1
|
Miraldi E, Baini G, Biagi M, Cappellucci G, Giordano A, Vaccaro F, Bertelli AAE. Wine, Polyphenols, and the Matrix Effect: Is Alcohol Always the Same? Int J Mol Sci 2024; 25:9796. [PMID: 39337284 PMCID: PMC11432751 DOI: 10.3390/ijms25189796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/24/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
While the number of publications on wine and health is steadily increasing, ranging from a molecular level to epidemiological studies, often with contradictory results, little attention has been given to a holistic approach to research, starting from the molecular level to arrive at pharmacological and medical conclusions. In this review, some unusual concepts are considered, such as the phytocomplex, the vehicle, and the Matrix effect. The concept of the phytocomplex is discussed, specifically the biological activities of Tyrosol, Hydroxytyrosol, and Resveratrol; indeed, the interactions among different molecules in herbal matrices provide a specific response. This is often markedly different from the response evoked by single constituents in the modulation of microbial populations in the gut, in intestinal stability and bioaccessibility, and, obviously, in inducing biological responses. Among the many alcoholic beverages which contain these molecules, wine has the most peculiar Matrix effect, which can heavily influence the bioavailability of the phytocomplex obtained by the fermentation processes that produce this beverage. Wine's Matrix effect plays an instrumental role in improving the beneficial compounds' bioavailability and/or in inhibiting alcohol metabolites' carcinogenicity. Underestimation of the wine Matrix effect could lead to deceiving results, as in the case of dealcoholized wine or wine-compound-based nutritional supplements; alternatively, this can occur in the emphasis of a single component's toxic activity, in this case, alcohol, ignoring the specific molecular-level protective action of other compounds (polyphenols) that are present in the same matrix. The dark side of the Matrix effect is also discussed. This review confirms the research recommendations made by the WHO Scientific Group, which suggests it is important "to investigate the possible protective effects of ingredients other than alcohol in alcoholic beverages", considering that most recent studies seem not only relevant but also capable of directing future research towards innovative points of view that have so far been too neglected.
Collapse
Affiliation(s)
- Elisabetta Miraldi
- Department of Physical Sciences, Earth and Environment, University of Siena, 53100 Siena, Italy
| | - Giulia Baini
- Department of Physical Sciences, Earth and Environment, University of Siena, 53100 Siena, Italy
| | - Marco Biagi
- Department of Food and Drug, University of Parma, 43121 Parma, Italy
| | - Giorgio Cappellucci
- Department of Physical Sciences, Earth and Environment, University of Siena, 53100 Siena, Italy
| | - Alessandro Giordano
- Department of Physical Sciences, Earth and Environment, University of Siena, 53100 Siena, Italy
| | - Federica Vaccaro
- Department of Physical Sciences, Earth and Environment, University of Siena, 53100 Siena, Italy
| | - Alberto A E Bertelli
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| |
Collapse
|
2
|
Kaneko T, Yoshioka M, Kawahara F, Nishitani N, Mori S, Park J, Tarumi T, Kosaki K, Maeda S. Effects of plant- and animal-based-protein meals for a day on serum nitric oxide and peroxynitrite levels in healthy young men. Endocr J 2024; 71:119-127. [PMID: 38220201 DOI: 10.1507/endocrj.ej23-0355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2024] Open
Abstract
Plant-based diets that replace animal-based proteins with plant-based proteins have received increased attention for cardiovascular protection. Nitric oxide (NO) plays an essential role in the maintenance of endothelial function. However, under higher oxidative stress, NO generation produces peroxynitrite, a powerful oxidant and vasoconstrictor. Diet-replaced protein sources has been reported to decrease oxidative stress. However, the effects of plant-based protein on NO and peroxynitrite have not yet been clarified. Therefore, this study aimed to compare the effects of plant- and animal-based-protein meals for a day on NO, peroxynitrite, and NO/peroxynitrite balance. A crossover trial of two meal conditions involving nine healthy men was performed. Participants ate standard meals during day 1. On day 2, baseline measurements were performed and the participants were provided with plant-based-protein meals or animal-based-protein meals. The standard and test meals consisted of breakfast, lunch, and dinner and were designed to be isocaloric. Plant-based-protein meals contained no animal protein. Blood samples were collected in the morning after overnight fasting before and after the test meals consumption. In the plant-based-protein meal condition, serum NOx levels (the sum of serum nitrite and nitrate) significantly increased, while serum peroxynitrite levels did not change significantly. Animal-based-protein meals significantly increased serum peroxynitrite levels but showed a trend of reduction in the serum NOx levels. Furthermore, serum NO/peroxynitrite balance significantly increased after plant-based-protein meals consumption, but significantly decreased after animal-based-protein meals consumption. These results suggest that, compared with animal-based-protein meals, plant-based-protein meals increase NO levels and NO/peroxynitrite balance, which reflects increased endothelial function.
Collapse
Affiliation(s)
- Tomoko Kaneko
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki 305-8574, Japan
| | - Masaki Yoshioka
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki 305-8574, Japan
- Japan Society for the Promotion of Science, Tokyo 102-8472, Japan
| | - Futo Kawahara
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki 305-8574, Japan
| | - Natsumi Nishitani
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki 305-8574, Japan
| | - Shoya Mori
- Institute of Health and Sport Sciences, University of Tsukuba, Ibaraki 305-8574, Japan
| | - Jiyeon Park
- Institute of Health and Sport Sciences, University of Tsukuba, Ibaraki 305-8574, Japan
| | - Takashi Tarumi
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki 305-8574, Japan
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki 305-8566, Japan
| | - Keisei Kosaki
- Institute of Health and Sport Sciences, University of Tsukuba, Ibaraki 305-8574, Japan
| | - Seiji Maeda
- Institute of Health and Sport Sciences, University of Tsukuba, Ibaraki 305-8574, Japan
- Faculty of Sport Sciences, Waseda University, Saitama 359-1192, Japan
| |
Collapse
|
3
|
Jakobek L, Pöc K, Valenteković M, Matić P. The Behavior of Phenolic Compounds from Apples during Simulated Gastrointestinal Digestion with Focus on Chlorogenic Acid. Foods 2024; 13:693. [PMID: 38472806 DOI: 10.3390/foods13050693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/05/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
The fate of phenolic compounds during digestion is important for their bioactive effects in the digestive tract. The aim was to study the various phenolic compounds occurring in the peel and flesh of apples in in vitro simulated gastrointestinal digestion, focusing on the behavior of chlorogenic acids. Additionally, the behavior of individual chlorogenic acids (chlorogenic, neochlorogenic, and cryptochlorogenic) was studied in models of simulated salivary, gastric, and intestinal fluid electrolyte solutions (SSF, SGF, SIF). At the end of the intestinal phase of the digestion of peel and flesh, the amount of recovered dihydrochalcones and flavonols increased or was similar to the amount in the gastric phase, which showed their stability. Anthocyanins and flavan-3-ols decreased, which suggests their biotransformation. Chlorogenic acid isomerized into neochlorogenic and cryptochlorogenic acid: chlorogenic acid from the peel into 22% and 41% of the isomers in the salivary and intestinal phases, respectively; chlorogenic acid from the flesh into 12% of the isomers in the intestinal phase. Similarly, chlorogenic acid isomerized in model solutions (20% and 26% of the isomers in SSF and SIF, respectively). Neochlorogenic and cryptochlorogenic acid isomerized in SSF and SIF into other two forms. They were all stable in SGF. For bioactive effects in the digestive tract, the biotransformation of chlorogenic acids should be considered.
Collapse
Affiliation(s)
- Lidija Jakobek
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 18, 31 000 Osijek, Croatia
| | - Kristina Pöc
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 18, 31 000 Osijek, Croatia
| | - Matea Valenteković
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 18, 31 000 Osijek, Croatia
| | - Petra Matić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 18, 31 000 Osijek, Croatia
| |
Collapse
|
4
|
Halliwell B. Understanding mechanisms of antioxidant action in health and disease. Nat Rev Mol Cell Biol 2024; 25:13-33. [PMID: 37714962 DOI: 10.1038/s41580-023-00645-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2023] [Indexed: 09/17/2023]
Abstract
Several different reactive oxygen species (ROS) are generated in vivo. They have roles in the development of certain human diseases whilst also performing physiological functions. ROS are counterbalanced by an antioxidant defence network, which functions to modulate ROS levels to allow their physiological roles whilst minimizing the oxidative damage they cause that can contribute to disease development. This Review describes the mechanisms of action of antioxidants synthesized in vivo, antioxidants derived from the human diet and synthetic antioxidants developed as therapeutic agents, with a focus on the gaps in our current knowledge and the approaches needed to close them. The Review also explores the reasons behind the successes and failures of antioxidants in treating or preventing human disease. Antioxidants may have special roles in the gastrointestinal tract, and many lifestyle features known to promote health (especially diet, exercise and the control of blood glucose and cholesterol levels) may be acting, at least in part, by antioxidant mechanisms. Certain reactive sulfur species may be important antioxidants but more accurate determinations of their concentrations in vivo are needed to help assess their contributions.
Collapse
Affiliation(s)
- Barry Halliwell
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Neurobiology Research Programme, Life Sciences Institute, Centre for Life Sciences, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
5
|
Kanner J. Food Polyphenols as Preventive Medicine. Antioxidants (Basel) 2023; 12:2103. [PMID: 38136222 PMCID: PMC10740609 DOI: 10.3390/antiox12122103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Reactive oxygen species (ROS) are the initiators in foods and in the stomach of oxidized dietary lipids, proteins, and lipid-oxidation end-products (ALEs), inducing in humans the development of several chronic diseases and cancer. Epidemiological, human clinical and animal studies supported the role of dietary polyphenols and derivatives in prevention of development of such chronic diseases. There is much evidence that polyphenols/derivatives at the right timing and concentration, which is critical, acts mostly in the aerobic stomach and generally in the gastrointestinal tract as reducing agents, scavengers of free radicals, trappers of reactive carbonyls, modulators of enzyme activity, generators of beneficial gut microbiota and effectors of cellular signaling. In the blood system, at low concentration, they act as generators of electrophiles and low concentration of H2O2, acting mostly as cellular signaling, activating the PI3K/Akt-mediated Nrf2/eNOS pathways and inhibiting the inflammatory transcription factor NF-κB, inducing the cells, organs and organism for eustress, adaptation and surviving.
