1
|
Bermúdez-Oria A, Castejón ML, Rubio-Senent F, Rodríguez-Gutiérrez G, Fernández-Bolaños J. Health-Promoting Properties of Pectin-Polyphenol Complex Extracted from Olive Oil By-Product Alperujo: Antioxidant, Antiproliferative, and Anti-Inflammatory Activities. Antioxidants (Basel) 2024; 13:1066. [PMID: 39334725 PMCID: PMC11444132 DOI: 10.3390/antiox13091066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
This research explores the health-promoting properties of the pectin-polyphenol complex extracted from alperujo, a by-product of olive oil production. This study investigates the chemical composition and antioxidant activity of the extracts, revealing their high antioxidant activity in vitro. Cell viability assays conducted on colon carcinoma cells (Caco-2) demonstrate the inhibitory effect of the extracts on cell proliferation. However, the extracts do not affect the viability of differentiated Caco-2 cells, suggesting a selective antiproliferative action. Additionally, the extracts reduce intracellular reactive oxygen species (ROS) and nitrite (NO) production in LPS-stimulated murine peritoneal macrophages. Furthermore, the extracts exhibit anti-inflammatory effects by downregulating the secretion of pro-inflammatory cytokines TNF-α, IL-1β, and IL-6 in these macrophages. These findings highlight the potential of pectin-polyphenol complexes as functional ingredients with significant health benefits, demonstrating antioxidant, antiproliferative, and anti-inflammatory properties.
Collapse
Affiliation(s)
- Alejandra Bermúdez-Oria
- Department of Food Phytochemistry, Instituto de la Grasa (Spanish National Research Council, CSIC), Pablo de Olavide University Campus, Building 46, Ctra. de Utrera km. 1, 41013 Seville, Spain; (M.L.C.); (F.R.-S.); (G.R.-G.)
| | | | | | | | - Juan Fernández-Bolaños
- Department of Food Phytochemistry, Instituto de la Grasa (Spanish National Research Council, CSIC), Pablo de Olavide University Campus, Building 46, Ctra. de Utrera km. 1, 41013 Seville, Spain; (M.L.C.); (F.R.-S.); (G.R.-G.)
| |
Collapse
|
2
|
Márquez-Flores YK, Martínez-Galero E, Correa-Basurto J, Sixto-López Y, Villegas I, Rosillo MÁ, Cárdeno A, Alarcón-de-la-Lastra C. Daidzein and Equol: Ex Vivo and In Silico Approaches Targeting COX-2, iNOS, and the Canonical Inflammasome Signaling Pathway. Pharmaceuticals (Basel) 2024; 17:647. [PMID: 38794217 PMCID: PMC11124169 DOI: 10.3390/ph17050647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/22/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND The inflammasome is a cytosolic multiprotein complex associated with multiple autoimmune diseases. Phytochemical compounds in soy (Glycine max) foods, such as isoflavones, have been reported for their anti-inflammatory properties. AIM the anti-inflammatory activity of DZ (daidzein) and EQ (equol) were investigated in an ex vivo model of LPS-stimulated murine peritoneal macrophages and by molecular docking correlation. METHODS Cells were pre-treated with DZ (25, 50, and 100 µM) or EQ (5, 10, and 25 µM), followed by LPS stimulation. The levels of PGE2, NO, TNF-α, IL-6, and IL-1β were analyzed by ELISA, whereas the expressions of COX-2, iNOS, NLRP3, ASC, caspase 1, and IL-18 were measured by Western blotting. Also, the potential for transcriptional modulation by targeting NF-κB, COX-2, iNOS, NLRP3, ASC, and caspase 1 was investigated by molecular docking. RESULTS The anti-inflammatory responses observed may be due to the modulation of NF-κB due to the binding of DZ or EQ, which is translated into decreased TNF-α, COX-2, iNOS, NLRP3, and ASC levels. CONCLUSION This study establishes that DZ and EQ inhibit LPS-induced inflammatory responses in peritoneal murine macrophages via down-regulation of NO and PGE2 generation, as well as the inhibition of the canonical inflammasome pathway, regulating NLRP3, and consequently decreasing IL-1β and IL-18 activation.
Collapse
Affiliation(s)
- Yazmín K. Márquez-Flores
- Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Campus Zacatenco, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n Col. Zacatenco, Mexico City C.P. 07738, Mexico;
| | - Elizdath Martínez-Galero
- Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Campus Zacatenco, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n Col. Zacatenco, Mexico City C.P. 07738, Mexico;
| | - José Correa-Basurto
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos y Productos Biotecnológicos, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Santo Tomas, Mexico City C.P. 11340, Mexico; (J.C.-B.); (Y.S.-L.)
| | - Yudibeth Sixto-López
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos y Productos Biotecnológicos, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Santo Tomas, Mexico City C.P. 11340, Mexico; (J.C.-B.); (Y.S.-L.)
- Departamento de Química Farmacéutica y Orgánica, Facultad de Farmacia, Campus de Cartuja, Universidad de Granada, 18071 Granada, Spain
| | - Isabel Villegas
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Professor García González Street 2, 41012 Seville, Spain; (I.V.); (A.C.); (C.A.-d.-l.-L.)
| | - María Á. Rosillo
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Professor García González Street 2, 41012 Seville, Spain; (I.V.); (A.C.); (C.A.-d.-l.-L.)
| | - Ana Cárdeno
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Professor García González Street 2, 41012 Seville, Spain; (I.V.); (A.C.); (C.A.-d.-l.-L.)
| | - Catalina Alarcón-de-la-Lastra
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Professor García González Street 2, 41012 Seville, Spain; (I.V.); (A.C.); (C.A.-d.-l.-L.)
| |
Collapse
|
3
|
Alcarranza M, Villegas I, Recio R, Muñoz-García R, Fernández I, Alarcón-de-la-Lastra C. ( R)-8-Methylsulfinyloctyl isothiocyanate from Nasturtium officinale inhibits LPS-induced immunoinflammatory responses in mouse peritoneal macrophages: chemical synthesis and molecular signaling pathways involved. Food Funct 2023. [PMID: 37469300 DOI: 10.1039/d3fo02009f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
The aim of this study was to develop an optimal synthetic route to obtain natural (R)-8-methylsulfinyloctyl isothiocyanate ((R)-8-OITC), present in watercress, based on the "DAG methodology" as well as to evaluate its potential antioxidant and immunomodulatory effects, exploring possible signaling pathways that could be involved in an ex vivo model of murine peritoneal macrophages stimulated with LPS. Treatment with (R)-8-OITC inhibited the levels of pro-inflammatory cytokines (IL-1β, TNF-α, IL-6, IL-17 and IL-18), intracellular ROS production and expression of pro-inflammatory enzymes (COX-2, iNOS and mPGES-1) through modulation of the expression of Nrf2, MAPKs (p38, JNK and ERK) and JAK/STAT, and the canonical and non-canonical pathways of the inflammasome. Taking all these together, our results provide a rapid and cost-effective synthetic route to obtain natural (R)-8-OITC and demonstrate that it could be a potential nutraceutical candidate for managing immuno-inflammatory pathologies. Therefore, further in vivo trials are warranted.
Collapse
Affiliation(s)
- Manuel Alcarranza
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Sevilla, Spain.
- Instituto de Biomedicina de Sevilla, IBiS (Universidad de Sevilla, HUVR, Junta de Andalucía, CSIC), Seville, Spain
| | - Isabel Villegas
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Sevilla, Spain.
- Instituto de Biomedicina de Sevilla, IBiS (Universidad de Sevilla, HUVR, Junta de Andalucía, CSIC), Seville, Spain
| | - Rocío Recio
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain.
| | - Rocío Muñoz-García
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Sevilla, Spain.
- Instituto de Biomedicina de Sevilla, IBiS (Universidad de Sevilla, HUVR, Junta de Andalucía, CSIC), Seville, Spain
| | - Inmaculada Fernández
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain.
| | - Catalina Alarcón-de-la-Lastra
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Sevilla, Spain.
- Instituto de Biomedicina de Sevilla, IBiS (Universidad de Sevilla, HUVR, Junta de Andalucía, CSIC), Seville, Spain
| |
Collapse
|
4
|
Vijakumaran U, Shanmugam J, Heng JW, Azman SS, Yazid MD, Haizum Abdullah NA, Sulaiman N. Effects of Hydroxytyrosol in Endothelial Functioning: A Comprehensive Review. Molecules 2023; 28:molecules28041861. [PMID: 36838850 PMCID: PMC9966213 DOI: 10.3390/molecules28041861] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Pharmacologists have been emphasizing and applying plant and herbal-based treatments in vascular diseases for decades now. Olives, for example, are a traditional symbol of the Mediterranean diet. Hydroxytyrosol is an olive-derived compound known for its antioxidant and cardioprotective effects. Acknowledging the merit of antioxidants in maintaining endothelial function warrants the application of hydroxytyrosol in endothelial dysfunction salvage and recovery. Endothelial dysfunction (ED) is an impairment of endothelial cells that adversely affects vascular homeostasis. Disturbance in endothelial functioning is a known precursor for atherosclerosis and, subsequently, coronary and peripheral artery disease. However, the effects of hydroxytyrosol on endothelial functioning were not extensively studied, limiting its value either as a nutraceutical supplement or in clinical trials. The action of hydroxytyrosol in endothelial functioning at a cellular and molecular level is gathered and summarized in this review. The favorable effects of hydroxytyrosol in the improvement of endothelial functioning from in vitro and in vivo studies were scrutinized. We conclude that hydroxytyrosol is capable to counteract oxidative stress, inflammation, vascular aging, and arterial stiffness; thus, it is beneficial to preserve endothelial function both in vitro and in vivo. Although not specifically for endothelial dysfunction, hydroxytyrosol safety and efficacy had been demonstrated via in vivo and clinical trials for cardiovascular-related studies.
Collapse
|
5
|
Muñoz-García R, Sánchez-Hidalgo M, Montoya T, Alcarranza M, Ortega-Vidal J, Altarejos J, Alarcón-de-la-Lastra C. Effects of Oleacein, a New Epinutraceutical Bioproduct from Extra Virgin Olive Oil, in LPS-Activated Murine Immune Cells. Pharmaceuticals (Basel) 2022; 15:ph15111338. [PMID: 36355509 PMCID: PMC9699377 DOI: 10.3390/ph15111338] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022] Open
Abstract
The present study was designed to evaluate the immunomodulatory effects of the secoiridoid from extra virgin olive oil, oleacein (OLA), deepening into the possible signaling pathways involved in LPS-activated murine peritoneal macrophages. Moreover, we have explored OLA-induced epigenetic changes in histone markers and related cytokine production in murine LPS-stimulated murine splenocytes. Murine cells were treated with OLA in the presence or absence of LPS (5 μg/mL) for 18 or 24 h. OLA modulated the oxidative stress and the inflammatory response produced by LPS stimulation in murine peritoneal macrophages, by the inhibition of pro-inflammatory cytokines (TNF-α, IL-6, IL-1β, IFN-γ, IL-17 and IL-18) and ROS production and the expression of pro-inflammatory enzymes such as iNOS, COX-2 and m-PGES1. These protective effects could be due to the activation of the Nrf-2/HO-1 axis and the inhibition of JAK/STAT, ERK and P38 MAPKs and inflammasome canonical and non-canonical signaling pathways. Moreover, OLA modulated epigenetic modifications throughout histone methylation deacetylation (H3K18ac) and (H3K9me3 and H3K27me) in LPS-activated spleen cells. In conclusion, our data present OLA as an interesting anti-inflammatory and antioxidant natural compound that is able to regulate histone epigenetic markers. Nevertheless, additional in vivo studies are required to further investigate the beneficial effects of this EVOO secoiridoid, which might be a promising epinutraceutical bioproduct for the management of immune-related inflammatory diseases.
