1
|
Végh R, Csóka M, Sörös C, Sipos L. Underexplored food safety hazards of beekeeping products: Key knowledge gaps and suggestions for future research. Compr Rev Food Sci Food Saf 2024; 23:e13404. [PMID: 39136999 DOI: 10.1111/1541-4337.13404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/06/2024] [Accepted: 06/16/2024] [Indexed: 08/15/2024]
Abstract
These days, a growing consumer demand and scientific interest can be observed for nutraceuticals of natural origin, including apiculture products. Due to the growing emphasis on environmental protection, extensive research has been conducted on the pesticide and heavy metal contamination of bee products; however, less attention is devoted on other food safety aspects. In our review, scientific information on the less-researched food safety hazards of honey, bee bread, royal jelly, propolis, and beeswax are summarized. Bee products originating from certain plants may inherently contain phytotoxins, like pyrrolizidine alkaloids, tropane alkaloids, matrine alkaloids, grayanotoxins, gelsemium alkaloids, or tutin. Several case studies evidence that bee products can induce allergic responses to sensitive individuals, varying from mild to severe symptoms, including the potentially lethal anaphylaxis. Exposure to high temperature or long storage may lead to the formation of the potentially toxic 5-hydroxymethylfurfural. Persistent organic pollutants, radionuclides, and microplastics can potentially be transferred to bee products from contaminated environmental sources. And lastly, inappropriate beekeeping practices can lead to the contamination of beekeeping products with harmful microorganisms and mycotoxins. Our review demonstrates the necessity of applying good beekeeping practices in order to protect honeybees and consumers of their products. An important aim of our work is to identify key knowledge gaps regarding the food safety of apiculture products.
Collapse
Affiliation(s)
- Rita Végh
- Department of Nutrition Science, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - Mariann Csóka
- Department of Nutrition Science, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - Csilla Sörös
- Department of Food Chemistry and Analysis Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - László Sipos
- Department of Postharvest, Institute of Food Science and Technology, Commercial and Sensory Science, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
- Institute of Economics, Centre of Economic and Regional Studies, Hungarian Research Network (HUN-REN), Budapest, Hungary
| |
Collapse
|
2
|
Kucukoglu AS, Hiz G, Karaca H. Effects of thermal and nonthermal treatments on microorganisms, pyrrolizidine alkaloids and volatile compounds in oregano (Origanum vulgare L.). Food Chem 2024; 440:138235. [PMID: 38134825 DOI: 10.1016/j.foodchem.2023.138235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/29/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023]
Abstract
Effects of steam sterilization, gamma-irradiation, UV-irradiation and ozonation on microbial inactivation, pyrrolizidine alkaloid degradation and volatile compound profile in oregano were investigated. Steam sterilization and gamma-irradiation were the most effective treatments in inactivating microorganisms. These treatments resulted in 0.87-2.15 log reductions in total aerobic mesophilic bacteria counts and reduced yeast-mold and Enterobacteriaceae counts below the detectable level. Steam sterilization caused increased levels of pyrrolizidine alkaloids (PAs) and decreased levels of their N-oxide forms (PANOs) demonstrating a simultaneous conversion of PANOs into the corresponding PAs. Ozone treatment caused significant decreases in the levels of individual and total PAs/PANOs. After ozone treatment, decreases of 54.4, 53.9, 61.6 and 61.4% were observed in the levels of europine-N-oxide, europine, lasiocarpine-N-oxide and lasiocarpine, respectively. Steam sterilization, UV-irradiation and ozone treatments significantly altered the composition of the volatile compounds of oregano as evidenced by decreased levels of major components and the formation of some new compounds.
Collapse
Affiliation(s)
- Arife S Kucukoglu
- Department of Food Engineering, Faculty of Engineering, Pamukkale University, 20160, Kinikli, Denizli, Turkey.
| | - Gulin Hiz
- Denizli Food Control Laboratory Directorate, Ministry of Agriculture and Forestry, Republic of Turkey, 20010, Merkezefendi, Denizli, Turkey.
| | - Hakan Karaca
- Department of Food Engineering, Faculty of Engineering, Pamukkale University, 20160, Kinikli, Denizli, Turkey.
| |
Collapse
|
3
|
Darwish AMG, Abd El-Wahed AA, Shehata MG, El-Seedi HR, Masry SHD, Khalifa SAM, Mahfouz HM, El-Sohaimy SA. Chemical Profiling and Nutritional Evaluation of Bee Pollen, Bee Bread, and Royal Jelly and Their Role in Functional Fermented Dairy Products. Molecules 2022; 28:227. [PMID: 36615421 PMCID: PMC9822387 DOI: 10.3390/molecules28010227] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Honeybee products, as multicomponent substances, have been a focus of great interest. The present work aimed to perform the nutritional and chemical profiling and biochemical characterization of bee pollen (BP), bee bread (BB), and royal jelly (RJ) and study their applications in the fortification of functional fermented dairy products. Their effects on starter cultures and the physicochemical and sensorial quality of products were monitored. A molecular networking analysis identified a total of 46 compounds in the three bee products that could be potential medicines, including flavonoids, fatty acids, and peptides. BB showed the highest protein and sugar contents (22.57 and 26.78 g/100 g), which cover 45.14 and 53.56% of their daily values (DVs), with considerable amounts of the essential amino acids threonine and lysine (59.50 and 42.03%). BP, BB, and RJ can be considered sources of iron, as 100 g can cover 141, 198.5, and 94.94% of DV%, respectively. BP was revealed to have the highest phenolic and flavonoid contents (105.68 and 43.91 µg/g) and showed a synergetic effect when mixed with RJ, resulting in increased antioxidant activity, while BB showed a synergetic effect when mixed with RJ in terms of both antioxidant and proteolytic powers (IC50 7.54, 11.55, 12.15, 12.50, and 12.65 cP compared to the control (10.55 cP)), reflecting their organoleptic properties and highlighting these health-oriented products as promising natural products for human health care.
Collapse
Affiliation(s)
- Amira M. G. Darwish
- Food Industry Technology Program, Faculty of Industrial and Energy Technology, Borg Al Arab Technological University, Alexandria 21934, Egypt
- Food Technology Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria 21934, Egypt
| | - Aida A. Abd El-Wahed
- Department of Bee Research, Plant Protection Research Institute, Agricultural Research Centre, Giza 12627, Egypt
| | - Mohamed G. Shehata
- Food Industry Technology Program, Faculty of Industrial and Energy Technology, Borg Al Arab Technological University, Alexandria 21934, Egypt
- Food Research Section, R&D Division, Abu Dhabi Agriculture and Food Safety Authority (ADAFSA), Abu Dhabi 52150, United Arab Emirates
| | - Hesham R. El-Seedi
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu Education Department, Jiangsu University, Nanjing 210024, China
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Centre, P.O. Box 591, SE 751 24 Uppsala, Sweden
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Koom 32512, Egypt
| | - Saad H. D. Masry
- Department of Plant Protection and Molecular Diagnosis, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications (SRTACity), Alexandria 21934, Egypt
- Abu Dhabi Agriculture and Food Safety Authority, Al Ain 52150, United Arab Emirates
| | - Shaden A. M. Khalifa
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-106 91 Stockholm, Sweden
| | - Hatem M. Mahfouz
- Department of Plant Production, Faculty of Environmental Agricultural Sciences Arish University, North Sinai 45511, Egypt
| | - Sobhy A. El-Sohaimy
- Food Industry Technology Program, Faculty of Industrial and Energy Technology, Borg Al Arab Technological University, Alexandria 21934, Egypt
- Department of Technology and Organization of Public Catering, Institute of Sport, Tourism and Services, South Ural State University, 454080 Chelyabinsk, Russia
| |
Collapse
|
4
|
Han H, Jiang C, Wang C, Lu Y, Wang Z, Chai Y, Zhang X, Liu X, Lu C, Chen H. Dissipation pattern and conversion of pyrrolizidine alkaloids (PAs) and pyrrolizidine alkaloid N-oxides (PANOs) during tea manufacturing and brewing. Food Chem 2022; 390:133183. [PMID: 35597088 DOI: 10.1016/j.foodchem.2022.133183] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 04/28/2022] [Accepted: 05/06/2022] [Indexed: 01/23/2023]
Abstract
Pyrrolizidine alkaloids (PAs) and pyrrolizidine alkaloid N-oxides (PANOs) are toxic secondary metabolites in plants, and one kind of main exogenous pollutants of tea. Herein, the dissipation pattern and conversion behavior of PAs/PANOs were investigated during tea manufacturing and brewing using ultra high-performance liquid chromatography tandem mass spectrometry. Compared with PAs (processing factor (PF) = 0.73-1.15), PANOs had higher degradation rates (PF = 0.21-0.56) during tea manufacturing, and drying played the most important role in PANOs degradation. Moreover, PANOs were firstly discovered to be converted to corresponding PAs especially in the time-consuming (spreading of green tea manufacturing and withering of black tea manufacturing) and high-temperature tea processing (drying). Moreover, higher transfer rates of PANOs (≥75.84%) than that of PAs (≤56.53%) were observed during tea brewing. Due to higher toxicity of PAs than PANOs, these results are conducive to risk assessment and pollution control of PAs/PANOs in tea.