Collapse
Affiliation(s)
- Joseph Kanner
- Department of Food Science, ARO, Volcani Center, Bet-Dagan 7505101, Israel; or
- Institute of Biochemistry, Food Science and Nutrtion, Faculty of Agriculture Food and Environment, The Hebrew University of Jerusalem, Rehovot 9190501, Israel
| |
Collapse
|
6
|
Shubina VS, Kozina VI, Shatalin YV. A Comparative Study of the Inhibitory Effect of Some Flavonoids and a Conjugate of Taxifolin with Glyoxylic Acid on the Oxidative Burst of Neutrophils. Int J Mol Sci 2023; 24:15068. [PMID: 37894747 PMCID: PMC10606308 DOI: 10.3390/ijms242015068] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/30/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
During the storage, processing, and digestion of flavonoid-rich foods and beverages, a condensation of flavonoids with toxic carbonyl compounds occurs. The effect of the resulting products on cells remains largely unknown. The aim of the present study was to evaluate the effects of quercetin, taxifolin, catechin, eriodictyol, hesperetin, naringenin, and a condensation product of taxifolin with glyoxylic acid on the oxidative burst of neutrophils. It was found that the flavonoids and the condensation product inhibited the total production of ROS. Flavonoids decreased both the intra and extracellular ROS production. The condensation product had no effect on intracellular ROS production but effectively inhibited the extracellular production of ROS. Thus, the condensation of flavonoids with toxic carbonyl compounds may lead to the formation of compounds exhibiting potent inhibitory effects on the oxidative burst of neutrophils. The data also suggest that, during these reactions, the influence of a fraction of flavonoids and their polyphenolic derivatives on cellular functions may change. On the whole, the results of the study provide a better understanding of the effects of polyphenols on human health. In addition, these results reveal the structure-activity relationship of these polyphenols and may be useful in a search for new therapeutic agents against diseases associated with oxidative stress.
Collapse
Affiliation(s)
- Victoria S. Shubina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia;
| | | | - Yuri V. Shatalin
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia;
| |
Collapse
|
7
|
Li J, Zhang H, Yang X, Zhu L, Wu G, Qi X, Zhang H, Wang Y, Chen X. Effect of fiber-bound polyphenols from highland barley on lipid oxidation products of cooked pork during in vitro gastrointestinal digestion. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:5070-5076. [PMID: 36987556 DOI: 10.1002/jsfa.12581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/24/2022] [Accepted: 03/28/2023] [Indexed: 06/08/2023]
Abstract
BACKGROUND The gastrointestinal (GI) tract is a major site of lipid oxidation, and the lipid oxidation products are related to an increased risk of various chronic diseases. In this study, the inhibition capacity of bound-polyphenol rich insoluble dietary fiber (BP-IDF) from highland barley (HB) to lipid oxidation was evaluated during simulated GI digestion. RESULTS We found that the level of lipid hydroperoxides (LOOH) and aldehydes were significantly inhibited when highland barley bound-polyphenol rich insoluble dietary fiber (HBBP-IDF) co-digestion with cooked pork. The lipid oxidation products were more effectively scavenged during simulated gastric digestion, with inhibition of 77.4% for LOOH, 52.3% for malondialdehyde, 46.5% for 4-hydroxy-2-hexenal and 48.7% for 4-hydroxy-2-nonenel, respectively. The fiber-bound polyphenols are the principal scavengers of lipid oxidation products. CONCLUSION These findings suggest that HBBP-IDF could be used as a functional ingredient able to scavenge lipid oxidation products across the GI tract. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jinxin Li
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hao Zhang
- Lipid Technology and Engineering, School of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Xijuan Yang
- Tibetan Plateau Key Laboratory of Agric-Product Processing, Qinghai University, Xining, China
| | - Ling Zhu
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Gangcheng Wu
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xiguang Qi
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hui Zhang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yongjin Wang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xiaoyu Chen
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
8
|
Jakobek L, Blesso C. Beneficial effects of phenolic compounds: native phenolic compounds vs metabolites and catabolites. Crit Rev Food Sci Nutr 2023; 64:9113-9131. [PMID: 37140183 DOI: 10.1080/10408398.2023.2208218] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
In the human body, the positive effects of phenolic compounds are increasingly observed through their presence in tissues and organs in their native form or in the form of metabolites or catabolites formed during digestion, microbial metabolism, and host biotransformation. The full extent of these effects is still unclear. The aim of this paper is to review the current knowledge of beneficial effects of native phenolic compounds or their metabolites and catabolites focusing on their role in the health of the digestive system, including disorders of the gastrointestinal and urinary tracts and liver. Studies are mostly connecting beneficial effects in the gastrointestinal and urinary tract to the whole food rich in phenolics, or to the amount of phenolic compounds/antioxidants in food. Indeed, the bioactivity of parent phenolic compounds should not be ignored due to their presence in the digestive tract, and the impact on the gut microbiota. However, the influence of their metabolites and catabolites might be more important for the liver and urinary tract. Distinguishing between the effects of parent phenolics vs metabolites and catabolites at the site of action are important for novel areas of food industry, nutrition and medicine.
Collapse
Affiliation(s)
- Lidija Jakobek
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- Department of Statistics and Data Science, Yale University, New Haven, Connecticut, USA
| | - Christopher Blesso
- Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
9
|
Hrelia S, Di Renzo L, Bavaresco L, Bernardi E, Malaguti M, Giacosa A. Moderate Wine Consumption and Health: A Narrative Review. Nutrients 2022; 15:175. [PMID: 36615832 PMCID: PMC9824172 DOI: 10.3390/nu15010175] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
Although it is clearly established that the abuse of alcohol is seriously harmful to health, much epidemiological and clinical evidence seem to underline the protective role of moderate quantities of alcohol and in particular of wine on health. This narrative review aims to re-evaluate the relationship between the type and dose of alcoholic drink and reduced or increased risk of various diseases, in the light of the most current scientific evidence. In particular, in vitro studies on the modulation of biochemical pathways and gene expression of wine bioactive components were evaluated. Twenty-four studies were selected after PubMed, Scopus and Google Scholar searches for the evaluation of moderate alcohol/wine consumption and health effects: eight studies concerned cardiovascular diseases, three concerned type 2 diabetes, four concerned neurodegenerative diseases, five concerned cancer and four were related to longevity. A brief discussion on viticultural and enological practices potentially affecting the content of bioactive components in wine is included. The analysis clearly indicates that wine differs from other alcoholic beverages and its moderate consumption not only does not increase the risk of chronic degenerative diseases but is also associated with health benefits particularly when included in a Mediterranean diet model. Obviously, every effort must be made to promote behavioral education to prevent abuse, especially among young people.
Collapse
Affiliation(s)
- Silvana Hrelia
- Department for Life Quality Studies, University of Bologna, 47921 Rimini, Italy
| | - Laura Di Renzo
- Section of Clinical Nutrition and Nutrigenomics, Department of Biomedicine and Prevention, University of Tor Vergata, 00133 Rome, Italy
| | - Luigi Bavaresco
- Department of Sustainable Crop Production—Viticulture and Pomology Section, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Elisabetta Bernardi
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari “Aldo Moro”, 70121 Bari, Italy
| | - Marco Malaguti
- Department for Life Quality Studies, University of Bologna, 47921 Rimini, Italy
| | - Attilio Giacosa
- Department of Gastroenterology and Clinical Nutrition, Policlinico di Monza, 20900 Monza, Italy
| |
Collapse
|
10
|
Rabkin B, Tirosh O, Kanner J. Reactivity of Vitamin E as an Antioxidant in Red Meat and the Stomach Medium. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12172-12179. [PMID: 36121850 DOI: 10.1021/acs.jafc.2c03674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The stomach is a bioreactor and an important intersection of biochemical reactions that affect human health. Lipid peroxidation of meat in the stomach medium generates malondialdehyde (MDA), which is absorbed from the gut into human plasma and modifies low-density lipoprotein (LDL) to MDA-LDL. We found in the stomach medium (pH 3.0) a high antioxidant activity of vitamin E against meat lipid peroxidation, almost 35-fold higher than at pH 6.3. In the stomach medium, the antioxidant activity of vitamin E on meat lipid peroxidation was 20-fold higher than that of catechin. Vitamin E, at pH 3.0, acts synergistically with metmyoglobin (MbFe+3), as a peroxidase/antioxidant couple. The synergistic effect of MbFe+3/vitamin E was almost 150-fold higher than the antioxidant effect achieved by MbFe+3/catechin. The meat antioxidant activity was maintained continuously by addition of a low concentration of vitamin E, catechin, and vitamin C, preventing the propagation of lipid oxidation, reactive aldehyde generation, and the loss of vitamin E.
Collapse
Affiliation(s)
- Boris Rabkin
- Department of Food Science, ARO Volcani Center, Bet-Dagan 50250, Israel
| | - Oren Tirosh
- Institute of Biochemistry, Food Science and Nutrition, Faculty of Agriculture Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Joseph Kanner
- Department of Food Science, ARO Volcani Center, Bet-Dagan 50250, Israel
- Institute of Biochemistry, Food Science and Nutrition, Faculty of Agriculture Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| |
Collapse
|
11
|
Radić J, Vučković M, Gelemanović A, Kolak E, Bučan Nenadić D, Begović M, Radić M. Associations between Advanced Glycation End Products, Body Composition and Mediterranean Diet Adherence in Kidney Transplant Recipients. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11060. [PMID: 36078776 PMCID: PMC9518364 DOI: 10.3390/ijerph191711060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
There is limited evidence on the associations between dietary patterns, body composition, and nonclassical predictors of worse outcomes such as advanced glycation end products (AGE) in kidney transplant recipients (KTRs). The aim of this cross-sectional study was to determine the level of AGE-determined cardiovascular (CV) risk in Dalmatian KTRs and possible associations between AGE, adherence to the Mediterranean diet (MeDi), and nutritional status. Eighty-five (85) KTRs were enrolled in this study. For each study participant, data were collected on the level of AGE, as measured by skin autofluorescence (SAF), Mediterranean Diet Serving Score (MDSS), body mass composition, anthropometric parameters, and clinical and laboratory parameters. Only 11.76% of the participants were adherent to the MeDi. Sixty-nine percent (69%) of KTRs had severe CV risk based on AGE, while 31% of KTRs had mild to moderate CV risk. The results of the LASSO regression analysis showed that age, dialysis type, dialysis vintage, presence of CV and chronic kidney disease, C- reactive protein level, urate level, percentage of muscle mass, and adherence to recommendations for nuts, meat, and sweets were identified as positive predictors of AGE. The negative predictors for AGE were calcium, phosphate, cereal adherence according to the MeDi, and trunk fat mass. These results demonstrate extremely low adherence to the MeDi and high AGE levels related CV risk in Dalmatian KTRs. Lifestyle interventions in terms of CV risk management and adherence to the MeDi of KTRs should be taken into consideration when taking care of this patient population.
