospiroside A extracted from shallot plants, and a strong foundation for in-depth investigations to build theoretical bases for cell apoptosis and development of novel anticancer drugs.
Collapse
Affiliation(s)
- Mostafa Abdelrahman
- Graduate School of Life Sciences, Tohoku University 2-1-1, Katahira, Aoba-ku, Sendai, 980-8577, Japan; Botany Department Faculty of Science, Aswan University, Aswan 81528, Egypt
| | - Hassan Y A H Mahmoud
- Division of infectious Diseases, Animal Medicine Department, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt
| | - Magdi El-Sayed
- Botany Department Faculty of Science, Aswan University, Aswan 81528, Egypt
| | - Shuhei Tanaka
- Department of Biological and Environmental Sciences, Faculty of Agriculture, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - L S Tran
- Plant Abiotic Stress Research Group & Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 70000, Viet Nam; Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumiku, Yokohama 230-0045, Japan.
| |
Collapse
|
21
|
Nwidu LL, Nwafor PA, Vilegas W. The aphrodisiac herb Carpolobia: A biopharmacological and phytochemical review. Pharmacogn Rev 2015; 9:132-9. [PMID: 26392711 PMCID: PMC4557236 DOI: 10.4103/0973-7847.162128] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 09/22/2014] [Accepted: 08/04/2015] [Indexed: 01/11/2023] Open
Abstract
Any agent with the ability to provoke sexual desire in an individual is referred to as an aphrodisiac. Aphrodisiac plants are used in the management of erectile dysfunction (ED) in men. One such plant popular in West and Central Africa among the Pygmies of Cameroon, Ipassa of Garbon, and the Yoruba, Ibo, Efik and Ijaw peoples of Nigeria is Carpolobia. It is an accepted and commonly utilized herbal booster of libido. It is used to cure male infertility and to boosts libido thereby augmenting male sexual functions or it is used to induce penile erection, and enhance male virility. The chewing stick prepared from the stem and root of either Carpolobia alba (CA) or Carpolobia lutea (CL) is patronized because it boosts male sexual performance. The genus Carpolobia has over 14 species. The leaf essential oil contains a variety of terpenoids, while polyphenols and triterpenoid saponins have been isolated from the root and leaf extracts respectively. Other ethnomedicinal uses include curing of stomach ailments, rheumatism, fever, pains, insanity, dermal infection, venereal diseases; to promote child birth; and as a taeniafuge and vermifuge. In spite of its popularity, no scientific data reviewing the biopharmacological and phytochemical activities of Carpolobia exist to our knowledge. The aim of this work is to collate all available published scientific reports in the literature on Carpolobia in a review paper. In this review, an overview of the morphology, taxonomy, ethnomedicinal claims, geographical distribution, and structurally elucidated compounds that are secondary metabolites isolated and characterized from Carpolobia species is established. The pharmacological assays, phytochemical screenings, and toxicological reports are also reviewed.
Collapse
Affiliation(s)
- Lucky Lebgosi Nwidu
- Department of Pharmacology and Toxicology, Niger Delta University, Wilberforce Island, Bayelsa, Nigeria
| | - Paul Alozie Nwafor
- Department of Pharmacology and Toxicology, University of Uyo, Uyo, Akwa Ibom, Nigeria
| | - Wagner Vilegas
- Department of Organic Chemistry, Chemistry Institute, São Paulo State University, Araraquara, São Paulo, Brazil
| |
Collapse
|
22
|
Peng C, Zhao SQ, Zhang J, Huang GY, Chen LY, Zhao FY. Chemical composition, antimicrobial property and microencapsulation of Mustard (Sinapis alba) seed essential oil by complex coacervation. Food Chem 2014; 165:560-8. [DOI: 10.1016/j.foodchem.2014.05.126] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 05/20/2014] [Accepted: 05/23/2014] [Indexed: 11/26/2022]
|
23
|
Sobolewska D, Michalska K, Podolak I, Grabowska K. Steroidal saponins from the genus Allium. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2014; 15:1-35. [PMID: 26893594 PMCID: PMC4735241 DOI: 10.1007/s11101-014-9381-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 09/25/2014] [Indexed: 05/30/2023]
Abstract
Steroidal saponins are widely distributed among monocots, including the Amaryllidaceae family to which the Allium genus is currently classified. Apart from sulfur compounds, these are important biologically active molecules that are considered to be responsible for the observed activity of Allium species, including antifungal, cytotoxic, enzyme-inhibitory, and other. In this paper, literature data concerning chemistry and biological activity of steroidal saponins from the Allium genus has been reviewed.
Collapse
Affiliation(s)
- Danuta Sobolewska
- Department of Pharmacognosy, Jagiellonian University, Medical College, 9 Medyczna Street, Kraków, Poland
| | - Klaudia Michalska
- Department of Phytochemistry, Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, Kraków, Poland
| | - Irma Podolak
- Department of Pharmacognosy, Jagiellonian University, Medical College, 9 Medyczna Street, Kraków, Poland
| | - Karolina Grabowska
- Department of Pharmacognosy, Jagiellonian University, Medical College, 9 Medyczna Street, Kraków, Poland
| |
Collapse
|
24
|
Fu YW, Zhang QZ, Xu DH, Liang JH, Wang B. Antiparasitic effect of cynatratoside-C from Cynanchum atratum against Ichthyophthirius multifiliis on grass carp. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:7183-7189. [PMID: 24980562 DOI: 10.1021/jf5018675] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Ichthyophthirius multifiliis (Ich), a fish ectoparasite, comprises an important challenge in the aquaculture industry. In this study, a steroidal glycoside, cynatratoside-C, isolated from Cynanchum atratum roots by bioassay-guided fractionation was used to treat I. multifiliis. The cynatratoside-C at 0.25 mg/L demonstrated a 100% mortality of I. multifiliis in vitro after 5 h exposure. The 5 h median effective concentration (EC50) of cynatratoside-C to nonencysted tomonts was 0.083 mg/L. In addition, cynatratoside-C at concentrations of 0.125 and 0.06 mg/L could completely terminate the reproduction of encysted tomonts. The cynatratoside-C at 2 mg/L could cure the infected grass carp within 48 h. The exact mechanism of cynatratoside-C for killing I. multifiliis is unknown, but it manifests itself microscopically through loss of membrane integrity of nonencysted tomonts or through releasing immature theronts from encysted tomonts. The immature theronts finally died before infecting fish. On the basis of these results, cynatratoside-C could be used as a natural anti-I. multifiliis agent.
Collapse
Affiliation(s)
- Yao-Wu Fu
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering Ministry of Education, Institute of Hydrobiology, Jinan University , Guangzhou 510632, People's Republic of China
| | | | | | | | | |
Collapse
|
25
|
|