Collapse
Affiliation(s)
- Haolei Han
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Changling Jiang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chen Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety & Risk Assessment, Ministry of Agriculture, Hangzhou 310008, China
| | - Yuting Lu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ziqi Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Biochemistry and Biotechnology, Ministry of Agriculture and Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Yunfeng Chai
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety & Risk Assessment, Ministry of Agriculture, Hangzhou 310008, China
| | - Xiangchun Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety & Risk Assessment, Ministry of Agriculture, Hangzhou 310008, China
| | - Xin Liu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety & Risk Assessment, Ministry of Agriculture, Hangzhou 310008, China
| | - Chengyin Lu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety & Risk Assessment, Ministry of Agriculture, Hangzhou 310008, China.
| | - Hongping Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety & Risk Assessment, Ministry of Agriculture, Hangzhou 310008, China.
| |
Collapse
|
5
|
Klečka J, Mikát M, Koloušková P, Hadrava J, Straka J. Individual-level specialisation and interspecific resource partitioning in bees revealed by pollen DNA metabarcoding. PeerJ 2022; 10:e13671. [PMID: 35959478 PMCID: PMC9359135 DOI: 10.7717/peerj.13671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 06/12/2022] [Indexed: 01/17/2023] Open
Abstract
It is increasingly recognised that intraspecific variation in traits, such as morphology, behaviour, or diet is both ubiquitous and ecologically important. While many species of predators and herbivores are known to display high levels of between-individual diet variation, there is a lack of studies on pollinators. It is important to fill in this gap because individual-level specialisation of flower-visiting insects is expected to affect their efficiency as pollinators with consequences for plant reproduction. Accordingly, the aim of our study was to quantify the level of individual-level specialisation and foraging preferences, as well as interspecific resource partitioning, in three co-occurring species of bees of the genus Ceratina (Hymenoptera: Apidae: Xylocopinae), C. chalybea, C. nigrolabiata, and C. cucurbitina. We conducted a field experiment where we provided artificial nesting opportunities for the bees and combined a short-term mark-recapture study with the dissection of the bees' nests to obtain repeated samples from individual foraging females and complete pollen provisions from their nests. We used DNA metabarcoding based on the ITS2 locus to identify the composition of the pollen samples. We found that the composition of pollen carried on the bodies of female bees and stored in the brood provisions in their nests significantly differed among the three co-occurring species. At the intraspecific level, individual females consistently differed in their level of specialisation and in the composition of pollen carried on their bodies and stored in their nests. We also demonstrate that higher generalisation at the species level stemmed from larger among-individual variation in diets, as observed in other types of consumers, such as predators. Our study thus reveals how specialisation and foraging preferences of bees change from the scale of individual foraging bouts to complete pollen provisions accumulated in their nests over many days. Such a multi-scale view of foraging behaviour is necessary to improve our understanding of the functioning of plant-flower visitor communities.
Collapse
Affiliation(s)
- Jan Klečka
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Michael Mikát
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Pavla Koloušková
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Jiří Hadrava
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic,Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jakub Straka
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
6
|
Wang W, Jin J, Xu H, Shi Y, Boersch M, Yin Y. Comparative analysis of the main medicinal substances and applications of Echium vulgare L. and Echium plantagineum L.: A review. JOURNAL OF ETHNOPHARMACOLOGY 2022; 285:114894. [PMID: 34871767 DOI: 10.1016/j.jep.2021.114894] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/29/2021] [Accepted: 12/02/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Echium vulgare L. and Echium plantagineum L. originated in the Mediterranean, and were later domesticated in Africa, America, Asia, Europe and Oceania, where they were widely used to treat many diseases including cough, urinary tract infection, fever, inflammation and muscle strain. AIM OF THE STUDY The purpose of this review is to provide scientific literature on the traditional uses, bioactive chemical components and pharmacological activities of two species of Echium, and to critically analyze the information provided, so as to understand the current work on these two species and explore the possible prospect of this plant in pharmaceutical research. METHODS Systematic review and meta-analysis were conducted according to Prisma guidelines, and the related literatures searched on Google Academic, Science Direct, Baidu Scholars and China National Knowledge Infrastructure (CNKI) up to June 2021 were reviewed. The key words used are: Echium, E.vulgare, E.plantagineum, plant components, chemical components, pharmacological activities, pharmaceutical products and applications. Thereafter all eligible studies are analyzed and summarized in this review. The selection of manuscripts is based on the following inclusion criteria: the article has years of research or publication, is published in English, Portuguese or Spanish and Chinese, and there are keywords in the title, abstract, keywords or full text of the article. For the selection of manuscripts, first, select articles according to titles, then summarize them, and finally, analyze the full text of the publication. Elimination criteria: 1. Duplicate reports; 2. There are research design defects and poor quality; 3. Incomplete data and unclear ending effect; 4. The statistical method is wrong and cannot be corrected. RESULTS The pharmacological characteristics of E.vulgare and E.plantagineum can basically support their traditional use, but the medicinal substances contained in them are quite different in composition and content, and the development and application of corresponding products are also different. CONCLUSIONS At present, there is little clinical data about drugs related to the two species, and more research is needed in the future, especially human experiments and clinical trials, to evaluate the cellular and molecular mechanisms based on pharmacological, biological activity and safety studies, and to provide more powerful scientific basis for their traditional medicinal properties. In addition, the further application and development of the medicinal products of E.vulgare and E.plantagineum still need to be precise and identified, so as to give full play to their medicinal potential.
Collapse
Affiliation(s)
- Wu Wang
- Agricultural College of Jilin Agricultural University, No.2888 Xincheng Street, Changchun City, Jilin Province, 130118, China.
| | - Ju Jin
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast Campus, 4222, Queensland, Australia.
| | - Huifeng Xu
- Agricultural College of Jilin Agricultural University, No.2888 Xincheng Street, Changchun City, Jilin Province, 130118, China.
| | - Yanling Shi
- Agricultural College of Jilin Agricultural University, No.2888 Xincheng Street, Changchun City, Jilin Province, 130118, China.
| | - Mark Boersch
- Gold Coast Private Hospital, 15 Hill Street, Southport, Queensland, 4215, Australia.
| | - Yuhe Yin
- School of Life Sciences, Changchun University of Technology, No.7186 Weixing Road, Changchun City, Jilin Province, 130022, China.
| |
Collapse
|
7
|
|
8
|
Martinello M, Manzinello C, Gallina A, Mutinelli F. In‐house validation and application of UHPLC‐MS/MS method for the quantification of pyrrolizidine and tropane alkaloids in commercial honey bee‐collected pollen, teas and herbal infusions purchased on Italian market in 2019‐2020 referring to recent European Union regulations. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15567] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Marianna Martinello
- Istituto Zooprofilattico Sperimentale delle Venezie NRL for honey bee health Viale dell’Università 10 35020 Legnaro PD Italy
| | - Chiara Manzinello
- Istituto Zooprofilattico Sperimentale delle Venezie NRL for honey bee health Viale dell’Università 10 35020 Legnaro PD Italy
| | - Albino Gallina
- Istituto Zooprofilattico Sperimentale delle Venezie NRL for honey bee health Viale dell’Università 10 35020 Legnaro PD Italy
| | - Franco Mutinelli
- Istituto Zooprofilattico Sperimentale delle Venezie NRL for honey bee health Viale dell’Università 10 35020 Legnaro PD Italy
| |
Collapse
|
9
|
|
10
|
Valese AC, Daguer H, Muller CMO, Molognoni L, da Luz CFP, de Barcellos Falkenberg D, Gonzaga LV, Brugnerotto P, Gorniak SL, Barreto F, Fett R, Costa ACO. Quantification of pyrrolizidine alkaloids in Senecio brasiliensis, beehive pollen, and honey by LC-MS/MS. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2021; 56:685-694. [PMID: 34264805 DOI: 10.1080/03601234.2021.1943257] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This article presents the determination of eight pyrrolizidine alkaloids (PAs) by LC-MS/MS in honeys, pollen, and Senecio brasiliensis (Asteraceae) samples, all from Santa Catarina state, Brazil. In addition, the Box-Behnken design was used to perform an optimized sample preparation on pollens and S. brasiliensis parts. Senecionine and its N-oxide, besides retrorsine N-oxide, were determined in six of the seven honeys samples. Pollen from species of the Asteraceae, Fabaceae, and Boraginaceae families were found with greater predominance in three of the seven honeys samples. In these three honeys samples were also found the highest PAs levels. In beehive pollen, flower, and leaf of S. brasiliensis, the total levels of PAs and their N-oxides reached 221, 14.1 × 104, and 14.8 × 104 mg kg-1, respectively. In honeys, these compounds are chemical contaminants and therefore undesirable when the sum exceeds 71 µg kg-1, according to EFSA. On the other hand, although PAs are naturally present in plant and pollen of some species (Senecio, Crotalaria, Bacharis, Ecchium, Mimosa scabrella, Vernonia), it is important to monitor their levels in plants but also in honeys, and other beehive products since these compounds are transferred to the final product.
