1
|
Haile A, Oliveira DE, Boisclair YR, Bauman DE, Harvatine KJ. Potential involvement of PPARs in the inhibition of mammary lipid synthesis during diet-induced milk fat depression. J Dairy Sci 2024:S0022-0302(24)01294-3. [PMID: 39521416 DOI: 10.3168/jds.2024-25575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
The objective of this study was to evaluate the possible role of the peroxisome proliferator-activated receptors (PPARs: PPAR-α, PPAR-β/δ, and PPAR-γ) in diet and conjugated linoleic acid (CLA)-induced milk fat depression (MFD) in dairy cows. We hypothesized that the expression of PPARs, which regulate lipid metabolism and bind to polyunsaturated fatty acids, could be modulated by biohydrogenation intermediates that induce MFD, thereby interfering with milk fat synthesis. First, tissue profiling revealed that PPAR-α and PPAR-β/δ had low expression in mammary tissue compared with the liver. A comparison of lactating and nonlactating tissue from the same cows showed that expression of the PPARs did increase during lactation. Mammary expression of the PPARs during MFD was then observed in 9 mid-lactation cows in a 3x3 Latin square design with MFD induced by a 3-d intravenous infusion of trans-10,cis-12 CLA or feeding a high-oil/low-forage diet. The expression of the PPARs remained largely unaltered during CLA and diet-induced MFD, except for an increase in PPAR-α target genes CPT1A and ACADVL that are involved in β-oxidation. The interaction of PPAR-γ chemical agonist Troglitazone and antagonist T0070907 and CLA was then investigated in bovine mammary epithelial cells (MAC-T). The activation and inhibition of PPAR-γ did not overcome trans-10,cis-12 CLA inhibition of lipogenesis despite the agonist stimulating PPAR-γ expression. Furthermore, PPAR-γ activation did not modify the expression of lipogenic genes. Overall, the results fail to support a functional role of the PPARs in the inhibition of lipogenesis during MFD in dairy cows.
Collapse
Affiliation(s)
- A Haile
- Department of Animal Science, Penn State University, University Park, 16802
| | - D E Oliveira
- Department of Animal Production, Santa Catarina State University, Lages, Santa Catarina, 88520-000, Brazil
| | - Y R Boisclair
- Department of Animal Production, Santa Catarina State University, Lages, Santa Catarina, 88520-000, Brazil
| | - D E Bauman
- Department of Animal Production, Santa Catarina State University, Lages, Santa Catarina, 88520-000, Brazil
| | - K J Harvatine
- Department of Animal Science, Penn State University, University Park, 16802; Department of Animal Science, Cornell University, Ithaca, NY 14850.
| |
Collapse
|
2
|
Chen Y, Ma W, Zhao J, Stanton C, Ross RP, Zhang H, Chen W, Yang B. Lactobacillus plantarum Ameliorates Colorectal Cancer by Ameliorating the Intestinal Barrier through the CLA-PPAR-γ Axis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19766-19785. [PMID: 39186442 DOI: 10.1021/acs.jafc.4c02824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Colorectal cancer (CRC) is the third-largest cancer worldwide. Lactobacillus can regulate the intestinal barrier and gut microbiota. However, the mechanisms of Lactobacillus that alleviate CRC remained unknown. This study aimed to explore the regulatory effect of Lactobacillus plantarum on CRC and its potential mechanism. CCFM8661 treatment significantly ameliorated CRC compared with phosphate-buffered solution (PBS) treatment in ApcMin/+ mice. In addition, conjugated linoleic acid (CLA) was proved to be the key metabolite for CCFM8661 in ameliorating CRC by molecular biology techniques. Peroxisome proliferator-activated receptor γ (PPAR-γ) was proved to be the key receptor in ameliorating CRC by inhibitor intervention experiments. Moreover, supplementation with CCFM8661 ameliorated CRC by producing CLA to inhibit NF-κB pathway and pro-inflammatory cytokines, up-regulate ZO-1, Claudin-1, and MUC2, and promote tumor cell apoptosis in a PPAR-γ-dependent manner. Metagenomic analysis showed that CCFM8661 treatment significantly increased Odoribacter splanchnicus, which could ameliorate CRC by repairing the intestinal barrier. Clinical results showed that intestinal CLA, butyric acid, PPAR-γ, and Lactobacillus were significantly decreased in CRC patients, and these indicators were significantly negatively correlated with CRC. CCFM8661 alleviated CRC by ameliorating the intestinal barrier through the CLA-PPAR-γ axis. These results will promote the development of dietary probiotic supplements for CRC.
Collapse
Affiliation(s)
- Yang Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
- Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, Hubei, China
| | - Weiwei Ma
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Catherine Stanton
- International Joint Research Laboratory for Maternal-Infant Microbiota and Health, Jiangnan University, Wuxi 214122, Jiangsu, China
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork P61 C996, Ireland
- APC Microbiome Ireland, University College Cork, Cork T12 K8AF, Ireland
| | - R Paul Ross
- International Joint Research Laboratory for Maternal-Infant Microbiota and Health, Jiangnan University, Wuxi 214122, Jiangsu, China
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork P61 C996, Ireland
- APC Microbiome Ireland, University College Cork, Cork T12 K8AF, Ireland
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Bo Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
- International Joint Research Laboratory for Maternal-Infant Microbiota and Health, Jiangnan University, Wuxi 214122, Jiangsu, China
| |
Collapse
|
3
|
Omachi DO, Aryee ANA, Onuh JO. Functional Lipids and Cardiovascular Disease Reduction: A Concise Review. Nutrients 2024; 16:2453. [PMID: 39125334 PMCID: PMC11314407 DOI: 10.3390/nu16152453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Functional lipids are dietary substances that may have an impact on human health by lowering the risk of chronic illnesses and enhancing the quality of life. Numerous functional lipids have been reported to have potential health benefits in the prevention, management, and treatment of cardiovascular disease, the leading cause of death in the United States. However, there is still insufficient and contradictory information in the literature about their effectiveness and associated mechanisms of action. The objective of this review, therefore, is to evaluate available literature regarding these functional lipids and their health benefits. Various studies have been conducted to understand the links between functional lipids and the prevention and treatment of chronic diseases. Recent studies on phytosterols have reported that CLA, medium-chain triglycerides, and omega-3 and 6 fatty acids have positive effects on human health. Also, eicosanoids, which are the metabolites of these fatty acids, are produced in relation to the ratio of omega-3 to omega-6 polyunsaturated fatty acids and may modulate disease conditions. These functional lipids are available either in dietary or supplement forms and have been proven to be efficient, accessible, and inexpensive to be included in the diet. However, further research is required to properly elucidate the dosages, dietary intake, effectiveness, and their mechanisms of action in addition to the development of valid disease biomarkers and long-term effects in humans.
Collapse
Affiliation(s)
- Deborah O. Omachi
- Department of Food and Nutritional Sciences, Tuskegee University, 1200 W. Montgomery Rd, Tuskegee, AL 36088, USA;
| | - Alberta N. A. Aryee
- Food Science and Biotechnology Program, Department of Human Ecology, Delaware State University, 1200 Dupont Highway, Dover, DE 19901, USA;
| | - John O. Onuh
- Department of Food and Nutritional Sciences, Tuskegee University, 1200 W. Montgomery Rd, Tuskegee, AL 36088, USA;
| |
Collapse
|
4
|
Wang J, Xue X, Zhao X, Luo L, Liu J, Dai S, Zhang F, Wu R, Liu Y, Peng C, Li Y. Forsythiaside A alleviates acute lung injury by inhibiting inflammation and epithelial barrier damages in lung and colon through PPAR-γ/RXR-α complex. J Adv Res 2024; 60:183-200. [PMID: 37579917 PMCID: PMC11156707 DOI: 10.1016/j.jare.2023.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/04/2023] [Accepted: 08/09/2023] [Indexed: 08/16/2023] Open
Abstract
INTRODUCTION Acute lung injury (ALI) is a lung disease characterized by inflammation and still requires further drug development. Forsythiaside A as the active compound of Forsythiae Fructus has the therapeutic potential for ALI. OBJECTIVE To investigate the mechanism of forsythiaside A in treating ALI through PPAR-γ and its conjugate RXR-α based on gut-lung axis. METHODS This study constructed in vitro and in vivo injury models using LPS and TNF-α. Forsythiaside A was used for the drug treatment, and RXR-α inhibitor UVI3003 was used to interfere with PPAR-γ/RXR-α complexes in the cells. HE staining was used for histopathological examination. Serum endotoxin contents were determined using limulus lysate kit. IHC staining and Western blot were conducted to assess the protein expressions. ELISA was applied to examine the content of pro-inflammatory cytokines in the cell supernatants. The protein interactions were analyzed via CO-IP. RESULTS In vivo results showed that forsythiaside A regulated PPAR-γ/RXR-α and inhibited TLR4/MAPK/NF-κB and MLCK/MLC2 signal pathways, thus inhibiting inflammation and epithelial barrier damages of lung and colon in ALI mice induced by intratracheal LPS. PPAR-γ/RXR-α were promoted by forsythiaside A in lungs, whereas inhibited by forsythiaside A in colons. Additionally, in vitro results showed that forsythiaside A suppressed inflammation and epithelial barrier damages in macrophages and lung/colon epithelial cells, by manipulating PPAR-γ/RXR-α to suppress the LPS- and TNF-α-induced activation of TLR4/MAPK/NF-κB and NF-κB/MLCK/MLC2 signal pathways. Moreover, further mechanism study indicated that forsythiaside A showed a cell-specific regulatory effect on PPAR-γ/RXR-α complex. Specifically, the PPAR-γ/RXR-α protein interactions were promoted by forsythiaside A in LPS-induced macrophages RAW264.7 and TNF-α-induced lung epithelial cells A549, but inhibited by forsythiaside A in TNF-α-induced colon epithelial cells SW620. CONCLUSION In the treatment of ALI, Forsythiaside A inhibited inflammation and epithelial barrier damages of lung and colon through its regulation on PPAR-γ/RXR-α complex.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xinyan Xue
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xingtao Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lin Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Juan Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shu Dai
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Fang Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Rui Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yanfang Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
5
|
Niu Z, Li X, Yang X, Sun Z. Protective effects of sinomenine against dextran sulfate sodium-induced ulcerative colitis in rats via alteration of HO-1/Nrf2 and inflammatory pathway. Inflammopharmacology 2024; 32:2007-2022. [PMID: 38573363 DOI: 10.1007/s10787-024-01455-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 02/28/2024] [Indexed: 04/05/2024]
Abstract
BACKGROUND Dextran Sulfate Sodium (DSS) induces ulcerative colitis (UC), a type of inflammatory bowel disease (IBD) that leads to inflammation, swelling, and ulcers in the large intestine. The aim of this experimental study is to examine how sinomenine, a plant-derived alkaloid, can prevent or reduce the damage caused by DSS in the colon and rectum of rats. MATERIAL AND METHODS Induction of ulcerative colitis (UC) in rats was achieved by orally administering a 2% Dextran Sulfate Sodium (DSS) solution, while the rats concurrently received oral administrations of sinomenine and sulfasalazine. The food, water intake was estimated. The body weight, disease activity index (DAI), colon length and spleen index estimated. Antioxidant, cytokines, inflammatory parameters and mRNA expression were estimated. The composition of gut microbiota was analyzed at both the phylum and genus levels in the fecal samples obtained from all groups of rats. RESULTS Sinomenine treatment enhanced the body weight, colon length and reduced the DAI, spleen index. Sinomenine treatment remarkably suppressed the level of NO, MPO, ICAM-1, and VCAM-1 along with alteration of antioxidant parameters such as SOD, CAT, GPx, GR and MDA. Sinomenine treatment also decreased the cytokines like TNF-α, IL-1, IL-1β, IL-6, IL-10, IL-17, IL-18 in the serum and colon tissue; inflammatory parameters viz., PAF, COX-2, PGE2, iNOS, NF-κB; matrix metalloproteinases level such as MMP-1 and MMP-2. Sinomenine significantly (P < 0.001) enhanced the level of HO-1 and Nrf2. Sinomenine altered the mRNA expression of RIP1, RIP3, DRP3, NLRP3, IL-1β, caspase-1 and IL-18. Sinomenine remarkably altered the relative abundance of gut microbiota like firmicutes, Bacteroidetes, F/B ratio, Verrucomicrobia, and Actinobacteria. CONCLUSION The results clearly indicate that sinomenine demonstrated a protective effect against DSS-induced inflammation, potentially through the modulation of inflammatory pathways and gut microbiota.