Collapse
Affiliation(s)
- Josipa Radić
- Department of Nephrology and Dialysis, University Hospital of Split, Spinčićeva 1, 21 000 Split, Croatia
- Department of Internal Medicine, University of Split School of Medicine, Šoltanska 2, 21 000 Split, Croatia
| | - Marijana Vučković
- Department of Nephrology and Dialysis, University Hospital of Split, Spinčićeva 1, 21 000 Split, Croatia
| | - Andrea Gelemanović
- Mediterranean Institute for Life Sciences (MedILS), 21 000 Split, Croatia
| | - Ela Kolak
- Department of Nutrition and Dietetics, University Hospital Centre Split, 21 000 Split, Croatia
| | - Dora Bučan Nenadić
- Department of Nutrition and Dietetics, University Hospital Centre Split, 21 000 Split, Croatia
| | - Mirna Begović
- School of Medicine, University of Split, Šoltanska 2, 21 000 Split, Croatia
| | - Mislav Radić
- Department of Internal Medicine, University of Split School of Medicine, Šoltanska 2, 21 000 Split, Croatia
- Division of Clinical Immunology and Rheumatology, Department of Internal Medicine, University Hospital of Split, 21 000 Split, Croatia
| |
Collapse
|
12
|
Gutiérrez-Luna K, Ansorena D, Cruz R, Astiasarán I, Casal S. Olive and echium oil gelled emulsions: simulated effect of processing temperature, gelling agent and in vitro gastrointestinal digestion on oxidation and bioactive compounds. Food Chem 2022; 402:134416. [DOI: 10.1016/j.foodchem.2022.134416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/29/2022] [Accepted: 09/25/2022] [Indexed: 10/14/2022]
|
13
|
Pinho SCM, Faria M, Casal S, Sobral MMC, Alves R, Cabrita ARJ, Fonseca AJM, Ferreira IMPLVO. Explore Gastric Lipolysis and Lipid Oxidation of Conventional versus Pasture-Based Milk by a Semi-dynamic In Vitro Digestion Model. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14241-14249. [PMID: 34784201 DOI: 10.1021/acs.jafc.1c03150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Research on gastric lipolysis of commercial cow's milk with different fatty acid (FA) compositions is scarce. Gastric lipase exhibits specificity for the sn-3 chain position of triacylglycerols, whose structure is influenced by milk FA composition. Therefore, during gastric digestion of conventional (C) vs pasture-based (P) milk, differences may occur on lipolysis, which has impact on free FA available, influencing their absorption/metabolism rate and physiological hormonal responses. Those two milk types were subjected to the INFOGEST semi-dynamic digestion model. Five gastric emptying points were analyzed for oxidative degradation of polyunsaturated fatty acids (PUFA) and individual free FA. The relative release of medium-chain FA (C8:0-C12:0) was higher than that of longer-chain FA (C14:0-C18:0), and a linear increase in markers of PUFA oxidative degradation occurred along gastric digestion. Quantitatively, C8:0, C18:2n-6, C18:3n-3, and CLAc9t11 were higher (P < 0.001) in P milk when compared with C milk.
Collapse
Affiliation(s)
- Susana C M Pinho
- LAQV/REQUIMTE, Department of Chemical Sciences, Laboratory of Food Science and Hydrology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira no. 228, Porto 4050-313, Portugal
- LAQV/REQUIMTE, ICBAS, School of Medicine and Biomedical Sciences, University of Porto, Rua de Jorge Viterbo Ferreira no. 228, Porto 4050-313, Portugal
| | - Miguel Faria
- LAQV/REQUIMTE, Department of Chemical Sciences, Laboratory of Food Science and Hydrology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira no. 228, Porto 4050-313, Portugal
| | - Susana Casal
- LAQV/REQUIMTE, Department of Chemical Sciences, Laboratory of Food Science and Hydrology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira no. 228, Porto 4050-313, Portugal
| | - M Madalena C Sobral
- LAQV/REQUIMTE, Department of Chemical Sciences, Laboratory of Food Science and Hydrology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira no. 228, Porto 4050-313, Portugal
| | - Rui Alves
- SORGAL, Sociedade de Óleos e Rações S.A., Estrada Nacional 109 Lugar da Pardala, S. João Ovar 3880-728, Portugal
| | - Ana R J Cabrita
- LAQV/REQUIMTE, ICBAS, School of Medicine and Biomedical Sciences, University of Porto, Rua de Jorge Viterbo Ferreira no. 228, Porto 4050-313, Portugal
| | - António J M Fonseca
- LAQV/REQUIMTE, ICBAS, School of Medicine and Biomedical Sciences, University of Porto, Rua de Jorge Viterbo Ferreira no. 228, Porto 4050-313, Portugal
| | - Isabel M P L V O Ferreira
- LAQV/REQUIMTE, Department of Chemical Sciences, Laboratory of Food Science and Hydrology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira no. 228, Porto 4050-313, Portugal
| |
Collapse
|
14
|
Hu Y, Zhao G, Wang J, Liu Z, Yin F, Qin L, Zhou D, Shahidi F, Zhu B. Lipid oxidation and aldehyde formation during in vitro gastrointestinal digestion of roasted scallop ( Patinopecten yessoensis) - the role of added antioxidant of bamboo leaves. Food Funct 2021; 12:11046-11057. [PMID: 34665192 DOI: 10.1039/d1fo02717d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study investigated lipid oxidation and aldehyde formation in roasted scallop during in vitro gastrointestinal digestion, and the effects of co-digestion of antioxidant of bamboo leaves (AOB) on this process. The results showed that the contents of lipid hydroperoxides (LOOH), conjugated dienes (CD), and Schiff bases (SB) were increased during gastrointestinal digestion. Besides, malondialdehyde (MDA) levels and total aldehyde formation decreased initially at the gastric stage but increased at the intestinal stage. The results of HPLC-ESI-MS/MS analysis showed that the contents of hexanal (HEX), trans, trans-2,4-octadienal (ODE), trans, trans-2,4-decadienal (DDE), 4-hydroxyhexenal (HHE) and 4-hydroxynonenal (HNE) in the digestive juices were all initially decreased and then increased during gastrointestinal digestion. Meanwhile, the content of acrolein, propanal, and trans-2-pentenal at the end of intestinal digestion was lower than that in the initial stage of gastric digestion. Additionally, the digestion of roasted scallop caused significant oxidation of polyunsaturated fatty acids (PUFAs) and release of free fatty acids (FFA) in the intestinal phase, which were positively related to aldehyde production. However, co-digestion of AOB significantly reduced lipid oxidation and formation of lipid oxidation products (LOOH, CD, SB, and aldehyde) during gastrointestinal digestion, indicating that the addition of AOB was effective in reducing gastrointestinal lipid oxidation.
Collapse
Affiliation(s)
- Yuanyuan Hu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, PR China.
| | - Guanhua Zhao
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, PR China.
| | - Jialiang Wang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, PR China.
| | - Zhongyuan Liu
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, 116034, PR China.,School of Food Science and Engineering, Hainan University, Haikou, 570228, PR China
| | - Fawen Yin
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, PR China. .,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, 116034, PR China.,National Engineering Research Center of Seafood, Dalian, 116034, PR China
| | - Lei Qin
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, PR China. .,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, 116034, PR China.,National Engineering Research Center of Seafood, Dalian, 116034, PR China
| | - Dayong Zhou
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, PR China. .,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, 116034, PR China.,National Engineering Research Center of Seafood, Dalian, 116034, PR China
| | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St John's, NL, A1B3X9, Canada
| | - Beiwei Zhu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, PR China. .,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, 116034, PR China.,National Engineering Research Center of Seafood, Dalian, 116034, PR China
| |
Collapse
|
15
|
Márquez-Ruiz G, Holgado F, Ruiz-Méndez MV, Velasco J. Chemical Changes of Hydroperoxy-, Epoxy-, Keto- and Hydroxy-Model Lipids under Simulated Gastric Conditions. Foods 2021; 10:foods10092035. [PMID: 34574145 PMCID: PMC8471306 DOI: 10.3390/foods10092035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 11/16/2022] Open
Abstract
Chemical changes occurring in dietary lipid oxidation compounds throughout the gastrointestinal tract are practically unknown. The first site for potential chemical modifications is the stomach due to the strong acidic conditions. In this study, model lipids representative of the most abundant groups of dietary oxidation compounds were subjected to in vitro gastric conditions. Thus, methyl linoleate hydroperoxides were used as representative of the major oxidation compounds formed in food storage at low and moderate temperatures. Methyl 9,10-epoxystearate, 12-oxostearate and 12-hydroxystearate were selected as model compounds bearing the oxygenated functional groups predominantly found in oxidation compounds formed at the high temperatures of frying. Analyses were performed using gas-liquid chromatography/flame ionization detection/mass spectrometry and high performance-liquid chromatography/ultraviolet detection. Losses of methyl 9,10-epoxystearate and linoleate hydroperoxides in the ranges 17.8–58.8% and 42.3–61.7% were found, respectively, whereas methyl 12-oxostearate and methyl 12-hydroxystearate remained unaltered. Although quantitative data of the compounds formed after digestion were not obtained, methyl 9,10-dihydroxystearate was detected after digestion of methyl 9,10-epoxystearate, and some major volatiles were detected after digestion of linoleate hydroperoxides. Overall, the results showed that significant modifications of dietary oxidized lipids occurred during gastric digestion and supported that the low pH of the gastric fluid played an important role.