Collapse
Affiliation(s)
- Rocío Muñoz-García
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Sevilla, Spain
- Instituto de Biomedicina de Sevilla, IBiS, Universidad de Sevilla, HUVR, Junta de Andalucía, CSIC, 41013 Seville, Spain
| | - Marina Sánchez-Hidalgo
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Sevilla, Spain
- Instituto de Biomedicina de Sevilla, IBiS, Universidad de Sevilla, HUVR, Junta de Andalucía, CSIC, 41013 Seville, Spain
| | - Tatiana Montoya
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Sevilla, Spain
- Instituto de Biomedicina de Sevilla, IBiS, Universidad de Sevilla, HUVR, Junta de Andalucía, CSIC, 41013 Seville, Spain
| | - Manuel Alcarranza
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Sevilla, Spain
- Instituto de Biomedicina de Sevilla, IBiS, Universidad de Sevilla, HUVR, Junta de Andalucía, CSIC, 41013 Seville, Spain
| | - Juan Ortega-Vidal
- Department of Inorganic and Organic Chemistry, Faculty of Experimental Sciences, Campus de Excelencia Internacional Agroalimentario (ceiA3), Universidad de Jaén, 23071 Jaén, Spain
| | - Joaquín Altarejos
- Department of Inorganic and Organic Chemistry, Faculty of Experimental Sciences, Campus de Excelencia Internacional Agroalimentario (ceiA3), Universidad de Jaén, 23071 Jaén, Spain
| | - Catalina Alarcón-de-la-Lastra
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Sevilla, Spain
- Instituto de Biomedicina de Sevilla, IBiS, Universidad de Sevilla, HUVR, Junta de Andalucía, CSIC, 41013 Seville, Spain
- Correspondence: ; Tel.: +34954559877
| |
Collapse
|
6
|
Castejón ML, Montoya T, Ortega-Vidal J, Altarejos J, Alarcón-de-la-Lastra C. Ligstroside aglycon, an extra virgin olive oil secoiridoid, prevents inflammation by regulation of MAPKs, JAK/STAT, NF-κB, Nrf2/HO-1, and NLRP3 inflammasome signaling pathways in LPS-stimulated murine peritoneal macrophages. Food Funct 2022; 13:10200-10209. [PMID: 36111584 DOI: 10.1039/d2fo00351a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ligstroside aglycon (LA) is one of the main polyphenols in extra virgin olive oil (EVOO); nevertheless, it is scarcely investigated. The aim of this study was to evaluate the immunomodulatory and anti-inflammatory effects of LA on lipopolysaccharide (LPS)-stimulated murine peritoneal macrophages, as well as the potential signaling pathways involved. Isolated macrophages were treated with LA (50, 25, and 12.5 μM) in the presence or absence of LPS (5 μg ml-1) for 18 h. Cell viability was determined using the sulforhodamine B (SRB) assay. Nitric oxide (NO) and pro-inflammatory cytokine production was analyzed by the Griess method and enzyme-linked immunosorbent assay (ELISA), respectively. Protein expression of pro-inflammatory markers and signaling pathways were evaluated by western blot analysis. LA showed significant antioxidant and anti-inflammatory effects through decreasing oxidative stress markers such as NO production, inducible nitric oxide synthase (iNOS) and NADPH oxidase-1 (NOX-1) protein expression. Besides, LA was able to reduce pro-inflammatory cytokine levels and modulate cyclo-oxygenase-2 (COX-2), and microsomal prostaglandin E synthase-1 (mPGEs-1) protein overexpression. The mechanisms underlying these protective effects could be related via activation of nuclear factor (erythroid-derived 2)-like (Nrf2)/heme oxygenase 1 (HO-1) and inhibition of nuclear factor kappa-B (NF-κB), mitogen-activated protein kinases (MAPKs), and Janus kinase/signal transducer and activation of transcription (JAK2/STAT3) signaling pathways. In addition, LA inhibited non-canonical and canonical activation of a nucleotide-binding (NOD)-like receptor (NLRP3) inflammasome. We conclude that LA showed significant antioxidant and anti-inflammatory activities in LPS-stimulated murine peritoneal macrophages. However, further in vivo studies are warranted to further investigate the bioactivity of this interesting compound that might be a promising natural agent for the treatment of immune-inflammatory diseases.
Collapse
Affiliation(s)
| | - Tatiana Montoya
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Spain.
| | - Juan Ortega-Vidal
- Department of Inorganic and Organic Chemistry, Campus of International Agrifood Excellence (ceiA3), University of Jaen, Spain
| | - Joaquín Altarejos
- Department of Inorganic and Organic Chemistry, Campus of International Agrifood Excellence (ceiA3), University of Jaen, Spain
| | | |
Collapse
|
7
|
Gharsallah K, Rezig L, B'chir F, Bourgou S, Achour NB, Jlassi C, Soltani T, Chalh A. Composition and Characterization of Cold Pressed Moringa oleifera Seed Oil. J Oleo Sci 2022; 71:1263-1273. [PMID: 36047239 DOI: 10.5650/jos.ess22095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The present study aims to investigate the volatile compound and the triacylglycerol profiles of Tunisian cold pressed Moringa oleifera seed oil (MoSO) and to assess its thermal properties and its biological activities. GC-MS analysis identified thirty six phyto-compounds amounting to 98.99% of the total oil. These compounds were classified into eleven groups among which the fatty acid one exhibited the highest intensity (91.63%). Cis, 6-octadecenoic acid was the most abundant compound (70.68%). The triacylglycerol composition of MoSO was characterized by the predominance of the glycerol trioleate (OOO) (32.42±0.12%). Thermogravimetric analysis of MoSO showed that the oil possess an interesting thermal stability with a highly Onset temperatures (Tonset) of 390.72°C and 357.47°C, respectively in nitrogen and air atmospheres. By using the ABTS assay, MoSO exhibited an interesting antioxidant capacity of 365 μM TEAC. The oil was also endowed with a relatively strong anti-inflammatory activity since its treatment at the different concentrations tested (75, 150 and 300 μg/mL). However, no antimicrobial activity was observed. On the basis of the obtained results, MoSO could be used in diverse industrial applications such as pharmaceutical, cosmetic, and food fields thanks to its thermal stability and interesting biological activities.
Collapse
Affiliation(s)
- Karima Gharsallah
- Physics laboratory of Soft Matter and Electromagnetic Modeling, LR99ES16, Faculty of Science of Tunis, Tunis El Manar University.,Laboratoire des Interactions Plante Sol Environnement, LR21ES01, Faculty of Science of Tunis, Tunis El Manar University.,Process engineering department, Higher Institute of Technological Studies of Zaghouan, General Direction of Technological Studies
| | - Leila Rezig
- University of Carthage, National Institute of Applied Sciences and Technology, LR11ES26, LIP-MB 'Laboratory of Protein Engineering and Bioactive Molecules'.,High Institute of Food Industries
| | - Fatma B'chir
- Laboratory of Natural Substances, National Institute of Research and Physico-chemical analyses, Sidi Thabet Technology Center
| | - Soumaya Bourgou
- Laboratory of Aromatic and Medicinal Plants, Biotechnology Center of Borj-Cedria Technopole
| | - Nahed Ben Achour
- University of Carthage, National Institute of Applied Sciences and Technology, LR11ES26, LIP-MB 'Laboratory of Protein Engineering and Bioactive Molecules'.,University of Jendouba, High Institute of Biotechnology of Beja
| | | | - Taoufik Soltani
- Physics laboratory of Soft Matter and Electromagnetic Modeling, LR99ES16, Faculty of Science of Tunis, Tunis El Manar University
| | - Abdellah Chalh
- Laboratoire des Interactions Plante Sol Environnement, LR21ES01, Faculty of Science of Tunis, Tunis El Manar University
| |
Collapse
|
8
|
Immunomodulatory Effects of (R)-Sulforaphane on LPS-Activated Murine Immune Cells: Molecular Signaling Pathways and Epigenetic Changes in Histone Markers. Pharmaceuticals (Basel) 2022; 15:ph15080966. [PMID: 36015113 PMCID: PMC9414446 DOI: 10.3390/ph15080966] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/22/2022] [Accepted: 08/02/2022] [Indexed: 02/01/2023] Open
Abstract
The aim of this study was to explore the immunomodulatory effects of the natural enantiomer (R)-Sulforaphane (SFN) and the possible signaling pathways involved in an ex vivo model of LPS-stimulated murine peritoneal macrophages. Furthermore, we studied the epigenetic changes induced by (R)-SFN as well as the post-translational modifications of histone H3 (H3K9me3 and H3K18ac) in relation to the production of cytokines in murine splenocytes after LPS stimulation. (R)-SFN was able to modulate the inflammatory response and oxidative stress induced by LPS stimulation in murine peritoneal macrophages through the inhibition of reactive oxygen species (ROS), nitric oxide (NO) and cytokine (IL-1β, IL-6, IL-17, IL-18 and TNF-α) production by down-regulating the expression of pro-inflammatory enzymes (iNOS, COX-2 and mPGES-1). We also found that activation of the Nrf-2/HO-1 axis and inhibition of the JAK2/STAT-3, MAPK, canonical and non-canonical inflammasome signaling pathways could have been responsible for the immunomodulatory effects of (R)-SFN. Furthermore, (R)-SFN modulated epigenetic modifications through histone methylation (H3K9me3) and deacetylation (H3K18ac) in LPS-activated spleen cells. Collectively, our results suggest that (R)-SFN could be a promising epinutraceutical compound for the management of immunoinflammatory diseases.
Collapse
|
9
|
Tu P, Chi L, Bian X, Gao B, Ru H, Lu K. A Black Raspberry-Rich Diet Protects From Dextran Sulfate Sodium-Induced Intestinal Inflammation and Host Metabolic Perturbation in Association With Increased Aryl Hydrocarbon Receptor Ligands in the Gut Microbiota of Mice. Front Nutr 2022; 9:842298. [PMID: 35734371 PMCID: PMC9208328 DOI: 10.3389/fnut.2022.842298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
Dietary modulation of the gut microbiota recently received considerable attention, and ligand activation of aryl hydrocarbon receptor (AHR) plays a pivotal role in intestinal immunity. Importantly, black raspberry (BRB, Rubus occidentalis) is associated with a variety of beneficial health effects. We aim to investigate effects of a BRB-rich diet on dextran sulfate sodium (DSS)-induced intestinal inflammation and to determine whether its consequent anti-inflammatory effects are relevant to modulation of the gut microbiota, especially its production of AHR ligands. A mouse model of DSS-induced intestinal inflammation was used in the present study. C57BL/6J mice were fed either AIN-76A or BRB diet. Composition and functions of the gut microbiota were assessed by 16S rRNA sequencing and comparative metagenome analysis. Metabolic profiles of host and the gut microbiome were assessed by serum and fecal metabolomic profiling and identification. BRB diet was found to ameliorate DSS-induced intestinal inflammation and host metabolic perturbation. BRB diet also protected from DSS-induced perturbation in diversity and composition in the gut microbiota. BRB diet promoted AHR ligand production by the gut microbiota, as revealed by increased levels of fecal AHR activity in addition to increased levels of two known AHR ligands, hemin and biliverdin. Accordingly, enrichment of bacterial genes and pathways responsible for production of hemin and biliverdin were found, specific gut bacteria that are highly correlated with abundances of hemin and biliverdin were also identified. BRB dietary intervention ameliorated intestinal inflammation in mice in association with promotion of AHR ligand production by the gut microbiota.
Collapse
Affiliation(s)
- Pengcheng Tu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Liang Chi
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Xiaoming Bian
- Department of Environmental Health Sciences, University of Georgia, Athens, GA, United States
| | - Bei Gao
- Department of Environmental Health Sciences, University of Georgia, Athens, GA, United States
| | - Hongyu Ru
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kun Lu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
10
|
Rezig L, Chemkhi H, Gharsallah K, Mokbli S, B'chir F, Ben Achour N, Bourgou S, Chouaibi M. Profile characterization and biological activities of cold pressed Garden Cress (Lepidium sativum) seed oil. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
11
|
Quirós-Fernández R, López-Plaza B, Bermejo LM, Palma Milla S, Zangara A, Candela CG. Oral Supplement Containing Hydroxytyrosol and Punicalagin Improves Dyslipidemia in an Adult Population without Co-Adjuvant Treatment: A Randomized, Double-Blind, Controlled and Crossover Trial. Nutrients 2022; 14:nu14091879. [PMID: 35565844 PMCID: PMC9103949 DOI: 10.3390/nu14091879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 12/04/2022] Open
Abstract
Hydroxytyrosol (HT) and punicalagin (PC) exert cardioprotective and antiatherosclerotic effects. This study evaluated the effect of an oral supplement containing HT and PC (SAx) on dyslipidemia in an adult population. A randomized, double-blind, controlled, crossover trial was conducted over a 20-week period. SAx significantly reduced the plasma levels of triglycerides (TG) in subjects with hypertriglyceridemia (≥150 mg/dL) (from 200.67 ± 51.38 to 155.33 ± 42.44 mg/dL; p < 0.05), while no such effects were observed in these subjects after the placebo. SAx also significantly decreased the plasma levels of low-density lipoprotein cholesterol (LDL-C) in subjects with high plasma levels of LDL-C (≥160 mg/dL) (from 179.13 ± 16.18 to 162.93 ± 27.05 mg/dL; p < 0.01), while no such positive effect was observed with the placebo. In addition, the placebo significantly reduced the plasma levels of high-density lipoprotein cholesterol (HDL-C) in the total population (from 64.49 ± 12.65 to 62.55 ± 11.57 mg/dL; p < 0.05), while SAx significantly increased the plasma levels of HDL-C in subjects with low plasma levels of HDL-C (<50 mg/dL) (from 44.25 ± 3.99 to 48.00 ± 7.27 mg/dL; p < 0.05). In conclusion, the supplement containing HT and PC exerted antiatherosclerotic and cardio-protective effects by considerably improving dyslipidemia in an adult population, without co-adjuvant treatment or adverse effects.