Collapse
Affiliation(s)
- Zhongbao Niu
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Xinhong Li
- Department of Outpatient Surgery, Central Hospital Affiliated to Shandong First Medical University, No. 105 Jiefang Road, Jinan, 250013, Jinan, China
| | - Xiuhua Yang
- Department of Gastroenterology, Central Hospital Affiliated to Shandong First Medical University, No. 105 Jiefang Road, Jinan, 250013, Jinan, China
| | - Zhongwei Sun
- Department of Gastrointestinal Surgery, Jinan Central Hospital, No.105, Jiefang Road, Lixia District, Jinan, 250013, Shandong, China.
| |
Collapse
|
6
|
Machado M, Sousa S, Rodriguez-Alcalá LM, Gomes AM, Pintado M. Anti-obesity potential of a yogurt functionalized with a CLNA-rich pomegranate oil. Food Res Int 2023; 173:113364. [PMID: 37803704 DOI: 10.1016/j.foodres.2023.113364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 08/03/2023] [Accepted: 08/05/2023] [Indexed: 10/08/2023]
Abstract
Pomegranate oil is rich in conjugated linolenic acids, compounds which have attracted attention due to their potential applicability in obesity management as they are capable of modulating leptin and adiponectin secretion and regulate fatty acids storage and glucose metabolism. Among the possible bioactive foodstuffs capable of delivering these bioactive compounds yogurts have shown potential. Thus, the purpose of this work was to develop functional yogurts through the addition of pomegranate oil either in its free or encapsulated (used as a protective strategy against oxidation and gastrointestinal tract passage) forms. To that end, the pomegranate oil (free and encapsulated) was incorporated in yogurt and the functional yogurt capacity to modulate hepatic lipid accumulation, adipocyte metabolism (in terms of lipolysis, and adipokines secretion) and immune response was evaluated. The results obtained showed that the pomegranate oil's incorporation led to an improvement in the yogurts' nutritional values, with a reduction in its atherogenic and thrombogenic indexes (more than 78% for atherogenic and 76% for thrombogenic index) and an enhancement of its hypocholesterolemic/hypercholesterolemic ratio (more than 62%) when compared to the control yogurt. Furthermore, data also showed for the first time how these functional yogurts promoted modulation of metabolic processes post GIT as they were capable of reducing by 40% triglycerides accumulation in steatosis-induced Hep G2 cells and by 30 % in differentiated adipocytes. Moreover, samples also showed a capacity to modulate the leptin and adiponectin secretion (56 % of increase in adiponectin) and reduce the IL-6 secretion (ca 44%) and TNF-α (ca 12%) in LPS-stimulated cells. Thus, the CLNA-rich yogurt here developed showed potential as a viable nutraceutical alternative for obesity management.
Collapse
Affiliation(s)
- Manuela Machado
- Universidade Católica Portuguesa, CBQF Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Sérgio Sousa
- Universidade Católica Portuguesa, CBQF Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Luís M Rodriguez-Alcalá
- Universidade Católica Portuguesa, CBQF Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Ana Maria Gomes
- Universidade Católica Portuguesa, CBQF Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Manuela Pintado
- Universidade Católica Portuguesa, CBQF Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
| |
Collapse
|
7
|
Badawy S, Liu Y, Guo M, Liu Z, Xie C, Marawan MA, Ares I, Lopez-Torres B, Martínez M, Maximiliano JE, Martínez-Larrañaga MR, Wang X, Anadón A, Martínez MA. Conjugated linoleic acid (CLA) as a functional food: Is it beneficial or not? Food Res Int 2023; 172:113158. [PMID: 37689911 DOI: 10.1016/j.foodres.2023.113158] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 09/11/2023]
Abstract
Conjugated linoleic acid (CLA) has attracted great attention in recent years as a popular class of functional food that is broadly used. It refers to a group of geometric and positional isomers of linoleic acid (LA) with a conjugated double bond. The main natural sources of CLA are dairy products, beef and lamb, whereas only trace amounts occur naturally in plant lipids. CLA has been shown to improve various health issues, having effects on obesity, inflammatory, anti-carcinogenicity, atherogenicity, immunomodulation, and osteosynthesis. Also, compared to studies on humans, many animal researches reveal more positive benefits on health. CLA represents a nutritional avenue to improve lifestyle diseases and metabolic syndrome. Most of these effects are attributed to the two major CLA isomers [conjugated linoleic acid cis-9,trans-11 isomer (c9,t11), and conjugated linoleic acid trans-10,cis-12 isomer (t10,c12)], and their mixture (CLA mix). In contrast, adverse effects of CLA have been also reported, such as glucose homeostasis, insulin resistance, hepatic steatosis and induction of colon carcinogenesis in humans, as well as milk fat inhibition in ruminants, lowering chicken productivity, influencing egg quality and altering growth performance in fish. This review article aims to discuss the health benefits of CLA as a nutraceutical supplement and highlight the possible mechanisms of action that may contribute to its outcome. It also outlines the feasible adverse effects of CLA besides summarizing the recent peer-reviewed publications on CLA to ensure its efficacy and safety for proper application in humans.
Collapse
Affiliation(s)
- Sara Badawy
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Pathology Department of Animal Medicine, Faculty of Veterinary Medicine, Benha University, Egypt
| | - Yanan Liu
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Mingyue Guo
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zhenli Liu
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Changqing Xie
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Marawan A Marawan
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Infectious Diseases, Animal Medicine Department, Faculty of Veterinary Medicine, Benha University, Egypt
| | - Irma Ares
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040 Madrid, Spain
| | - Bernardo Lopez-Torres
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040 Madrid, Spain
| | - Marta Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040 Madrid, Spain
| | - Jorge-Enrique Maximiliano
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040 Madrid, Spain
| | - María-Rosa Martínez-Larrañaga
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040 Madrid, Spain
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Arturo Anadón
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040 Madrid, Spain.
| | - María-Aránzazu Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040 Madrid, Spain
| |
Collapse
|
8
|
Ma J, Xu Y, Zhang M, Li Y. Geraniol ameliorates acute liver failure induced by lipopolysaccharide/D-galactosamine via regulating macrophage polarization and NLRP3 inflammasome activation by PPAR-γ methylation Geraniol alleviates acute liver failure. Biochem Pharmacol 2023; 210:115467. [PMID: 36849063 DOI: 10.1016/j.bcp.2023.115467] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 03/01/2023]
Abstract
Geraniol (Ger), a natural acyclic monoterpene alcohol, has been reported to exert protective effects through anti-inflammation in Acute liver failure (ALF). However, its specific roles and precise mechanisms underlying anti-inflammatory effects in ALF have not yet fully explored. We aimed to investigated the hepatoprotective effects and mechanisms of Ger against ALF induced by lipopolysaccharide (LPS)/D-galactosamine (GaIN). In this study, the liver tissue and serum of LPS/D-GaIN-induced mice were collected. The degree of liver tissue injury was evaluated by HE and TUNEL staining. Serum levels of liver injury markers (ALT and AST) and inflammatory factors were measured by ELISA assays. PCR and western blotting were conducted to determine the expression of inflammatory cytokines, NLRP3 inflammasome-related proteins, PPAR-γ pathway-related proteins, DNA Methyltransferases and M1/M2 polarization cytokines. Immunofluorescence staining was used to assess the localization and expression of macrophage markers (F4/80 and CD86), NLRP3 and PPAR-γ. In vitro experiments were performed in macrophages stimulated with LPS with or without IFN-γ. Purification of macrophages and cell apoptosis was analyzed using flow cytometry. We found that Ger effectively alleviated ALF in mice, specified by the attenuation of liver tissue pathological damage, inhibition of ALT, AST and inflammatory factor levels, and inactivation of NLRP3 inflammasome. Meanwhile, downregulation M1 macrophage polarization may involve in the protective effects of Ger. In vitro, Ger reduced the activation of NLRP3 inflammasome and apoptosis through regulating PPAR-γ methylation by inhibiting M1 macrophage polarization. In conclusion, Ger protects against ALF through suppressing NLRP3 inflammasome-mediated inflammation and LPS-induced macrophage M1 polarization via modulating PPAR-γ methylation.
Collapse
Affiliation(s)
- Jing Ma
- Infectious Disease Department, The Second XIANGYA Hospital of Central South University, Changsha, Hunan, China
| | - Yun Xu
- Infectious Disease Department, The Second XIANGYA Hospital of Central South University, Changsha, Hunan, China
| | - Min Zhang
- Infectious Disease Department, The Second XIANGYA Hospital of Central South University, Changsha, Hunan, China
| | - Yi Li
- Infectious Disease Department, The Second XIANGYA Hospital of Central South University, Changsha, Hunan, China.
| |
Collapse
|
9
|
Wang H, Chen K, Ning M, Wang X, Wang Z, Yue Y, Yuan Y, Yue T. Intake of Pro- and/or Prebiotics as a Promising Approach for Prevention and Treatment of Colorectal Cancer. Mol Nutr Food Res 2023; 67:e2200474. [PMID: 36349520 DOI: 10.1002/mnfr.202200474] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/16/2022] [Indexed: 11/11/2022]
Abstract
Colorectal cancer (CRC) is the third most common type of cancer, posing a serious threat to human life. It is widely believed that dietary factors may be crucial modifiers of CRC risk, with pro-and/or prebiotics being especially promising. In this review, a synthesis of CRC prevention and treatment of strategies relying on usage of pro- and/or prebiotics supplements is given, as well as discuss mechanisms underlying the contribution of pro-and/or prebiotics to the suppression of colonic carcinogenesis. Furthermore, a framework for personalizing such supplements according to the composition of an individual's gut microbiome is suggested. Various factors including diversity of one's intestinal microflora, integrity of their intestinal barrier, and the presence of mutagenic/carcinogenic/genotoxic and beneficial compounds are known to have a prominent influence on the development of CRC; thus, clarifying the role of pro- and/or prebiotics will yield valuable insight toward optimizing interventions for enhanced patient outcomes in the future.
Collapse
Affiliation(s)
- Huijuan Wang
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China.,Laboratory of Quality & Safety Risk Assessment for Agri-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Ke Chen
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China.,Laboratory of Quality & Safety Risk Assessment for Agri-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Mengge Ning
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China.,Laboratory of Quality & Safety Risk Assessment for Agri-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Xin Wang
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China.,Laboratory of Quality & Safety Risk Assessment for Agri-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Zhouli Wang
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China.,Laboratory of Quality & Safety Risk Assessment for Agri-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Yuan Yue
- Xi'an Gaoxin No.1 High School, Xi'an, 71000, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China.,Laboratory of Quality & Safety Risk Assessment for Agri-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China.,Laboratory of Quality & Safety Risk Assessment for Agri-products (Yangling), Ministry of Agriculture, Yangling, 712100, China.,College of Food Science and Technology, Northwest University, Xi'an, 710069, China
| |
Collapse
|
10
|
The Cardioprotective Effect of Corosolic Acid in the Diabetic Rats: A Possible Mechanism of the PPAR-γ Pathway. Molecules 2023; 28:molecules28030929. [PMID: 36770602 PMCID: PMC9919720 DOI: 10.3390/molecules28030929] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
The study was conducted to determine whether corosolic acid could protect the myocardium of diabetic rats from damage caused by isoproterenol (ISO) and, if so, how peroxisome proliferator-activated receptor gamma (PPAR-γ) activation might contribute into this protection. Diabetes in the rats was induced by streptozotocin (STZ), and it was divided into four groups: the diabetic control group, diabetic rats treated with corosolic acid, diabetic rats treated with GW9662, and diabetic rats treated with corosolic acid plus GW9662. The study was carried out for 28 days. The diabetic control and ISO control groups showed a decrease in mean arterial pressure (MAP) and diastolic arterial pressure (DAP) and an increase in systolic arterial pressure (SAP). The rat myocardium was activated by corosolic acid treatment, which elevated PPAR-γ expression. A histopathological analysis showed a significant reduction in myocardial damage by reducing myonecrosis and edema. It was found that myocardial levels of CK-MB and LDH levels were significantly increased after treatment with corosolic acid. By decreasing lipid peroxidation and increasing endogenous antioxidant levels, corosolic acid therapy showed a significant improvement over the ISO diabetic group. In conclusion, our results prove that corosolic acid can ameliorate ISO-induced acute myocardial injury in rats. Based on these results, corosolic acid seems to be a viable new target for the treatment of cardiovascular diseases and other diseases of a similar nature.
Collapse
|
11
|
Yang C, Deng X, Lund P, Liu H, Ding X, Fu Z, Zhang N, Li J, Dong L. Rumen microbiota-host transcriptome interaction mediates the protective effects of trans-10, cis-12 CLA on facilitating weaning transition of lambs. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 12:345-359. [PMID: 36788929 PMCID: PMC9898626 DOI: 10.1016/j.aninu.2022.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022]
Abstract
Developing alternatives to antibiotics for prevention of gastrointestinal dysbiosis in early-weaning farmed animals is urgently needed. This study was to explore the potential effects of trans-10, cis-12 conjugated linoleic acid (CLA) on maintaining ruminal homeostasis of young ruminants during the weaning transition period. Thirty neonatal lambs were selected (6 lambs per group) and euthanized for rumen microbial and epithelial analysis. The lambs were weaned at 28 d and experienced the following 5 treatments: euthanized on d 28 as the pre-weaning control (CON0), fed starter feed for 5 (CON5) or 21 (CON21) d, fed starter feed with 1% of CLA supplemented for 5 (CLA5) or 21 (CLA21) d. Results showed that the average daily weight gain and dry matter intake were significantly higher in CLA5 than CON5 group. As compared with the CON5 and CON21 group, the relative abundances of volatile fatty acid (VFA) producing bacteria including Bacteroides, Treponema, Parabacteroides and Anaerovibrio, as well as the concentrations of acetate, butyrate and total VFA were significantly increased in CLA5 and CLA21 group, respectively. Integrating microbial profiling and epithelial transcriptome results showed that 7 downregulated inflammatory signaling-related host genes IL2RA, CXCL9, CD4, CCR4, LTB, SPP1, and BCL2A1 with CLA supplementation were significantly negatively correlated with both VFA concentration and VFA producing bacteria, while 3 (GPX2, SLC27A2 and ALDH3A1) and 2 (GSTM3 and GSTA1) upregulated metabolism-related genes, significantly positively correlated with either VFA concentration or VFA producing bacteria, respectively. To confirm the effects of CLA on epithelial signal transduction, in vitro experiment was further conducted by treating rumen epithelial cells without or with IL-17A + TNF-α for 12 h after pretreatment of 100 μM CLA or not (6 replicates per treatment). The results demonstrated the anti-inflammatory effect of CLA via suppressing the protein expression of NF-кB p-p65/p65 with the activation of peroxisome proliferator-activated receptor gamma (PPARγ). In conclusion, CLA supplementation enhanced the ruminal microbiota-driven transcriptional regulation in healthy rumen epithelial development via rumen VFA production, and CLA may therefore serve as an alternative way to alleviate early-weaning stress and improve physiological and metabolic conditions of young ruminants.