Collapse
Affiliation(s)
- Gloria Márquez-Ruiz
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición, Consejo Superior de Investigaciones Científicas (ICTAN-CSIC), 28040 Madrid, Spain;
- Correspondence:
| | - Francisca Holgado
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición, Consejo Superior de Investigaciones Científicas (ICTAN-CSIC), 28040 Madrid, Spain;
| | - María Victoria Ruiz-Méndez
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (IG-CSIC), 41089 Sevilla, Spain; (M.V.R.-M.); (J.V.)
| | - Joaquín Velasco
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (IG-CSIC), 41089 Sevilla, Spain; (M.V.R.-M.); (J.V.)
| |
Collapse
|
16
|
Shubina VS, Kozina VI, Shatalin YV. Comparison of Antioxidant Properties of a Conjugate of Taxifolin with Glyoxylic Acid and Selected Flavonoids. Antioxidants (Basel) 2021; 10:antiox10081262. [PMID: 34439510 PMCID: PMC8389318 DOI: 10.3390/antiox10081262] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/04/2021] [Accepted: 08/04/2021] [Indexed: 01/05/2023] Open
Abstract
It is known that flavonoids can react with toxic carbonyl compounds in the process of the storage, aging, and digestion of flavonoid-rich foods and beverages. However, the effect of these reactions on the antioxidant properties of the polyphenolic fraction and the properties of the resulting products remain poorly studied. The aim of the present work was to study the antioxidant activity of quercetin, taxifolin, catechin, eriodictyol, hesperetin, naringenin and a product of the condensation of taxifolin with glyoxylic acid, as well as to reveal the structure–activity relationship of these polyphenols. It was found that flavonoids containing the catechol moiety exhibited higher antioxidant activity than hesperetin and naringenin. The product showed the highest hydrogen peroxide scavenging activity, a lower metal-reducing and a higher iron-binding ability than catechol-containing flavonoids, and a lipid peroxidation inhibitory activity comparable with that of taxifolin. Thus, the condensation of flavonoids with toxic carbonyl compounds might lead to the formation of products exhibiting high antioxidant activity. Meanwhile, the conditions under which parent flavonoids and their products exhibit the maximal antioxidant activity may differ. The data suggest that the antioxidant profile of the polyphenolic fraction and bioavailability of polyphenols, carbonyl compounds, and metal ions may change when these reactions occur.
Collapse
|
17
|
Bhat ZF, Morton JD, Bekhit AEDA, Kumar S, Bhat HF. Thermal processing implications on the digestibility of meat, fish and seafood proteins. Compr Rev Food Sci Food Saf 2021; 20:4511-4548. [PMID: 34350699 DOI: 10.1111/1541-4337.12802] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/03/2021] [Accepted: 06/17/2021] [Indexed: 12/19/2022]
Abstract
Thermal processing is an inevitable part of the processing and preparation of meat and meat products for human consumption. However, thermal processing techniques, both commercial and domestic, induce modifications in muscle proteins which can have implications for their digestibility. The nutritive value of muscle proteins is closely related to their digestibility in the gastrointestinal tract and is determined by the end products that it presents in the assimilable form (amino acids and small peptides) for the absorption. The present review examines how different thermal processing techniques, such as sous-vide, microwave, stewing, roasting, boiling, frying, grilling, and steam cooking, affect the digestibility of muscle proteins in the gastrointestinal tract. By altering the functional and structural properties of muscle proteins, thermal processing has the potential to influence the digestibility negatively or positively, depending on the processing conditions. Thermal processes such as sous-vide can induce favourable changes, such as partial unfolding or exposure of cleavage sites, in muscle proteins and improve their digestibility whereas processes such as stewing and roasting can induce unfavourable changes, such as protein aggregation, severe oxidation, cross linking or increased disulfide (S-S) content and decrease the susceptibility of proteins during gastrointestinal digestion. The review examines how the underlying mechanisms of different processing conditions can be translated into higher or lower protein digestibility in detail. This review expands the current understanding of muscle protein digestion and generates knowledge that will be indispensable for optimizing the digestibility of thermally processed muscle foods for maximum nutritional benefits and optimal meal planning.
Collapse
Affiliation(s)
- Zuhaib F Bhat
- Division of Livestock Products Technology, SKUAST of Jammu, India
| | - James D Morton
- Department of Wine Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch, Lincoln, New Zealand
| | | | - Sunil Kumar
- Division of Livestock Products Technology, SKUAST of Jammu, India
| | - Hina F Bhat
- Division of Biotechnology, SKUAST of Kashmir, India
| |
Collapse
|
18
|
Macho-González A, Bastida S, Garcimartín A, López-Oliva ME, González P, Benedí J, González-Muñoz MJ, Sánchez-Muniz FJ. Functional Meat Products as Oxidative Stress Modulators: A Review. Adv Nutr 2021; 12:1514-1539. [PMID: 33578416 PMCID: PMC8321872 DOI: 10.1093/advances/nmaa182] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/21/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023] Open
Abstract
High meat consumption has been associated with increased oxidative stress mainly due to the generation of oxidized compounds in the body, such as malondialdehyde, 4-hydroxy-nonenal, oxysterols, or protein carbonyls, which can induce oxidative damage. Meat products are excellent matrices for introducing different bioactive compounds, to obtain functional meat products aimed at minimizing the pro-oxidant effects associated with high meat consumption. Therefore, this review aims to summarize the concept and preparation of healthy and functional meat, which could benefit antioxidant status. Likewise, the key strategies regarding meat production and storage as well as ingredients used (e.g., minerals, polyphenols, fatty acids, walnuts) for developing these functional meats are detailed. Although most effort has been made to reduce the oxidation status of meat, newly emerging approaches also aim to improve the oxidation status of consumers of meat products. Thus, we will delve into the relation between functional meats and their health effects on consumers. In this review, animal trials and intervention studies are discussed, ascertaining the extent of functional meat products' properties (e.g., neutralizing reactive oxygen species formation and increasing the antioxidant response). The effects of functional meat products in the frame of diet-gene interactions are analyzed to 1) discover target subjects that would benefit from their consumption, and 2) understand the molecular mechanisms that ensure precision in the prevention and treatment of diseases, where high oxidative stress takes place. Long-term intervention-controlled studies, testing different types and amounts of functional meat, are also necessary to ascertain their positive impact on degenerative diseases.
Collapse
Affiliation(s)
- Adrián Macho-González
- Nutrition and Food Science Department (Nutrition), Pharmacy School, Complutense University of Madrid, Madrid, Spain
- AFUSAN Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Sara Bastida
- Nutrition and Food Science Department (Nutrition), Pharmacy School, Complutense University of Madrid, Madrid, Spain
- AFUSAN Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Alba Garcimartín
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, Madrid, Spain
- AFUSAN Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - María Elvira López-Oliva
- Departmental Section of Physiology, Pharmacy School, Complutense University of Madrid, Madrid, Spain
- AFUSAN Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Pilar González
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, Madrid, Spain
| | - Juana Benedí
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, Madrid, Spain
- AFUSAN Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - María José González-Muñoz
- Biomedical Sciences Department, Toxicology Teaching Unit, Pharmacy School, Alcala University, Alcalá de Henares, Spain
- AFUSAN Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Francisco J Sánchez-Muniz
- Nutrition and Food Science Department (Nutrition), Pharmacy School, Complutense University of Madrid, Madrid, Spain
- AFUSAN Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| |
Collapse
|
19
|
Lucas-González R, Pérez-Álvarez JÁ, Viuda-Martos M, Fernández-López J. Pork Liver Pâté Enriched with Persimmon Coproducts: Effect of In Vitro Gastrointestinal Digestion on Its Fatty Acid and Polyphenol Profile Stability. Nutrients 2021; 13:nu13041332. [PMID: 33920571 PMCID: PMC8073653 DOI: 10.3390/nu13041332] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 12/30/2022] Open
Abstract
Agrofood coproducts are used to enrich meat products to reduce harmful compounds and contribute to fiber and polyphenol enrichment. Pork liver pâtés with added persimmon coproducts (3 and 6%; PR-3 and PR-6, respectively) were developed. Therefore, the aim was to study the effect of their in vitro gastrointestinal digestion on: the free and bound polyphenol profile (HPLC) and their colon-available index; the lipid oxidation (TBARs); and the stability of the fatty acid profile (GC). Furthermore, the effect of lipolysis was investigated using two pancreatins with different lipase activity. Forty-two polyphenols were detected in persimmon flour, which were revealed as a good source of bound polyphenols in pâtés, especially gallic acid (164.3 µg/g d.w. in PR-3 and 631.8 µg/g d.w. in PR-6). After gastrointestinal digestion, the colon-available index in enriched pâté ranged from 88.73 to 195.78%. The different lipase activity in the intestinal phase caused significant differences in bound polyphenols' stability, contributing to increased lipid oxidation. The fatty acids profile in pâté samples was stable, and surprisingly their PUFA content was raised. In conclusion, rich fatty foods, such as pâté, are excellent vehicles to preserve bound polyphenols, which can reach the colon intact and be metabolized by the intestinal microbiome.
Collapse
|
20
|
Liu ZY, Hu YY, Zhao MT, Xie HK, Hu XP, Ma XC, Zhang JH, Bai YH, Zhou DY. Formation and disappearance of aldehydes during simulated gastrointestinal digestion of fried clams. Food Funct 2021; 11:3483-3492. [PMID: 32242562 DOI: 10.1039/c9fo03021b] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The formation and disappearance of aldehydes during simulated gastrointestinal digestion (SD) of fried clams was investigated in order to shed light on the underlying mechanism. Results from the thiobarbituric acid reactive substance (TBARS) and fluorometric assays using a specific aldehyde probe indicated that the SD (with lipase) of fried clams initially reduced (at the gastric stage), but subsequently increased (mainly at the intestinal stage) the contents of total aldehydes. Meanwhile, eight specific aldehydes including propanal, acrolein, trans-2-pentenal, hexanal, trans,trans-2,4-octadienal, trans,trans-2,4-decadienal, 4-hydroxy-hexenal and 4-hydroxy-nonenal in the digested meal were determined by using a high-performance liquid chromatography-tandem electrospray ionization mass spectrometry (HPLC-ESI-MS/MS) method. Results indicated that the changes in the trend of the contents of the eight aforementioned aldehydes were similar to those of total aldehydes during SD (with lipase) of fried clams. However, a similar SD process without lipase time-dependently reduced the contents of total and individual aldehydes. Moreover, lipid classes and free fatty acids (FFAs) in the digested meal were determined to reveal the degree of hydrolysis of lipids during the SD process. Results indicated that the SD (with lipase) of fried clams significantly hydrolyzed triacylglycerols (TAG) and polar lipids (PL) and produced FFAs, but the SD process without lipase resulted in negligible lipid hydrolysis. Thus, our results demonstrated a positive correlation between lipid hydrolysis and aldehyde generation during the SD of fried clams. Alternatively, unsaturated FFAs instead of TAG and PL could have served as the main precursors for aldehyde generation due to their high oxidative susceptibility.