Collapse
Affiliation(s)
- Rebeca Quirós-Fernández
- Nutrition Research Group, Hospital La Paz Institute for Health Research (IdiPAZ), 28046 Madrid, Spain;
- Correspondence: (R.Q.-F.); (B.P.-L.)
| | - Bricia López-Plaza
- Nutrition Research Group, Hospital La Paz Institute for Health Research (IdiPAZ), 28046 Madrid, Spain;
- Correspondence: (R.Q.-F.); (B.P.-L.)
| | - Laura M. Bermejo
- Nutrition Research Group, Hospital La Paz Institute for Health Research (IdiPAZ), 28046 Madrid, Spain;
| | - Samara Palma Milla
- Nutrition Department, Hospital University La Paz, 28046 Madrid, Spain; (S.P.M.); (C.G.C.)
| | - Andrea Zangara
- Centre for Human Psychopharmacology, Swinburne University, Melbourne, VIC 3122, Australia;
- Euromed S.A., C/Rec de Dalt, 21-23, Pol. Ind. Can Magarola, 08100 Mollet del Valles, Spain
| | - Carmen Gómez Candela
- Nutrition Department, Hospital University La Paz, 28046 Madrid, Spain; (S.P.M.); (C.G.C.)
| |
Collapse
|
12
|
del Caño-Ochoa S, Ruiz-Aracama A, Guillén MD. Influence of Hydroxytyrosol Acetate Enrichment of an Oil Rich in Omega-6 Groups on the Evolution of Its Oxidation and Oxylipin Formation When Subjected to Accelerated Storage. A Global Study by Proton Nuclear Magnetic Resonance. Antioxidants (Basel) 2022; 11:722. [PMID: 35453407 PMCID: PMC9030202 DOI: 10.3390/antiox11040722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/03/2022] [Accepted: 04/03/2022] [Indexed: 01/27/2023] Open
Abstract
Sunflower oil samples, both unenriched and enriched with four different concentrations of hydroxytyrosol acetate, were subjected to accelerated storage at 70 °C until a very advanced oxidation stage and the process was monitored by 1H NMR spectroscopy. The aim of the study is to know the effect that the presence of this antioxidant has on the oxidation process of sunflower oil under the aforementioned conditions, as well as on the formation and evolution of the concentration of a significant number of oxylipins. The oxidation process was studied globally by monitoring, during storage time, the degradation of both the linoleic acyl group of sunflower oil, which is the main component of sunflower oil, and the added hydroxytyrosol acetate. Simultaneously, the identification of up to twenty-six different types of oxylipins formed in the oxidation process and the monitoring of the evolution of their concentration over the storage time were carried out. In this way, essential information about the effect that hydroxytyrosol acetate provokes on the oxidation of this oil rich in omega-6 polyunsaturated acyl groups, has been obtained. It has also been shown that the enrichment of sunflower oil with this antioxidant under the conditions tested does not prevent the oxidation process but slows it down, affecting the entire oxidation process.
Collapse
Affiliation(s)
| | | | - María D. Guillén
- Food Technology, Faculty of Pharmacy, Lascaray Research Centre, University of the Basque Country (UPV-EHU), Paseo de la Universidad n 7, 01006 Vitoria-Gasteiz, Spain; (S.d.C.-O.); (A.R.-A.)
| |
Collapse
|
13
|
Tian Z, Zhang X, Sun M. Phytochemicals Mediate Autophagy Against Osteoarthritis by Maintaining Cartilage Homeostasis. Front Pharmacol 2022; 12:795058. [PMID: 34987406 PMCID: PMC8722717 DOI: 10.3389/fphar.2021.795058] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/01/2021] [Indexed: 12/11/2022] Open
Abstract
Osteoarthritis (OA) is a common degenerative joint disease and is a leading cause of disability and reduced quality of life worldwide. There are currently no clinical treatments that can stop or slow down OA. Drugs have pain-relieving effects, but they do not slow down the course of OA and their long-term use can lead to serious side effects. Therefore, safe and clinically appropriate long-term treatments for OA are urgently needed. Autophagy is an intracellular protective mechanism, and targeting autophagy-related pathways has been found to prevent and treat various diseases. Attenuation of the autophagic pathway has now been found to disrupt cartilage homeostasis and plays an important role in the development of OA. Therefore, modulation of autophagic signaling pathways mediating cartilage homeostasis has been considered as a potential therapeutic option for OA. Phytochemicals are active ingredients from plants that have recently been found to reduce inflammatory factor levels in cartilage as well as attenuate chondrocyte apoptosis by modulating autophagy-related signaling pathways, which are not only widely available but also have the potential to alleviate the symptoms of OA. We reviewed preclinical studies and clinical studies of phytochemicals mediating autophagy to regulate cartilage homeostasis for the treatment of OA. The results suggest that phytochemicals derived from plant extracts can target relevant autophagic pathways as complementary and alternative agents for the treatment of OA if subjected to rigorous clinical trials and pharmacological tests.
Collapse
Affiliation(s)
- Zheng Tian
- School of Kinesiology, Shenyang Sport University, Shenyang, China
| | - Xinan Zhang
- School of Kinesiology, Shenyang Sport University, Shenyang, China
| | - Mingli Sun
- School of Kinesiology, Shenyang Sport University, Shenyang, China
| |
Collapse
|
14
|
De La Cruz Cortés JP, Vallejo-Carmona L, Arrebola MM, Martín-Aurioles E, Rodriguez-Pérez MD, Ortega-Hombrados L, Verdugo C, Fernández-Prior MÁ, Bermúdez-Oria A, González-Correa JA. Synergistic Effect of 3',4'-Dihidroxifenilglicol and Hydroxytyrosol on Oxidative and Nitrosative Stress and Some Cardiovascular Biomarkers in an Experimental Model of Type 1 Diabetes Mellitus. Antioxidants (Basel) 2021; 10:antiox10121983. [PMID: 34943086 PMCID: PMC8750252 DOI: 10.3390/antiox10121983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 11/16/2022] Open
Abstract
The objective of this study was to assess a possible synergistic effect of two extra-virgin olive oil polyphenols, 3,4,-dyhydroxyphenylglycol (DHPG) and hydroxytyrosol (HT), in an experimental model of type 1 diabetes. Seven groups of animals were studied: (1) Nondiabetic rats (NDR), (2) 2-month-old diabetic rats (DR), (3) DR treated with 5 mg/kg/day p.o. HT, (4) DR treated with 0.5 mg/kg/day p.o. DHPG, (5) DR treated with 1 mg/kg/day p.o. DHPG, (6) DR treated with HT + DHPG (0.5), (7) DR treated with HT + DHPG (1). Oxidative stress variables (lipid peroxidation, glutathione, total antioxidant activity, 8-isoprostanes, 8-hydroxy-2-deoxyguanosine, and oxidized LDL), nitrosative stress (3-nitrotyrosine), and some cardiovascular biomarkers (platelet aggregation, thromboxane B2, prostacyclin, myeloperoxidase, and vascular cell adhesion protein 1 (VCAM-1)) were analyzed. The diabetic animals showed an imbalance in all of the analyzed variables. HT exerted an antioxidant and downregulatory effect on prothrombotic biomarkers while reducing the fall of prostacyclin. DHPG presented a similar, but quantitatively lower, profile. HT plus DHPG showed a synergistic effect in the reduction of oxidative and nitrosative stress, platelet aggregation, production of prostacyclin, myeloperoxidase, and VCAM-1. This synergism could be important for the development of functional oils enriched in these two polyphenols in the proportion used in this study.
Collapse
Affiliation(s)
- José Pedro De La Cruz Cortés
- Departmento de Farmacología, Instituto de Investigación Biomédica (IBIMA), Facultad de Medicina, Universidad de Málaga, 29010 Málaga, Spain; (J.P.D.L.C.C.); (L.O.-H.); (C.V.); (J.A.G.-C.)
| | - Leticia Vallejo-Carmona
- Facultad de Enfermería, Universidad Ana G. Mendez, Recinto Cupei, San Juan PR 00928, Puerto Rico;
| | | | | | - María Dolores Rodriguez-Pérez
- Departmento de Farmacología, Instituto de Investigación Biomédica (IBIMA), Facultad de Medicina, Universidad de Málaga, 29010 Málaga, Spain; (J.P.D.L.C.C.); (L.O.-H.); (C.V.); (J.A.G.-C.)
- Correspondence: ; Tel.: +34-952131567
| | - Laura Ortega-Hombrados
- Departmento de Farmacología, Instituto de Investigación Biomédica (IBIMA), Facultad de Medicina, Universidad de Málaga, 29010 Málaga, Spain; (J.P.D.L.C.C.); (L.O.-H.); (C.V.); (J.A.G.-C.)
| | - Cristina Verdugo
- Departmento de Farmacología, Instituto de Investigación Biomédica (IBIMA), Facultad de Medicina, Universidad de Málaga, 29010 Málaga, Spain; (J.P.D.L.C.C.); (L.O.-H.); (C.V.); (J.A.G.-C.)
| | - María África Fernández-Prior
- Consejo Superior de Investigaciones Científicas (CSIC), Instituto de la Grasa, 41013 Seville, Spain; (M.Á.F.-P.); (A.B.-O.)
| | - Alejandra Bermúdez-Oria
- Consejo Superior de Investigaciones Científicas (CSIC), Instituto de la Grasa, 41013 Seville, Spain; (M.Á.F.-P.); (A.B.-O.)
| | - José Antonio González-Correa
- Departmento de Farmacología, Instituto de Investigación Biomédica (IBIMA), Facultad de Medicina, Universidad de Málaga, 29010 Málaga, Spain; (J.P.D.L.C.C.); (L.O.-H.); (C.V.); (J.A.G.-C.)
| |
Collapse
|
15
|
Floris B, Galloni P, Conte V, Sabuzi F. Tailored Functionalization of Natural Phenols to Improve Biological Activity. Biomolecules 2021; 11:1325. [PMID: 34572538 PMCID: PMC8467377 DOI: 10.3390/biom11091325] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 12/11/2022] Open
Abstract
Phenols are widespread in nature, being the major components of several plants and essential oils. Natural phenols' anti-microbial, anti-bacterial, anti-oxidant, pharmacological and nutritional properties are, nowadays, well established. Hence, given their peculiar biological role, numerous studies are currently ongoing to overcome their limitations, as well as to enhance their activity. In this review, the functionalization of selected natural phenols is critically examined, mainly highlighting their improved bioactivity after the proper chemical transformations. In particular, functionalization of the most abundant naturally occurring monophenols, diphenols, lipidic phenols, phenolic acids, polyphenols and curcumin derivatives is explored.
Collapse
Affiliation(s)
- Barbara Floris
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, snc, 00133 Roma, Italy
| | - Pierluca Galloni
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, snc, 00133 Roma, Italy
| | - Valeria Conte
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, snc, 00133 Roma, Italy
| | - Federica Sabuzi
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, snc, 00133 Roma, Italy
| |
Collapse
|
16
|
Biocatalyzed Flow Oxidation of Tyrosol to Hydroxytyrosol and Efficient Production of Their Acetate Esters. Antioxidants (Basel) 2021; 10:antiox10071142. [PMID: 34356374 PMCID: PMC8301122 DOI: 10.3390/antiox10071142] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/08/2021] [Accepted: 07/15/2021] [Indexed: 11/17/2022] Open
Abstract
Tyrosol (Ty) and hydroxytyrosol (HTy) are valuable dietary phenolic compounds present in olive oil and wine, widely used for food, nutraceutical and cosmetic applications. Ty and HTy are endowed with a number of health-related biological activities, including antioxidant, antimicrobial and anti-inflammatory properties. In this work, we developed a sustainable, biocatalyzed flow protocol for the chemo- and regio-selective oxidation of Ty into HTy catalyzed by free tyrosinase from Agaricus bisporus in a gas/liquid biphasic system. The aqueous flow stream was then in-line extracted to recirculate the water medium containing the biocatalyst and the excess ascorbic acid, thus improving the cost-efficiency of the process and creating a self-sufficient closed-loop system. The organic layer was purified in-line through a catch-and-release procedure using supported boronic acid that was able to trap HTy and leave the unreacted Ty in solution. Moreover, the acetate derivatives (TyAc and HTyAc) were produced by exploiting a bioreactor packed with an immobilized acyltransferase from Mycobacterium smegmatis (MsAcT), able to selectively act on the primary alcohol. Under optimized conditions, high-value HTy was obtained in 75% yield, whereas TyAc and HTyAc were isolated in yields of up to 80% in only 10 min of residence time.