Collapse
Affiliation(s)
- Andressa Camargo Valese
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
- Federal Agricultural Defense Laboratory, Brazilian Ministry of Agriculture, Livestock and Food Supply, Sao Jose, SC, Brazil
| | - Heitor Daguer
- Federal Agricultural Defense Laboratory, Brazilian Ministry of Agriculture, Livestock and Food Supply, Sao Jose, SC, Brazil
| | | | - Luciano Molognoni
- Federal Agricultural Defense Laboratory, Brazilian Ministry of Agriculture, Livestock and Food Supply, Sao Jose, SC, Brazil
| | - Cynthia Fernandes Pinto da Luz
- Center for Research in Palynology, Department of the Environment of São Paulo, Institute of Botany, Sao Paulo, SP, Brazil
| | | | - Luciano Valdemiro Gonzaga
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Patricia Brugnerotto
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Silvana Lima Gorniak
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Fabiano Barreto
- Federal Agricultural Defense Laboratory, Brazilian Ministry of Agriculture, Livestock and Food Supply, Sao Jose, SC, Brazil
| | - Roseane Fett
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | | |
Collapse
|
11
|
Brugnerotto P, Seraglio SKT, Schulz M, Gonzaga LV, Fett R, Costa ACO. Pyrrolizidine alkaloids and beehive products: A review. Food Chem 2020; 342:128384. [PMID: 33214040 DOI: 10.1016/j.foodchem.2020.128384] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/25/2020] [Accepted: 10/10/2020] [Indexed: 12/31/2022]
Abstract
Pyrrolizidine alkaloids (PA) are secondary metabolites of plants, which are mostly found in the genus Senecio, Echium, Crotalaria, and Eupatorium. The presence of 1,2-unsaturated PA in foods is a concern to food regulators around the world because these compounds have been associated to acute and chronic toxicity, mainly in the liver. The intake foods with PA/PANO usually occur through accidental ingestion of plants and their derivatives, besides to products of vegetal-animal origin, such as honey. PA/PANO are transferred to honey by their presence in nectar, honeydew, and pollen, which are collected from the flora by bees. In addition to honey, other beekeeping products, such as pollen, royal jelly, propolis, and beeswax, are also vulnerable to PA contamination. In this context, this review provides information about chemical characteristics, regulation, and toxicity, as well as summarizes and critically discusses scientific publications that evaluated PA in honeys, pollens, royal jelly, and propolis.
Collapse
Affiliation(s)
- Patricia Brugnerotto
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianopolis, SC, Brazil.
| | | | - Mayara Schulz
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Luciano Valdemiro Gonzaga
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Roseane Fett
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | | |
Collapse
|
12
|
Marinho JBR, Soto-Blanco B. Toxicological Risk Assessment of the Accidental Ingestion of a Honeybee ( Apis mellifera L.) Present in Food. Front Vet Sci 2020; 7:583286. [PMID: 33134363 PMCID: PMC7561407 DOI: 10.3389/fvets.2020.583286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 08/25/2020] [Indexed: 11/17/2022] Open
Abstract
The aim of the present work was to evaluate the possible risk of toxic effects due to the ingestion of a honeybee (Apis mellifera L.) accidentally present in food. The methodology used in this study was a bibliographic survey of studies on the toxic effects related to honeybees, with a critical analysis of the possible risks of accidental ingestion of these insects. The amount of venom present in a bee is considered insufficient to induce detectable toxic effects in a person who ingests it by accident, and various components of the venom are destroyed by gastric secretions. However, despite the rare frequency, there is a risk of the ingestion of a bee, causing an allergic reaction to some components of the venom in sensitized individuals. In addition, pollen carried by a bee may cause an allergic reaction in a sensitive individual. Thus, the accidental ingestion of a bee present in a food does not pose the risk of toxic effects for the majority of the population but may promote allergic reactions in susceptible individuals.
Collapse
Affiliation(s)
- Jéssica Baeça Rezende Marinho
- Department of Veterinary Clinics and Surgery, Veterinary College, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Benito Soto-Blanco
- Department of Veterinary Clinics and Surgery, Veterinary College, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| |
Collapse
|
13
|
Discriminant analysis of pyrrolizidine alkaloid contamination in bee pollen based on near-infrared data from lab-stationary and portable spectrometers. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-020-03590-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractBee pollen may be contaminated with pyrrolizidine alkaloids (PAs) and their N-oxides (PANOs), which are mainly detected by liquid chromatography coupled to tandem mass spectrometry (LC–MS/MS), even though the use of fast near-infrared (NIR) spectroscopy is an ongoing alternative. Therefore, the main challenge of this study was to assess the feasibility of both a lab-stationary (Foss) and a portable (Polispec) NIR spectrometer in 60 dehydrated bee pollen samples. After an ANOVA-feature selection of the most informative NIR spectral data, canonical discriminant analysis (CDA) was performed to distinguish three quantitative PA/PANO classes (µg/kg): < LOQ (0.4), low; 0.4–400, moderate; > 400, high. According to the LC–MS/MS analysis, 77% of the samples were contaminated with PAs/PANOs and the sum content of the 17 target analytes was higher than 400 µg/kg in 28% of the samples. CDA was carried out on a pool of 18 (Foss) and 22 (Polispec) selected spectral variables and allowed accurate classification of samples from the low class as confirmed by the high values of Matthews correlation coefficient (≥ 0.91) for both NIR spectrometers. Leave-one-out cross-validation highlighted precise recognition of samples characterised by a high PA/PANO content with a low misclassification rate (0.02) as false negatives. The most informative wavelengths were within the < 1000, 1000–1660 and > 2400 nm regions for Foss and > 1500 nm for Polispec that could be associated with cyclic amines, and epoxide chemical structures of PAs/PANOs. In sum, both lab-stationary and portable NIR systems are reliable and fast techniques for detecting PA/PANO contamination in bee pollen.
Collapse
|
14
|
De Jesus Inacio L, Merlanti R, Lucatello L, Bisutti V, Contiero B, Serva L, Segato S, Capolongo F. Pyrrolizidine alkaloids in bee pollen identified by LC-MS/MS analysis and colour parameters using multivariate class modeling. Heliyon 2020; 6:e03593. [PMID: 32258459 PMCID: PMC7118412 DOI: 10.1016/j.heliyon.2020.e03593] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/13/2020] [Accepted: 03/11/2020] [Indexed: 01/28/2023] Open
Abstract
Toxic pyrrolizidine alkaloids (PAs) and their N-oxides (PANOs) can be present in bee pollen depending on the plants visited by bees. A liquid chromatography-mass spectrometry (LC-MS/MS) method was developed and validated to monitor 17 PAs/PANOs in 44 bee pollens. The CIE-L∗a∗b∗ colour coordinates with the specular component either included or excluded were recorded in pellets and ground aliquots. Lightness (L∗) and yellowness (b∗) of ground bee pollen were significantly correlated to PAs/PANOs content. The L∗ and b∗ cut-offs sorted by a receiver operating characteristic analysis to predict PAs/PANOs presence showed a significant increase in the relative risk to detect amounts higher than 84 μg kg-1. Two supervised canonical discriminant analyses confirmed that pollen without PAs could be distinguished from those containing PAs/PANOs. The data suggest that instrumental colour coupled with supervised models could be used as a screening test for PAs/PANOs in bee pollen, before the confirmatory LC-MS/MS analysis.
Collapse
Affiliation(s)
- Luciana De Jesus Inacio
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020, Legnaro, PD, Italy
| | - Roberta Merlanti
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020, Legnaro, PD, Italy
| | - Lorena Lucatello
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020, Legnaro, PD, Italy
| | - Vittoria Bisutti
- Department of Animal Medicine, Production and Health, University of Padova, 35020, Legnaro, PD, Italy
| | - Barbara Contiero
- Department of Animal Medicine, Production and Health, University of Padova, 35020, Legnaro, PD, Italy
| | - Lorenzo Serva
- Department of Animal Medicine, Production and Health, University of Padova, 35020, Legnaro, PD, Italy
| | - Severino Segato
- Department of Animal Medicine, Production and Health, University of Padova, 35020, Legnaro, PD, Italy
| | - Francesca Capolongo
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020, Legnaro, PD, Italy
| |
Collapse
|
15
|
The Application of Pollen as a Functional Food and Feed Ingredient-The Present and Perspectives. Biomolecules 2020; 10:biom10010084. [PMID: 31948037 PMCID: PMC7023195 DOI: 10.3390/biom10010084] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/30/2019] [Accepted: 01/02/2020] [Indexed: 12/11/2022] Open
Abstract
Pollen is recognized as an excellent dietary supplement for human nutrition, which is why it can be found in different forms on the market (granules, capsules, tablets, pellets, and powders). But, the digestibility of pollen’s nutrients is strongly affected by the presence of a pollen shell, which can decrease the bioavailability of nutrients by 50% and more. Since consumers have become more aware of the benefits of a healthy diet and the necessity to improve pollen digestibility, different pollen-based functional food products have been developed and extensive studies were done to estimate the beneficial effects of pollen-based feed on animal growth, health, and rigor mortise stage. Considering the positive effects of pollen nutrients and phytometabolites on human and animal health, the aim of this paper was to give an overview of recent achievements in the application of pollen in the formulation of functional food and animal diets. Special attention was paid to the effects of pollen’s addition on the nutritional, functional, techno-functional, and sensory properties of the new formulated food products. Anti-nutritional properties of pollen were also discussed. This review points out the benefits of pollen addition to food and feed and the possible directions in the further development of functional food and feed for the wellbeing of everyone.