Collapse
Affiliation(s)
- Chunlei Yang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xiangfei Deng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Peter Lund
- Department of Animal Science, Aarhus University, AU Foulum, DK-8830, Tjele, Denmark
| | - Haixia Liu
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, 225300, China
| | - Xingwang Ding
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, 225300, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Naifeng Zhang
- Institute of Feed Research, Chinese Academy of Agricultural Sciences/Sino-US Joint Lab on Nutrition and Metabolism of Ruminant, Beijing, 100081, China
| | - Jinjun Li
- Institute of Food Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China,Corresponding authors.
| | - Lifeng Dong
- Institute of Feed Research, Chinese Academy of Agricultural Sciences/Sino-US Joint Lab on Nutrition and Metabolism of Ruminant, Beijing, 100081, China,Corresponding authors.
| |
Collapse
|
12
|
Kim NY, Lim CM, Park HM, Kim J, Pham TH, Yang Y, Lee HP, Hong JT, Yoon DY. MMPP promotes adipogenesis and glucose uptake via binding to the PPARγ ligand binding domain in 3T3-L1 MBX cells. Front Pharmacol 2022; 13:994584. [PMID: 36339572 PMCID: PMC9634037 DOI: 10.3389/fphar.2022.994584] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/05/2022] [Indexed: 08/13/2023] Open
Abstract
Peroxisome proliferator-activated receptor-gamma (PPARγ) is a transcription factor involved in adipogenesis, and its transcriptional activity depends on its ligands. Thiazolidinediones (TZDs), well-known PPARγ agonists, are drugs that improve insulin resistance in type 2 diabetes. However, TZDs are associated with severe adverse effects. As current therapies are not well designed, novel PPARγ agonists have been investigated in adipocytes. (E)-2-methoxy-4-(3-(4-methoxyphenyl) prop-1-en-1-yl) phenol (MMPP) is known to have anti-arthritic, anti-inflammatory, and anti-cancer effects. In this study, we demonstrated the adipogenic effects of MMPP on the regulation of PPARγ transcriptional activity during adipocyte differentiation in vitro. MMPP treatment increased PPARγ transcriptional activity, and molecular docking studies revealed that MMPP binds directly to the PPARγ ligand binding domain. MMPP and rosiglitazone showed similar binding affinities to the PPARγ. MMPP significantly promoted lipid accumulation in adipocyte cells and increased the expression of C/EBPβ and the levels of p-AKT, p-GSK3, and p-AMPKα at an early stage. MMPP enhanced the expression of adipogenic markers such as PPARγ, C/EBPα, FAS, ACC, GLUT4, FABP4 and adiponectin in the late stage. MMPP also improved insulin sensitivity by increasing glucose uptake. Thus, MMPP, as a PPARγ agonist, may be a potential drug for type 2 diabetes and metabolic disorders, which may help increase adipogenesis and insulin sensitivity.
Collapse
Affiliation(s)
- Na-Yeon Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Korea
| | - Chae-Min Lim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Korea
| | - Hyo-Min Park
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Korea
| | - Jinju Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Korea
| | - Thu-Huyen Pham
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Korea
| | - Young Yang
- Department of Biological Science, Sookmyung Women’s University, Seoul, Korea
| | - Hee Pom Lee
- College of Pharmacy & Medical Research Center, Chungbuk National University, Cheongju, Korea
| | - Jin Tae Hong
- College of Pharmacy & Medical Research Center, Chungbuk National University, Cheongju, Korea
| | - Do-Young Yoon
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Korea
| |
Collapse
|
13
|
Xu L, Zhu C, Liu T, Karrar E, Ouyang Y, Li D. Effect of microwave heating on lipid composition, chemical properties and antioxidant activity of oils from Trichosanthes kirilowii seed. Food Res Int 2022; 159:111643. [DOI: 10.1016/j.foodres.2022.111643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 11/28/2022]
|
14
|
Machado M, Costa EM, Silva S, Rodriguez-Alcalá LM, Gomes AM, Pintado M. Pomegranate Oil’s Potential as an Anti-Obesity Ingredient. Molecules 2022; 27:molecules27154958. [PMID: 35956908 PMCID: PMC9370579 DOI: 10.3390/molecules27154958] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/28/2022] [Accepted: 07/31/2022] [Indexed: 11/16/2022] Open
Abstract
In recent years, pomegranate oil has obtained more attention due to its content of conjugated linolenic acids and possible application in the prevention of many diseases. The purpose of this work was to evaluate the potential ability of pomegranate oil to modulate obesity-related metabolism and immune response using in vitro models. In this regard, pomegranate oil was characterized in terms of fatty acids profile, tocopherols and phytosterols, and antioxidant capacity. After evaluation of the safety profile, pomegranate oil’s capacity to modulate obesity-related metabolism was evaluated through adipolysis and adipokines secretion quantification in 3T3-L1 differentiated adipocytes and hepatic lipid accumulation assay in Hep G2 hepatocytes. The immunomodulatory activity was evaluated in Caco-2 cells by quantification of pro-inflammatory cytokines IL-6, IL-8, and TNF-α. This oil showed high antioxidant capacity and was mainly composed of conjugated fatty acid, namely punicic acid. Its chemical composition was responsible for its capacity to reduce the lipid accumulation in Hep G2 cells and 3T3-L1 differentiated adipocytes. In short, pomegranate oil shows great potential for the development of functional foods and nutraceuticals targeting obesity.
Collapse
|
15
|
Yang B, Gao H, Qi H, Chen Y, Ross RP, Stanton C, Zhao J, Zhang H, Chen H, Chen W. Linoleate Isomerase Complex Contributes to Metabolism and Remission of DSS-Induced Colitis in Mice of Lactobacillus plantarum ZS2058. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8160-8171. [PMID: 34281339 DOI: 10.1021/acs.jafc.1c02944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A linoleate isomerase complex including myosin-cross-reactive antigen, short-chain dehydrogenase/oxidoreductase, and acetoacetate decarboxylase has been confirmed as the pivotal factor for conjugated linoleic acid (CLA) production in Lactobacillus plantarum. However, its role in the metabolism and health-associated benefits of Lactobacillus remain unclear. In the current study, the mild type, knockout, and complemented mutants of the linoleate isomerase complex of L. plantarum ZS2058 were used to investigate those putative effects. The metabonomic results showed that a linoleate isomerase complex could significantly influence the glycol-metabolism, lipid metabolism, and antioxidant compounds. Especially, with the stress of linoleic acid, linoleate isomerase complex knockout mutants induced the increase of several antioxidant compounds, such as glutamic acid, glycine, l-cysteine, glycerol, and l-sorbosone. Moreover, the linoleate isomerase complex played a pivotal role in ameliorating DSS-induced colitis. The knockout mutants showed effects similar to those in the DSS group, whereas complementation of the corresponding gene in the knockout mutants could restore the anti-inflammatory activity, wherein the integrity of a mucus layer was repaired, the level of pro-inflammatory cytokines decreased, and the amount of anti-inflammatory cytokines increased significantly. All the results indicated that the linoleate isomerase complex plays a key role in CLA production and metabolism as well as the health-associated benefits of L. plantarum ZS2058. These results are conducive to promote clinical trials and product development of probiotics for colitis.
Collapse
Affiliation(s)
- Bo Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - He Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hui Qi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yang Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - R Paul Ross
- International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi 214122, Jiangsu, China
- APC Microbiome Ireland, University College Cork, Cork T12 K8AF, Ireland
| | - Catherine Stanton
- International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi 214122, Jiangsu, China
- APC Microbiome Ireland, University College Cork, Cork T12 K8AF, Ireland
- Teagasc Food Research Centre, Moorepark, Co. Cork P61 C996, Ireland
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi 214122, China
| | - Haiqin Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
16
|
Yuan G, Tan M, Chen X. Punicic acid ameliorates obesity and liver steatosis by regulating gut microbiota composition in mice. Food Funct 2021; 12:7897-7908. [PMID: 34241611 DOI: 10.1039/d1fo01152a] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This study aimed to elucidate the effect of punicic acid (PUA, cis9,trans11,cis13-18 : 3) on obesity and liver steatosis in mice induced by high-fat diet (HFD), and to explore the possible mechanism. Mice were fed with either a HFD or a control diet for 8 weeks. Half of HFD-mice received daily supplementation of PUA. Supplementation with PUA ameliorated the liver steatosis and obesity in mice fed by HFD, as demonstrated by the decreased hepatic triglyceride accumulation, body weight gain and fat weight. A HFD increased the ratio of Firmicutes to Bacteroidetes, whereas supplementation with PUA effectively restored it. PUA supplementation counteracted the upregulation in family Desulfovibrionaceae and Helicobacteraceae, and the downregulation in Muribaculaceae and Bacteroidaceae induced by HFD. Correspondingly, the family of Desulfovibrionaceae was positively related, whereas Muribaculaceae was negatively related to the amount of epididymal and perirenal fat, and the level of liver triglyceride and total cholesterol. The family Helicobacteraceae was also positively related to the amount of epididymal and perirenal fat. Moreover, PUA supplementation counteracted the increase in the population of Anaerotruncus, Faecalibaculim, Mucispirillum, and the decrease in the population of Lactobacillus, Roseburia, Oscillibacter at the genus level induced by HFD. These results demonstrated that PUA can at least in part ameliorate obesity and liver steatosis in mice induced by HFD by regulating gut microbiota composition.
Collapse
Affiliation(s)
- Gaofeng Yuan
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhejiang Ocean University, Zhoushan 316022, China.
| | | | | |
Collapse
|
17
|
Mal S, Dwivedi AR, Kumar V, Kumar N, Kumar B, Kumar V. Role of Peroxisome Proliferator-Activated Receptor Gamma (PPARγ) in Different Disease States: Recent Updates. Curr Med Chem 2021; 28:3193-3215. [PMID: 32674727 DOI: 10.2174/0929867327666200716113136] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/12/2020] [Accepted: 06/21/2020] [Indexed: 11/22/2022]
Abstract
Peroxisome proliferator-activated receptor (PPAR), a ligand dependant transcription factor, is a member of the nuclear receptor superfamily. PPAR exists in three isoforms i.e. PPAR alpha (PPARα), PPAR beta (PPARβ), and PPAR gamma (PPARγ). These are multi-functional transcription factors and help in regulating inflammation, type 2 diabetes, lipid concentration in the body, metastasis, and tumor growth or angiogenesis. Activation of PPARγ causes inhibition of growth of cultured human breast, gastric, lung, prostate, and other cancer cells. PPARγ is mainly involved in fatty acid storage, glucose metabolism, and homeostasis and adipogenesis regulation. A large number of natural and synthetic ligands bind to PPARγ and modulate its activity. Ligands such as thiazolidinedione, troglitazone, rosiglitazone, pioglitazone effectively bind to PPARγ; however, most of these were found to display severe side effects such as hepatotoxicity, weight gain, cardiovascular complications and bladder tumor. Now the focus is shifted towards the development of dual-acting or pan PPAR ligands. The current review article describes the functions and role of PPARγ in various disease states. In addition, recently reported PPARγ ligands and pan PPAR ligands were discussed in detail. It is envisaged that the present review article may help in the development of potent PPAR ligands with no or minimal side effects.
Collapse
Affiliation(s)
- Suvadeep Mal
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda 151001, Punjab, India
| | - Ashish Ranjan Dwivedi
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda 151001, Punjab, India
| | - Vijay Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda 151001, Punjab, India
| | - Naveen Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda 151001, Punjab, India
| | - Bhupinder Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda 151001, Punjab, India
| | - Vinod Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda 151001, Punjab, India
| |
Collapse
|
18
|
Jeantet R, Jan G. Improving the drying of Propionibacterium freudenreichii starter cultures. Appl Microbiol Biotechnol 2021; 105:3485-3494. [PMID: 33885925 DOI: 10.1007/s00253-021-11273-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/30/2021] [Accepted: 04/05/2021] [Indexed: 01/15/2023]
Abstract
Propionibacterium freudenreichii is a beneficial food-grade actinobacterium, widely implemented, and thus consumed, in various food products. As the main application, P. freudenreichii is used as a cheese-ripening starter, mostly in hard type cheeses. Indeed, during manufacture of "Swiss-type" cheeses (or opened-body cheeses), the technological process favors propionibacteria growth, as well as the corresponding propionic fermentation. This leads to the characteristic flavor of these cheeses, through the release of short chain fatty acids and through lipolysis, as well as to their specific texture. To fulfil this ripening, massive amounts of propionibacteria are industrially produced, dried and stored, prior to cheese making. Furthermore, P. freudenreichii is commercialized in various probiotic food supplements aiming at preserving intestinal health and comfort, in line with its ability to produce beneficial metabolites (short chain fatty acids, vitamins), as well as immunomodulatory compounds. Other industrial applications of P. freudenreichii include the production of food-grade vitamins of the B group, of trehalose, of conjugated linoleic acid, and of biopreservatives. For these different applications, maintaining survival and activity of propionibacteria during production, drying, storage and finally implementation, is crucial. More widely, maintaining live and active probiotic bacteria represents a challenge as the market for probiotic products increases. Probiotic bacteria are, for a bulk majority, freeze-dried, but spray drying is also more and more considered. Indeed, this process is both continuous and more cost-efficient, as it utilizes less energy compared to freeze-drying; on the other hand, it exposes bacteria to higher heat and oxidative stresses. Apart from process optimization and strain selection, it is possible to enhance the resistance of bacteria by taking advantage of their adaptation capacity. Indeed, P. freudenreichii stress tolerance can be boosted by different pretreatments applied before the drying step, thus considerably increasing its final survival. In particular, adaptation to hyperosmotic conditions improves stress tolerance, while the presence of osmoprotectants may mitigate this improvement. Thermal adaptation also modulates tolerance towards these technological challenges. The composition of the growth medium, including the ratio between the carbohydrates provided and the non-protein nitrogen, plays a key role in driving the accumulation of osmoprotectants. This, in turn, determines P. freudenreichii tolerance towards different stresses, and overall towards both freeze-drying and spray-drying. As an example, the accumulation of trehalose enhances its spray-drying survival, while the accumulation of glycine betaine enhances its freeze-drying survival. Growth of propionibacteria in hyperconcentrated whey was used to trigger multiple stress tolerance acquisition, underpinned by overexpression of key stress protein, accumulation of cytoplasmic storage compounds, and leading to enhanced spray-drying survival. A simplified process, from cultivation to atomization, was developed by using whey as a 2-in-1 medium in which propionibacteria were grown, protected and dried with minimal cell death. This innovative process was then subjected to scaling up at the industrial level. In this aim, a gentle multi-stage drying process offering mild drying conditions by coupling spray drying with belt drying, led to final probiotic survival close to 100% when stress tolerance acquisition was previously implemented. Such innovation opens new avenues for the efficient, cost-effective and sustainable development of new probiotic production technologies, as well as probiotic application in the context of food and feed. KEY POINTS: • Propionibacteria acquire multi-stress tolerance when grown in hyper-concentrated whey. • Spray drying of osmo-adapted probiotic bacteria is possible with limited cell death. • A two-in-one drying method is developed to grow and dry probiotic bacteria in the same matrix.