Collapse
|
17
|
Doménech P, Duque A, Higueras I, Fernández JL, Manzanares P. Analytical Characterization of Water-Soluble Constituents in Olive-Derived By-Products. Foods 2021; 10:foods10061299. [PMID: 34198861 PMCID: PMC8229305 DOI: 10.3390/foods10061299] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 01/24/2023] Open
Abstract
Olive trees constitute one of the largest agroindustries in the Mediterranean area, and their cultivation generates a diverse pool of biomass by-products such as olive tree pruning (OTP), olive leaves (OL), olive stone (OS), and extracted olive pomace (EOP). These lignocellulosic materials have varying compositions and potential utilization strategies within a biorefinery context. The aim of this work was to carry out an integral analysis of the aqueous extractives fraction of these biomasses. Several analytical methods were applied in order to fully characterize this fraction to varying extents: a mass closure of >80% was reached for EOP, >76% for OTP, >65% for OS, and >52% for OL. Among the compounds detected, xylooligosaccharides, mannitol, 3,4-dihydroxyphenylglycol, and hydroxytyrosol were noted as potential enhancers of the valorization of said by-products. The extraction of these compounds is expected to be more favorable for OTP, OL, and EOP, given their high extractives content, and is compatible with other utilization strategies such as the bioconversion of the lignocellulosic fraction into biofuels and bioproducts.
Collapse
|
18
|
López-Yerena A, Ninot A, Jiménez-Ruiz N, Lozano-Castellón J, Pérez M, Escribano-Ferrer E, Romero-Aroca A, Lamuela-Raventós RM, Vallverdú-Queralt A. Influence of the Ripening Stage and Extraction Conditions on the Phenolic Fingerprint of 'Corbella' Extra-Virgin Olive Oil. Antioxidants (Basel) 2021; 10:877. [PMID: 34070852 PMCID: PMC8229988 DOI: 10.3390/antiox10060877] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 01/09/2023] Open
Abstract
The ancient 'Corbella' olive variety from the center-north of Catalonia is being recovered to obtain quality extra-virgin olive oil (EVOO) with unique organoleptic properties. The aim of this work was to determine the effect of agronomic and technical factors on the phenolic fingerprint of EVOO and to establish the optimum harvesting time and crushing and malaxation conditions for 'Corbella' olives. Therefore, three different ripening indices (0.3, 1.2, and 3.2) and three crushing temperatures (10, 18, and 25 OC) were studied. Additionally, a factorial design to optimize the phenolic concentration of the EVOO was developed, applying a range of sieve diameters (4 and 6 mm), and malaxation time (30 and 60 min) and temperature (27, 32, and 37 °C). The phenolic profile was analyzed by ultra-high performance liquid chromatography coupled to mass spectrometry in a tandem detector. The level of secoiridoids, the major phenolic compounds in the oil, was higher when using olives harvested earlier. Oleuropein aglycone and ligstroside aglycone were degraded during crushing at high temperatures, resulting in the formation of oleacein and oleocanthal. The best processing conditions in terms of total phenolic content were found to be 30 min of malaxation at 37 OC, the crushing size not having any affect.
Collapse
Affiliation(s)
- Anallely López-Yerena
- Department of Nutrition, Food Science and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain; (A.L.-Y.); (N.J.-R.); (J.L.-C.); (M.P.); (R.M.L.-R.)
| | - Antonia Ninot
- Institute of Agrifood Research and Technology (IRTA), Fruit Science Program, Olive Growing and Oil Technology Research Team, 43120 Constantí, Spain; (A.N.); (A.R.-A.)
| | - Núria Jiménez-Ruiz
- Department of Nutrition, Food Science and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain; (A.L.-Y.); (N.J.-R.); (J.L.-C.); (M.P.); (R.M.L.-R.)
| | - Julián Lozano-Castellón
- Department of Nutrition, Food Science and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain; (A.L.-Y.); (N.J.-R.); (J.L.-C.); (M.P.); (R.M.L.-R.)
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain;
| | - Maria Pérez
- Department of Nutrition, Food Science and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain; (A.L.-Y.); (N.J.-R.); (J.L.-C.); (M.P.); (R.M.L.-R.)
- Laboratory of Organic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Elvira Escribano-Ferrer
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain;
- Pharmaceutical Nanotechnology Group I+D+I Associated Unit to CSIC, Biopharmaceutics and Pharmacokinetics Unit, Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Institute of Nanoscience and Nanotechnology (IN2UB), Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Agustí Romero-Aroca
- Institute of Agrifood Research and Technology (IRTA), Fruit Science Program, Olive Growing and Oil Technology Research Team, 43120 Constantí, Spain; (A.N.); (A.R.-A.)
| | - Rosa M. Lamuela-Raventós
- Department of Nutrition, Food Science and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain; (A.L.-Y.); (N.J.-R.); (J.L.-C.); (M.P.); (R.M.L.-R.)
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain;
| | - Anna Vallverdú-Queralt
- Department of Nutrition, Food Science and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain; (A.L.-Y.); (N.J.-R.); (J.L.-C.); (M.P.); (R.M.L.-R.)
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain;
| |
Collapse
|
19
|
Castejón ML, Montoya T, Alarcón-de-la-Lastra C, González-Benjumea A, Vázquez-Román MV, Sánchez-Hidalgo M. Dietary oleuropein and its acyl derivative ameliorate inflammatory response in peritoneal macrophages from pristane-induced SLE mice via canonical and noncanonical NLRP3 inflammasomes pathway. Food Funct 2021; 11:6622-6631. [PMID: 32656558 DOI: 10.1039/d0fo00235f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Systemic lupus erythematosus (SLE) is a multifactorial autoimmune disease without an effective and safe treatment. Besides, macrophages are the major components of the innate immune system and play a critical role in the inflammation process in SLE. Secoiridoids from olive tree are phenolic compounds which have shown important pharmacological effects. Particularly, oleuropein (OL) has shown antioxidant, anti-inflammatory and immunomodulatory properties suggesting a potential application in a large number of inflammatory and reactive oxygen species (ROS)-mediated diseases. In addition, different studies have shown the importance of acyl derivatives of natural phenols due to their better hydrophilic/lipophilic balance.
Collapse
Affiliation(s)
- M L Castejón
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Seville, Spain.
| | - T Montoya
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Seville, Spain.
| | | | - A González-Benjumea
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, Seville, Spain
| | - M V Vázquez-Román
- Department of Normal and Pathological Cytology and Histology, Faculty of Medicine, University of Seville, Seville, Spain
| | - M Sánchez-Hidalgo
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Seville, Spain.
| |
Collapse
|
20
|
From Green Technology to Functional Olive Oils: Assessing the Best Combination of Olive Tree-Related Extracts with Complementary Bioactivities. Antioxidants (Basel) 2021; 10:antiox10020202. [PMID: 33573339 PMCID: PMC7912092 DOI: 10.3390/antiox10020202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 01/11/2023] Open
Abstract
Our aim was to assess the combination of olive tree-related extracts with the most favorable profile of in vitro bioactive properties. We tested the antioxidant (increment of low-density lipoprotein resistance against oxidation), vasoactive (promotion of nitric oxide release and decrease of endothelin-1 production in human umbilical vein endothelial cells), anti-inflammatory (decrease of the endothelial production of vascular cell adhesion molecule-1), and antithrombotic (reduction of the endothelial release of plasminogen activator inhibitor-1) capacities of six phenolic extracts and three triterpenic acid solutions (Ps and Ts, respectively). We tested extracts alone and in combination, at nutritional (Ps: 0.05–0.5 μmol/L; Ts: 0.001–0.1 μmol/L) and nutraceutical doses (Ps: 1–10 μmol/L; Ts: 0.25–10 μmol/L). The combination of Ps rich in 3,4-dihydroxyphenylglycol (76%, P2), hydroxytyrosol (95%, P3), and oleuropein (70%, P4) (final nutritional concentration: 0.15 μmol/L; final nutraceutical concentration: 3 μmol/L) was the best in order to prepare functional products and nutraceuticals with cardioprotective properties, despite the fact that the isolated extract with the greatest in vitro properties was P5 (75% oleocanthal), suggesting a potential synergistic effect among different olive components.
Collapse
|
21
|
Lv SS, Fu Y, Chen J, Jiao Y, Chen SQ. Six phenanthrenes from the roots of Cymbidium faberi Rolfe. and their biological activities. Nat Prod Res 2020; 36:1170-1181. [PMID: 33342306 DOI: 10.1080/14786419.2020.1862836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
A new phenanthrene compound, 7-(4-hydroxybenzyl)-8-methoxy-9,10- dihydrophenanthrene-2,5-diol (HMD), along with five known compounds (Coelonin, DD, Shancidin, HDP and MDD) were isolated from the roots of Cymbidium faberi Rolfe. (CFR). Their structures were identified using various spectroscopic methods. These compounds were reported for the first time in the genus. All isolated compounds were tested by radical-scavenging ability against 1,1-diphenyl-2-picryl-hydrazyl (DPPH), cytotoxic activity against three human cancer cell lines and inflammatory activity. Among them, Shancidin exhibited the stronger DPPH-scavenging activity (IC50=6.67 ± 0.84 μΜ) and cytotoxic activity against three tumour cell lines. Except for HDP, all compounds dose-dependently suppressed production of NO, TNF-α, IL-6 in LPS induced mouse primary peritoneal macrophage and showed anti-inflammatory activity. Moreover, 18 compounds were identified by UHPLC-LTQ-Orbitrap-MS combined with MS database, which provides a basis for further research.
Collapse
Affiliation(s)
- Shuang-Shuang Lv
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Yu Fu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Jun Chen
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Yuan Jiao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Sui-Qing Chen
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan, China.,Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| |
Collapse
|
22
|
Metabolome classification via GC/MS and UHPLC/MS of olive fruit varieties grown in Egypt reveal pickling process impact on their composition. Food Chem 2020; 339:127861. [PMID: 32836025 DOI: 10.1016/j.foodchem.2020.127861] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 08/07/2020] [Accepted: 08/15/2020] [Indexed: 02/06/2023]
Abstract
The role of variety and effects of pickling on Egyptian olive fruit metabolome was determined using mass spectrometry-based metabolomics targeting nutrients and bioactive metabolities. The analyzed fresh olive fruit varieties included Manzanilo, Picual, Koroneiki, and Coratina, while the pickled samples included the Manzanilo and Picual varieties. Profiling of primary and secondary metabolites resulted in the detection of 201 metabolites. Variation between varieties was mostly observed among sugars, sugar alcohols, secoiridoids, and flavonoids. An abundance of carbohydrates and O-glycosides in Picual and Manzanilo versus enrichment of secoiridoids in Picual and Coratina olives viz. dehyro-oleuropein could account for the difference in palatability and health benefits among varieties. Herein, 13 new compounds are reported in the tested varieties, of which 10 appeared exclusively in pickled samples. Generally, pickled samples were characterized by the relative abundance of secoiridoids regarded as important markers for the pickling process. Metabolites profiling provided greater insight into the pickling process as a preservation method and accounted for the improved organoleptic characters in pickled fruits.
Collapse
|
23
|
Rodríguez-López P, Lozano-Sanchez J, Borrás-Linares I, Emanuelli T, Menéndez JA, Segura-Carretero A. Structure-Biological Activity Relationships of Extra-Virgin Olive Oil Phenolic Compounds: Health Properties and Bioavailability. Antioxidants (Basel) 2020; 9:E685. [PMID: 32752213 PMCID: PMC7464770 DOI: 10.3390/antiox9080685] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023] Open
Abstract
Extra-virgin olive oil is regarded as functional food since epidemiological studies and multidisciplinary research have reported convincing evidence that its intake affects beneficially one or more target functions in the body, improves health, and reduces the risk of disease. Its health properties have been related to the major and minor fractions of extra-virgin olive oil. Among olive oil chemical composition, the phenolic fraction has received considerable attention due to its bioactivity in different chronic diseases. The bioactivity of the phenolic compounds could be related to different properties such as antioxidant and anti-inflammatory, although the molecular mechanism of these compounds in relation to many diseases could have different cellular targets. The aim of this review is focused on the extra-virgin olive oil phenolic fraction with particular emphasis on (a) biosynthesis, chemical structure, and influence factors on the final extra-virgin olive oil phenolic composition; (b) structure-antioxidant activity relationships and other molecular mechanisms in relation to many diseases; (c) bioavailability and controlled delivery strategies; (d) alternative sources of olive biophenols. To achieve this goal, a comprehensive review was developed, with particular emphasis on in vitro and in vivo assays as well as clinical trials. This report provides an overview of extra-virgin olive oil phenolic compounds as a tool for functional food, nutraceutical, and pharmaceutical applications.