Collapse
|
16
|
Antonelli M, Donelli D, Firenzuoli F. Therapeutic efficacy of orally administered pollen for nonallergic diseases: An umbrella review. Phytother Res 2019; 33:2938-2947. [PMID: 31435975 DOI: 10.1002/ptr.6484] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/15/2019] [Accepted: 08/04/2019] [Indexed: 11/10/2022]
Abstract
Pollen has been used for centuries as a tonic and a multipurpose remedy in traditional medicine. The present umbrella review aims to qualitatively assess the therapeutic efficacy of orally administered pollen in the management of nonallergic diseases. MEDLINE via PubMed, Embase, Scopus, Web of Science, CINAHL, Cochrane Library, and Google Scholar were systematically searched for relevant systematic reviews and meta-analyses. Articles were independently screened and selected, then quality of evidence of included studies was evaluated with a dedicated NIH tool. Retrieved evidence was critically appraised and discussed. Two hundred four articles were found and, after selection process, five systematic reviews were included in the present work, including one with a meta-analysis. Evidence from these reviews supports the use of grass pollen extracts for symptomatic benign prostatic hyperplasia (BPH) and chronic prostatitis (CP). Additional preliminary evidence on the topic indicates the potential use of grass pollen extracts for vasomotor symptoms in women. Overall, results of the present review suggest that flower pollen extracts may be useful as a complementary remedy for the management of BPH, CP, and vasomotor symptoms. Evidence regarding bee pollen is too limited to draw any conclusion on its clinical efficacy. Further studies are needed.
Collapse
Affiliation(s)
- Michele Antonelli
- Terme di Monticelli, Parma, Italy.,Research and Innovation Center in Phytotherapy and Integrated Medicine (CERFIT), Careggi University Hospital, Florence, Italy.,Institute of Public Health, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Davide Donelli
- Terme di Monticelli, Parma, Italy.,Research and Innovation Center in Phytotherapy and Integrated Medicine (CERFIT), Careggi University Hospital, Florence, Italy.,Servizio di Consulenza in Medicina Integrativa e Complementare, Croce Arancione, Reggio Emilia, Italy
| | - Fabio Firenzuoli
- Research and Innovation Center in Phytotherapy and Integrated Medicine (CERFIT), Careggi University Hospital, Florence, Italy
| |
Collapse
|
17
|
Kast C, Kilchenmann V, Reinhard H, Bieri K, Zoller O. Pyrrolizidine Alkaloids: The Botanical Origin of Pollen Collected during the Flowering Period of Echium vulgare and the Stability of Pyrrolizidine Alkaloids in Bee Bread. Molecules 2019; 24:E2214. [PMID: 31200507 PMCID: PMC6631664 DOI: 10.3390/molecules24122214] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/07/2019] [Accepted: 06/09/2019] [Indexed: 01/15/2023] Open
Abstract
Previous studies have shown that pollen products sold as nutritional supplements and used in apitherapy may contain toxic pyrrolizidine alkaloids (PAs) if bees collect pollen from PA-containing plants, such as Echium vulgare. In this study, the botanical origin of pollen from two observation sites was studied. Despite a high PA content in pollen samples that bees collected during E. vulgare's flowering period, bees were found to collect relatively few Echium pollen loads. Thus, the monitoring of pollen loads collected at the apiaries is unviable to estimate the risk of PA contamination in pollen or bee bread. In a second step, the stability of PAs in bee bread samples containing PAs at concentrations of 2538 ng/g and 98 ng/g was assessed over a period of five or six months, respectively. No significant PA reduction was observed in bee bread stored at 15 °C, but there were overall PA reductions of 39% and 33% in bee bread stored at 30 °C, reflecting hive conditions. While PA N-oxides decreased over time, other types of PAs remained relatively stable. Monitoring PAs in pollen products remains important to ensure consumer safety and should include echivulgarine (and its N-oxide), the major PA type found in pollen from E. vulgare.
Collapse
Affiliation(s)
- Christina Kast
- Agroscope, Swiss Bee Research Centre, Schwarzenburgstrasse 161, 3003 Bern, Switzerland.
| | - Verena Kilchenmann
- Agroscope, Swiss Bee Research Centre, Schwarzenburgstrasse 161, 3003 Bern, Switzerland.
| | - Hans Reinhard
- Federal Food Safety and Veterinary Office (FSVO), Risk Assessment Division, 3003 Bern, Switzerland.
| | - Katharina Bieri
- Biologisches Institut für Pollenanalyse K. Bieri GmbH, Talstrasse 23, 3122 Kehrsatz, Switzerland.
| | - Otmar Zoller
- Federal Food Safety and Veterinary Office (FSVO), Risk Assessment Division, 3003 Bern, Switzerland.
| |
Collapse
|
18
|
Specific Distribution of Pyrrolizidine Alkaloids in Floral Parts of Comfrey (Symphytum officinale) and its Implications for Flower Ecology. J Chem Ecol 2018; 45:128-135. [PMID: 30054770 DOI: 10.1007/s10886-018-0990-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/17/2018] [Accepted: 07/06/2018] [Indexed: 02/08/2023]
Abstract
Pyrrolizidine alkaloids (PAs) are a typical class of plant secondary metabolites that are constitutively produced as part of the plant's chemical defense. While roots are a well-established site of pyrrolizidine alkaloid biosynthesis, comfrey plants (Symphytum officinale; Boraginaceae) have been shown to additionally activate alkaloid production in specialized leaves and accumulate PAs in flowers during a short developmental stage in inflorescence development. To gain a better understanding of the accumulation and role of PAs in comfrey flowers and fruits, we have dissected and analyzed their tissues for PA content and patterns. PAs are almost exclusively accumulated in the ovaries, while petals, sepals, and pollen hardly contain PAs. High levels of PAs are detectable in the fruit, but the elaiosome was shown to be PA free. The absence of 7-acetyllycopsamine in floral parts while present in leaves and roots suggests that the additional site of PA biosynthesis provides the pool of PAs for translocation to floral structures. Our data suggest that PA accumulation has to be understood as a highly dynamic system resulting from a combination of efficient transport and additional sites of synthesis that are only temporarily active. Our findings are further discussed in the context of the ecological roles of PAs in comfrey flowers.
Collapse
|
19
|
Gottschalk C, Ostertag J, Meyer K, Gehring K, Thyssen S, Gareis M. Influence of grass pellet production on pyrrolizidine alkaloids occurring in Senecio aquaticus-infested grassland. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2018; 35:750-759. [PMID: 29377789 DOI: 10.1080/19440049.2018.1430901] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
1,2-Dehydro-pyrrolizidine alkaloids (PA) and their N-oxides (PANO) exhibit acute and chronic toxic effects on the liver and other organs and therefore are a hazard for animal and human health. In certain regions of Germany, an increasing spread of Senecio spp. (ragwort) on grassland and farmland areas has been observed during the last years leading to a PA/PANO-contamination of feed and food of animal and plant origin. This project was carried out to elucidate whether the process of grass pellet production applying hot air drying influences the content of PA and PANO. Samples of hay (n = 22) and grass pellets (n = 28) originated from naturally infested grassland (around 10% and 30% dominance of Senecio aquaticus) and from a trial plot with around 50% dominance. Grass pellets were prepared from grass originating from exactly the same plots as the hay samples. The samples were analysed by liquid chromatography-tandem mass spectrometry for PA/PANO typically produced by this weed. The results of the study revealed that PA/PANO levels (predominantly sum of senecionine, seneciphylline, erucifoline and their N-oxides) in hay ranged between 2.1 and 12.6 mg kg-1 dry matter in samples with 10% and 30% dominance of S. aquaticus, respectively. Samples from the trial plot (50% dominance) had levels of up to 52.9 mg kg-1. Notably, the hot air drying process during the production of grass pellets did not lead to a reduction of PA/PANO levels. Instead, the levels in grass pellets with 10% and 30% S. aquaticus ranged from 3.1 to 55.1 mg kg-1. Grass pellets from the trial plot contained up to 96.8 mg kg-1. In conclusion, hot air drying and grass pellet production did not affect PA/PANO contents in plant material and therefore, heat-dried products cannot be regarded as safe in view of the toxic potential of 1,2-dehydro-pyrrolizidine alkaloids.