Collapse
Affiliation(s)
- Zhong-Yuan Liu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, PR China.
| | - Yuan-Yuan Hu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, PR China.
| | - Man-Tong Zhao
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, PR China.
| | - Hong-Kai Xie
- National Engineering Research Center of Seafood, Dalian, 116034, PR China
| | - Xiao-Pei Hu
- National Engineering Research Center of Seafood, Dalian, 116034, PR China
| | - Xiao-Chi Ma
- School of Pharmacy, Dalian Medical University, Dalian, 116044, PR China
| | - Jiang-Hua Zhang
- National Engineering Research Center of Seafood, Dalian, 116034, PR China
| | - Yan-Hong Bai
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, PR China
| | - Da-Yong Zhou
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, PR China. and National Engineering Research Center of Seafood, Dalian, 116034, PR China
| |
Collapse
|
21
|
van Vliet S, Kronberg SL, Provenza FD. Plant-Based Meats, Human Health, and Climate Change. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.00128] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
22
|
Wine's Phenolic Compounds and Health: A Pythagorean View. Molecules 2020; 25:molecules25184105. [PMID: 32911765 PMCID: PMC7570485 DOI: 10.3390/molecules25184105] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/02/2020] [Accepted: 09/05/2020] [Indexed: 12/22/2022] Open
Abstract
In support of the J curve that describes the association between wine consumption and all-cause mortality, researchers and the lay press often advocate the health benefits of (poly)phenol consumption via red wine intake and cite the vast amount of in vitro literature that would corroborate the hypothesis. Other researchers dismiss such evidence and call for total abstention. In this review, we take a skeptical, Pythagorean stance and we critically try to move the debate forward by pointing the readers to the many pitfalls of red wine (poly)phenol research, which we arbitrarily treat as if they were pharmacological agents. We conclude that, after 30 years of dedicated research and despite the considerable expenditure, we still lack solid, "pharmacological", human evidence to confirm wine (poly)phenols' biological actions. Future research will eventually clarify their activities and will back the current recommendations of responsibly drinking moderate amounts of wine with meals.
Collapse
|
23
|
Sobral MMC, Casal S, Faria MA, Cunha SC, Ferreira IMLO. Influence of culinary practices on protein and lipid oxidation of chicken meat burgers during cooking and in vitro gastrointestinal digestion. Food Chem Toxicol 2020; 141:111401. [DOI: 10.1016/j.fct.2020.111401] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 12/15/2022]
|
24
|
Kim Y, Keogh JB, Deo P, Clifton PM. Differential Effects of Dietary Patterns on Advanced Glycation end Products: A Randomized Crossover Study. Nutrients 2020; 12:nu12061767. [PMID: 32545555 PMCID: PMC7353357 DOI: 10.3390/nu12061767] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/02/2020] [Accepted: 06/08/2020] [Indexed: 12/14/2022] Open
Abstract
Dietary advanced glycation end products (AGEs) are believed to contribute to pathogenesis of diabetes and cardiovascular disease. The objective of this study was to determine if a diet high in red and processed meat and refined grains (HMD) would elevate plasma concentrations of protein-bound AGEs compared with an energy-matched diet high in whole grain, dairy, nuts and legumes (HWD). We conducted a randomized crossover trial with two 4-week weight-stable dietary interventions in 51 participants without type 2 diabetes (15 men and 36 women aged 35.1 ± 15.6 y; body mass index (BMI), 27.7 ± 6.9 kg/m2). Plasma concentrations of protein-bound Nε-(carboxymethyl) lysine (CML), Nε-(1-carboxyethyl) lysine (CEL) and Nδ-(5-hydro-5-methyl-4-imidazolon-2-yl)-ornithine (MG-H1) were measured by liquid chromatography–tandem mass spectrometry (LC-MS/MS). The HMD significantly increased plasma concentrations (nmol/mL) of CEL (1.367, 0.78 vs. 1.096, 0.65; p < 0.01; n = 48) compared with the HWD. No differences in CML and MG-H1 between HMD and HWD were observed. HMD increased plasma CEL concentrations compared with HWD in individuals without type 2 diabetes.
Collapse
Affiliation(s)
- Yoona Kim
- Department of Food and Nutrition, Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea;
| | - Jennifer B. Keogh
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide SA 5000, Australia; (J.B.K.); (P.D.)
| | - Permal Deo
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide SA 5000, Australia; (J.B.K.); (P.D.)
| | - Peter M. Clifton
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide SA 5000, Australia; (J.B.K.); (P.D.)
- Correspondence: ; Tel.: +61-8-8302-1357
| |
Collapse
|
25
|
De Smet S, Demeyer D, Van Hecke T. Chronic diseases associated with meat consumption: epidemiology and mechanisms. ACTA ACUST UNITED AC 2019. [DOI: 10.3920/978-90-8686-877-3_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Stefaan De Smet
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Daniel Demeyer
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Thomas Van Hecke
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| |
Collapse
|
26
|
Rocchetti G, Senizza B, Putnik P, Bursać Kovačević D, Barba FJ, Trevisan M, Lucini L. Untargeted screening of the bound / free phenolic composition in tomato cultivars for industrial transformation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:6173-6181. [PMID: 31250429 DOI: 10.1002/jsfa.9889] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/28/2019] [Accepted: 06/20/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Tomato is one of the most important agricultural crops and it is characterized by a wide bioactive compound profile. However, little information is reported on its comprehensive polyphenol profile. In this work, 13 commercial tomato cultivars for industrial transformation were screened by ultra-high-pressure liquid chromatography coupled to quadrupole-time-of-flight mass spectrometry (UHPLC-QTOF-MS) for both free and bound phenolic profiles. Thereafter, the in vitro antioxidant activity of each cultivar was assessed by ferric reducing antioxidant power (FRAP) and oxygen radical absorbance activity (ORAC) assays. Multivariate statistics, i.e. orthogonal projection to latent structures discriminant analysis (OPLS-DA), were then used to model samples according to their distinct phenolic signatures, thus providing compounds that better discriminated between the distributions of the cultivars that were considered. RESULTS More than 350 phenolic compounds could be identified across the samples that were considered: flavonoids (such as flavones and flavanols), hydroxycinnamic acids, lignans, and lower-molecular-weight phenolics were the most frequently observed classes of phenolics in tomato berries. Anthocyanins were the most abundant class among bound phenolics (being highest in the Leader F1 and Defender F1 cultivars), followed by tyrosols (mainly in Heinz cultivars). However, flavones and hydroxybenzoic acids were the most represented discriminant phenolics in the bound fraction. CONCLUSIONS Untargeted metabolomics allowed significant differences in phenolic composition to be outlined across the tomato cultivars that were analyzed. Such differences were particularly evident regarding the free-to-bound phenolic ratio, hence allowing differences in the bioaccessibility of phenolics to be postulated. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Gabriele Rocchetti
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Biancamaria Senizza
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Predrag Putnik
- Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | | | - Francisco J Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, València, Spain
| | - Marco Trevisan
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
27
|
Martini S, Conte A, Bottazzi S, Tagliazucchi D. Mediterranean diet vegetable foods protect meat lipids from oxidation during in vitro gastro-intestinal digestion. Int J Food Sci Nutr 2019; 71:424-439. [DOI: 10.1080/09637486.2019.1677570] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Serena Martini
- Department of Life Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | - Angela Conte
- Department of Life Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | - Silvia Bottazzi
- Department of Life Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | - Davide Tagliazucchi
- Department of Life Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| |
Collapse
|
28
|
Shapira N. The Metabolic Concept of Meal Sequence vs. Satiety: Glycemic and Oxidative Responses with Reference to Inflammation Risk, Protective Principles and Mediterranean Diet. Nutrients 2019; 11:E2373. [PMID: 31590352 PMCID: PMC6835480 DOI: 10.3390/nu11102373] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/31/2019] [Accepted: 09/17/2019] [Indexed: 02/06/2023] Open
Abstract
With increasing exposure to eating opportunities and postprandial conditions becoming dominant states, acute effects of meals are garnering interest. In this narrative review, meal components, combinations and course sequence were questioned vis-à-vis resultant postprandial responses, including satiety, glycemic, oxidative and inflammatory risks/outcomes vs. protective principles, with reference to the Mediterranean diet. Representative scientific literature was reviewed and explained, and corresponding recommendations discussed and illustrated. Starting meals with foods, courses and/or preloads high in innate/added/incorporated water and/or fibre, followed by protein-based courses, delaying carbohydrates and fatty foods and minimizing highly-processed/sweetened hedonic foods, would increase satiety-per-calorie vs. obesogenic passive overconsumption. Similarly, starting with high-water/fibre dishes, followed by high-protein foods, oils/fats, and delayed/reduced slowly-digested whole/complex carbohydrate sources, optionally closing with simpler carbohydrates/sugars, would reduce glycaemic response. Likewise, starting with foods high in innate/added/incorporated water/fibre/antioxidants, high monounsaturated fatty acid foods/oils, light proteins and whole/complex carbohydrate foods, with foods/oils low in n-6 polyunsaturated fatty acids (PUFA) and n-6:n-3 PUFA ratios, and minimal-to-no red meat and highly/ultra-processed foods/lipids, would reduce oxidative/inflammatory response. Pyramids illustrating representative meal sequences, from most-to-least protective foods, visually communicate similarities between axes, suggesting potential unification for optimal meal sequence, consistent with anti-inflammatory nutrition and Mediterranean diet/meal principles, warranting application and outcome evaluation.