Collapse
Affiliation(s)
- Paloma Rodríguez-López
- Department of Food Science and Nutrition, University of Granada, Campus Universitario s/n, 18071 Granada, Spain;
- Research and Development Functional Food Centre (CIDAF), Health Science Technological Park, Avenida del Conocimiento 37, Edificio BioRegión, 18016 Granada, Spain; (I.B.-L.); (A.S.-C.)
| | - Jesús Lozano-Sanchez
- Department of Food Science and Nutrition, University of Granada, Campus Universitario s/n, 18071 Granada, Spain;
- Research and Development Functional Food Centre (CIDAF), Health Science Technological Park, Avenida del Conocimiento 37, Edificio BioRegión, 18016 Granada, Spain; (I.B.-L.); (A.S.-C.)
| | - Isabel Borrás-Linares
- Research and Development Functional Food Centre (CIDAF), Health Science Technological Park, Avenida del Conocimiento 37, Edificio BioRegión, 18016 Granada, Spain; (I.B.-L.); (A.S.-C.)
| | - Tatiana Emanuelli
- Department of Food Technology and Science, Center of Rural Sciences, Federal University of Santa Maria, Camobi 97105-900, Santa Maria, RS, Brazil;
| | - Javier A. Menéndez
- Catalan Institute of Oncology ProCURE (Program Against Cancer Therapeutic Resistance), Ctra. França s/n, Hospital Dr. Josep Trueta de Girona, 17007 Girona, Catalonia, Spain;
| | - Antonio Segura-Carretero
- Research and Development Functional Food Centre (CIDAF), Health Science Technological Park, Avenida del Conocimiento 37, Edificio BioRegión, 18016 Granada, Spain; (I.B.-L.); (A.S.-C.)
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| |
Collapse
|
24
|
de Andrés MC, Meiss MS, Sánchez-Hidalgo M, González-Benjumea A, Fernández-Bolaños JG, Alarcón-de-la-Lastra C, Oreffo RO. Osteoarthritis treatment with a novel nutraceutical acetylated ligstroside aglycone, a chemically modified extra-virgin olive oil polyphenol. J Tissue Eng 2020; 11:2041731420922701. [PMID: 32523668 PMCID: PMC7257837 DOI: 10.1177/2041731420922701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/08/2020] [Indexed: 12/25/2022] Open
Abstract
Recent studies have shown that dietary patterns confer protection from certain chronic diseases related to oxidative stress, the immune system and chronic low-grade inflammatory diseases. The aim of this study was to evaluate the anti-inflammatory potential and the capacity to attenuate cartilage degradation using extra-virgin olive oil–derived polyphenols for the treatment of osteoarthritis. Results show that both nutraceuticals ligstroside aglycone and acetylated ligstroside aglycone showed an anti-inflammatory profile. Acetylated ligstroside aglycone significantly reduced the expression of pro-inflammatory genes including NOS2 and MMP13 at both RNA and protein levels; decreased nitric oxide release; and, importantly, reduced proteoglycan loss in human osteoarthritis cartilage explants. Our study demonstrated that a new synthetic acetylated ligstroside aglycone derivative offers enhanced anti-inflammatory profile than the natural nutraceutical compound in osteoarthritis. These results substantiate the role of nutraceuticals in osteoarthritis with implications for therapeutic intervention and our understanding of osteoarthritis pathophysiology.
Collapse
Affiliation(s)
- María C de Andrés
- Bone and Joint Research Group, Centre for Human Development Stem Cells and Regeneration, Institute of Developmental Science, University of Southampton, Southampton, UK.,Cartilage Epigenetics Group, Rheumatology Division, INIBIC-Complexo Hospitalario Universitario A Coruña (CHUAC), A Coruña, Spain
| | - Mia S Meiss
- Bone and Joint Research Group, Centre for Human Development Stem Cells and Regeneration, Institute of Developmental Science, University of Southampton, Southampton, UK
| | | | | | | | | | - Richard Oc Oreffo
- Bone and Joint Research Group, Centre for Human Development Stem Cells and Regeneration, Institute of Developmental Science, University of Southampton, Southampton, UK
| |
Collapse
|
25
|
Bourgou S, Bettaieb Rebey I, Dakhlaoui S, Msaada K, Saidani Tounsi M, Ksouri R, Fauconnier ML, Hamrouni-Sellami I. Green extraction of oil from Carum carvi seeds using bio-based solvent and supercritical fluid: Evaluation of its antioxidant and anti-inflammatory activities. PHYTOCHEMICAL ANALYSIS : PCA 2020; 31:37-45. [PMID: 31313408 DOI: 10.1002/pca.2864] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/24/2019] [Accepted: 05/24/2019] [Indexed: 06/10/2023]
Abstract
INTRODUCTION The consumption of health-promoting products such as oil seeds may improve human health and prevent certain diseases. Carvi seeds have the potential to produce oil with nutritional and functional properties rich in active compounds. OBJECTIVE To extract bioactive lipids from Carum carvi seeds using green methodologies. MATERIAL AND METHODS Supercritical-carbon dioxide (Sc-CO2 ) and ethanol as co-solvent and bio-based solvent 2-methyltetrahydrofuran (MeTHF) were used to extract the oil from Carum carvi. The yield, the chemical composition, as well as antioxidant and anti-inflammatory activities of green extracted oils were investigated and compared to those obtained with conventional methods (hexane and Folch system). RESULTS MeTHF extraction gave higher oil yield than that obtained by hexane. Fatty acids composition of the two obtained green extracted oils was similar to conventional extracted ones where petroselinic (39-43%), linoleic (29-31%) and oleic (19-21%) acids were the major compounds. Furthermore, MeTHF and Sc-CO2 green extracted oils were enriched of bioactive compounds including sterols (5.4 and 7.3 mg/g oil) and total polyphenols (9.3 and 7.6 mg GAE/g oil) which were correlated to enhanced antiradical capacity. Moreover, the green extracted oils exhibited high anti-inflammatory capacity inhibiting nitric oxide (NO) release in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages with IC50 values of 28 and 24 μg/mL. CONCLUSION Green solvents are a good alternative to petroleum solvents to recover oil from carvi seeds with high amount of nutritionally important fatty acids, along with significant antioxidant and anti-inflammatory potential.
Collapse
Affiliation(s)
- Soumaya Bourgou
- Laboratory of Medicinal and Aromatics Plant, Biotechnology Centre of Borj-Cedria, Hammam-Lif, Tunisia
| | - Iness Bettaieb Rebey
- Laboratory of Medicinal and Aromatics Plant, Biotechnology Centre of Borj-Cedria, Hammam-Lif, Tunisia
- General and Organic Chemistry-Volatolomics, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Sarra Dakhlaoui
- Laboratory of Medicinal and Aromatics Plant, Biotechnology Centre of Borj-Cedria, Hammam-Lif, Tunisia
| | - Kamel Msaada
- Laboratory of Medicinal and Aromatics Plant, Biotechnology Centre of Borj-Cedria, Hammam-Lif, Tunisia
| | - Moufida Saidani Tounsi
- Laboratory of Medicinal and Aromatics Plant, Biotechnology Centre of Borj-Cedria, Hammam-Lif, Tunisia
| | - Riadh Ksouri
- Laboratory of Medicinal and Aromatics Plant, Biotechnology Centre of Borj-Cedria, Hammam-Lif, Tunisia
| | - Marie-Laure Fauconnier
- General and Organic Chemistry-Volatolomics, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Ibtissem Hamrouni-Sellami
- Laboratory of Medicinal and Aromatics Plant, Biotechnology Centre of Borj-Cedria, Hammam-Lif, Tunisia
| |
Collapse
|
26
|
Castejon ML, Sánchez-Hidalgo M, Aparicio-Soto M, Montoya T, Martín-LaCave I, Fernández-Bolaños JG, Alarcón-de-la-Lastra C. Dietary oleuropein and its new acyl-derivate attenuate murine lupus nephritis through HO-1/Nrf2 activation and suppressing JAK/STAT, NF-κB, MAPK and NLRP3 inflammasome signaling pathways. J Nutr Biochem 2019; 74:108229. [PMID: 31698204 DOI: 10.1016/j.jnutbio.2019.108229] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/17/2019] [Accepted: 08/14/2019] [Indexed: 12/16/2022]
Abstract
Systemic lupus erythemathosus (SLE) is a chronic inflammatory and autoimmune disease which can affect multiple organ systems, without an effective and safe treatment. Olive leaf extracts are of special interest for their therapeutic effects. Oleuropein (OL) is the most abundant constituents of olive leaf extract and possesses many beneficial properties. In this study, we evaluated the effects of dietary OL and its new derivate, peracetylated oleuropein (Per-OL), in a pristane-induced SLE model. Mice received an injection of pristane or saline solution and were fed with experimental diets: enriched with OL and Per-OL. The levels of proinflammatory cytokines and markers were evaluated by enzyme-linked immunosorbent assay. The protein expressions of inducible nitric oxide synthase, microsomal prostaglandin E synthase 1, heme oxygenase (HO-1), nuclear factor E2-related factor 2 (Nrf2), mitogen-activated protein kinases (MAPKs), Janus kinase/signal transducer and activator of transcription (JAK/STAT), nuclear transcription factor-kappa B (NF-κB) and inflammasome nucleotide-binding domain, leucine-rich repeats-containing family, pyrin domain-containing-3 (NLRP3) pathways activation were determined in kidneys by Western blot. OL and Per-OL significantly reduced renal damage and decreased serum matrix metalloproteinase 3 and prostaglandine E2 kidneys levels. Our findings indicate that Nrf2 and HO-1 antioxidant protein expressions were up-regulated in mice fed with OL and Per-OL diets, whereas the activation of JAK/STAT, MAPK, NF-κB and NLRP3 inflammasome pathways was significantly ameliorated. These results suggest that OL and Per-OL supplementation might provide a new alternative approach as a preventive/palliative treatment of nephritis in SLE management.
Collapse
Affiliation(s)
- M L Castejon
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - M Sánchez-Hidalgo
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - M Aparicio-Soto
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - T Montoya
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - I Martín-LaCave
- Department of Normal and Pathological Cytology and Histology, Faculty of Medicine, University of Seville, Seville, Spain
| | - J G Fernández-Bolaños
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, Seville, Spain
| | | |
Collapse
|
27
|
Kalampaliki AD, Giannouli V, Skaltsounis AL, Kostakis IK. A Three-Step, Gram-Scale Synthesis of Hydroxytyrosol, Hydroxytyrosol Acetate, and 3,4-Dihydroxyphenylglycol. Molecules 2019; 24:E3239. [PMID: 31492013 PMCID: PMC6767028 DOI: 10.3390/molecules24183239] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/01/2019] [Accepted: 09/03/2019] [Indexed: 12/11/2022] Open
Abstract
Hydroxytyrosol and two other polyphenols of olive tree, hydroxytyrosol acetate and 3,4-dihydroxyphenylglycol, are known for a wide range of beneficial activities in human health and prevention from diseases. The inability to isolate high, pure amounts of these natural compounds and the difficult and laborious procedures for the synthesis of them led us to describe herein an efficient, easy, cheap, and scaling up synthetic procedure, from catechol, via microwave irradiation.
Collapse
Affiliation(s)
- Amalia D Kalampaliki
- Division of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, 15771 Athens, Greece.
| | - Vassiliki Giannouli
- Division of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, 15771 Athens, Greece.
| | - Alexios-Leandros Skaltsounis
- Division of Pharmacognosy & Natural Product Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, 15771 Athens, Greece.
| | - Ioannis K Kostakis
- Division of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, 15771 Athens, Greece.
| |
Collapse
|
28
|
Aparicio-Soto M, Redhu D, Sánchez-Hidalgo M, Fernández-Bolaños JG, Alarcón-de-la-Lastra C, Worm M, Babina M. Olive-Oil-Derived Polyphenols Effectively Attenuate Inflammatory Responses of Human Keratinocytes by Interfering with the NF-κB Pathway. Mol Nutr Food Res 2019; 63:e1900019. [PMID: 31393642 DOI: 10.1002/mnfr.201900019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 06/28/2019] [Indexed: 12/14/2022]
Abstract
SCOPE Extra virgin olive oil (EVOO) is rich in phenolic compounds, including hydroxytyrosol (HTy) and hydroxytyrosyl acetate (HTy-Ac), which have presented multiple beneficial properties. Their impact on inflammatory responses in human keratinocytes and modes of action have not been addressed yet. METHODS AND RESULTS Primary human keratinocytes are pretreated with HTy-Ac or HTy for 30 min and stimulated with IL-1β or Toll-like receptor 3 ligand (TLR3-l). Thymic stromal lymphopoietin (TSLP), measured by ELISA, is attenuated by both polyphenols in a dose-dependent manner. The expression of several inflammation-related genes, including distinct TSLP isoforms and IL-8, are assessed by quantitative RT-PCR and likewise inhibited by HTy-Ac/HTy. Mechanistically, EVOO phenols counteracts IκB degradation and translocation of NF-κB to the nucleus, a transcription factor of essential significance to TSLP and IL-8 transcriptional activity; this is evidenced by immunoblotting. Accordingly, NF-κB recruitment to critical binding sites in the TSLP and IL-8 promoter is impeded in the presence of HTy-Ac/HTy, as demonstrated by chromatin immunoprecipitation. Promoter reporter assays finally reveal that the neutralizing effect on NF-κB induction has functional consequences, resulting in reduced NF-κB-directed transcription. CONCLUSION EVOO phenols afford protection from inflammation in human keratinocytes by interference with the NF-κB pathway.