Collapse
Affiliation(s)
- Christoph Gottschalk
- a Chair of Food Safety, Faculty of Veterinary Medicine , Ludwig-Maximilians-University Munich (LMU) , Oberschleissheim , Germany
| | - Johannes Ostertag
- b Bavarian State Research Center for Agriculture (LfL), Institute for Animal Nutrition and Feed Management , Poing/Grub , Germany.,c Plant Health, Animal Feed and Analysis of Seeds , Center for Agricultural Technology Augustenberg , Karlsruhe , Germany
| | - Karsten Meyer
- d Chair of Animal Hygiene , Technische Universität München (TUM) , Freising , Germany
| | - Klaus Gehring
- e Bavarian State Research Center for Agriculture (LfL), Institute for Plant Protection , Freising , Germany
| | - Stefan Thyssen
- e Bavarian State Research Center for Agriculture (LfL), Institute for Plant Protection , Freising , Germany
| | - Manfred Gareis
- a Chair of Food Safety, Faculty of Veterinary Medicine , Ludwig-Maximilians-University Munich (LMU) , Oberschleissheim , Germany
| |
Collapse
|
20
|
Kast C, Kilchenmann V, Reinhard H, Droz B, Lucchetti MA, Dübecke A, Beckh G, Zoller O. Chemical fingerprinting identifies Echium vulgare, Eupatorium cannabinum and Senecio spp. as plant species mainly responsible for pyrrolizidine alkaloids in bee-collected pollen. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2017; 35:316-327. [DOI: 10.1080/19440049.2017.1378443] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
| | | | - Hans Reinhard
- Federal Food Safety and Veterinary Office (FSVO), Risk Assessment Division, Bern, Switzerland
| | - Benoit Droz
- Agroscope, Swiss Bee Research Centre, Bern, Switzerland
| | - Matteo Angelo Lucchetti
- Agroscope, Swiss Bee Research Centre, Bern, Switzerland
- Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Arne Dübecke
- Quality Services International GmbH (QSI), Bremen, Germany
| | - Gudrun Beckh
- Quality Services International GmbH (QSI), Bremen, Germany
| | - Otmar Zoller
- Federal Food Safety and Veterinary Office (FSVO), Risk Assessment Division, Bern, Switzerland
| |
Collapse
|
21
|
Valese AC, Molognoni L, de Sá Ploêncio LA, de Lima FG, Gonzaga LV, Górniak SL, Daguer H, Barreto F, Oliveira Costa AC. A fast and simple LC-ESI-MS/MS method for detecting pyrrolizidine alkaloids in honey with full validation and measurement uncertainty. Food Control 2016. [DOI: 10.1016/j.foodcont.2016.02.050] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
22
|
Lorena L, Roberta M, Alessandra R, Clara M, Francesca C. Evaluation of Some Pyrrolizidine Alkaloids in Honey Samples from the Veneto Region (Italy) by LC-MS/MS. FOOD ANAL METHOD 2015. [DOI: 10.1007/s12161-015-0364-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
23
|
Antiviral Action of Hydromethanolic Extract of Geopropolis from Scaptotrigona postica against Antiherpes Simplex Virus (HSV-1). EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:296086. [PMID: 25861357 PMCID: PMC4377393 DOI: 10.1155/2015/296086] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 02/13/2015] [Accepted: 02/15/2015] [Indexed: 11/17/2022]
Abstract
The studies on chemical composition and biological activity of propolis had focused mainly on species Apis mellifera L. (Hymenoptera: Apidae). There are few studies about the uncommon propolis collected by stingless bees of the Meliponini tribe known as geopropolis. The geopropolis from Scaptotrigona postica was collected in the region of Barra do Corda, Maranhão state, Brazil. The chemical analysis of hydromethanolic extract of this geopropolis (HMG) was carried out through HPLC-DAD-ESI-MS/MS and the main constituents found were pyrrolizidine alkaloids and C-glycosyl flavones. The presence of alkaloids in extracts of propolis is detected for the first time in this sample. The antiviral activity of HMG was evaluated through viral DNA quantification experiments and electron microscopy experiments. Quantification of viral DNA from herpes virus showed reduction of about 98% in all conditions and concentration tested of the HMG extract. The results obtained were corroborated by transmission electron microscopy, in which the images did not show particle or viral replication complex. The antiviral activity of C-glycosyl flavones was reported for a variety of viruses, being observed at different points in the viral replication. This work is the first report about the antiviral activity of geopropolis from Scaptotrigona postica, in vitro, against antiherpes simplex virus (HSV).
Collapse
|
24
|
Chizzola R, Bassler G, Kriechbaum M, Karrer G. Pyrrolizidine Alkaloid Production of Jacobaea aquatica under Different Cutting Regimes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:1293-1299. [PMID: 25607464 DOI: 10.1021/jf5047927] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Jacobaea aquatica (Asteraceae) growing in wet grasslands with low management intensity is regarded as a noxious weed with pyrrolizidine alkaloids (PAs), which cause health problems to livestock. The influence of different management practices on the production of PAs and on the proportion of J. aquatica in the fodder was studied. Five cutting regimes were applied during 4 years on permanent plots in lower Austria. The toxicity of the fodder was assessed by recording dry weight and alkaloid content of J. aquatica and total aboveground biomass. Different cutting regimes had significant effects on the PA content of J. aquatica and on its proportion in the fodder. The content of J. aquatica was lowest in fodder of June and October cuts and highest in second cuts in July and August. Total alkaloid contents exceeding 100 mg/kg were found in fodder harvested in July and August. After cutting, the toxic plants regenerated quickly and produced new flowering stalks within 4-5 weeks. Six macrocylic PAs were evaluated, with Z-erucifoline as the most abundant compound. The alkaloid levels were highest in plants cut during summer when flowering plants were present. Consequently, this fodder should not be fed to livestock over a long period of time.
Collapse
Affiliation(s)
- Remigius Chizzola
- Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine , Veterinärplatz 1, 1210 Vienna, Austria
| | | | | | | |
Collapse
|
25
|
Eberle CA, Forcella F, Gesch R, Weyers S, Peterson D, Eklund J. Flowering dynamics and pollinator visitation of oilseed echium (Echium plantagineum). PLoS One 2014; 9:e113556. [PMID: 25427071 PMCID: PMC4245144 DOI: 10.1371/journal.pone.0113556] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 10/28/2014] [Indexed: 11/19/2022] Open
Abstract
Echium (Echium plantagineum L.) is an alternative oilseed crop in summer-wet temperate regions that provides floral resources to pollinators. Its seed oil is rich in omega-3 fatty acids, such as stearidonic acid, which is desired highly by the cosmetic industry. Seeds were sown in field plots over three years in western Minnesota in spring (early-sown) or early summer (late-sown), and flower abundance, pollinator visitation, and seed yields were studied. Initial flowering commenced 41 to 55 d after sowing, and anthesis duration (first flowering to harvest) was 34 to 70 d. Late sowing dates delayed anthesis, but increased the intensity of visitation by pollinators. Cumulative flower densities ranged from 1 to 4.5 billion ha-1. Flowers attracted numerous honey bees (Apis mellifera L.), as many as 35 per minute of observation, which represented about 50% of all insect visitors. Early-sown echium produced seed yields up to 750 kg ha-1, which were 2-29 times higher than those of late-sown echium. Early sowing of echium in Minnesota provides abundant floral resources for pollinators for up to two months and simultaneously produces seed yields whose profits rival those of corn (Zea mays L.).
Collapse
Affiliation(s)
- Carrie A. Eberle
- United States Department of Agriculture-Agricultural Research Service, North Central Soil Conservation Research Lab, Morris, Minnesota, United States of America
| | - Frank Forcella
- United States Department of Agriculture-Agricultural Research Service, North Central Soil Conservation Research Lab, Morris, Minnesota, United States of America
| | - Russ Gesch
- United States Department of Agriculture-Agricultural Research Service, North Central Soil Conservation Research Lab, Morris, Minnesota, United States of America
| | - Sharon Weyers
- United States Department of Agriculture-Agricultural Research Service, North Central Soil Conservation Research Lab, Morris, Minnesota, United States of America
| | - Dean Peterson
- United States Department of Agriculture-Agricultural Research Service, North Central Soil Conservation Research Lab, Morris, Minnesota, United States of America
| | - James Eklund
- United States Department of Agriculture-Agricultural Research Service, North Central Soil Conservation Research Lab, Morris, Minnesota, United States of America
| |
Collapse
|
26
|
Survey of pyrrolizidine alkaloids in teas and herbal teas on the Swiss market using HPLC-MS/MS. Anal Bioanal Chem 2014; 406:7345-54. [DOI: 10.1007/s00216-014-8142-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 08/25/2014] [Accepted: 08/27/2014] [Indexed: 10/24/2022]
|
27
|
Abstract
This review covers pyrrolizidine alkaloids isolated from natural sources. Topics include: aspects of structure, isolation, and biological/pharmacological studies; total syntheses of necic acids, necine bases and closely-related non-natural analogues.