Collapse
|
29
|
How meat quality and sensory perception is influenced by feeding poultry plant extracts. WORLD POULTRY SCI J 2019. [DOI: 10.1017/s0043933915002378] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
30
|
Jakobek L, Matić P. Non-covalent dietary fiber - Polyphenol interactions and their influence on polyphenol bioaccessibility. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2018.11.024] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
31
|
Nieva-Echevarría B, Goicoechea E, Guillén MD. Food lipid oxidation under gastrointestinal digestion conditions: A review. Crit Rev Food Sci Nutr 2018; 60:461-478. [DOI: 10.1080/10408398.2018.1538931] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Bárbara Nieva-Echevarría
- Food Technology, Faculty of Pharmacy, Lascaray Research Center, University of the Basque Country (UPV/EHU), Vitoria, Spain
| | - Encarnación Goicoechea
- Food Technology, Faculty of Pharmacy, Lascaray Research Center, University of the Basque Country (UPV/EHU), Vitoria, Spain
| | - María D. Guillén
- Food Technology, Faculty of Pharmacy, Lascaray Research Center, University of the Basque Country (UPV/EHU), Vitoria, Spain
| |
Collapse
|
32
|
Abstract
Hippocrates, the father of medicine, had said: "Wine is a thing wonderfully appropriate to man if, in health as in disease, it is administered with appropriate and just measure according to the individual constitution." Wine has always accompanied humanity, for religion or for health. Christians and Jews need wine for the liturgy. For Plato, wine was an indispensable element in society and the most important in the symposium. In this second part of the banquet, mixed with water, the wine gave the word. If the French paradox made a lot of ink flow; it was the wine that was originally responsible for it. Many researchers have tried to study alcohol and polyphenols in wine, in order to solve the mystery. Beyond its cardiovascular effects, there are also effects on longevity, metabolism, cancer prevention, and neuroprotection, and the list goes on. The purpose of this work is to make an analysis of the current knowledge on the subject. Indeed, if the paradigm of antioxidants is seductive, it is perhaps by their prooxidant effect that the polyphenols act, by an epigenetic process mediated by nrf2. Wine is a preserve of antioxidants for the winter and it is by this property that the wine acts, in an alcoholic solution. A wine without alcohol is pure heresy. Wine is the elixir that by design, over millennials, has acted as a pharmacopeia that enabled man to heal and prosper on the planet. From Alvise Cornaro to Serge Renaud, nutrition was the key to health and longevity, whether the Cretan or Okinawa diet, it is the small dose of alcohol (wine or sake) that allows the bioavailability of polyphenols. Moderate drinking gives a protection for diseases and a longevity potential. In conclusion, let us drink fewer, but drink better, to live older.
Collapse
|
33
|
Van Hecke T, De Vrieze J, Boon N, De Vos WH, Vossen E, De Smet S. Combined Consumption of Beef-Based Cooked Mince and Sucrose Stimulates Oxidative Stress, Cardiac Hypertrophy, and Colonic Outgrowth of Desulfovibrionaceae in Rats. Mol Nutr Food Res 2018; 63:e1800962. [PMID: 30379400 DOI: 10.1002/mnfr.201800962] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 09/12/2018] [Indexed: 12/13/2022]
Abstract
SCOPE High red meat and sucrose consumption increases the epidemiological risk for chronic diseases. Mechanistic hypotheses include alterations in oxidative status, gut microbiome, fat deposition, and low-grade inflammation. METHODS AND RESULTS For 2 weeks, 40 rats consumed a diet high in white or red meat (chicken-based or beef-based cooked mince, respectively), and containing corn starch or sucrose in a 2 × 2 factorial design. Lard was mixed with lean chicken or beef to obtain comparable dietary fatty acid profiles. Beef (vs chicken)-fed rats had higher lipid oxidation products (malondialdehyde, 4-hydroxy-2-nonenal, and hexanal) in stomach content and blood, and lower blood glutathione. Sucrose (vs corn starch)-fed rats showed increased blood lipid oxidation products and glutathione peroxidase activity, higher liver weight and malondialdehyde concentrations, and mesenterial and retroperitoneal fat accumulation. Beef-sucrose-fed rats had increased cardiac weight, suggesting pathophysiological effects on the cardiovascular system. The colonic microbiome of beef-sucrose-fed rats showed an outgrowth of the sulfate-reducing family of the Desulfovibrionaceae, and lower abundance of the Lactobacillus genus, indicating intestinal dysbiosis. Blood C-reactive protein, a marker for inflammation, was not different among groups. CONCLUSIONS Consumption of a cooked beef-based meat product with sucrose increased oxidative stress parameters and promoted cardiac hypertrophy and intestinal dysbiosis.
Collapse
Affiliation(s)
- Thomas Van Hecke
- Laboratory for Animal Nutrition and Animal Product Quality , Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Jo De Vrieze
- Center for Microbial Ecology and Technology, Ghent University, Coupure Links 653, B-9000, Gent, Belgium
| | - Nico Boon
- Center for Microbial Ecology and Technology, Ghent University, Coupure Links 653, B-9000, Gent, Belgium
| | - Winnok H De Vos
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Groenenborgerlaan 171, B-2020, Antwerp, Belgium
| | - Els Vossen
- Laboratory for Animal Nutrition and Animal Product Quality , Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Stefaan De Smet
- Laboratory for Animal Nutrition and Animal Product Quality , Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| |
Collapse
|
34
|
Ma L, Liu G, Liu X. Amounts of malondialdehyde do not accurately represent the real oxidative level of all vegetable oils: a kinetic study of malondialdehyde formation. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.13952] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Lukai Ma
- School of Food Science and Engineering; South China University of Technology; Guangzhou 510640 China
| | - Guoqin Liu
- School of Food Science and Engineering; South China University of Technology; Guangzhou 510640 China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety; South China University of Technology; Guangzhou 510640 China
| | - Xinqi Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health; Beijing Technology and Business University; Beijing 100048 China
- School of Food and Chemical Engineering; Beijing Technology and Business University; Beijing 100048 China
| |
Collapse
|
35
|
The Consumption of Beef Burgers Prepared with Wine Grape Pomace Flour Improves Fasting Glucose, Plasma Antioxidant Levels, and Oxidative Damage Markers in Humans: A Controlled Trial. Nutrients 2018; 10:nu10101388. [PMID: 30275350 PMCID: PMC6213438 DOI: 10.3390/nu10101388] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 09/14/2018] [Accepted: 09/25/2018] [Indexed: 12/12/2022] Open
Abstract
Wine grape pomace flour (WGPF) is a fruit byproduct that is high in fiber and antioxidants. We tested whether WGPF consumption could affect blood biochemical parameters, including oxidative stress biomarkers. In a three-month intervention study, 27 male volunteers, each with some components of metabolic syndrome, consumed a beef burger supplemented with 7% WGPF containing 3.5% of fiber and 1.2 mg gallic equivalents (GE)/g of polyphenols (WGPF-burger), daily, during the first month. The volunteers consumed no burgers in the second month, and one control-burger daily in the third month. At baseline and after these periods, we evaluated the metabolic syndrome components, plasma antioxidant status (i.e., 2,2-diphenyl-1-picrylhydrazyl radical scavenging capacity (DPPH), vitamin E, vitamin C), and oxidative damage markers (i.e., advanced oxidation protein products (AOPPs), oxidized low-density lipoproteins (oxLDLs), malondialdehyde (MDA)). The WGPF-burger intake significantly reduced glycemia and homeostatic model assessment-based measurement of insulin resistance. Vitamin C increased and decreased during the consumption of the WGPF-burger and control-burger, respectively. The WGPF-burger intake significantly decreased AOPP and oxLDL levels. Vitamin E and MDA levels showed no significant changes. In conclusion, the consumption of beef burgers prepared with WGPF improved fasting glucose and insulin resistance, plasma antioxidant levels, and oxidative damage markers. Therefore, this functional ingredient has potential as a dietary supplement to manage chronic disease risk in humans.
Collapse
|
36
|
Morales AM, Mukai R, Murota K, Terao J. Inhibitory effect of catecholic colonic metabolites of rutin on fatty acid hydroperoxide and hemoglobin dependent lipid peroxidation in Caco-2 cells. J Clin Biochem Nutr 2018; 63:175-180. [PMID: 30487666 PMCID: PMC6252304 DOI: 10.3164/jcbn.18-38] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 04/23/2018] [Indexed: 02/05/2023] Open
Abstract
To determine the preventive effect of dietary rutin on oxidative damages occurring in the digestive tract, 13-hydroperoxyoctadecadienoic acid and hemoglobin were exposed to Caco-2 intestinal cells after the pretreatment with colonic rutin metabolites. Among four catechol-type metabolites, quercetin and 3,4-dihydroxytoluene exerted significant protection on 13-hydroperoxyoctadecadienoic and hemoglobin-dependent lipid peroxidation of this epithelial cell. Compared with quercetin, a much lower concentration allowed 3,4-dihydroxytoluene to maximize the protective effect, though it needed a longer pre-incubation period. Neither quercetin nor 3,4-dihydroxytoluene affected the expression of peroxiredoxin-6 protein, which comprises the cellular antioxidant defense system. It is concluded that 3,4-dihydroxytoluene is a plausible rutin colonic metabolite that can suppress oxidative damages of intestinal epithelial cells by directly inhibiting lipid peroxidation. This result may illuminate the preventive role of dietary rutin against colorectal cancer incidence in relation to the consumption of red and processed meat.
Collapse
Affiliation(s)
- Agustin Martin Morales
- Department of Food Science, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Rie Mukai
- Department of Food Science, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Kaeko Murota
- Department of Life Sciecne, Faculty of Science and Engeering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Junji Terao
- Department of Food Science, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| |
Collapse
|
37
|
Martini S, Cavalchi M, Conte A, Tagliazucchi D. The paradoxical effect of extra-virgin olive oil on oxidative phenomena during in vitro co-digestion with meat. Food Res Int 2018; 109:82-90. [DOI: 10.1016/j.foodres.2018.04.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/26/2018] [Accepted: 04/14/2018] [Indexed: 12/01/2022]
|
38
|
Ma L, Liu G. Simultaneous Analysis of Malondialdehyde, 4-Hydroxy-2-hexenal, and 4-Hydroxy-2-nonenal in Vegetable Oil by Reversed-Phase High-Performance Liquid Chromatography. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:11320-11328. [PMID: 29179555 DOI: 10.1021/acs.jafc.7b04566] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A group of toxic aldehydes such as, malondialdehyde (MDA), 4-hydroxy-2-hexenal (HHE), and 4-hydroxy-2-nonenal (HNE) have been found in various vegetable oils and oil-based foods. Then simultaneous determination of them holds a great need in both the oil chemistry field and food field. In the present study, a simple and efficient analytical method was successfully developed for the simultaneous separation and detection of MDA, HHE, and HNE in vegetable oils by reversed-phase-high-performance liquid chromatography (RP-HPLC) coupled with photodiode array detector (PAD) at dual-channel detection mode. The effect of various experimental factors on the extraction performance, such as coextraction solvent system, butylated hydroxytoluene addition, and trichloroacetic acid addition were systematically investigated. Results showed that the linear ranges were 0.02-10.00 μg/mL for MDA, 0.02-4.00 μg/mL for HHE, and 0.03-4.00 μg/mL for HNE with the satisfactory correlation coefficient of >0.999 for all detected aldehydes. The limit of detection (LOD) and limit of quantification (LOQ) of MDA, HHE, and HNE were ∼0.021and 0.020 μg/mL, ∼0.009 and 0.020 μg/mL, and ∼0.014 and 0.030 μg/mL, respectively. Their recoveries were 99.64-102.18%, 102.34-104.61%, and 98.87-103.04% for rapeseed oil and 96.38-98.05%, 96.19-101.34%, and 96.86-99.04% for French fries, separately. Under the selected conditions, the developed methods was successfully applied to the simultaneous determination of MDA, HHE, and HNE in different tested vegetable oils. The results indicated that this method could be employed for the quality assessment of vegetable oils.