Collapse
Affiliation(s)
| | - Gwénaël Jan
- STLO, INRAE, Institut Agro, 35042, Rennes, France.
| |
Collapse
|
19
|
Yang C, Zhu B, Ye S, Fu Z, Li J. Isomer-Specific Effects of cis-9, trans-11- and trans-10, cis-12-CLA on Immune Regulation in Ruminal Epithelial Cells. Animals (Basel) 2021; 11:ani11041169. [PMID: 33921651 PMCID: PMC8072642 DOI: 10.3390/ani11041169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/08/2021] [Accepted: 04/15/2021] [Indexed: 11/23/2022] Open
Abstract
Simple Summary The significant contribution of rumen microbiota to the balance of the innate immunity of rumen epithelium has been extensively verified. As the natural rumen microbial metabolites, information regarding the immunoprotective effects of different conjugated linoleic acid (CLA) isomers on ruminal epithelial cells (RECs) is limited. In this study, the 100 μM trans-10,cis-12-CLA exerted better anti-inflammatory effects than the cis-9,trans-11-CLA by significantly downregulating the expression of genes related to inflammation, cell proliferation and migration in RECs upon lipopolysaccharide (LPS) stimulation. The trans-10,cis-12-CLA, but not cis-9,trans-11-CLA, significantly suppressed the biological signals of gene ontology (GO) terms’ response to lipopolysaccharide, the regulation of signal transduction and cytokine production and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways NF-κB, chemokine, NOD-like receptor, Hippo, PI3K-Akt, TGF-β and Rap1 signaling in RECs upon LPS stimulation. Furthermore, pretreatment with trans-10,cis-12-CLA significantly reduced the expression of lipogenic genes and the biosynthesis of the unsaturated fatty acid pathway in RECs compared with the LPS group, however, cis-9,trans-11-CLA exhibited the opposite results. These results suggest the distinct isomer differences of CLA in the regulation of inflammatory responses and adipocytokine signaling in RECs and will provide important references for determining their target use in the future. Abstract In this study, we used transcriptomics and qPCR to investigate the potential immunoprotective effects of different conjugated linoleic acid (CLA) isomers, the natural rumen microbial metabolites, on lipopolysaccharide (LPS)-induced inflammation of ruminal epithelial cells (RECs) in vitro. The results showed that 100 μM trans-10,cis-12-CLA exerted higher anti-inflammatory effects than cis-9,trans-11-CLA by significantly downregulating the expression of genes related to inflammation, cell proliferation and migration in RECs upon LPS stimulation. Transcriptomic analyses further indicated that pretreatment with trans-10,cis-12-CLA, but not cis-9,trans-11-CLA, significantly suppressed the biological signals of GO terms’ response to LPS, the regulation of signal transduction and cytokine production and KEGG pathways NF-κB, chemokine, NOD-like receptor, Hippo, PI3K-Akt, TGF-β and Rap1 signaling in RECs upon LPS stimulation. Furthermore, pretreatment with trans-10,cis-12-CLA significantly reduced the expression of lipogenic genes and the biosynthesis of the unsaturated fatty acid pathway in RECs compared with the LPS group, however, cis-9,trans-11-CLA exhibited the opposite results. These results suggest the distinct isomer differences of CLA in the regulation of inflammatory responses and adipocytokine signaling in RECs and will provide important references for determining their target use in the future.
Collapse
Affiliation(s)
- Chunlei Yang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China; (C.Y.); (B.Z.); (S.Y.)
| | - Binna Zhu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China; (C.Y.); (B.Z.); (S.Y.)
| | - Shijie Ye
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China; (C.Y.); (B.Z.); (S.Y.)
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China; (C.Y.); (B.Z.); (S.Y.)
- Correspondence: (Z.F.); (J.L.)
| | - Jinjun Li
- Institute of Food Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Correspondence: (Z.F.); (J.L.)
| |
Collapse
|
20
|
Baker EJ, Miles EA, Calder PC. A review of the functional effects of pine nut oil, pinolenic acid and its derivative eicosatrienoic acid and their potential health benefits. Prog Lipid Res 2021; 82:101097. [PMID: 33831456 DOI: 10.1016/j.plipres.2021.101097] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 04/02/2021] [Accepted: 04/02/2021] [Indexed: 12/26/2022]
Abstract
Pine nut oil (PNO) is rich in a variety of unusual delta-5-non-methylene-interrupted fatty acids (NMIFAs), including pinolenic acid (PLA; all cis-5,-9,-12 18:3) which typically comprises 14 to 19% of total fatty acids. PLA has been shown to be metabolised to eicosatrienoic acid (ETA; all cis-7,-11,-14 20:3) in various cells and tissues. Here we review the literature on PNO, PLA and its metabolite ETA in the context of human health applications. PNO and PLA have a range of favourable effects on body weight as well as fat deposition through increased energy expenditure (fatty acid oxidation) and decreased food energy intake (reduced appetite). PNO and PLA improve blood and hepatic lipids in animal models and insulin sensitivity in vitro and reduce inflammation and modulate immune function in vitro and in animal models. The few studies which have examined effects of ETA indicate it has anti-inflammatory properties. Another NMIFA from PNO, sciadonic acid (all cis-5,-11,-14 20:3), has generally similar properties to PLA where these have been investigated. There is potential for human health benefits from PNO, its constituent NMIFA PLA and the PLA derivative ETA. However further studies are needed to explore the effects in humans.
Collapse
Affiliation(s)
- Ella J Baker
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.
| | - Elizabeth A Miles
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Philip C Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom; NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, United Kingdom
| |
Collapse
|
21
|
Cardinal KM, Pezzali JG, Vilella LDM, Moraes PDO, Ribeiro AML. High-energy diet does not overcome the negative impact of conjugated linoleic acid on young broiler performance. ACTA SCIENTIARUM: ANIMAL SCIENCES 2020. [DOI: 10.4025/actascianimsci.v43i1.51128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The aim of this study was to evaluate the effect of conjugated linoleic acid (CLA) supplementation in diets with different energy levels in broiler performance. Birds were offered a starter (1-21 d), grower (22-35 d) and finisher (36-42 d) diets; wherein soybean oil was replaced by CLA. The study consisted of a 3 × 2 factorial arrangement with two CLA levels (0 and 1%) and three energy levels (3050, 3100 and 3150 ME kg-1 diet). During the grower and finisher periods, birds were fed diets with same energy level and CLA supplementation was maintained the same. Growth performance was assessed weekly, and carcass and cuts yield were assessed at 42d. Interaction effect of CLA by energy level was observed in broiler performance and carcass yield throughout the study (p > 0.05). During the overall period (1-42 d) broiler performance was not affected by CLA (p > 0.05).However, CLA supplementation (1%) decreased weight gain (p < 0.05) at 21d, regardless of energy level, with no effects on feed intake and feed conversation rate (p > 0.05). The increase in dietary energy was not able to compensate the negative effect on growth performance of broilers supplemented with 1% CLA at the starter period.
Collapse
|
22
|
Yang C, Lan W, Ye S, Zhu B, Fu Z. Transcriptomic Analyses Reveal the Protective Immune Regulation of Conjugated Linoleic Acids in Sheep Ruminal Epithelial Cells. Front Physiol 2020; 11:588082. [PMID: 33192603 PMCID: PMC7658390 DOI: 10.3389/fphys.2020.588082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/02/2020] [Indexed: 12/12/2022] Open
Abstract
The ruminal epithelium is continuously challenged by antigens released by the lysis of dead microbial cells within the rumen. However, the innate immune system of the ruminal epithelium can almost always actively respond to these challenges. The cross talk between the ruminal microbiota and innate immune cells in the ruminal epithelium has been suggested to play an important role in sustaining the balance of immune tolerance and inflammatory response in the rumen. We hypothesized that conjugated linoleic acid (CLA), a functional microbial metabolite in the rumen, may contribute to the immune regulation in rumen epithelial cells (RECs); therefore, we first established an immortal REC line and then investigated the regulatory effects of CLA on the immune responses in these RECs. The results showed that long-term REC cultures were successfully established via SV40T-induced immortalization. Transcriptome analysis showed that a 100 μM CLA mixture consisting of 50:50 cis-9, trans-11:trans-10, cis-12 CLA significantly downregulated the expression of the inflammatory response-related genes TNF-α, IL-6, CX3CL1, IRF1, ICAM1 and EDN1, and upregulated the expression of the cell proliferation-related genes FGF7, FGF21, EREG, AREG and HBEGF and the lipid metabolism-related genes PLIN2, CPT1A, ANGPTL4, ABHD5 and SREBF1 in the RECs upon LPS stimulation. Correspondingly, the GO terms regulation of cell adhesion, response to stimulus and cytokine production and KEGG pathways TNF and HIF-1 signaling, ECM-receptor interaction and cell adhesion molecules were identified for the significantly downregulated genes, while the GO terms epithelial cell proliferation and regulation of epithelial cell migration and the KEGG pathways PPAR, ErbB and adipocytokine signaling were identified for the RECs with significantly upregulated CLA-pretreated genes upon LPS stimulation. These findings revealed that CLA conferred protective immunity onto the RECs by inhibiting proinflammatory processes, promoting cell proliferation and regulating lipid metabolism related to the immune response.
Collapse
Affiliation(s)
- Chunlei Yang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Wei Lan
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Shijie Ye
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Binna Zhu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
23
|
Zong S, Ye Z, Zhang X, Chen H, Ye M. Protective effect of Lachnum polysaccharide on dextran sulfate sodium-induced colitis in mice. Food Funct 2020; 11:846-859. [PMID: 31934694 DOI: 10.1039/c9fo02719j] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Inflammatory bowel disease (IBD) has been gradually considered as a public health challenge worldwide. This study determined the protective effect of Lachnum polysaccharide (LEP) on dextran sulfate sodium (DSS)-induced experimental colitis in mice and explored the underlying mechanism. Results showed that dietary LEP reduced DSS-induced disease activity index (DAI), colon shortening and colonic tissue damage. LEP treatment restored intestinal barrier integrity by regulating the expression of tight junction proteins and mucus layer protecting proteins. Moreover, pro-inflammatory cytokine production was inhibited by LEP through regulating PPARγ/NF-κB and IL-6/STAT3 pathways and inhibiting inflammatory cell infiltration. In addition, LEP also inhibited (NOD)-like receptor family pyrin domain containing 3 (NLRP3) inflammasome activation, endoplasmic reticulum (ER) stress and oxidative/nitrosative stress induced by DSS. These results provided a scientific basis for LEP as a potential natural agent for protecting mice from DSS-induced IBD.
Collapse
Affiliation(s)
- Shuai Zong
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, P.R. China.
| | | | | | | | | |
Collapse
|
24
|
Di Sotto A, Vitalone A, Di Giacomo S. Plant-Derived Nutraceuticals and Immune System Modulation: An Evidence-Based Overview. Vaccines (Basel) 2020; 8:E468. [PMID: 32842641 PMCID: PMC7563161 DOI: 10.3390/vaccines8030468] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 12/15/2022] Open
Abstract
Immunomodulators are agents able to affect the immune system, by boosting the immune defences to improve the body reaction against infectious or exogenous injuries, or suppressing the abnormal immune response occurring in immune disorders. Moreover, immunoadjuvants can support immune system acting on nonimmune targets, thus improving the immune response. The modulation of inflammatory pathways and microbiome can also contribute to control the immune function. Some plant-based nutraceuticals have been studied as possible immunomodulating agents due to their multiple and pleiotropic effects. Being usually more tolerable than pharmacological treatments, their adjuvant contribution is approached as a desirable nutraceutical strategy. In the present review, the up to date knowledge about the immunomodulating properties of polysaccharides, fatty acids and labdane diterpenes have been analyzed, in order to give scientific basic and clinical evidence to support their practical use. Since promising evidence in preclinical studies, limited and sometimes confusing results have been highlighted in clinical trials, likely due to low methodological quality and lacking standardization. More investigations of high quality and specificity are required to describe in depth the usefulness of these plant-derived nutraceuticals in the immune system modulation, for health promoting and disease preventing purposes.