Collapse
Affiliation(s)
- Jeremy Robertson
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK.
| | | |
Collapse
|
28
|
Irwin RE, Cook D, Richardson LL, Manson JS, Gardner DR. Secondary compounds in floral rewards of toxic rangeland plants: impacts on pollinators. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:7335-44. [PMID: 24766254 DOI: 10.1021/jf500521w] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The study of plant secondary chemistry has been essential in understanding plant consumption by herbivores. There is growing evidence that secondary compounds also occur in floral rewards, including nectar and pollen. Many pollinators are generalist nectar and pollen foragers and thus are exposed to an array of secondary compounds in their diet. This review documents secondary compounds in the nectar or pollen of poisonous rangeland plants of the western United States and the effects of these compounds on the behavior, performance, and survival of pollinators. Furthermore, the biochemical, physiological, and behavioral mechanisms by which pollinators cope with secondary compound consumption are discussed, drawing parallels between pollinators and herbivores. Finally, three avenues of future research on floral reward chemistry are proposed. Given that the majority of flowering plants require animals for pollination, understanding how floral reward chemistry affects pollinators has implications for plant reproduction in agricultural and rangeland habitats.
Collapse
Affiliation(s)
- Rebecca E Irwin
- Department of Biological Sciences, Dartmouth College , Hanover, New Hampshire 03755, United States
| | | | | | | | | |
Collapse
|
29
|
Ribeiro-Varandas E, Ressurreição F, Viegas W, Delgado M. Cytotoxicity of Eupatorium cannabinum L. ethanolic extract against colon cancer cells and interactions with Bisphenol A and Doxorubicin. Altern Ther Health Med 2014; 14:264. [PMID: 25056133 PMCID: PMC4117973 DOI: 10.1186/1472-6882-14-264] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 07/10/2014] [Indexed: 12/18/2022]
Abstract
Background Eupatorium cannabinum L. has long been utilized in traditional medicine, however no information is available regarding cellular effects of full extracts. Here we assessed the effects of E. cannabinum ethanolic extract (EcEE) on the colon cancer line HT29. Potential interactions with bisphenol A (BPA) a synthetic phenolic compound to which humans are generally exposed and a commonly used chemotherapeutic agent, doxorubicin (DOX) were also evaluated. Methods HT29 cells were exposed to different concentrations (0.5 to 50 μg/ml) of EcEE alone or in combination with BPA or DOX. Cell viability was analyzed through resazurin assay. Gene transcription levels for NCL, FOS, p21, AURKA and bcl-xl were determined through qRT-PCR. Cytological analysis included evaluation of nuclear and mitotic anomalies after DAPI staining, immunodetection of histone H3 lysine 9 acetylation (H3K9ac) and assessment of DNA damage by TUNEL assay. Results Severe loss of HT29 cell viability was detected for 50 μg/ml EcEE immediately after 24 h exposure whereas the lower concentrations assayed (0.5, 5 and 25 μg/ml) resulted in significant viability decreases after 96 h. Exposure to 25 μg/ml EcEE for 48 h resulted in irreversible cell damage leading to a drastic decrease in cell viability after 72 h recovery in EcEE-free medium. 48 h 25 μg/ml EcEE treatment also induced alteration of colony morphology, H3K9 hyperacetylation, transcriptional up regulation of p21 and down regulation of NCL, FOS and AURKA, indicating reduced proliferation capacity. This treatment also resulted in drastic mitotic and nuclear disruption accompanied by up-regulation of bcl-xl, limited TUNEL labeling and nuclear size increase, suggestive of a non-apoptocic cell death pathway. EcEE/BPA co-exposure increased mitotic anomalies particularly for the lowest EcEE concentration, although without major effects on viability. Conversely, EcEE/DOX co-exposure decreased cell viability in relation to DOX for all EcEE concentrations, without affecting the DOX-induced cell cycle arrest. Conclusions EcEE has cytotoxic activity on HT29 cancer cells leading to mitotic disruption and non-apoptotic cell death without severe induction of DNA damage. Interaction experiments showed that EcEE can increase BPA aneugenic effects and EcEE synergistic effects with DOX supporting a potential use as adjuvant in chemotherapeutic approaches.
Collapse
|
30
|
Diversity of Pyrrolizidine Alkaloids in the Boraginaceae Structures, Distribution, and Biological Properties. DIVERSITY-BASEL 2014. [DOI: 10.3390/d6020188] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Among the diversity of secondary metabolites which are produced by plants as means of defence against herbivores and microbes, pyrrolizidine alkaloids (PAs) are common in Boraginaceae, Asteraceae and some other plant families. Pyrrolizidine alkaloids are infamous as toxic compounds which can alkylate DNA und thus cause mutations and even cancer in herbivores and humans. Almost all genera of the family Boraginaceae synthesize and store this type of alkaloids. This review reports the available information on the present status (literature up to early 2014) of the pyrrolizidine alkaloids in the Boraginaceae and summarizes the topics structure, distribution, chemistry, chemotaxonomic significance, and biological properties.
Collapse
|
31
|
Orantes-Bermejo FJ, Serra Bonvehí J, Gómez-Pajuelo A, Megías M, Torres C. Pyrrolizidine alkaloids: their occurrence in Spanish honey collected from purple viper's bugloss (Echium spp.). Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2013; 30:1799-806. [PMID: 23886433 DOI: 10.1080/19440049.2013.817686] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The incidence and concentration of pyrrolizidine alkaloids (PAs) from Echium spp. plant have been defined in 103 Spanish honey samples. Each sample was examined to determine total pollen content, the percentage of Echium spp. pollen, and simultaneous measurements of PAs and their N-oxides concentrations by the HPLC-ESI/MS method to identify the potential origin of PAs in honey. PAs were found in 94.2% of the raw honey samples analysed, in the range of 1-237 µg kg(-1) (average concentration = 48 µg kg(-1)). The PA pattern was clearly dominated by echimidine, lycopsamine and their N-oxides, representing the 97.8% of total ∑PAs, and only echimidine and echimidine-N-oxide surpassed the 87% of total ∑PA content. Others PAs, seneciphylline and heliotrine-N-oxide, appear to be reported in a lower incidence and concentration (average of 3 and 1 µg kg(-1), respectively). The Pearson Chi-squared test (p ≤ 0.01) confirms the non-correspondence between pollen plants and PA content. This study was also realised to generate a dataset in order to evaluate the potential risk of Spanish honeys containing PA plants belonging to the genera Echium.
Collapse
Affiliation(s)
- F J Orantes-Bermejo
- a Analytical Laboratory of Bee Products , Barrancos, s/n , E-18420 Lanjarón , Granada , Spain
| | | | | | | | | |
Collapse
|
32
|
Colegate SM, Gardner DR, Davis TZ, Betz JM, Panter KE. Dehydropyrrolizidine alkaloids in two Cryptantha species: including two new open chain diesters one of which is amphoteric. PHYTOCHEMICAL ANALYSIS : PCA 2013; 24:201-212. [PMID: 23070903 DOI: 10.1002/pca.2400] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 08/13/2012] [Accepted: 08/13/2012] [Indexed: 06/01/2023]
Abstract
INTRODUCTION A livestock poisoning outbreak near Kingman, Arizona, USA, potentially linked to dehydropyrrolizidine alkaloids, prompted an evaluation of some local plants for the presence of these hepatotoxic alkaloids. OBJECTIVE To qualitatively and quantitatively examine two species of Cryptantha, a Boraginaceous genus previously shown to produce potentially toxic pyrrolizidine alkaloids, collected from the vicinity of Kingman, Arizona. METHOD Plant extracts were analysed using HPLC-electrospray ionisation (+)-MS and MS/MS to determine the presence of dehydropyrrolizidine alkaloid esters. Identities were confirmed by comparison of chromatographic and MS data with authenticated standards and, in the case of the previously undescribed alkaloids, using one- and two-dimensional NMR spectroscopy and high-resolution mass measurement. RESULTS Cryptantha inequata and C. utahensis were shown to produce retronecine-based dehydropyrrolizidine alkaloids at approximately 0.05% and 0.09% w/w respectively. Cryptantha inequata produced mainly echimidine, acetylechimidine and echiuplatine; dehydropyrrolizidine alkaloids that were previously associated with Echium plantagineum. The previously undescribed structure of echiuplatine was elucidated as an amphoteric, open chain diester with angelic acid and 3-hydroxy-3-methylglutaric acid. Along with lycopsamine, intermedine and dihydroxyechiumine, C. utahensis produced cryptanthine, a previously undescribed open chain diester alkaloid esterified with angelic acid and 2,3-dihydroxy-2-methylbutanoic acid. All pyrrolizidine alkaloids detected were present in the plants mainly as their N-oxides. CONCLUSION The retronecine-based alkaloids detected in both Cryptantha species herein investigated aligns them within the Krynitzkia subgenus. The dehydropyrrolizidine alkaloids detected are expected to be toxic but the low levels in the plants potentially mitigate the risk. The identification of the amphoteric echiuplatine provides a cautionary note with respect to the analysis of total dehydropyrrolizidine alkaloid content.