Collapse
Affiliation(s)
- Lukai Ma
- School of Food Science and Engineering, South China University of Technology , Guangzhou 510640, China
| | - Guoqin Liu
- School of Food Science and Engineering, South China University of Technology , Guangzhou 510640, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology , Guangzhou 510640, China
| |
Collapse
|
39
|
Dasilva G, Boller M, Medina I, Storch J. Relative levels of dietary EPA and DHA impact gastric oxidation and essential fatty acid uptake. J Nutr Biochem 2017; 55:68-75. [PMID: 29413491 DOI: 10.1016/j.jnutbio.2017.11.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 09/12/2017] [Accepted: 11/13/2017] [Indexed: 01/31/2023]
Abstract
Previous research showed that increasing the proportion of docosahexaenoic acid (DHA) in marine lipid supplements significantly reduces associated health benefits compared with balanced eicosapentaenoic acid (EPA):DHA supplementation Dasilva et al., 2015 [1]. It was therefore hypothesized that the EPA and DHA molecules might have differential resistance to oxidation during gastric digestion and that the oxidation level achieved could be inversely correlated with intestinal absorption and, hence, with the resultant health benefits. Accordingly, we tested this proposed mechanism of action by investigating the degree of oxidation in the stomach, and the levels of bioaccessible lipids, of varying molar proportions of DHA and EPA (2:1, 1:1 and 1:2) using the dynamic gastrointestinal tract model TIM-1. In addition, small intestine enterocyte absorption and metabolism were simulated by Caco-2 cell monolayers that were incubated with these same varying proportions of DHA and EPA, and comparing oxidized and nonoxidized polyunsaturated fatty acids (PUFAs). The results show an inverse correlation between lipid oxidation products in the stomach and the levels of bioaccessible lipids. The balanced 1:1 EPA:DHA diet resulted in lower oxidation of PUFAs during stomach digestion relative to the other ratios tested. Finally, cell-based studies showed significantly lower assimilation of oxidized EPA and DHA substrates compared to nonoxidized PUFAs, as well as significant differences between the net uptake of EPA and DHA. Overall, the present work suggests that the correct design of diets and/or supplements containing marine lipids can strongly influence the stability and bioaccessibility of PUFAs during gastrointestinal digestion and subsequent absorption. This could modulate their health benefits related with inflammation, oxidative stress and metabolic disorders.
Collapse
Affiliation(s)
- Gabriel Dasilva
- Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Científicas (IIM-CSIC), E-36208 Vigo, Spain; Department of Analytical Chemistry, Nutrition and Bromatology and Research Institute for Food Analysis (I.I.A.A.), University of Santiago de Compostela, E-15782, Spain.
| | - Matthew Boller
- Department of Nutritional Sciences and Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ, USA
| | - Isabel Medina
- Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Científicas (IIM-CSIC), E-36208 Vigo, Spain
| | - Judith Storch
- Department of Nutritional Sciences and Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|
40
|
Effect of the presence of protein on lipolysis and lipid oxidation occurring during in vitro digestion of highly unsaturated oils. Food Chem 2017; 235:21-33. [DOI: 10.1016/j.foodchem.2017.05.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 03/29/2017] [Accepted: 05/03/2017] [Indexed: 11/18/2022]
|
41
|
Quintero-Flórez A, Beltrán G, Sánchez-Ortiz A. Changes in Virgin Olive Oil Volatiles Caused by in Vitro Digestion. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:7900-7907. [PMID: 28803464 DOI: 10.1021/acs.jafc.7b01965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Volatile compounds are responsible for some sensory characteristics of virgin olive oil (VOO); however, they have not been studied from a nutritional point view. In this work, the effect of the simulated digestion on VOO volatile compounds responsible for green flavor was studied, analyzing their changes through the three steps of an in vitro digestion model (mouth, stomach, and small intestine). Index of recovery and bioaccessibility were determined for the main volatiles of "Picual" VOO. At end of the duodenal step, higher recoveries of ethanol, pent-1-en-3-ol, β-ocimene, and nonanal were observed. From the 10 volatile compounds analyzed, only six compounds were bioaccessible. The compounds with the highest bioaccessibility were pent-1-en-3-ol, nonanal, β-ocimene, and ethanol. The results showed for the first time the recovery and bioaccessibility of several volatile compounds present in VOO.
Collapse
Affiliation(s)
- Angélica Quintero-Flórez
- Instituto de Investigación y Formación Agraria y Pesquera- IFAPA Centro Venta del Llano, Ctra Bailén - Motril Km 18.5, 23620 Mengibar, Spain
| | - Gabriel Beltrán
- Instituto de Investigación y Formación Agraria y Pesquera- IFAPA Centro Venta del Llano, Ctra Bailén - Motril Km 18.5, 23620 Mengibar, Spain
| | - Araceli Sánchez-Ortiz
- Instituto de Investigación y Formación Agraria y Pesquera- IFAPA Centro Venta del Llano, Ctra Bailén - Motril Km 18.5, 23620 Mengibar, Spain
| |
Collapse
|
42
|
Behaviour of non-oxidized and oxidized flaxseed oils, as models of omega-3 rich lipids, during in vitro digestion. Occurrence of epoxidation reactions. Food Res Int 2017; 97:104-115. [DOI: 10.1016/j.foodres.2017.03.047] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 03/20/2017] [Accepted: 03/26/2017] [Indexed: 01/03/2023]
|
43
|
Effect of liquid smoking on lipid hydrolysis and oxidation reactions during in vitro gastrointestinal digestion of European sea bass. Food Res Int 2017; 97:51-61. [DOI: 10.1016/j.foodres.2017.03.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 03/14/2017] [Accepted: 03/19/2017] [Indexed: 01/15/2023]
|
44
|
Cytoprotective Mechanisms Mediated by Polyphenols from Chilean Native Berries against Free Radical-Induced Damage on AGS Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9808520. [PMID: 28553436 PMCID: PMC5434242 DOI: 10.1155/2017/9808520] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 03/01/2017] [Accepted: 03/16/2017] [Indexed: 01/06/2023]
Abstract
The prevalence of cytoprotective mechanisms induced by polyphenols such as activation of intracellular antioxidant responses (ICM) and direct free radical scavenging was investigated in native Chilean species of strawberries, raspberries, and currants. Human gastric epithelial cells were co- and preincubated with polyphenolic-enriched extracts (PEEs) from Chilean raspberries (Rubus geoides), strawberries (Fragaria chiloensis ssp. chiloensis f. chiloensis), and currants (Ribes magellanicum) and challenged with peroxyl and hydroxyl radicals. Cellular protection was determined in terms of cell viability, glyoxalase I and glutathione s-transferases activities, and carboxymethyl lysine (CML) and malondialdehyde levels. Our results indicate that cytoprotection induced by ICM was the prevalent mechanism for Rubus geoides and F. chiloensis. This agreed with increased levels of glyoxalase I and glutathione S-transferase activities in cells preincubated with PEEs. ORAC index indicated that F. chiloensis was the most efficient peroxyl radical scavenger. Moreover, ICM mediated by F. chiloensis was effective in protecting cells from CML accumulation in contrast to the protective effects induced by free radical scavenging. Our results indicate that although both polyphenol-mediated mechanisms can exert protective effects, ICM was the most prevalent in AGS cells. These results suggest a potential use of these native berries as functional food.
Collapse
|
45
|
Redox homeostasis in stomach medium by foods: The Postprandial Oxidative Stress Index (POSI) for balancing nutrition and human health. Redox Biol 2017; 12:929-936. [PMID: 28478382 PMCID: PMC5426031 DOI: 10.1016/j.redox.2017.04.029] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 04/16/2017] [Accepted: 04/23/2017] [Indexed: 12/20/2022] Open
Abstract
Red-meat lipid peroxidation in the stomach results in postprandial oxidative stress (POS) which is characterized by the generation of a variety of reactive cytotoxic aldehydes including malondialdehyde (MDA). MDA is absorbed in the blood system reacts with cell proteins to form adducts resulting in advanced lipid peroxidation end products (ALEs), producing dysfunctional proteins and cellular responses. The pathological consequences of ALEs tissue damage include inflammation and increased risk for many chronic diseases that are associated with a Western-type diet. In earlier studies we used the simulated gastric fluid (SGF) condition to show that the in vitro generation of MDA from red meat closely resembles that in human blood after consumption the same amount of meat. In vivo and in vitro MDA generations were similarly suppressed by polyphenol-rich beverages (red wine and coffee) consumed with the meal. The present study uses the in vitro SGF to assess the capacity of more than 50 foods of plant origin to suppress red meat peroxidation and formation of MDA. The results were calculated as reducing POS index (rPOSI) which represents the capacity in percent of 100 g of the food used to inhibit lipid peroxidation of 200 g red-meat a POSI enhancer (ePOSI). The index permitted to extrapolate the need of rPOSI from a food alone or in ensemble such Greek salad, to neutralize an ePOSI in stomach medium, (ePOS–rPOSI=0). The correlation between the rPOSI and polyphenols in the tested foods was R2=0.75. The Index was validated by comparison of the predicted rPOSI for a portion of Greek salad or red-wine to real inhibition of POS enhancers. The POS Index permit to better balancing nutrition for human health. Absorption of diet MDA and ALEs in blood could induce risk factors for CVD and other diseases. Red-meat generated MDA and ALEs in SGF are defined as ePOSI. Reducing agents present in plant foods, reduced MDA and ALEs in SGF, are defined as rPOSI. Calculated plant reducing agents by rPOSI was found to highly predict the reducing of ePOSI. The POS index would help to quantify nutrition for promoting human health.