Collapse
Affiliation(s)
- Antonella Di Sotto
- Department of Physiology and Pharmacology, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy;
| | - Annabella Vitalone
- Department of Physiology and Pharmacology, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy;
| | | |
Collapse
|
25
|
Guo X, Cheng L, Yang S, Che H. Pro-inflammatory immunological effects of adipose tissue and risk of food allergy in obesity: Focus on immunological mechanisms. Allergol Immunopathol (Madr) 2020; 48:306-312. [PMID: 31477390 DOI: 10.1016/j.aller.2019.06.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/21/2019] [Accepted: 06/03/2019] [Indexed: 12/12/2022]
Abstract
Over the past three decades, the number of obese people has risen steadily. The chronic low-grade inflammatory state and the non-specific activation of the immune system have contributed greatly to the development of obesity-related immunology. Food allergy as a kind of inflammatory disease with abnormal immune response may be associated with obesity. This review begins with the pro-inflammatory immunological effects of adipose tissue in obesity, and explains the possible effects of obesity on food allergy. In short, obesity not only directly causes imbalance of allergic-related immune cells in adipose tissue, but also indirectly causes this consequence through affecting expression of adipocytokines and peroxisome proliferator-activated receptor gamma (PPARγ) in adipose tissue. As a result, circulating levels of pro-inflammatory factors which are partly derived from adipose tissue increase, which might cause intestinal barrier injury. Therefore, obesity may increase the risk of food allergy.
Collapse
Affiliation(s)
- X Guo
- College of Food Science and Nutritional Engineering, China Agricultural University, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, China
| | - L Cheng
- College of Food Science and Nutritional Engineering, China Agricultural University, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, China
| | - S Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, China
| | - H Che
- College of Food Science and Nutritional Engineering, China Agricultural University, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, China.
| |
Collapse
|
26
|
Ren Q, Yang B, Zhang H, Ross RP, Stanton C, Chen H, Chen W. c9, t11, c15-CLNA and t9, t11, c15-CLNA from Lactobacillus plantarum ZS2058 Ameliorate Dextran Sodium Sulfate-Induced Colitis in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3758-3769. [PMID: 32125157 DOI: 10.1021/acs.jafc.0c00573] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
To investigate the specific functions of conjugated fatty acids (CFAs) produced by the probiotic bacterium, α-linolenic acid was isomerized by Lactobacillus plantarum ZS2058, and two different conjugated linolenic acid (CLNA) isomers were successfully isolated: c9, t11, c15-CLNA (CLNA1) and t9, t11, c15-CLNA (CLNA2). The effects and mechanism of CLNA crude extract and individual isomers on colitis were explored. CLNA significantly inhibited weight loss, the disease activity index, and colon shortening. Additionally, CLNA alleviated histological damage, protected colonic mucus layer integrity, and significantly upregulated the concentration of tight junction proteins (ZO-1, occludin, E-cadherin 1, and claudin-3). CLNA significantly attenuated the level of proinflammatory cytokines (TNF-α, IL-1β, and IL-6) while upregulating the expression of the colonic anti-inflammatory cytokine IL-10 and nuclear receptor peroxisome-activated receptor-γ. Moreover, CLNA increased the activity of oxidative stress-related enzymes (SOD, GSH, and CAT), and the myeloperoxidase activity was significantly decreased by CLNA. Meanwhile, the concentrations of CLNA in the liver and conjugated linoleic acid in the colonic content were significantly increased because of the treatment of CLNA. Furthermore, CLNA could rebalance the intestinal microbial composition of colitis mice, including increasing the α-diversity. CLNA1 and CLNA2 increased the abundance of Ruminococcus and Prevotella, respectively.
Collapse
Affiliation(s)
- Qing Ren
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China
| | - Bo Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, P. R China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, Jiangsu 214122, P. R China
| | - R Paul Ross
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi 214122, China
- APC Microbiome Ireland, University College Cork, Cork T12 YN60, Ireland
| | - Catherine Stanton
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi 214122, China
- APC Microbiome Ireland, University College Cork, Cork T12 YN60, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork P61 C996, Ireland
| | - Haiqin Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, P. R China
- Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, P.R. China
| |
Collapse
|
27
|
Ren Q, Yang B, Zhu G, Wang S, Fu C, Zhang H, Ross RP, Stanton C, Chen H, Chen W. Antiproliferation Activity and Mechanism of c9, t11, c15-CLNA and t9, t11, c15-CLNA from Lactobacillus plantarum ZS2058 on Colon Cancer Cells. Molecules 2020; 25:molecules25051225. [PMID: 32182796 PMCID: PMC7179453 DOI: 10.3390/molecules25051225] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 02/27/2020] [Accepted: 03/04/2020] [Indexed: 12/31/2022] Open
Abstract
Conjugated linolenic acid (CLNA) is a type of ω-3 fatty acid which has been proven to have a series of benefits. However, there is no study about the function of Lactobacillus-derived CLNA isomer. Lactobacillus plantarum ZS2058 has been proven to manifest comprehensive functions and can produce CLNA. To investigate the specific functions of CLNA produced by this probiotic bacterium, two different conjugated α-linolenic acid (CLNA) isomers were successfully isolated. These isoforms, CLNA1 (c9, t11, c15-CLNA, purity 97.48%) and CLNA2 (c9, t11, t15-CLNA, purity 99.00%), both showed the ability to inhibit the growth of three types of colon cancer cells in a time- and concentration-dependent manner. In addition, the expression of MDA in Caco-2 cells was increased by CLNA1 or CLNA2, which indicated that lipid peroxidation was related to the antiproliferation activity of CLNAs. An examination of the key protein of pyroptosis showed that CLNA1 induced the cleavage of caspase-1 and gasdermin-D, while CLNA2 induced the cleavage of caspase-4, 5 and gasdermin-D. The addition of relative inhibitors could alleviate the pyroptosis by CLNAs. CLNA1 and CLNA2 showed no effect on caspase-3, 7, 9 and PARP-1, which were key proteins associated with apoptosis. No sub-diploid apoptotic peak appeared in the result of PI single staining test. In conclusion, CLNA1 activated caspase-1 and induced Caco-2 cell pyroptosis, whereas CLNA2 induced pyroptosis through the caspase-4/5-mediated pathway. The inhibition of Caco-2 cells by the two isomers was not related to apoptosis. This is the first study on the function of Lactobacillus-derived CLNA isomer. The inhibition pathway of Lactobacillus-derived CLNA isomer on colon cancer cells were proved.
Collapse
Affiliation(s)
- Qing Ren
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.R.); (B.Y.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
| | - Bo Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.R.); (B.Y.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
| | - Guangzhen Zhu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
| | - Shunyu Wang
- Zhejiang Liziyuan Food Co., Ltd., Jinhua 321015, China; (S.W.); (C.F.)
| | - Chengli Fu
- Zhejiang Liziyuan Food Co., Ltd., Jinhua 321015, China; (S.W.); (C.F.)
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.R.); (B.Y.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi 214122, China
| | - R. Paul Ross
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi 214122, China; (R.P.R.); (C.S.)
- APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland
| | - Catherine Stanton
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi 214122, China; (R.P.R.); (C.S.)
- APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Co. Cork, Ireland
| | - Haiqin Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.R.); (B.Y.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
- Correspondence: ; Tel.: +86-510-85197239
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.R.); (B.Y.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| |
Collapse
|
28
|
Pamisetty A, Juvvi P, Ramakrishna C, Singh RP. Development of ω‐5 and antioxidant enriched bar with pomegranate seed powder. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Aruna Pamisetty
- Department of Biochemistry CSIR‐Central Food Technological Research Institute Mysuru India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| | - Praneeth Juvvi
- Department of Technology Scale Up CSIR‐Central Food Technological Research Institute Mysuru India
| | - Chetana Ramakrishna
- Department of Traditional Food and Sensory Science CSIR‐Central Food Technological Research Institute Mysuru India
| | - Ravendra Pratap Singh
- Department of Biochemistry CSIR‐Central Food Technological Research Institute Mysuru India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| |
Collapse
|
29
|
Pamisetty A, Kumar KA, Indrani D, Singh RP. Rheological, physico-sensory and antioxidant properties of punicic acid rich wheat bread. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2020; 57:253-262. [PMID: 31975728 PMCID: PMC6952524 DOI: 10.1007/s13197-019-04055-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 12/16/2022]
Abstract
Punicic acid (PA), a predominant fatty acid (85%) in pomegranate seeds, also called as an ω-5 fatty acid, is known to render various health beneficial effects to humans. The objective of this study was to prepare and observe the effect of replacement of wheat flour with 5-12.5% punicic acid rich pomegranate seed powder (PSP, 9XXX fraction) on rheological, physico-sensory and antioxidant properties of bread. The increasing amount of PSP caused decrease in farinograph water absorption capacity, dough stability; amylograph peak viscosity; bread volume and overall quality score, whereas crumb hardness was increased. The combination of additives (CA) showed significant improvement in dough strength, texture and quality of bread with 10% PSP. The total polyphenol content (TPP) and radical scavenging activity (RSA) increased by 10- to 30-fold while PA was increased to 60-fold when compared to control. The recovery of PA from bread samples was in range of 45-60% and further increased by the addition of CA (65%). Hence, 10% PSP bread having 60% recovery of PA can be successfully considered for formulations without altering the rheological and sensory quality of bread. These results reveal that PA rich PSP prepared from a fruit industry by-product can be utilized for preparing antioxidant rich functional bread which also helps in overall improvement of bone health.
Collapse
Affiliation(s)
- Aruna Pamisetty
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysuru, Karnataka 570 020 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - K. Ashwath Kumar
- Flour Milling, Baking and Confectionery Technology, CSIR-Central Food Technological Research Institute, Council of Scientific and Industrial Research (CSIR), Mysuru, Karnataka 570 020 India
| | - D. Indrani
- Flour Milling, Baking and Confectionery Technology, CSIR-Central Food Technological Research Institute, Council of Scientific and Industrial Research (CSIR), Mysuru, Karnataka 570 020 India
| | - R. P. Singh
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysuru, Karnataka 570 020 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| |
Collapse
|
30
|
Chen Y, Yang B, Ross RP, Jin Y, Stanton C, Zhao J, Zhang H, Chen W. Orally Administered CLA Ameliorates DSS-Induced Colitis in Mice via Intestinal Barrier Improvement, Oxidative Stress Reduction, and Inflammatory Cytokine and Gut Microbiota Modulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:13282-13298. [PMID: 31690068 DOI: 10.1021/acs.jafc.9b05744] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Dietary supplementation with conjugated linoleic acid (CLA) has been reported to alleviate the effect of colitis in mice, but the mechanisms involved need further exploration. The study aimed to investigate how orally administered CLA alleviates dextran sulfate sodium (DSS)-induced colitis in mice. CLA was administered in five different doses: 40, 20, 10, 5, and 2.5 mg/day. Doses of CLA at 10 mg/day and higher alleviated colitis symptoms and reduced inflammation induced by DSS, in which 40, 20, and 10 mg/day CLA significantly increased the concentration of mucin2 and goblet cells, but neither 5 mg/day CLA nor 2.5 mg/day CLA had any effects. Meanwhile, 40 and 20 mg/day CLA treatments significantly upregulated the concentration of tight junction proteins (ZO-1, occludin, and claudin-3) and ameliorated epithelial apoptosis caused by DSS. Moreover, oxidative-stress-related enzymes (superoxide dismutase, glutathione peroxidase, and catalase) and inflammatory cytokines [tumor necrosis factor-α, interleukin (IL)-10, and IL-6] were modulated by 40 and 20 mg/day CLA. Furthermore, 40 mg/day CLA rebalanced the gut microbiota damaged by DSS, including reducing Bacteroides and increasing Bifidobacterium and Odoribacter. In conclusion, CLA supplementation alleviated DSS-induced colitis in a dose-dependent manner by modulating inflammatory cytokines and oxidation stress, maintaining the mucosal barrier, and reverting microbiota changes.