Collapse
|
33
|
Cao Y, Colegate S, Edgar J. Persistence of echimidine, a hepatotoxic pyrrolizidine alkaloid, from honey into mead. J Food Compost Anal 2013. [DOI: 10.1016/j.jfca.2012.11.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
34
|
Sedivy C, Dorn S, Widmer A, Müller A. Host range evolution in a selected group of osmiine bees (Hymenoptera: Megachilidae): the Boraginaceae-Fabaceae paradox. Biol J Linn Soc Lond 2012. [DOI: 10.1111/j.1095-8312.2012.02013.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Claudio Sedivy
- ETH Zurich, Institute of Agricultural Sciences; Applied Entomology; Schmelzbergstrasse 9/LFO; 8092; Zurich; Switzerland
| | - Silvia Dorn
- ETH Zurich, Institute of Agricultural Sciences; Applied Entomology; Schmelzbergstrasse 9/LFO; 8092; Zurich; Switzerland
| | - Alex Widmer
- ETH Zurich, Institute of Integrative Biology; Plant Ecological Genetics; Universitätsstrasse 16/CHN; 8092; Zürich; Switzerland
| | - Andreas Müller
- ETH Zurich, Institute of Agricultural Sciences; Applied Entomology; Schmelzbergstrasse 9/LFO; 8092; Zurich; Switzerland
| |
Collapse
|
35
|
|
36
|
Williams MT, Warnock BJ, Betz JM, Beck JJ, Gardner DR, Lee ST, Molyneux RJ, Colegate SM. Detection of high levels of pyrrolizidine-N-oxides in the endangered plant Cryptantha crassipes (Terlingua Creek cat's-eye) using HPLC-ESI-MS. PHYTOCHEMICAL ANALYSIS : PCA 2011; 22:532-540. [PMID: 21433162 DOI: 10.1002/pca.1314] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 12/10/2010] [Accepted: 12/10/2010] [Indexed: 05/30/2023]
Abstract
INTRODUCTION A previous investigation of pyrrolizidine alkaloids produced by nine species of Cryptantha identified at least two chemotypes within the genus. Other research has postulated that pyrrolizidine-N-oxide concentrations increase as the growing conditions become harsher, particularly with respect to water availability. Cryptantha crassipes is an endangered plant with a very limited distribution range within a dry, harsh Texan ecosystem. OBJECTIVE To determine the pyrrolizidine alkaloid (and their N-oxides) profile and concentrations in Cryptantha crassipes. METHODOLOGY Methanolic extracts of Cryptantha crassipes were partitioned into dilute sulphuric acid and the alkaloids concentrated using strong cation exchange, solid-phase extraction columns. Extracts were analysed using reversed-phase high-pressure liquid chromatography coupled to electrospray ionisation ion trap mass spectrometry. RESULTS The N-oxides of lycopsamine and intermedine were the major pyrrolizidine alkaloids detected in Cryptantha crassipes. Smaller to trace amounts of other pyrrolizidine alkaloids observed were: the 7- and 3'-acetylated derivatives and the 1,2-dihydro analogs of lycopsamine-N-oxide and/or intermedine-N-oxide; a pair of unidentified N-oxides, isobaric with lycopsamine-N-oxide; and the N-oxides of leptanthine, echimiplatine, amabiline, echiumine and dihydroechiumine. Only trace amounts, if any, of the parent free base pyrrolizidine alkaloids were detected. The concentration of pyrrolizidine alkaloids was estimated to be 3-5% of the dry weight of milled leaves, or 10-50 times the levels previously reported for similar chemotypes. CONCLUSIONS The high levels of the N-oxides of lycopsamine and intermedine establish the genus chemotype of the endangered Cryptantha crassipes and support earlier data linking high levels of N-oxides to dry, harsh growing conditions.
Collapse
Affiliation(s)
- Maria T Williams
- Department of Natural Resource Management, Sul Ross State University, Texas, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Edgar JA, Colegate SM, Boppré M, Molyneux RJ. Pyrrolizidine alkaloids in food: a spectrum of potential health consequences. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2011; 28:308-24. [PMID: 21360376 DOI: 10.1080/19440049.2010.547520] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Contamination of grain with 1,2-dehydropyrrolizidine ester alkaloids (dehydroPAs) and their N-oxides is responsible for large incidents of acute and subacute food poisoning, with high morbidity and mortality, in Africa and in central and south Asia. Herbal medicines and teas containing dehydroPAs have also caused fatalities in both developed and developing countries. There is now increasing recognition that some staple and widely consumed foods are sometimes contaminated by dehydroPAs and their N-oxides at levels that, while insufficient to cause acute poisoning, greatly exceed maximum tolerable daily intakes and/or maximum levels determined by a number of independent risk assessment authorities. This suggests that there may have been cases of disease in the past not recognised as resulting from dietary exposure to dehydroPAs. A review of the literature shows that there are a number of reports of liver disease where either exposure to dehydroPAs was suspected but no source was identified or a dehydroPA-aetiology was not considered but the symptoms and pathology suggests their involvement. DehydroPAs also cause progressive, chronic diseases such as cancer and pulmonary arterial hypertension but proof of their involvement in human cases of these chronic diseases, including sources of exposure to dehydroPAs, has generally been lacking. Growing recognition of hazardous levels of dehydroPAs in a range of common foods suggests that physicians and clinicians need to be alert to the possibility that these contaminants may, in some cases, be a possible cause of chronic diseases such as cirrhosis, pulmonary hypertension and cancer in humans.
Collapse
Affiliation(s)
- J A Edgar
- CSIRO Food and Nutritional Sciences, North Ryde, Australia.
| | | | | | | |
Collapse
|
38
|
Negri G, Teixeira EW, Alves MLTMF, Moreti ACDCC, Otsuk IP, Borguini RG, Salatino A. Hydroxycinnamic acid amide derivatives, phenolic compounds and antioxidant activities of extracts of pollen samples from Southeast Brazil. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:5516-5522. [PMID: 21500799 DOI: 10.1021/jf200602k] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Seven bee pollen samples (C1-C7) with different palynological sources were harvested from Pindamonhangaba municipality (Southeast Brazil). Methanol extracts of untreated samples (control), samples frozen at -18 °C and samples frozen and then dried were analyzed by HPLC/PAD/ESI/MS/MS. Flavonoid diglycosides of quercetin, kaempferol, isorhamnetin and patuletin were detected, together with hydroxycinnamic acid amide derivatives, such as N',N'',N'''-tris-p-feruloylspermidine and N',N'',N'''-tris-p-coumaroylspermidine. Distinct phenolic profiles characterized the analyzed samples, but no differences were noted as resulting from different treatments. Total phenolic contents determined with the Folin-Ciocalteau reagent ranged from 1.7 to 2.2%. Antioxidant activities above 75%, based on the DPPH method, were observed for all extracts, not correlated with total phenolic contents. Among samples from the same origin, those frozen were more active than samples untreated (control), and the samples frozen and then dried were the most active.
Collapse
Affiliation(s)
- Giuseppina Negri
- Department of Psychobiology, Federal University of São Paulo-CEBRID-UNIFESP, São Paulo, Brazil.
| | | | | | | | | | | | | |
Collapse
|
39
|
Hoogenboom LAP, Mulder PPJ, Zeilmaker MJ, van den Top HJ, Remmelink GJ, Brandon EFA, Klijnstra M, Meijer GAL, Schothorst R, Van Egmond HP. Carry-over of pyrrolizidine alkaloids from feed to milk in dairy cows. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2011; 28:359-72. [PMID: 21360378 DOI: 10.1080/19440049.2010.547521] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Pyrrolizidine alkaloids are toxins present in many plants belonging to the families of Asteraceae, Boraginaceae and Fabaceae. Particularly notorious are pyrrolizidine alkaloids present in ragwort species (Senecio), which are held responsible for hepatic disease in horses and cows and may lead to the death of the affected animals. In addition, these compounds may be transferred to edible products of animal origin and as such be a threat for the health of consumers. To investigate the possible transfer of pyrrolizidine alkaloids from contaminated feed to milk, cows were put on a ration for 3 weeks with increasing amounts (50-200 g day(-1)) of dried ragwort. Milk was collected and sampled twice a day; faeces and urine twice a week. For milk, a dose-related appearance of pyrrolizidine alkaloids was found. Jacoline was the major component in milk despite being a minor component in the ragwort material. Practically no N-oxides were observed in milk, notwithstanding the fact that they constituted over 80% of the pyrrolizidine alkaloids in ragwort. The overall carry-over of the pyrrolizidine alkaloids was estimated to be only around 0.1%, but for jacoline 4%. Notwithstanding the low overall carry-over, this may be relevant for consumer health considering the genotoxic and carcinogenic properties demonstrated for some of these compounds. Analysis of the faeces and urine samples indicated that substantial metabolism of pyrrolizidine alkaloids is taking place. The toxicity and potential transfer of metabolites to milk is unknown and remains to be investigated.