Collapse
Affiliation(s)
- Marina Aparicio-Soto
- Division of Allergy and immunology, Department of Dermatology and Allergy, Charité-Universitätsmedizin, Charitéplatz 1, 10117, Berlin, Germany.,Department of Pharmacology, Faculty of Pharmacy, University of Sevilla, Profesor García González Street 2, Seville, 41012, Spain
| | - Davender Redhu
- Division of Allergy and immunology, Department of Dermatology and Allergy, Charité-Universitätsmedizin, Charitéplatz 1, 10117, Berlin, Germany
| | - Marina Sánchez-Hidalgo
- Department of Pharmacology, Faculty of Pharmacy, University of Sevilla, Profesor García González Street 2, Seville, 41012, Spain
| | - José G Fernández-Bolaños
- Department of Organic Chemistry, Faculty of Chemistry, University of Sevilla, Profesor García González Street 1, Seville, 41012, Spain
| | - Catalina Alarcón-de-la-Lastra
- Department of Pharmacology, Faculty of Pharmacy, University of Sevilla, Profesor García González Street 2, Seville, 41012, Spain
| | - Margitta Worm
- Division of Allergy and immunology, Department of Dermatology and Allergy, Charité-Universitätsmedizin, Charitéplatz 1, 10117, Berlin, Germany
| | - Magda Babina
- Division of Allergy and immunology, Department of Dermatology and Allergy, Charité-Universitätsmedizin, Charitéplatz 1, 10117, Berlin, Germany
| |
Collapse
|
29
|
Chen Q, Sun T, Wang J, Jia J, Yi Y, Chen Y, Miao Y, Hu Z. Hydroxytyrosol prevents dermal papilla cells inflammation under oxidative stress by inducing autophagy. J Biochem Mol Toxicol 2019; 33:e22377. [DOI: 10.1002/jbt.22377] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 05/10/2019] [Accepted: 06/17/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Qian Chen
- Department of Plastic Surgery, Nanfang HospitalSouthern Medical University Guangzhou China
| | - Tian Sun
- Department of Orthopedic Spinal Surgery, Nanfang HospitalSouthern Medical University Guangzhou China
| | - Jin Wang
- Department of Plastic Surgery, Nanfang HospitalSouthern Medical University Guangzhou China
| | - James Jia
- Department of Plastic Surgery, Nanfang HospitalSouthern Medical University Guangzhou China
| | - Yan‐Hua Yi
- Department of Plastic Surgery, Nanfang HospitalSouthern Medical University Guangzhou China
| | - Yu‐Xin Chen
- Department of Plastic Surgery, Nanfang HospitalSouthern Medical University Guangzhou China
| | - Yong Miao
- Department of Plastic Surgery, Nanfang HospitalSouthern Medical University Guangzhou China
| | - Zhi‐Qi Hu
- Department of Plastic Surgery, Nanfang HospitalSouthern Medical University Guangzhou China
| |
Collapse
|
30
|
Castejon ML, Sánchez-Hidalgo M, Aparicio-Soto M, González-Benjumea A, Fernández-Bolaños JG, Alarcón-de-la-Lastra C. Olive secoiridoid oleuropein and its semisynthetic acetyl-derivatives reduce LPS-induced inflammatory response in murine peritoneal macrophages via JAK-STAT and MAPKs signaling pathways. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.04.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
31
|
Montoya T, Castejón ML, Sánchez-Hidalgo M, González-Benjumea A, Fernández-Bolaños JG, Alarcón de-la-Lastra C. Oleocanthal Modulates LPS-Induced Murine Peritoneal Macrophages Activation via Regulation of Inflammasome, Nrf-2/HO-1, and MAPKs Signaling Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:5552-5559. [PMID: 31042377 DOI: 10.1021/acs.jafc.9b00771] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The present study was designed to investigate the role of the canonical and noncanonical inflammasome, MAPKs and NRF-2/HO-1, signaling pathways involved in the antioxidant and anti-inflammatory activities of oleocanthal in lipopolysaccharide (LPS)-stimulated murine peritoneal macrophages. Isolated cells were treated with oleocanthal in the presence or absence of LPS (5 μg mL-1) for 18 h. Oleocanthal showed a potent reduction of reactive oxygen species (ROS) (25 μM, 50. 612 ± 0.02; 50 μM, 53. 665 ± 0.09; 100 μM, 52. 839 ± 0.02), nitrites (25 μM, 0.631 ± 0.07; 50 μM, 0.652 ± 0.07; 100 μM, 0.711 ± 0.08), and pro-inflammatory cytokines levels when compared with LPS-DMSO-treated control cells. In terms of enzymes protein expression, oleocanthal was able to downregulate iNOS (25 μM, 0.173 ± 0.02; 50 μM, 0.149 ± 0.01; 100 μM, 0.150 ± 0.01; p < 0.001), COX-2 (25 μM, 0.482 ± 0.08; 50 μM, 0.469 ± 0.05; 100 μM, 0.418 ± 0.06; p < 0.001), and mPGES-1 (25 μM, 0.185 ± 0.11; 50 μM, 0.218 ± 0.13; 100 μM, 0.161 ± 0.15; p < 0.001) as well as p38 (25 μM, 0.366 ± 0.11; 50 μM, 0.403 ± 0.13; 100 μM, 0.362 ± 0.15; p < 0.001), JNK (25 μM, 0.443 ± 0.11; 50 μM, 0.514 ± 0.13; 100 μM, 0.372 ± 0.15; p < 0.001), and ERK (25 μM, 0.294 ± 0.01; 50 μM, 0.323 ± 0.01; 100 μM, 0.274 ± 0.01; p < 0.001) protein phosphorylation, which was accompanied by an upregulation of Nrf-2 (25 μM, 1.57 ± 0.01; 50 μM, 1.54 ± 0.01; 100 μM, 1.63 ± 0.05; p < 0.05) and HO-1(25 μM, 2.12 ± 0,03; 50 μM, 2.24 ± 0.01; 100 μM, 1.92 ± 0.05; p < 0.01) expression in comparison with LPS-DMSO cells. Moreover, oleocanthal inhibited canonical and noncanonical inflammasome signaling pathways. Thus, oleocanthal might be a promising natural agent for future treatment of immune-inflammatory diseases.
Collapse
Affiliation(s)
| | | | | | - Alejandro González-Benjumea
- Department of Plant Biotechnology , Institute of Natural Resources and Agrobiology of Seville, CSIC , Seville , Spain
| | | | | |
Collapse
|
32
|
Serreli G, Melis MP, Corona G, Deiana M. Modulation of LPS-induced nitric oxide production in intestinal cells by hydroxytyrosol and tyrosol metabolites: Insight into the mechanism of action. Food Chem Toxicol 2019; 125:520-527. [DOI: 10.1016/j.fct.2019.01.039] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 01/04/2023]
|
33
|
Silvan JM, Pinto-Bustillos MA, Vásquez-Ponce P, Prodanov M, Martinez-Rodriguez AJ. Olive mill wastewater as a potential source of antibacterial and anti-inflammatory compounds against the food-borne pathogen Campylobacter. INNOV FOOD SCI EMERG 2019. [DOI: 10.1016/j.ifset.2018.05.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
34
|
Plastina P, Benincasa C, Perri E, Fazio A, Augimeri G, Poland M, Witkamp R, Meijerink J. Identification of hydroxytyrosyl oleate, a derivative of hydroxytyrosol with anti-inflammatory properties, in olive oil by-products. Food Chem 2018; 279:105-113. [PMID: 30611468 DOI: 10.1016/j.foodchem.2018.12.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/16/2018] [Accepted: 12/04/2018] [Indexed: 12/17/2022]
Abstract
Hydroxytyrosyl esters with short, medium and long acyl chains were evaluated for their ability to reduce nitric oxide (NO) production by lipopolysaccharide-stimulated RAW264.7 macrophages. Among the compounds tested, C18 esters, namely hydroxytyrosyl stearate (HtySte) and hydroxytyrosyl oleate (HtyOle), were found to decrease NO production in a concentration-dependent manner, while the other compounds, including the parent hydroxytyrosol, were ineffective in the tested concentration range (0.5-5 μM). Further study of the potential immune-modulating properties of HtyOle revealed a significant and concentration-dependent suppression of prostaglandin E2 production. At a transcriptional level, HtyOle inhibited the expression of inducible NO synthase, cyclooxygenase-2 and interleukin-1β. Moreover, HtyOle was identified for the first time in olive oil by-products by means of high performance liquid chromatography coupled with mass spectrometry. By contrast, HtyOle was not found in intact olives. Our results suggest that HtyOle is formed during oil processing and represents a significant form in which hydroxytyrosol occurs.
Collapse
Affiliation(s)
- Pierluigi Plastina
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy.
| | - Cinzia Benincasa
- CREA - Research Centre for Olive, Citrus and Tree Fruit, C.da Li Rocchi, 87036 Rende, CS, Italy
| | - Enzo Perri
- CREA - Research Centre for Olive, Citrus and Tree Fruit, C.da Li Rocchi, 87036 Rende, CS, Italy
| | - Alessia Fazio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy
| | - Giuseppina Augimeri
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy; Health Center, University of Calabria, 87036 Arcavacata di Rende, CS, Italy
| | - Mieke Poland
- Division of Human Nutrition and Health, Wageningen University, 6700 AA Wageningen, The Netherlands
| | - Renger Witkamp
- Division of Human Nutrition and Health, Wageningen University, 6700 AA Wageningen, The Netherlands
| | - Jocelijn Meijerink
- Division of Human Nutrition and Health, Wageningen University, 6700 AA Wageningen, The Netherlands
| |
Collapse
|
35
|
Montoya T, Aparicio-Soto M, Castejón ML, Rosillo MÁ, Sánchez-Hidalgo M, Begines P, Fernández-Bolaños JG, Alarcón-de-la-Lastra C. Peracetylated hydroxytyrosol, a new hydroxytyrosol derivate, attenuates LPS-induced inflammatory response in murine peritoneal macrophages via regulation of non-canonical inflammasome, Nrf2/HO1 and JAK/STAT signaling pathways. J Nutr Biochem 2018; 57:110-120. [DOI: 10.1016/j.jnutbio.2018.03.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 03/07/2018] [Accepted: 03/10/2018] [Indexed: 12/19/2022]
|
36
|
Wani TA, Masoodi F, Gani A, Baba WN, Rahmanian N, Akhter R, Wani IA, Ahmad M. Olive oil and its principal bioactive compound: Hydroxytyrosol – A review of the recent literature. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.05.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Voltes A, Bermúdez A, Rodríguez-Gutiérrez G, Reyes ML, Olano C, Fernández-Bolaños J, Portilla FDL. Anti-Inflammatory Local Effect of Hydroxytyrosol Combined with Pectin-Alginate and Olive Oil on Trinitrobenzene Sulfonic Acid-Induced Colitis in Wistar Rats. J INVEST SURG 2018; 33:8-14. [DOI: 10.1080/08941939.2018.1469697] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- A. Voltes
- Colorectal Surgery Units, Department of General and Digestive Surgery, “Virgen del Rocío” University Hospital/IBiS/CSIC/University of Seville, Seville, Spain
| | - A. Bermúdez
- Department of Food Phytochemistry, Instituto de la Grasa (Spanish National Research Council, CSIC), Pablo de Olavide University Campus, Seville, Spain
| | - G. Rodríguez-Gutiérrez
- Department of Food Phytochemistry, Instituto de la Grasa (Spanish National Research Council, CSIC), Pablo de Olavide University Campus, Seville, Spain
| | - M. L. Reyes
- Colorectal Surgery Units, Department of General and Digestive Surgery, “Virgen del Rocío” University Hospital/IBiS/CSIC/University of Seville, Seville, Spain
| | - C. Olano
- National Institute of Toxicology and Forensic Sciences, Seville, Spain
| | - J. Fernández-Bolaños
- Department of Food Phytochemistry, Instituto de la Grasa (Spanish National Research Council, CSIC), Pablo de Olavide University Campus, Seville, Spain
| | - F. de la Portilla
- Colorectal Surgery Units, Department of General and Digestive Surgery, “Virgen del Rocío” University Hospital/IBiS/CSIC/University of Seville, Seville, Spain
| |
Collapse
|
38
|
Aparicio-Soto M, Sánchez-Hidalgo M, Rosillo MÁ, Castejón ML, Alarcón-de-la-Lastra C. Extra virgin olive oil: a key functional food for prevention of immune-inflammatory diseases. Food Funct 2018; 7:4492-4505. [PMID: 27783083 DOI: 10.1039/c6fo01094f] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nowadays, it is clear that an unhealthy diet is one of the prime factors that contributes to the rise of inflammatory diseases and autoimmunity in the populations of both developed and developing countries. The Mediterranean diet has been associated with a reduced incidence of certain pathologies related to chronic inflammation and the immune system. Olive oil, the principal source of dietary lipids of the Mediterranean diet, possesses a high nutritional quality and a particular composition, which is especially relevant in the case of Extra Virgin Olive Oil (EVOO). EVOO is obtained from olives solely by mechanical or other physical preparation methods, under conditions that do not alter the natural composition. EVOO is described as a key bioactive food with multiple beneficial properties and it may be effective in the management of some immune-inflammatory diseases. In this review, the key research is summarised which provides evidence of the beneficial effects of EVOO and its minor components focusing on their mechanisms on immune-inflammatory diseases such as rheumatoid arthritis, systemic lupus erythematosus, inflammatory bowel disease and sclerosis.