Collapse
Affiliation(s)
| | | | - R Paul Ross
- APC Microbiome Ireland , University College Cork , Cork T12 K8AF , Ireland
| | - Yan Jin
- Department of Gastroenterology , The Affiliated Wuxi Second People's Hospital of Nanjing Medical University , Wuxi 214023 , China
| | - Catherine Stanton
- Teagasc Food Research Centre , Moorepark, Fermoy, Cork P61 C996 , Ireland
- APC Microbiome Ireland , University College Cork , Cork T12 K8AF , Ireland
| | | | - Hao Zhang
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch , Wuxi 214122 , China
| | - Wei Chen
- Beijing Innovation Center of Food Nutrition and Human Health , Beijing Technology and Business University (BTBU) , Beijing 100048 , China
| |
Collapse
|
31
|
Saito M, Saito M, Das BC. Involvement of AMP-activated protein kinase in neuroinflammation and neurodegeneration in the adult and developing brain. Int J Dev Neurosci 2019; 77:48-59. [PMID: 30707928 PMCID: PMC6663660 DOI: 10.1016/j.ijdevneu.2019.01.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 12/29/2018] [Accepted: 01/28/2019] [Indexed: 02/07/2023] Open
Abstract
Microglial activation followed by neuroinflammation is a defense mechanism of the brain to eliminate harmful endogenous and exogenous materials including pathogens and damaged tissues, while excessive or chronic neuroinflammation may cause or exacerbate neurodegeneration observed in brain injuries and neurodegenerative diseases. Depending on conditions/environments during activation, microglia acquire distinct phenotypes, such as pro-inflammatory, anti-inflammatory, and disease-associated phenotypes, and show their ability to phagocytose various objects and produce pro-and anti-inflammatory mediators. Prevention of excessive inflammation by regulating the microglia's pro/anti-inflammatory balance is important for alleviating progression of brain injuries and diseases. Among many factors involved in the regulation of microglial phenotypes, cellular energy status plays an important role. Adenosine monophosphate-activated protein kinase (AMPK), which serves as a master sensor and regulator of energy balance, is considered a candidate molecule. Accumulating evidence from adult rodent studies indicates that AMPK activation promotes anti-inflammatory responses in microglia exposed to danger signals or various stressors mainly through inhibition of the nuclear factor κB (NF-κB) signaling and activation of the nuclear factor erythroid-2-related factor-2 (Nrf2) pathway. However, AMPK activation in neurons exposed to stressors/insults may exacerbate neuronal damage if AMPK activation is excessive or prolonged. While AMPK affects microglial activation states and neuronal cell survival rates in both the adult and the developing brain, studies in the developing brain are still scarce, even though activated AMPK is highly expressed especially in the neonatal brain. More in depth studies in the developing brain are important, because neuroinflammation/neurodegeneration occurred during development can result in long-lasting brain damage.
Collapse
Affiliation(s)
- Mariko Saito
- Division of Neurochemistry, Nathan S. Kline Institute for Psychiatric Research 140 Old Orangeburg, Orangeburg, NY 10962, USA
- Department of Psychiatry, New York University Langone Medical Center 550 First Avenue, New York, NY 10016, USA
| | - Mitsuo Saito
- Division of Analytical Psychopharmacology, Nathan S. Kline Institute for Psychiatric Research 140 Old Orangeburg, Orangeburg, NY 10962, USA
| | - Bhaskar C. Das
- Departments of Medicine and Pharmacological Sciences, Icahn School of Medicine at Mount Sinai 1468 Madison Avenue, Annenberg 19-201, New York, NY 10029, USA
| |
Collapse
|
32
|
Seiri P, Abi A, Soukhtanloo M. PPAR-γ: Its ligand and its regulation by microRNAs. J Cell Biochem 2019; 120:10893-10908. [PMID: 30770587 DOI: 10.1002/jcb.28419] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 12/04/2018] [Indexed: 01/24/2023]
Abstract
Peroxisome proliferator-activated receptors (PPARs) belong to the nuclear receptor superfamily. PPARs are categorized into three subtypes, PPARα, β/δ, and γ, encoded by different genes, expressed in diverse tissues and participate in various biological functions and can be activated by their metabolic derivatives in the body or dietary fatty acids. The PPAR-γ also takes parts in the regulation of energy balance, lipoprotein metabolism, insulin sensitivity, oxidative stress, and inflammatory signaling. It has been implicated in the pathology of numerous diseases including obesity, diabetes, atherosclerosis, and cancers. Among various cellular and molecular targets that are able to regulate PPAR-γ and its underlying pathways, microRNAs (miRNAs) appeared as important regulators. Given that the deregulation of these molecules via targeting PPAR-γ could affect initiation and progression of various diseases, identification of miRNAs that affects PPAR-γ could contribute to the better understanding of roles of PPAR-γ in various biological and pathological conditions. Here, we have summarized the function and various ligands of PPAR-γ and have highlighted various miRNAs involved in the regulation of PPAR-γ.
Collapse
Affiliation(s)
- Parvaneh Seiri
- Department of Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abbas Abi
- Department of Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Soukhtanloo
- Department of Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
33
|
Khajebishak Y, Payahoo L, Hamishehkar H, Alivand M, Alipour M, Solhi M, Alipour B. Effect of pomegranate seed oil on the expression of PPAR-γ and pro-inflammatory biomarkers in obese type 2 diabetic patients. ACTA ACUST UNITED AC 2019. [DOI: 10.1108/nfs-10-2018-0298] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Purpose
Diabetes is one of the most prevailed chronic diseases in the world. Pro-inflammatory cytokines play a key role in the type 2 diabetes mellitus. Pomegranate seed oil (PSO) has potential anti-inflammatory properties. The purpose of this study is to evaluate the antidiabetic effects of the use of PSO on the expression of peroxisome proliferator-activated receptor-gamma (PPAR-γ), pro-inflammatory biomarkers and lipid profile levels in obese type 2 diabetic patients.
Design/methodology/approach
In total, 52 patients were randomly assigned to the PSO (n = 26) and placebo (n = 26) groups. Subjects received daily PSO 3 g placebo (paraffin) in 1 g soft-gel capsules (along with breakfast, lunch and dinner meals) for eight weeks.
Findings
Serum levels of fasting blood sugar (FBS) decreased from 161.46 ± 34.44 to 143.50 ± 24.2 mg/dL (p = 0.008), IL-6 decreased from 5.17 ± 2.25 to 4.52 ± 1.90 (p = 0.049) and tumor necrosis factor alpha (TNF-α) significantly decreased from 9.17 ± 4.13 to 7.74 ± 2.44 pmol/mL in PSO group (p = 0.030). However, changes in the expression of PPAR-γ gene, serum levels of hs-CRP and lipid profile levels were not significant.
Research limitations/implications
Lack of PSO concentration measurements and the short duration of the study were the key limitations. Future randomized clinical trials with a longer period of follow-up are needed to assess the potential anti-diabetic effects of PSO.
Originality/value
Administration of PSO in obese type 2 diabetic patients reduced the levels of FBS, interleukin 6 and TNF-α; nevertheless, changes in the insulin, lipid profiles and hs-CRP were not significant.
Collapse
|
34
|
Vanhercke T, Dyer JM, Mullen RT, Kilaru A, Rahman MM, Petrie JR, Green AG, Yurchenko O, Singh SP. Metabolic engineering for enhanced oil in biomass. Prog Lipid Res 2019; 74:103-129. [PMID: 30822461 DOI: 10.1016/j.plipres.2019.02.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/21/2019] [Accepted: 02/21/2019] [Indexed: 02/06/2023]
Abstract
The world is hungry for energy. Plant oils in the form of triacylglycerol (TAG) are one of the most reduced storage forms of carbon found in nature and hence represent an excellent source of energy. The myriad of applications for plant oils range across foods, feeds, biofuels, and chemical feedstocks as a unique substitute for petroleum derivatives. Traditionally, plant oils are sourced either from oilseeds or tissues surrounding the seed (mesocarp). Most vegetative tissues, such as leaves and stems, however, accumulate relatively low levels of TAG. Since non-seed tissues constitute the majority of the plant biomass, metabolic engineering to improve their low-intrinsic TAG-biosynthetic capacity has recently attracted significant attention as a novel, sustainable and potentially high-yielding oil production platform. While initial attempts predominantly targeted single genes, recent combinatorial metabolic engineering strategies have focused on the simultaneous optimization of oil synthesis, packaging and degradation pathways (i.e., 'push, pull, package and protect'). This holistic approach has resulted in dramatic, seed-like TAG levels in vegetative tissues. With the first proof of concept hurdle addressed, new challenges and opportunities emerge, including engineering fatty acid profile, translation into agronomic crops, extraction, and downstream processing to deliver accessible and sustainable bioenergy.
Collapse
Affiliation(s)
- Thomas Vanhercke
- CSIRO Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, Australia.
| | - John M Dyer
- USDA-ARS, US Arid-Land Agricultural Research Center, Maricopa, AZ, USA
| | - Robert T Mullen
- Department of Molecular and Cellular Biology, University of Guelph, ON, Canada
| | - Aruna Kilaru
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, USA
| | - Md Mahbubur Rahman
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, USA
| | - James R Petrie
- CSIRO Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, Australia; Folear, Goulburn, NSW, Australia
| | - Allan G Green
- CSIRO Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, Australia
| | - Olga Yurchenko
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Surinder P Singh
- CSIRO Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, Australia
| |
Collapse
|
35
|
Wang YZ, Zhang HY, Liu F, Li L, Deng SM, He ZY. Association between PPARG genetic polymorphisms and ischemic stroke risk in a northern Chinese Han population: a case-control study. Neural Regen Res 2019; 14:1986-1993. [PMID: 31290457 PMCID: PMC6676861 DOI: 10.4103/1673-5374.259621] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Two common polymorphisms of the peroxisome proliferator-activated receptor gamma (PPARG) gene, rs1801282 and rs3856806, may be important candidate gene loci affecting the susceptibility to ischemic stroke. This case-control study sought to identify the relationship between these two single-nucleotide polymorphisms and ischemic stroke risk in a northern Chinese Han population. A total of 910 ischemic stroke participants were recruited from the First Hospital of China Medical University, Shenyang, China as a case group, of whom 895 completed the study. The 883 healthy controls were recruited from the Health Check Center of the First Hospital of China Medical University, Shenyang, China. All participants or family members provided informed consent. The study protocol was approved by the Ethics Committee of the First Hospital of China Medical University, China on February 20, 2012 (approval No. 2012-38-1). The protocol was registered with the Chinese Clinical Trial Registry (registration number: ChiCTR-COC-17013559). Plasma genomic DNA was extracted from all participants and analyzed for rs1801282 and rs3856806 single nucleotide polymorphisms using a SNaPshot Multiplex sequencing assay. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated using unconditional logistic regression to estimate the association between ischemic stroke and a particular genotype. Results demonstrated that the G allele frequency of the PPARG gene rs1801282 locus was significantly higher in the case group than in the control group (P < 0.001). Individuals carrying the G allele had a 1.844 fold increased risk of ischemic stroke (OR = 1.844, 95% CI: 1.286-2.645, P < 0.001). Individuals carrying the rs3856806 T allele had a 1.366 fold increased risk of ischemic stroke (OR = 1.366, 95% CI: 1.077-1.733, P = 0.010). The distribution frequencies of the PPARG gene haplotypes rs1801282-rs3856806 in the control and case groups were determined. The frequency of distribution in the G-T haplotype case group was significantly higher than that in the control group. The risk of ischemic stroke increased to 2.953 times in individuals carrying the G-T haplotype (OR = 2.953, 95% CI: 2.082-4.190, P < 0.001). The rs1801282 G allele and rs3856806 T allele had a multiplicative interaction (OR = 3.404, 95% CI: 1.631-7.102, P < 0.001) and additive interaction (RERI = 41.705, 95% CI: 14.586-68.824, AP = 0.860; 95% CI: 0.779-0.940; S = 8.170, 95% CI: 3.772-17.697) on ischemic stroke risk, showing a synergistic effect. Of all ischemic stroke cases, 86% were attributed to the interaction of the G allele of rs1801282 and the T allele of rs3856806. The effect of the PPARG rs1801282 G allele on ischemic stroke risk was enhanced in the presence of the rs3856806 T allele (OR = 8.001 vs. 1.844). The effect of the rs3856806 T allele on ischemic stroke risk was also enhanced in the presence of the rs1801282 G allele (OR = 2.546 vs. 1.366). Our results confirmed that the G allele of the PPARG gene rs1801282 locus and the T allele of the rs3856806 locus may be independent risk factors for ischemic stroke in the Han population of northern China, with a synergistic effect between the two alleles.
Collapse
Affiliation(s)
- Yan-Zhe Wang
- Department of Neurology, the First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - He-Yu Zhang
- Department of Neurology, the First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Fang Liu
- Department of Neurology, the First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Lei Li
- Department of Neurology, the First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Shu-Min Deng
- Department of Neurology, the First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Zhi-Yi He
- Department of Neurology, the First Hospital of China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
36
|
Cao H, Liu J, Shen P, Cai J, Han Y, Zhu K, Fu Y, Zhang N, Zhang Z, Cao Y. Protective Effect of Naringin on DSS-Induced Ulcerative Colitis in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:13133-13140. [PMID: 30472831 DOI: 10.1021/acs.jafc.8b03942] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) is an important member of the nuclear receptor superfamily. Previous studies have shown the satisfactory anti-inflammatory role of PPARγ in experimental colitis models, mainly through negatively regulating several transcription factors such as nuclear factor-κB (NF-κB). Therefore, regulating PPARγ and PPARγ-related pathways has great promise for treating ulcerative colitis (UC). In the present study, our objective was to explore the potential effect of naringin on dextran sulfate sodium (DSS) induced UC in mice and its involved potential mechanism. We found that naringin significantly relieved DSS-induced disease activities index (DAI), colon length shortening, and colonic pathological damage. Exploration of the potential mechanisms demonstrated that naringin significantly activated DSS-induced PPARγ and subsequently suppressed NF-κB activation. PPARγ inhibitor GW9662 largely abrogated the roles of naringin in vitro. Moreover, DSS induced the activation of mitogen-activated protein kinase (MAPK) and (NOD)-like receptor family pyrin domain containing 3 (NLRP3) inflammasome was inhibited by naringin. Tight junction (TJ) architecture in naringin groups was also maintained by regulating zonula occludens-1 (ZO-1) expression. These results suggested that naringin may be a potential natural agent for protecting mice from DSS-induced UC.