Collapse
|
46
|
Vandemoortele A, Babat P, Yakubu M, De Meulenaer B. Reactivity of Free Malondialdehyde during In Vitro Simulated Gastrointestinal Digestion. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:2198-2204. [PMID: 28244323 DOI: 10.1021/acs.jafc.7b00053] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
An aqueous buffer, a saturated glycerol triheptanoate oil, and a Tween 20 stabilized fully hydrogenated coconut oil-in-water emulsion, all spiked with malondialdehyde, were subjected to in vitro digestion. A dynamic equilibrium between malondialdehyde, its aldol self-condensation products, and its hydrolytic cleavage products was observed. This equilibrium depended upon the kind of sample and the temperature at which these samples were preincubated during 24 h. The presence of oil during gastric digestion protected the aldol self-condensation and cleavage products from conversion to malondialdehyde, which occurred in the aqueous acidic gastric chyme. In parallel, the presence of oil enhanced the reactivity of malondialdehyde throughout the gastrointestinal digestion process. Malondialdehyde recoveries after digestion varied between 42 and 90%, depending upon the model system studied, with the aldol self-condensation as the main reaction pathway. In conclusion, this study revealed that malondialdehyde is a very reactive molecule whose reactivity does not stop at the point of ingestion.
Collapse
Affiliation(s)
- Angelique Vandemoortele
- NutriFOODchem Unit, Department of Food Safety and Food Quality (Partner in Food2Know), Faculty of Bioscience Engineering, Ghent University , Coupure Links 653, B-9000 Ghent, Belgium
| | - Pinar Babat
- NutriFOODchem Unit, Department of Food Safety and Food Quality (Partner in Food2Know), Faculty of Bioscience Engineering, Ghent University , Coupure Links 653, B-9000 Ghent, Belgium
| | - Mariam Yakubu
- NutriFOODchem Unit, Department of Food Safety and Food Quality (Partner in Food2Know), Faculty of Bioscience Engineering, Ghent University , Coupure Links 653, B-9000 Ghent, Belgium
| | - Bruno De Meulenaer
- NutriFOODchem Unit, Department of Food Safety and Food Quality (Partner in Food2Know), Faculty of Bioscience Engineering, Ghent University , Coupure Links 653, B-9000 Ghent, Belgium
| |
Collapse
|
47
|
Dasilva G, Pazos M, García-Egido E, Gallardo JM, Ramos-Romero S, Torres JL, Romeu M, Nogués MR, Medina I. A lipidomic study on the regulation of inflammation and oxidative stress targeted by marine ω-3 PUFA and polyphenols in high-fat high-sucrose diets. J Nutr Biochem 2017; 43:53-67. [PMID: 28260647 DOI: 10.1016/j.jnutbio.2017.02.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 01/19/2017] [Accepted: 02/08/2017] [Indexed: 01/14/2023]
Abstract
The ability of polyphenols to ameliorate potential oxidative damage of ω-3 PUFAs when they are consumed together and then, to enhance their potentially individual effects on metabolic health is discussed through the modulation of fatty acids profiling and the production of lipid mediators. For that, the effects of the combined consumption of fish oils and grape seed procyanidins on the inflammatory response and redox unbalance triggered by high-fat high-sucrose (HFHS) diets were studied in an animal model of Wistar rats. A standard diet was used as control. Results suggested that fish oils produced a replacement of ω-6 by ω-3 PUFAs in membranes and tissues, and consequently they improved inflammatory and oxidative stress parameters: favored the activity of 12/15-lipoxygenases on ω-3 PUFAs, enhanced glutathione peroxidases activity, modulated proinflammatory lipid mediators synthesis through the cyclooxygenase (COX) pathways and down-regulated the synthesis de novo of ARA leaded by Δ5 desaturase. Although polyphenols exerted an antioxidative and antiinflammatory effect in the standard diet, they were less effective to reduce inflammation in the HFHS dietary model. Contrary to the effect observed in the standard diet, polyphenols up-regulated COX pathways toward ω-6 proinflammatory eicosanoids as PGE2 and 11-HETE and decreased the detoxification of ω-3 hydroperoxides in the HFHS diet. As a result, additive effects between fish oils and polyphenols were found in the standard diet in terms of reducing inflammation and oxidative stress. However, in the HFHS diets, fish oils seem to be the one responsible for the positive effects found in the combined group.
Collapse
Affiliation(s)
- Gabriel Dasilva
- Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Científicas (IIM-CSIC), E-36208 Vigo, Galicia, Spain; Department of Analytical Chemistry, Nutrition and Bromatology and Research Institute for Food Analysis (I.I.A.A.), University of Santiago de Compostela, E-15782 Santiago de Compostela, Galicia, Spain.
| | - Manuel Pazos
- Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Científicas (IIM-CSIC), E-36208 Vigo, Galicia, Spain
| | - Eduardo García-Egido
- Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Científicas (IIM-CSIC), E-36208 Vigo, Galicia, Spain
| | - José M Gallardo
- Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Científicas (IIM-CSIC), E-36208 Vigo, Galicia, Spain
| | - Sara Ramos-Romero
- Instituto de Química Avanzada de Catalunya (IQAC-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Josep Lluís Torres
- Instituto de Química Avanzada de Catalunya (IQAC-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Marta Romeu
- Unidad de Farmacología, Facultad de Medicina, Universidad Rovira i Virgili, Sant Llorenç 21, E-43201 Reus, Spain
| | - María-Rosa Nogués
- Unidad de Farmacología, Facultad de Medicina, Universidad Rovira i Virgili, Sant Llorenç 21, E-43201 Reus, Spain
| | - Isabel Medina
- Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Científicas (IIM-CSIC), E-36208 Vigo, Galicia, Spain
| |
Collapse
|
48
|
Nieva-Echevarría B, Goicoechea E, Manzanos MJ, Guillén MD. Fish in Vitro Digestion: Influence of Fish Salting on the Extent of Lipolysis, Oxidation, and Other Reactions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:879-891. [PMID: 28052192 DOI: 10.1021/acs.jafc.6b04334] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A study of the various chemical reactions which take place during fish in vitro digestion and the potential effect of fish salting on their extent is addressed for the first time. Farmed European sea bass fillets, raw, brine-salted or dry-salted, were digested using a gastrointestinal in vitro model. Fish lipid extracts before and after digestion were analyzed by 1H NMR, and the headspace composition of the digestates was investigated by SPME-GC/MS. During digestion, not only lipolysis, but also fish lipid oxidation took place. This latter was evidenced by the generation of conjugated dienes supported on chains having also hydroperoxy- and hydroxy-groups (primary oxidation compounds), by the increase of volatile secondary oxidation products, and by the decrease of the antioxidant 2,6-di-tert-butyl-hydroxytoluene (BHT). Likewise, esterification and Maillard-type reactions also occurred. Salting, and especially dry-salting, enhanced all these reactions, except for lipolysis, during digestion.
Collapse
Affiliation(s)
- Bárbara Nieva-Echevarría
- Food Technology, Faculty of Pharmacy, Lascaray Research Center, University of the Basque Country (UPV/EHU) , Paseo de la Universidad n° 7, 01006 Vitoria, Spain
| | - Encarnación Goicoechea
- Food Technology, Faculty of Pharmacy, Lascaray Research Center, University of the Basque Country (UPV/EHU) , Paseo de la Universidad n° 7, 01006 Vitoria, Spain
| | - María J Manzanos
- Food Technology, Faculty of Pharmacy, Lascaray Research Center, University of the Basque Country (UPV/EHU) , Paseo de la Universidad n° 7, 01006 Vitoria, Spain
| | - María D Guillén
- Food Technology, Faculty of Pharmacy, Lascaray Research Center, University of the Basque Country (UPV/EHU) , Paseo de la Universidad n° 7, 01006 Vitoria, Spain
| |
Collapse
|
49
|
Van Hecke T, Van Camp J, De Smet S. Oxidation During Digestion of Meat: Interactions with the Diet andHelicobacter pyloriGastritis, and Implications on Human Health. Compr Rev Food Sci Food Saf 2017; 16:214-233. [DOI: 10.1111/1541-4337.12248] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/29/2016] [Accepted: 11/30/2016] [Indexed: 12/23/2022]
Affiliation(s)
- Thomas Van Hecke
- the Laboratory for Animal Nutrition and Animal Product Quality; Ghent Univ.; Ghent Belgium
| | - John Van Camp
- the Unit of Food Chemistry and Human Nutrition; Ghent Univ.; Ghent Belgium
| | - Stefaan De Smet
- the Laboratory for Animal Nutrition and Animal Product Quality; Ghent Univ.; Ghent Belgium
| |
Collapse
|
50
|
A Chilean Berry Concentrate Protects against Postprandial Oxidative Stress and Increases Plasma Antioxidant Activity in Healthy Humans. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:8361493. [PMID: 28243359 PMCID: PMC5294375 DOI: 10.1155/2017/8361493] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 11/05/2016] [Accepted: 11/23/2016] [Indexed: 11/17/2022]
Abstract
This study formulated and characterized an antioxidant-rich concentrate of berries (BPC-350) produced in Chile, which was used to perform a crossover study aimed at determining the effect of the berries on the modulation of plasma postprandial oxidative stress and antioxidant status. Healthy male volunteers (N = 11) were randomly assigned to three experimental meals: (1) 250 g of ground turkey burger (GTB) + 500 mL of water; (2) 250 g of GTB + 500 mL of 5% BPC-350; (3) 250 g of GTB prepared with 6% BPC-350 + 500 mL of 5% BPC-350. Venous blood samples were collected prior to meal intake and every hour for six hours after intake. Malondialdehyde (MDA), carbonyls in proteins, and DPPH (2,2-diphenyl-1-picrylhydrazyl) antioxidant capacity were quantified in plasma. Significant differences indicated that BPC-350 decreases MDA plasma concentration and protein carbonyls (p < 0.05). Additionally, a significant increase in the DPPH antioxidant capacity was observed in Meals 2 and 3 when compared to Meal 1 (p < 0.05). The results are discussed in terms of oxidative reactions that occur during digestion at the stomach level and the important effect of oxidative reactions that occur during the thermal processing of red meat.
Collapse
|