Collapse
Affiliation(s)
- Marina Aparicio-Soto
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Profesor García González Street 2, 41012 Seville, Spain.
| | - Marina Sánchez-Hidalgo
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Profesor García González Street 2, 41012 Seville, Spain.
| | - Ma Ángeles Rosillo
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Profesor García González Street 2, 41012 Seville, Spain.
| | - Ma Luisa Castejón
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Profesor García González Street 2, 41012 Seville, Spain.
| | - Catalina Alarcón-de-la-Lastra
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Profesor García González Street 2, 41012 Seville, Spain.
| |
Collapse
|
39
|
Zhi LQ, Yao SX, Liu HL, Li M, Duan N, Ma JB. Hydroxytyrosol inhibits the inflammatory response of osteoarthritis chondrocytes via SIRT6-mediated autophagy. Mol Med Rep 2017; 17:4035-4042. [PMID: 29286133 DOI: 10.3892/mmr.2017.8353] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 11/24/2017] [Indexed: 11/05/2022] Open
Abstract
Osteoarthritis (OA) is a common degenerative joint disease. Inflammation may exaggerate the catabolism and degeneration in the pathogenesis of OA. Hydroxytyrosol (HT) has been used in the management of inflammatory diseases. In addition, reports have revealed that autophagy was a therapeutic target of diseases caused by inflammation. Sirtuin 6 (SIRT6) has also been demonstrated to prevent OA development by reducing both the inflammatory response and chondrocyte senescence. However, the roles of SIRT6 and autophagy in cartilage and its underlying anti‑inflammatory mechanism are unknown. Therefore, the present study aimed to determine the effects of HT on autophagy and inflammation in chondrocytes, and clarify whether HT regulates the inflammatory response through SIRT6‑mediated autophagy. The expression of protein and mRNA were determined by western blot analysis and reverse transcription‑quantitative polymerase chain reaction. The production of cytokines was detected by ELISA. It was demonstrated that HT inhibited the levels of interleukin (IL)‑1β and IL‑6 in tumor necrosis factor (TNF)‑α‑stimulated chondrocytes in a concentration‑dependent manner. In addition, HT promoted cell autophagy and increased the mRNA and protein expression levels of SIRT6 in chondrocytes stimulated with TNF-α. Autophagy inhibitor 3-methyladenine or knockdown of SIRT6 decreased the inhibitory effects of HT on the inflammatory response in chondrocytes. In addition, knockdown of SIRT6 attenuated the expression of microtubule-associated protein 1A/1B‑light chain 3 and Beclin1 in chondrocytes. Overall, these findings suggested that HT inhibits the inflammatory response of chondrocytes through SIRT6‑mediated autophagy. The present study provided a new drug target for the clinical treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Li-Qiang Zhi
- Department of Joint Surgery, Hong‑Hui Hospital, Xi'an Jiaotong University, Xi'an, Shanxi 710054, P.R. China
| | - Shu-Xin Yao
- Department of Joint Surgery, Hong‑Hui Hospital, Xi'an Jiaotong University, Xi'an, Shanxi 710054, P.R. China
| | - Hong-Liang Liu
- Department of Orthopaedic Trauma, Hong‑Hui Hospital, Xi'an Jiaotong University, Xi'an, Shanxi 710054, P.R. China
| | - Meng Li
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Ning Duan
- Department of Traumatic Osteopathic, Hong‑Hui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| | - Jian-Bing Ma
- Department of Joint Surgery, Hong‑Hui Hospital, Xi'an Jiaotong University, Xi'an, Shanxi 710054, P.R. China
| |
Collapse
|
40
|
Serra G, Deiana M, Spencer JPE, Corona G. Olive Oil Phenolics Prevent Oxysterol-Induced Proinflammatory Cytokine Secretion and Reactive Oxygen Species Production in Human Peripheral Blood Mononuclear Cells, Through Modulation of p38 and JNK Pathways. Mol Nutr Food Res 2017; 61. [PMID: 28815947 PMCID: PMC5765427 DOI: 10.1002/mnfr.201700283] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/25/2017] [Indexed: 01/28/2023]
Abstract
Scope The aim of the present study was to investigate the ability of extra virgin olive oil (EVOO) polyphenols to counteract the proinflammatory effects induced by dietary and endogenous oxysterols in ex vivo immune cells. Methods and results Peripheral blood mononuclear cells (PBMCs), separated from the whole blood of healthy donors, were utilized and were stimulated with an oxysterols mixture, in the presence of physiologically relevant concentrations of the EVOO polyphenols, hydroxytyrosol, tyrosol, and homovanillic alcohol. Oxysterols significantly increased the production of proinflammatory cytokines, interleukin‐1β, regulated on activation, normal T‐cell expressed and secreted and macrophage migration inhibitory factor in ex vivo cultured PBMCs. Increased levels of reactive oxygen species (ROS) were also detected along with increased phosphorylation of the p38 and JNK. All phenolic compounds significantly reduced cytokine secretion induced by the oxysterols and inhibited ROS production and mitogen activated protein kinase phosphorylation. Conclusions These results suggest that extra virgin olive oil polyphenols modulate the immune response induced by dietary and endogenous cholesterol oxidation products in human immune cells and may hold benefit in controlling chronic immune and/or inflammatory processes.
Collapse
Affiliation(s)
- Gessica Serra
- Department of Food and Nutritional Sciences, University of Reading, Reading, UK
| | - Monica Deiana
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Jeremy P E Spencer
- Department of Food and Nutritional Sciences, University of Reading, Reading, UK
| | - Giulia Corona
- Health Sciences Research Centre, University of Roehampton, London, UK
| |
Collapse
|
41
|
Castejón ML, Rosillo MÁ, Montoya T, González-Benjumea A, Fernández-Bolaños JG, Alarcón-de-la-Lastra C. Oleuropein down-regulated IL-1β-induced inflammation and oxidative stress in human synovial fibroblast cell line SW982. Food Funct 2017; 8:1890-1898. [PMID: 28426090 DOI: 10.1039/c7fo00210f] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic and systemic inflammatory autoimmune disease mainly characterized by aggressive hyperproliferation of synovial fibroblasts (SFs). It is accompained by a massive infiltration of inflammatory immune cells inducing progressive matrix degradation, destruction of cartilage and bone erosion through the production of inflammatory mediators. Oleuropein is the most prevalent phenolic component in olive leaves, seed, pulp and peel of unripe olives and is responsible for the characteristic bitter taste of unprocessed olives. This secoiridoid possesses well-documented pharmacological properties, including antioxidant and anti-inflammatory properties, and is available as a food supplement in Mediterranean countries. However, to date, anti-arthritic effects of oleuropein on SFs have not been yet elucidated. Thus, the aim of the present study was to investigate the potential effects of oleuropein, on IL-1β-induced production of inflammatory mediators and oxidative stress in the human synovial sarcoma cell line (SW982). In order to gain a better insight into mechanisms of action, signaling pathways were also explored. Cell viability was determined using the sulforhodamine B (SRB) assay. The expression of inflammatory cytokines IL-6, TNF-α, MMP-1 and MMP-3 was evaluated by ELISA. Moreover, changes in the protein expression of cyclooxygenase (COX)-2, microsomal prostaglandin E synthase-1 (mPGES-1) as well as mitogen-activated protein kinase (MAPKs), nuclear factor kappa B (NF-κB), and nuclear factor-erythroid 2-related and heme oxygenase-1 (HO-1) signalling pathways were analysed by western blot. Oleuropein exerted anti-inflammatory and anti-oxidant effects via down-regulation of MAPK and NF-κB signaling pathways and induction of Nrf2-linked HO-1 controlling the production of inflammatory mediators decreasing IL-6 and TNF-α cytokines, MMP-1 and MMP-3 levels and mPGES-1 and COX-2 overexpression. Thus, oleuropein might provide a basis for developing a new dietary strategy for the prevention and management of RA.
Collapse
|
42
|
Extra-virgin olive oil phenols hydroxytyrosol and hydroxytyrosol acetate, down-regulate the production of mediators involved in joint erosion in human synovial cells. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.06.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
43
|
Wang W, Jing T, Yang X, He Y, Wang B, Xiao Y, Shang C, Zhang J, Lin R. Hydroxytyrosol regulates the autophagy of vascular adventitial fibroblasts through the SIRT1-mediated signaling pathway. Can J Physiol Pharmacol 2017; 96:88-96. [PMID: 28772080 DOI: 10.1139/cjpp-2016-0676] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hydroxytyrosol (HT), a phenolic compound in olive oil, exerts an anti-inflammatory effect in cardiovascular diseases. Recent studies found that autophagy was a therapeutic target of diseases. However, the effect of HT on autophagy in vascular adventitial fibroblasts (VAFs) remains unknown. Thus, in this study, we aimed to determine the effect of HT on cell autophagy and related signaling pathway and whether HT regulates the inflammatory response through autophagy in VAFs. Our results showed that HT promoted cell autophagy by increasing the conversion of LC3 and Beclin1 expression and the autophagic flux in VAFs stimulated with tumor necrosis factor-α (TNF-α). HT also upregulated the expression of the deacetylase sirtuin 1 (SIRT1) protein and mRNA compared with the TNF-α group. The molecular docking studies showed the good compatibility between HT and SIRT1, indicating that HT might act through SIRT1. Further study found that HT regulated autophagy through SIRT1-mediated Akt/mTOR suppression in VAFs. In addition, HT inhibited TNF-α-induced inflammatory response in VAFs through SIRT1. Furthermore, the study showed that HT inhibited the inflammatory response of VAFs through autophagy. These findings indicate that HT regulates the autophagy of VAFs through SIRT1-mediated Akt/mTOR suppression and then inhibits the inflammatory response of VAFs.