Collapse
Affiliation(s)
- Hongyang Cao
- College of Veterinary Medicine , Jilin University , Changchun 130062 , People's Republic of China
| | - Jiuxi Liu
- College of Veterinary Medicine , Jilin University , Changchun 130062 , People's Republic of China
| | - Peng Shen
- College of Veterinary Medicine , Jilin University , Changchun 130062 , People's Republic of China
| | - Jiapei Cai
- College of Veterinary Medicine , Jilin University , Changchun 130062 , People's Republic of China
| | - Yuchang Han
- College of Veterinary Medicine , Jilin University , Changchun 130062 , People's Republic of China
| | - Kunpeng Zhu
- College of Veterinary Medicine , Jilin University , Changchun 130062 , People's Republic of China
| | - Yunhe Fu
- College of Veterinary Medicine , Jilin University , Changchun 130062 , People's Republic of China
| | - Naisheng Zhang
- College of Veterinary Medicine , Jilin University , Changchun 130062 , People's Republic of China
| | - Zecai Zhang
- College of Veterinary Medicine , Jilin University , Changchun 130062 , People's Republic of China
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis , Jilin University , Changchun 130062 , People's Republic of China
| | - Yongguo Cao
- College of Veterinary Medicine , Jilin University , Changchun 130062 , People's Republic of China
| |
Collapse
|
37
|
Illés P, Grycová A, Krasulová K, Dvořák Z. Effects of Flavored Nonalcoholic Beverages on Transcriptional Activities of Nuclear and Steroid Hormone Receptors: Proof of Concept for Novel Reporter Cell Line PAZ-PPARg. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:12066-12078. [PMID: 30394742 DOI: 10.1021/acs.jafc.8b05158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We developed and characterized a novel human luciferase reporter cell line for the assessment of peroxisome proliferator-activated receptor γ (PPARγ) transcriptional activity, PAZ-PPARg. The luciferase activity induced by PPARγ endogenous agonist 15d-PGJ2 and prostaglandin PGD2 reached mean values of (87.9 ± 14.0)-fold and (89.6 ± 19.7)-fold after 24 h of exposure to 40 μM 15d-PGJ2 and 70 μM PGD2, respectively. A concentration-dependent inhibition of 15d-PGJ2- and PGD2-induced luciferase activity was observed after the application of T0070907, a selective antagonist of PPARγ, which confirms the specificity of response to both agonists. The PAZ-PPARg cell line, along with the reporter cell lines for the assessment of transcriptional activities of thyroid receptor (TR), vitamin D3 receptor (VDR), androgen receptor (AR), and glucocorticoid receptor (GR), were used for the screening of 27 commonly marketed flavored nonalcoholic beverages for their possible disrupting effects. Our findings indicate that some of the examined beverages have the potential to modulate the transcriptional activities of PPARγ, VDR, and AR.
Collapse
Affiliation(s)
- Peter Illés
- Regional Centre of Advanced Technologies and Materials, Faculty of Science , Palacky University , Slechtitelu 27 , 783 71 Olomouc , Czech Republic
| | - Aneta Grycová
- Regional Centre of Advanced Technologies and Materials, Faculty of Science , Palacky University , Slechtitelu 27 , 783 71 Olomouc , Czech Republic
| | - Kristýna Krasulová
- Regional Centre of Advanced Technologies and Materials, Faculty of Science , Palacky University , Slechtitelu 27 , 783 71 Olomouc , Czech Republic
| | - Zdeněk Dvořák
- Regional Centre of Advanced Technologies and Materials, Faculty of Science , Palacky University , Slechtitelu 27 , 783 71 Olomouc , Czech Republic
| |
Collapse
|
38
|
Li K, Sinclair AJ, Zhao F, Li D. Uncommon Fatty Acids and Cardiometabolic Health. Nutrients 2018; 10:nu10101559. [PMID: 30347833 PMCID: PMC6213525 DOI: 10.3390/nu10101559] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/15/2018] [Accepted: 10/18/2018] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular disease (CVD) is a major cause of mortality. The effects of several unsaturated fatty acids on cardiometabolic health, such as eicosapentaenoic acid (EPA) docosahexaenoic acid (DHA), α linolenic acid (ALA), linoleic acid (LA), and oleic acid (OA) have received much attention in past years. In addition, results from recent studies revealed that several other uncommon fatty acids (fatty acids present at a low content or else not contained in usual foods), such as furan fatty acids, n-3 docosapentaenoic acid (DPA), and conjugated fatty acids, also have favorable effects on cardiometabolic health. In the present report, we searched the literature in PubMed, Embase, and the Cochrane Library to review the research progress on anti-CVD effect of these uncommon fatty acids. DPA has a favorable effect on cardiometabolic health in a different way to other long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFAs), such as EPA and DHA. Furan fatty acids and conjugated linolenic acid (CLNA) may be potential bioactive fatty acids beneficial for cardiometabolic health, but evidence from intervention studies in humans is still limited, and well-designed clinical trials are required. The favorable effects of conjugated linoleic acid (CLA) on cardiometabolic health observed in animal or in vitro cannot be replicated in humans. However, most intervention studies in humans concerning CLA have only evaluated its effect on cardiometabolic risk factors but not its direct effect on risk of CVD, and randomized controlled trials (RCTs) will be required to clarify this point. However, several difficulties and limitations exist for conducting RCTs to evaluate the effect of these fatty acids on cardiometabolic health, especially the high costs for purifying the fatty acids from natural sources. This review provides a basis for better nutritional prevention and therapy of CVD.
Collapse
Affiliation(s)
- Kelei Li
- Institute of Nutrition and Health, Qingdao University, Qingdao 266021, China.
| | - Andrew J Sinclair
- Faculty of Health, Deakin University, Locked Bag 20000, Geelong, VIC 3220, Australia.
- Department of Nutrition, Dietetics and Food, Monash University, Notting Hill, VIC 3168, Australia.
| | - Feng Zhao
- Institute of Nutrition and Health, Qingdao University, Qingdao 266021, China.
| | - Duo Li
- Institute of Nutrition and Health, Qingdao University, Qingdao 266021, China.
- Department of Nutrition, Dietetics and Food, Monash University, Notting Hill, VIC 3168, Australia.
| |
Collapse
|
39
|
Khajebishak Y, Payahoo L, Alivand M, Alipour B. Punicic acid: A potential compound of pomegranate seed oil in Type 2 diabetes mellitus management. J Cell Physiol 2018; 234:2112-2120. [PMID: 30317607 DOI: 10.1002/jcp.27556] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 09/13/2018] [Indexed: 12/15/2022]
Abstract
Diabetes is one of the most prevalent diseases in the worldwide. Type 2 diabetes mellitus (T2DM), the most common form of the disease, has become a serious threat to public health and is a growing burden on global economies. Due to the unexpected adverse effects of antidiabetic medicines, the use of nutraceuticals as a complementary therapy has drawn extensive attention by investigators. In this issue, a novel nutraceutical, Punicic acid (PA)-the main ingredient of pomegranate seed oil (PSO) that has potential therapeutic effects in T2DM-has been investigated. PA is a peroxisome proliferator-activated receptor gamma agonist, and unlike synthetic ligands, such as thiazolidinediones, it has no side effects. PA exerts antidiabetic effects via various mechanisms, such as reducing inflammatory cytokines, modulating glucose homeostasis, and antioxidant properties. In this review, we discussed the potential therapeutic effects of PSO and PA and represented the related mechanisms involved in the management of T2DM.
Collapse
Affiliation(s)
- Yaser Khajebishak
- Nutrition Research Center, Drug Applied Research Center, Student Research Committee, Department of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Laleh Payahoo
- Nutrition Research Center, Drug Applied Research Center, Student Research Committee, Department of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Nutrition, Maraghe University of Medical Sciences, Maraghe, Iran
| | - Mohammadreza Alivand
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Beitollah Alipour
- Department of Community Nutrition, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
40
|
Muhlenbeck JA, Olson JM, Hughes AB, Cook ME. Conjugated Linoleic Acid Isomers Trans-10, Cis-12 and Cis-9, Trans-11 Prevent Collagen-Induced Arthritis in a Direct Comparison. Lipids 2018; 53:689-698. [PMID: 30259981 DOI: 10.1002/lipd.12082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 07/13/2018] [Accepted: 07/27/2018] [Indexed: 11/08/2022]
Abstract
Mixed-isomer conjugated linoleic acid (CLA) and the individual isomers, trans-10, cis-12 (CLAt10c12) and cis-9, trans-11 (CLAc9t11), decrease severity of collagen-induced arthritis (CA) when consumed after disease onset. Few studies have been conducted exploring the role of CLA in the prevention of autoimmune diseases. These studies suggest that isomer-specific effects may be occurring; however, a direct comparison of CLAt10c12 and CLAc9t11 has yet to be conducted. A study to compare the ability of CLAt10c12 and CLAc9t11 to prevent CA and assess their effects on early inflammation was performed. DBA/1 mice were fed a semipurified diet containing 6% corn oil (CO), 5.5% CO and 0.5% CLAt10c12, or 5.5% CO and 0.5% CLAc9t11 (n = 27 per diet) starting three weeks before CA primary immunization. Effects on disease incidence and severity, anticollagen antibodies, plasma and paw cytokines, and hepatic fatty acids were measured. Arthritis incidence was reduced by a minimum of 34% in mice fed either CLA isomer compared to those fed CO diet (p = 0.06). In mice that did develop arthritis (n = 9-12 mice per treatment), CLAt10c12 reduced arthritic severity to a greater extent than CLAc9t11 and CO (p = 0.03). CLA isomer treatment attenuated the increased hepatic arachidonic acid (ARA; 20:4n-6) observed with arthritis at one-week postonset (p = 0.03), while no differences in anticollagen antibodies or cytokines were observed between dietary treatments. These results suggest that CLA isomers may be effective at preventing specific immune-mediated inflammatory diseases, in part, through modulation of the ARA cascade.
Collapse
Affiliation(s)
- Jessica A Muhlenbeck
- Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, 1400 University Ave Madison, WI, 53706, USA
| | - Jake M Olson
- Department of Animal Sciences, University of Wisconsin-Madison, Madison, 1675 Observatory Drive, WI, 53706, USA
| | - Anna B Hughes
- Department of Animal Sciences, University of Wisconsin-Madison, Madison, 1675 Observatory Drive, WI, 53706, USA
| | - Mark E Cook
- Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, 1400 University Ave Madison, WI, 53706, USA.,Department of Animal Sciences, University of Wisconsin-Madison, Madison, 1675 Observatory Drive, WI, 53706, USA
| |
Collapse
|
41
|
Bioactivity and biotechnological production of punicic acid. Appl Microbiol Biotechnol 2018; 102:3537-3549. [DOI: 10.1007/s00253-018-8883-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 02/18/2018] [Accepted: 02/19/2018] [Indexed: 02/01/2023]
|
42
|
Roles of Peroxisome Proliferator-Activated Receptor Gamma on Brain and Peripheral Inflammation. Cell Mol Neurobiol 2017; 38:121-132. [PMID: 28975471 DOI: 10.1007/s10571-017-0554-5] [Citation(s) in RCA: 240] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 09/23/2017] [Indexed: 02/08/2023]
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) has been implicated in the pathology of numerous diseases involving diabetes, stroke, cancer, or obesity. It is expressed in diverse cell types, including vessels, immune and glial cells, and neurons. PPARγ plays crucial roles in the regulation of cellular differentiation, lipid metabolism, or glucose homeostasis. PPARγ ligands also exert effects on attenuating degenerative processes in the brain, as well as in peripheral systems, and it has been associated with the control of anti-inflammatory mechanisms, oxidative stress, neuronal death, neurogenesis, differentiation, and angiogenesis. This review will highlight key advances in the understanding of the PPARγ-related mechanisms responsible for neuroprotection after brain injuries, both ischemia and traumatic brain injury, and it will also cover the natural and synthetic agonist for PPARγ, angiotensin receptor blockers, and PPARγ antagonists, used in experimental and clinical research. A better understanding of the pleiotropic mechanisms and applications of these drugs to improve the recovery and to repair the acute and chronic induced neuroinflammation after brain injuries will pave the way for more effective therapeutic strategies after brain deficits.
Collapse
|
43
|
Dairy Propionibacteria: Versatile Probiotics. Microorganisms 2017; 5:microorganisms5020024. [PMID: 28505101 PMCID: PMC5488095 DOI: 10.3390/microorganisms5020024] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/01/2017] [Accepted: 05/06/2017] [Indexed: 12/18/2022] Open
Abstract
Dairy propionibacteria are used as cheese ripening starters, as biopreservative and as beneficial additives, in the food industry. The main species, Propionibacterium freudenreichii, is known as GRAS (Generally Recognized As Safe, USA, FDA). In addition to another dairy species, Propionibacterium acidipropionici, they are included in QPS (Qualified Presumption of Safety) list. Additional to their well-known technological application, dairy propionibacteria increasingly attract attention for their promising probiotic properties. The purpose of this review is to summarize the probiotic characteristics of dairy propionibacteria reported by the updated literature. Indeed, they meet the selection criteria for probiotic bacteria, such as the ability to endure digestive stressing conditions and to adhere to intestinal epithelial cells. This is a prerequisite to bacterial persistence within the gut. The reported beneficial effects are ranked according to property’s type: microbiota modulation, immunomodulation, and cancer modulation. The proposed molecular mechanisms are discussed. Dairy propionibacteria are described as producers of nutraceuticals and beneficial metabolites that are responsible for their versatile probiotic attributes include short chain fatty acids (SCFAs), conjugated fatty acids, surface proteins, and 1,4-dihydroxy-2-naphtoic acid (DHNA). These metabolites possess beneficial properties and their production depends on the strain and on the growth medium. The choice of the fermented food matrix may thus determine the probiotic properties of the ingested product. This review approaches dairy propionibacteria, with an interest in both technological abilities and probiotic attributes.
Collapse
|
44
|
Kim MH, Kim EJ, Choi YY, Hong J, Yang WM. Lycium chinense Improves Post-Menopausal Obesity via Regulation of PPAR-γ and Estrogen Receptor-α/β Expressions. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2017; 45:269-282. [PMID: 28231739 DOI: 10.1142/s0192415x17500173] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The fruit of Lycium chinense Miller (Solanaceae) is used as a functional food and a medicinal herb for treating many specific health concerns. Weight gain induced by estrogen deficiency is a problem for post-menopausal women around the globe. The present study investigates the effects of aqueous extract of L. chinense (LC) on post-menopausal obesity. Female C57BL/6 mice were ovariectomized and fed on high-fat diet (HFD) for 12 weeks to induce post-menopausal obesity. LC extract (1[Formula: see text]mg/kg and 10[Formula: see text]mg/kg) was orally administrated for 6 weeks with continuous HFD feeding. Ovarian adipose tissues and uterus were weighed. Serum triglyceride, cholesterol, LDL-cholesterol and fasting glucose levels were analyzed. The expressions of adipocyte-specific factors and estrogen receptors (ERs) were investigated. Additionally, lipid accumulation was confirmed in differentiated 3T3-L1 adipocytes. Increased body weight due to post-menopausal obesity was ameliorated about 14.7% and 17.76% by treatment of 1[Formula: see text]mg/kg and 10[Formula: see text]mg/kg LC, respectively. LC treatment reduced both of serum lipid and fasting blood glucose levels. Adipocyte hypertrophy and fatty liver were ameliorated in LC-treated groups. In LC-treated adipocyte cells, lipid accumulation was significantly inhibited. The expression of perilipin in adipose tissues was decreased by LC. In addition, expression of PPAR-[Formula: see text] protein was down-regulated in adipose tissues and differentiated adipocytes, while GLUT4 expression was increased in adipose tissues by LC treatment. Moreover, LC treatment up-regulated the expressions of ER-[Formula: see text]/[Formula: see text] accompanied with increased uterine weight. These results showed the ameliorative effects of LC on overweight after menopause. Post-menopausal obesity may be improved by LC treatment.
Collapse
Affiliation(s)
- Mi Hye Kim
- * Department of Convergence Korean Medical Science, College of Korean Medicine, Republic of Korea
| | - Eun-Jung Kim
- † College of Korean Medicine, Dongguk University, Gyeongju, Republic of Korea
| | - You Yeon Choi
- * Department of Convergence Korean Medical Science, College of Korean Medicine, Republic of Korea
| | - Jongki Hong
- ‡ College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Woong Mo Yang
- * Department of Convergence Korean Medical Science, College of Korean Medicine, Republic of Korea
| |
Collapse
|
45
|
Genetic Deletion of Neuronal PPARγ Enhances the Emotional Response to Acute Stress and Exacerbates Anxiety: An Effect Reversed by Rescue of Amygdala PPARγ Function. J Neurosci 2016; 36:12611-12623. [PMID: 27810934 DOI: 10.1523/jneurosci.4127-15.2016] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 10/18/2016] [Accepted: 10/29/2016] [Indexed: 01/01/2023] Open
Abstract
PPARγ is one of the three isoforms of the Peroxisome Proliferator-Activated Receptors (PPARs). PPARγ is activated by thiazolidinediones such as pioglitazone and is targeted to treat insulin resistance. PPARγ is densely expressed in brain areas involved in regulation of motivational and emotional processes. Here, we investigated the role of PPARγ in the brain and explored its role in anxiety and stress responses in mice. The results show that stimulation of PPARγ by pioglitazone did not affect basal anxiety, but fully prevented the anxiogenic effect of acute stress. Using mice with genetic ablation of neuronal PPARγ (PPARγNestinCre), we demonstrated that a lack of receptors, specifically in neurons, exacerbated basal anxiety and enhanced stress sensitivity. The administration of GW9662, a selective PPARγ antagonist, elicited a marked anxiogenic response in PPARγ wild-type (WT), but not in PPARγNestinCre knock-out (KO) mice. Using c-Fos immunohistochemistry, we observed that acute stress exposure resulted in a different pattern of neuronal activation in the amygdala (AMY) and the hippocampus (HIPP) of PPARγNestinCre KO mice compared with WT mice. No differences were found between WT and KO mice in hypothalamic regions responsible for hormonal response to stress or in blood corticosterone levels. Microinjection of pioglitazone into the AMY, but not into the HIPP, abolished the anxiogenic response elicited by acute stress. Results also showed that, in both regions, PPARγ colocalizes with GABAergic cells. These findings demonstrate that neuronal PPARγ is involved the regulation of the stress response and that the AMY is a key substrate for the anxiolytic effect of PPARγ. SIGNIFICANCE STATEMENT Peroxisome Proliferator-Activated Receptor Gamma (PPARγ) is a classical target for antidiabetic therapies with thiazolidinedione compounds. PPARγ agonists such as rosiglitazone and pioglitazone are in clinical use for the treatment of insulin resistance. PPARγ has recently attracted attention for its involvement in the regulation of CNS immune response and functions. Here, we demonstrate that neuronal PPARγ activation prevented the negative emotional effects of stress and exerted anxiolytic actions without influencing hypothalamic-pituitary-adrenal axis function. Conversely, pharmacological blockade or genetic deletion of PPARγ enhanced anxiogenic responses and increased vulnerability to stress. These effects appear to be controlled by PPARγ neuronal-mediated mechanisms in the amygdala.
Collapse
|
46
|
Basson A, Trotter A, Rodriguez-Palacios A, Cominelli F. Mucosal Interactions between Genetics, Diet, and Microbiome in Inflammatory Bowel Disease. Front Immunol 2016; 7:290. [PMID: 27531998 PMCID: PMC4970383 DOI: 10.3389/fimmu.2016.00290] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/19/2016] [Indexed: 12/12/2022] Open
Abstract
Numerous reviews have discussed gut microbiota composition changes during inflammatory bowel diseases (IBD), particularly Crohn’s disease (CD). However, most studies address the observed effects by focusing on studying the univariate connection between disease and dietary-induced alterations to gut microbiota composition. The possibility that these effects may reflect a number of other interconnected (i.e., pantropic) mechanisms, activated in parallel, particularly concerning various bacterial metabolites, is in the process of being elucidated. Progress seems, however, hampered by various difficult-to-study factors interacting at the mucosal level. Here, we highlight some of such factors that merit consideration, namely: (1) the contribution of host genetics and diet in altering gut microbiome, and in turn, the crosstalk among secondary metabolic pathways; (2) the interdependence between the amount of dietary fat, the fatty acid composition, the effects of timing and route of administration on gut microbiota community, and the impact of microbiota-derived fatty acids; (3) the effect of diet on bile acid composition, and the modulator role of bile acids on the gut microbiota; (4) the impact of endogenous and exogenous intestinal micronutrients and metabolites; and (5) the need to consider food associated toxins and chemicals, which can introduce confounding immune modulating elements (e.g., antioxidant and phytochemicals in oils and proteins). These concepts, which are not mutually exclusive, are herein illustrated paying special emphasis on physiologically inter-related processes.
Collapse
Affiliation(s)
- Abigail Basson
- Digestive Health Research Institute, Case Western Reserve University , Cleveland, OH , USA
| | - Ashley Trotter
- Digestive Health Research Institute, Case Western Reserve University, Cleveland, OH, USA; University Hospitals Case Medical Center, Cleveland, OH, USA
| | | | - Fabio Cominelli
- Digestive Health Research Institute, Case Western Reserve University, Cleveland, OH, USA; University Hospitals Case Medical Center, Cleveland, OH, USA
| |
Collapse
|
47
|
Conjugated Linoleic Acid Production by Bifidobacteria: Screening, Kinetic, and Composition. BIOMED RESEARCH INTERNATIONAL 2016; 2016:8654317. [PMID: 27429985 PMCID: PMC4939342 DOI: 10.1155/2016/8654317] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 05/29/2016] [Indexed: 01/15/2023]
Abstract
Conjugated linoleic acids (CLA) are positional and geometric isomers of linoleic acid involved in a number of health aspects. In humans, CLA production is performed by gut microbiota, including some species of potential probiotic bifidobacteria. 128 strains of 31 Bifidobacterium species were screened with a spectrophotometric assay to identify novel CLA producers. Most species were nonproducers, while producers belonged to B. breve and B. pseudocatenulatum. GC-MS revealed that CLA producer strains yielded 9cis,11trans-CLA and 9trans,11trans-CLA, without any production of other isomers. Hydroxylated forms of LA were absent in producer strains, suggesting that the myosin-cross-reactive antigen (MCRA) protein that exerts hydratase activity is not involved in LA isomerization. Moreover, both CLA producer and nonproducer species bear a MCRA homologue. The strain B. breve WC 0421 was the best CLA producer, converting LA into 68.8% 9cis,11trans-CLA and 25.1% 9trans,11trans-CLA. Production occurred mostly during the lag and the exponential phase. For the first time, production and incorporation of CLA in biomass were assessed. B. breve WC 0421 stored CLA in the form of free fatty acids, without changing the composition of the esterified fatty acids, which mainly occurred in the plasmatic membrane.
Collapse
|
48
|
Song GJ, Nam Y, Jo M, Jung M, Koo JY, Cho W, Koh M, Park SB, Suk K. A novel small-molecule agonist of PPAR-γ potentiates an anti-inflammatory M2 glial phenotype. Neuropharmacology 2016; 109:159-169. [PMID: 27288982 DOI: 10.1016/j.neuropharm.2016.06.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Revised: 06/07/2016] [Accepted: 06/07/2016] [Indexed: 01/01/2023]
Abstract
Neuroinflammation is a key process for many neurodegenerative diseases. Activated microglia and astrocytes play an essential role in neuroinflammation by producing nitric oxide (NO), inflammatory cytokines, chemokines, and neurotoxins. Therefore, targeting glia-mediated neuroinflammation using small-molecules is a potential therapeutic strategy. In this study, we performed a phenotypic screen using microglia cell-based assay to identify a hit compound containing N-carbamoylated urethane moiety (SNU-BP), which inhibits lipopolysaccharide (LPS)-induced NO production in microglia. SNU-BP inhibited pro-inflammatory cytokines and inducible nitric oxide synthase in LPS-stimulated microglia, and potentiated interleukin-4-induced arginase-1 expression. PPAR-γ was identified as a molecular target of SNU-BP. The PPAR response element reporter assay revealed that SNU-BP specifically activated PPAR-γ, but not PPAR-δ or -α, confirming that PPAR-γ is the target protein of SNU-BP. The anti-inflammatory effect of SNU-BP was attenuated by genetic and pharmacological inhibition of PPAR-γ. In addition, SNU-BP induced an anti-inflammatory phenotype in astrocytes as well, by inhibiting pro-inflammatory NO and TNF-α, while increasing anti-inflammatory genes, such as arginase-1 and Ym-1. Finally, SNU-BP exhibited an anti-inflammatory effect in the LPS-injected mouse brain, demonstrating a protective potential for neuroinflammatory diseases.
Collapse
Affiliation(s)
- Gyun Jee Song
- Department of Pharmacology, Brain Science & Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Youngpyo Nam
- Department of Pharmacology, Brain Science & Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Myungjin Jo
- Department of Pharmacology, Brain Science & Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Myungsu Jung
- Department of Pharmacology, Brain Science & Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Ja Young Koo
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Wansang Cho
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Minseob Koh
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Seung Bum Park
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea.
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science & Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea.
| |
Collapse
|
49
|
Zhang LS, Davies SS. Microbial metabolism of dietary components to bioactive metabolites: opportunities for new therapeutic interventions. Genome Med 2016; 8:46. [PMID: 27102537 PMCID: PMC4840492 DOI: 10.1186/s13073-016-0296-x] [Citation(s) in RCA: 348] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mass spectrometry- and nuclear magnetic resonance-based metabolomic studies comparing diseased versus healthy individuals have shown that microbial metabolites are often the compounds most markedly altered in the disease state. Recent studies suggest that several of these metabolites that derive from microbial transformation of dietary components have significant effects on physiological processes such as gut and immune homeostasis, energy metabolism, vascular function, and neurological behavior. Here, we review several of the most intriguing diet-dependent metabolites that may impact host physiology and may therefore be appropriate targets for therapeutic interventions, such as short-chain fatty acids, trimethylamine N-oxide, tryptophan and tyrosine derivatives, and oxidized fatty acids. Such interventions will require modulating either bacterial species or the bacterial biosynthetic enzymes required to produce these metabolites, so we briefly describe the current understanding of the bacterial and enzymatic pathways involved in their biosynthesis and summarize their molecular mechanisms of action. We then discuss in more detail the impact of these metabolites on health and disease, and review current strategies to modulate levels of these metabolites to promote human health. We also suggest future studies that are needed to realize the full therapeutic potential of targeting the gut microbiota.
Collapse
Affiliation(s)
- Linda S Zhang
- Division of Clinical Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Sean S Davies
- Division of Clinical Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA. .,Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA. .,Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, 37232, USA.
| |
Collapse
|
50
|
Choi WH. Evaluation of anti-tubercular activity of linolenic acid and conjugated-linoleic acid as effective inhibitors against Mycobacterium tuberculosis. ASIAN PAC J TROP MED 2016; 9:125-9. [DOI: 10.1016/j.apjtm.2016.01.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 12/20/2015] [Accepted: 12/30/2015] [Indexed: 10/22/2022] Open
|