Collapse
Affiliation(s)
- Weirong Wang
- a Research Institute of Atherosclerotic Disease, Xi'an Jiaotong University Cardiovascular Research Center Xi'an, Shaanxi 710061, China.,b Laboratory Animal Center, Xi'an Jiaotong University Health Science Center Xi'an, Shaanxi 710061, China
| | - Ting Jing
- c Department of Pharmacology, Xi'an Jiaotong University Health Science Center Xi'an, Shaanxi 710061, China
| | - Xiaofeng Yang
- c Department of Pharmacology, Xi'an Jiaotong University Health Science Center Xi'an, Shaanxi 710061, China
| | - Yanhao He
- c Department of Pharmacology, Xi'an Jiaotong University Health Science Center Xi'an, Shaanxi 710061, China
| | - Bo Wang
- c Department of Pharmacology, Xi'an Jiaotong University Health Science Center Xi'an, Shaanxi 710061, China
| | - Yunfang Xiao
- c Department of Pharmacology, Xi'an Jiaotong University Health Science Center Xi'an, Shaanxi 710061, China
| | - Chenxu Shang
- c Department of Pharmacology, Xi'an Jiaotong University Health Science Center Xi'an, Shaanxi 710061, China
| | - Jiye Zhang
- d School of Pharmacy, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Rong Lin
- c Department of Pharmacology, Xi'an Jiaotong University Health Science Center Xi'an, Shaanxi 710061, China
| |
Collapse
|
44
|
Amini A, Liu M, Ahmad Z. Understanding the link between antimicrobial properties of dietary olive phenolics and bacterial ATP synthase. Int J Biol Macromol 2017; 101:153-164. [PMID: 28322962 PMCID: PMC5884633 DOI: 10.1016/j.ijbiomac.2017.03.087] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/16/2017] [Accepted: 03/16/2017] [Indexed: 11/24/2022]
Abstract
The naturally occurring olive phenolics tyrosol, hydroxytyrosol, dihydroxyphenylglycol (DHPG), and oleuropein are known to have antioxidant, antitumor, and antibacterial properties. In the current study, we examined whether the antimicrobial properties of tyrosol, hydroxytyrosol, DHPG, and oleuropein were linked to the inhibition of bacterial ATP synthase. Tyrosol, hydroxytyrosol, DHPG, and oleuropein inhibited Escherichia coli wild-type and mutant membrane-bound F1Fo ATP synthase to variable degrees. The growth properties of wild-type, null, and mutant strains in presence of above olive phenolics were also abrogated to variable degrees on limiting glucose and succinate. Tyrosol and oleuropein synergistically inhibited the wild-type enzyme. Comparative wild-type and mutant F1Fo ATP synthase inhibitory profiles suggested that αArg-283 is an important residue and olive phenolics bind at the polyphenol binding pocket of ATP synthase. Growth patterns of wild-type, null, and mutant strains in the presence of tyrosol, hydroxytyrosol, DHPG, and oleuropein also hint at the possibility of additional molecular targets. Our results demonstrated that ATP synthase can be used as a molecular target and the antimicrobial properties of olive phenolics in general and tyrosol in particular can be linked to the binding and inhibition of bacterial ATP synthase.
Collapse
Affiliation(s)
- Amon Amini
- Department of Biochemistry, Kirksville College of Osteopathic Medicine, A.T. Still University, Kirksville, MO 63501, USA
| | - Mason Liu
- Department of Biochemistry, Kirksville College of Osteopathic Medicine, A.T. Still University, Kirksville, MO 63501, USA
| | - Zulfiqar Ahmad
- Department of Biochemistry, Kirksville College of Osteopathic Medicine, A.T. Still University, Kirksville, MO 63501, USA.
| |
Collapse
|
45
|
Moraux T, Dumarçay S, Gérardin P, Gérardin-Charbonnier C. Derivatives of the Lignan 7'-Hydroxymatairesinol with Antioxidant Properties and Enhanced Lipophilicity. JOURNAL OF NATURAL PRODUCTS 2017; 80:1783-1790. [PMID: 28590734 DOI: 10.1021/acs.jnatprod.6b01124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The lignan 7'-hydroxymatairesinol (1), extracted from the knotwoods of fir (Abies alba), spruce (Picea abies), and Douglas fir (Pseudotsuga menziesii), exhibited unexpected reactivity when esterification reactions were attempted on the hydroxy group at position C-7'. To circumvent the rapid intramolecular cyclization procedure, leading quantitatively to the lignan conidendrin (7), a simple strategy for 7'-esterification of 1 under mild conditions (three steps, up to 80% overall yield) was developed. Compared to hydroxymatairesinol (1) (log K'w = 1.49), the derivatives (2-5) had increased lipophilicity with log K'w > 3.1, as determined by a UHPLC method. Compounds 1-5 exhibited potent antioxidant properties in the same range as the standards ascorbic acid and α-tocopherol (IC50 = 20-25 μM) and higher than that of BHT using a DPPH radical-scavenging assay.
Collapse
Affiliation(s)
- Thomas Moraux
- Laboratoire d'Études et de Recherche sur le Matériau Bois, EA4370 USC INRA, Université de Lorraine, Faculté des Sciences et Technologies , Boulevard des Aiguillettes, 54506 Vandœuvre-lès-Nancy, France
| | - Stéphane Dumarçay
- Laboratoire d'Études et de Recherche sur le Matériau Bois, EA4370 USC INRA, Université de Lorraine, Faculté des Sciences et Technologies , Boulevard des Aiguillettes, 54506 Vandœuvre-lès-Nancy, France
| | - Philippe Gérardin
- Laboratoire d'Études et de Recherche sur le Matériau Bois, EA4370 USC INRA, Université de Lorraine, Faculté des Sciences et Technologies , Boulevard des Aiguillettes, 54506 Vandœuvre-lès-Nancy, France
| | - Christine Gérardin-Charbonnier
- Laboratoire d'Études et de Recherche sur le Matériau Bois, EA4370 USC INRA, Université de Lorraine, Faculté des Sciences et Technologies , Boulevard des Aiguillettes, 54506 Vandœuvre-lès-Nancy, France
| |
Collapse
|
46
|
Aparicio-Soto M, Sánchez-Hidalgo M, Cárdeno A, González-Benjumea A, Fernández-Bolaños JG, Alarcón-de-la-Lastra C. Dietary hydroxytyrosol and hydroxytyrosyl acetate supplementation prevent pristane-induced systemic lupus erythematous in mice. J Funct Foods 2017. [DOI: 10.1016/j.jff.2016.12.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
47
|
Sánchez-Barrionuevo L, González-Benjumea A, Escobar-Niño A, García MT, López Ó, Maya I, Fernández-Bolaños JG, Cánovas D, Mellado E. A Straightforward Access to New Families of Lipophilic Polyphenols by Using Lipolytic Bacteria. PLoS One 2016; 11:e0166561. [PMID: 27855214 PMCID: PMC5113952 DOI: 10.1371/journal.pone.0166561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 10/30/2016] [Indexed: 11/18/2022] Open
Abstract
The chemical synthesis of new lipophilic polyphenols with improved properties presents technical difficulties. Here we describe the selection, isolation and identification of lipolytic bacteria from food-processing industrial wastes, and their use for tailoring a new set of compounds with great interest in the food industry. These bacteria were employed to produce lipolytic supernatants, which were applied without further purification as biocatalysts in the chemoselective and regioselective synthesis of lipophilic partially acetylated phenolic compounds derived from olive polyphenols. The chemoselectivity of polyphenols acylation/deacylation was analyzed, revealing the preference of the lipases for phenolic hydroxyl groups and phenolic esters. In addition, the alcoholysis of peracetylated 3,4-dihydroxyphenylglycol resulted in a series of lipophilic 2-alkoxy-2-(3,4-dihydroxyphenyl)ethyl acetate through an unexpected lipase-mediated etherification at the benzylic position. These new compounds are more lipophilic and retained their antioxidant properties. This approach can provide access to unprecedented derivatives of 3,4-dihydroxyphenylglycol with improved properties.
Collapse
Affiliation(s)
- Leyre Sánchez-Barrionuevo
- Department of Genetics, Faculty of Biology, University of Seville, Seville, Spain
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | | | - Almudena Escobar-Niño
- Department of Genetics, Faculty of Biology, University of Seville, Seville, Spain
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - María Teresa García
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Óscar López
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, Seville, Spain
| | - Inés Maya
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, Seville, Spain
| | | | - David Cánovas
- Department of Genetics, Faculty of Biology, University of Seville, Seville, Spain
| | - Encarnación Mellado
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Seville, Spain
| |
Collapse
|
48
|
Fernandez-Pastor I, Fernandez-Hernandez A, Rivas F, Martinez A, Garcia-Granados A, Parra A. Synthesis and Antioxidant Activity of Hydroxytyrosol Alkyl-Carbonate Derivatives. JOURNAL OF NATURAL PRODUCTS 2016; 79:1737-1745. [PMID: 27337069 DOI: 10.1021/acs.jnatprod.6b00124] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Three procedures have been investigated for the isolation of tyrosol (1) and hydroxytyrosol (2) from a phenolic extract obtained from the solid residue of olive milling. These three methods, which facilitated the recovery of these phenols, were chemical or enzymatic acetylation, benzylation, and carbomethoxylation, and subsequent carbonylation or acetonation reactions. Several new lipophilic alkyl-carbonate derivatives of hydroxytyrosol have been synthesized, coupling the primary hydroxy group of this phenol, through a carbonate linker, using alcohols with different chain lengths. The antioxidant properties of these lipophilic derivatives have been evaluated by different methods and compared with free hydroxytyrosol (2) and also with the well-known antioxidants BHT and α-tocopherol. Three methods were used for the determination of this antioxidant activity: FRAP and ABTS assays, to test the antioxidant power in hydrophilic media, and the Rancimat test, to evaluate the antioxidant capacity in a lipophilic matrix. These new alkyl-carbonate derivatives of hydroxytyrosol enhanced the antioxidant activity of this natural phenol, with their antioxidant properties also being higher than those of the commercial antioxidants BHT and α-tocopherol. There was no clear influence of the side-chain length on the antioxidant properties of the alkyl-carbonate derivatives of 2, although the best results were achieved mainly by the compounds with a longer chain on the primary hydroxy group of this natural phenolic substance.
Collapse
Affiliation(s)
- Ignacio Fernandez-Pastor
- Departamento de Quimica Organica, Facultad de Ciencias, Universidad de Granada , Fuentenueva s/n, ES-18071 Granada, Spain
| | - Antonia Fernandez-Hernandez
- Centro "Venta del Llano" del Instituto Andaluz de Investigacion y Formacion Agraria, Pesquera, Agroalimentaria y de la Produccion Ecologica (IFAPA) , Mengibar, Jaén 23620, Spain
| | - Francisco Rivas
- Departamento de Quimica Organica, Facultad de Ciencias, Universidad de Granada , Fuentenueva s/n, ES-18071 Granada, Spain
| | - Antonio Martinez
- Departamento de Quimica Organica, Facultad de Ciencias, Universidad de Granada , Fuentenueva s/n, ES-18071 Granada, Spain
| | - Andres Garcia-Granados
- Departamento de Quimica Organica, Facultad de Ciencias, Universidad de Granada , Fuentenueva s/n, ES-18071 Granada, Spain
| | - Andres Parra
- Departamento de Quimica Organica, Facultad de Ciencias, Universidad de Granada , Fuentenueva s/n, ES-18071 Granada, Spain
| |
Collapse
|
49
|
Dietary extra virgin olive oil attenuates kidney injury in pristane-induced SLE model via activation of HO-1/Nrf-2 antioxidant pathway and suppression of JAK/STAT, NF-κB and MAPK activation. J Nutr Biochem 2015; 27:278-88. [PMID: 26525667 DOI: 10.1016/j.jnutbio.2015.09.017] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 09/14/2015] [Accepted: 09/18/2015] [Indexed: 12/30/2022]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by a widespread organ involvement. Recent studies have suggested that extra virgin olive oil (EVOO) might possess preventive effects on this immunoinflammation-related disease. However, its role in SLE remained unknown. In this work, we evaluated the effects of EVOO diet in a pristane-induced SLE model in mice. Three-month-old mice received an injection of pristane or saline solution and were fed with different experimental diets: sunflower oil diet or EVOO diet. After 24weeks, mice were sacrificed, spleens were collected and kidneys were removed for immunoinflammatory detections. The kidney expression of microsomal prostaglandin E synthase 1, heme oxygenase 1 (HO-1), nuclear factor E2-related factor 2 (Nrf-2), mitogen-activated protein kinases (MAPKs), Janus kinase/signal transducer and activator of transcription (JAK/STAT) and nuclear transcription factor-kappa B (NF-κB) pathways were studied by western blotting. In addition to macroscopic and histological analyses, serum matrix metalloproteinase 3 (MMP-3) levels and proinflammatory cytokines production in splenocytes were evaluated by enzyme-linked immunoassay. We have demonstrated that EVOO diet significantly reduced renal damage and decreased MMP-3 serum and PGE2 kidney levels as well as the proinflammatory cytokines production in splenocytes. Our data indicate that Nrf-2 and HO-1 protein expressions were up-regulated in those mice fed with EVOO and the activation of JAK/STAT, MAPK and NF-κB pathways were drastically ameliorated. These results support the interest of EVOO as a beneficial functional food exerting a preventive/palliative role in the management of SLE.
Collapse
|
50
|
Rosillo MA, Sánchez-Hidalgo M, González-Benjumea A, Fernández-Bolaños JG, Lubberts E, Alarcón-de-la-Lastra C. Preventive effects of dietary hydroxytyrosol acetate, an extra virgin olive oil polyphenol in murine collagen-induced arthritis. Mol Nutr Food Res 2015; 59:2537-46. [DOI: 10.1002/mnfr.201500304] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 09/08/2015] [Accepted: 09/11/2015] [Indexed: 12/22/2022]
Affiliation(s)
| | | | | | | | - Erik Lubberts
- Department of Rheumatology; Erasmus MC; University Medical Center; Rotterdam The Netherlands
| | | |
Collapse
|