Collapse
Affiliation(s)
- L A P Hoogenboom
- RIKILT Institute of Food Safety, Wageningen UR, Wageningen, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Kempf M, Wittig M, Schönfeld K, Cramer L, Schreier P, Beuerle T. Pyrrolizidine alkaloids in food: downstream contamination in the food chain caused by honey and pollen. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2011; 28:325-31. [PMID: 20967664 DOI: 10.1080/19440049.2010.521771] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In recent years, there has been a steadily growing number of published data on pyrrolizidine alkaloids (PAs) in honey and pollen. This raises the question whether honey and/or pollen used as ingredients in food processing might provoke a downstream contamination in the food chain. Here we addressed two different facets in connection with PAs in honey and pollen. First, we analysed the PA content of several food types such as mead (n = 19), candy (n = 10), fennel honey (n = 9), soft drinks (n = 5), power bars and cereals (n = 7), jelly babies (n = 3), baby food (n = 3), supplements (n = 3) and fruit sauce (n = 1) that contained honey as an ingredient in the range of 5% to approximately 37%. Eight out of 60 retail samples were tested as being PA-positive, corresponding to 13%. Positive samples were found in mead, candy and fennel honey, and the average PA content was calculated to be 0.10 µg g(-1) retronecine equivalents (ranging from 0.010 to 0.484 µg g(-1)). Furthermore, we investigated the question whether and how PAs from PA pollen are transferred from pollen into honey. We conducted model experiments with floral pollen of Senecio vernalis and PA free honey and tested the influence of the quantity of PA pollen, contact time and a simulated honey filtration on the final PA content of honey. It could clearly be demonstrated that the PA content of honey was directly proportional to the amount of PA pollen in honey and that the transfer of PAs from pollen to honey was a rather quick process. Consequently, PA pollen represents a major source for the observed PA content in honey. On the other hand, a good portion remains in the pollen. This fraction is not detected by the common analytical methods, but will be ingested, and it represents an unknown amount of 'hidden' PAs. In addition, the results showed that a technically and legally possible honey filtration (including the removal of all pollen) would not be an option to reduce the PA level of the final product significantly.
Collapse
Affiliation(s)
- M Kempf
- Universität Würzburg, Lehrstuhl für Lebensmittelchemie, Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
41
|
Boppré M. The ecological context of pyrrolizidine alkaloids in food, feed and forage: an overview. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2011; 28:260-81. [DOI: 10.1080/19440049.2011.555085] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
42
|
Dübecke A, Beckh G, Lüllmann C. Pyrrolizidine alkaloids in honey and bee pollen. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2011; 28:348-58. [PMID: 21360377 DOI: 10.1080/19440049.2010.541594] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A total of 3917 honey samples and 119 'bee pollen' samples (pollen collected by honeybees) were analysed for pyrrolizidine alkaloids (PAs). Some 0.05 M sulphuric acid was used for extraction followed by a clean-up step by means of solid-phase extraction. Separation and detection was achieved by target analysis using an LC-MS/MS system. PAs were found in 66% of the raw honeys (bulk honey not yet packaged in containers for sale in retail outlets) and in 94% of honeys available in supermarkets (retail honey). A total of 60% of the bee pollen samples were PA positive. The PA pattern was used to identify the potential origin of the PAs in honey, which was verified for the genus Echium by relative pollen analysis. The results give an estimate of the impact of PA-containing plants belonging to the genera Echium, Senecio and, to a certain extent, Eupatorium on PA levels in honey and can serve as a decision basis for beekeepers in order to find the most suitable location for the production of honey and bee pollen low in PAs.
Collapse
Affiliation(s)
- A Dübecke
- Quality Services International GmbH, Bremen, Germany.
| | | | | |
Collapse
|
43
|
Sedivy C, Müller A, Dorn S. Closely related pollen generalist bees differ in their ability to develop on the same pollen diet: evidence for physiological adaptations to digest pollen. Funct Ecol 2011. [DOI: 10.1111/j.1365-2435.2010.01828.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
Kempf M, Wittig M, Reinhard A, von der Ohe K, Blacquière T, Raezke KP, Michel R, Schreier P, Beuerle T. Pyrrolizidine alkaloids in honey: comparison of analytical methods. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2010; 28:332-47. [PMID: 21082464 DOI: 10.1080/19440049.2010.521772] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Pyrrolizidine alkaloids (PAs) are a structurally diverse group of toxicologically relevant secondary plant metabolites. Currently, two analytical methods are used to determine PA content in honey. To achieve reasonably high sensitivity and selectivity, mass spectrometry detection is demanded. One method is an HPLC-ESI-MS-MS approach, the other a sum parameter method utilising HRGC-EI-MS operated in the selected ion monitoring mode (SIM). To date, no fully validated or standardised method exists to measure the PA content in honey. To establish an LC-MS method, several hundred standard pollen analysis results of raw honey were analysed. Possible PA plants were identified and typical commercially available marker PA-N-oxides (PANOs). Three distinct honey sets were analysed with both methods. Set A consisted of pure Echium honey (61-80% Echium pollen). Echium is an attractive bee plant. It is quite common in all temperate zones worldwide and is one of the major reasons for PA contamination in honey. Although only echimidine/echimidine-N-oxide were available as reference for the LC-MS target approach, the results for both analytical techniques matched very well (n = 8; PA content ranging from 311 to 520 µg kg(-1)). The second batch (B) consisted of a set of randomly picked raw honeys, mostly originating from Eupatorium spp. (0-15%), another common PA plant, usually characterised by the occurrence of lycopsamine-type PA. Again, the results showed good consistency in terms of PA-positive samples and quantification results (n = 8; ranging from 0 to 625 µg kg(-1) retronecine equivalents). The last set (C) was obtained by consciously placing beehives in areas with a high abundance of Jacobaea vulgaris (ragwort) from the Veluwe region (the Netherlands). J. vulgaris increasingly invades countrysides in Central Europe, especially areas with reduced farming or sites with natural restorations. Honey from two seasons (2007 and 2008) was sampled. While only trace amounts of ragwort pollen were detected (0-6.3%), in some cases extremely high PA values were detected (n = 31; ranging from 0 to 13019 µg kg(-1), average = 1261 or 76 µg kg(-1) for GC-MS and LC-MS, respectively). Here the results showed significantly different quantification results. The GC-MS sum parameter showed in average higher values (on average differing by a factor 17). The main reason for the discrepancy is most likely the incomplete coverage of the J. vulgaris PA pattern. Major J. vulgaris PAs like jacobine-type PAs or erucifoline/acetylerucifoline were not available as reference compounds for the LC-MS target approach. Based on the direct comparison, both methods are considered from various perspectives and the respective individual strengths and weaknesses for each method are presented in detail.
Collapse
Affiliation(s)
- M Kempf
- Universitat Würzburg, Lehrstuhl für Lebensmittelchemie, Würzburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Kempf M, Heil S, Hasslauer I, Schmidt L, von der Ohe K, Theuring C, Reinhard A, Schreier P, Beuerle T. Pyrrolizidine alkaloids in pollen and pollen products. Mol Nutr Food Res 2010; 54:292-300. [PMID: 20013884 DOI: 10.1002/mnfr.200900289] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Recently, 1,2-dehydropyrrolizidine alkaloid (PA) ester alkaloids, found predominantly as their N-oxides (PANOs, pyrrolizidine N-oxides), have been reported in both honey and in pollen obtained directly from PA plants and pollen loads collected by bees, raising the possibility of health risks for consumers of these products. We confirm these findings in regard to floral pollen, using pollen collected directly from flowers of the known PA plants Senecio jacobaea, S. vernalis, Echium vulgare and pollinia of Phalaenopsis hybrids, and we extend analyses of 1,2-unsaturated PAs and 1,2-unsaturated PANOs to include bee-pollen products currently being sold in supermarkets and on the Internet as food supplements. PA content of floral pollen ranged from 0.5 to 5 mg/g. The highest values were observed in pollen obtained from Senecio species. Up to 95% of the PAs are found as PANOs. Detailed studies with S. vernalis revealed unique PA patterns in pollen and flowers. While seneciphylline was the most prominent PA in S. vernalis pollen, the flowers were dominated by senecionine. To analyze trace amounts of 1,2-unsaturated PAs in pollen products, our previously elaborated method consisting of strong cation exchange-SPE, two reduction steps followed by silylation and subsequent capillary high-resolution GC-MS using SIM mode was applied. In total, 55 commercially available pollen products were analyzed. Seventeen (31%) samples contained 1,2-unsaturated PAs in the range from 1.08 to 16.35 microg/g, calculated as retronecine equivalents. The 1,2-unsaturated PA content of pollen products is expressed in terms of a single sum parameter and no background information such as foraged plants, pollen analysis, etc. was needed to analyze the samples. The detection limit of overall procedure and the reliable quantitation limit were 0.003 and 0.01 microg/g, respectively.
Collapse
Affiliation(s)
- Michael Kempf
- Lehrstuhl für Lebensmittelchemie, Universität Würzburg, Am Hubland, Würzburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Kempf M, Schreier P, Reinhard A, Beuerle T. Pyrrolizidinalkaloide in Honig und Pollen. J Verbrauch Lebensm 2010. [DOI: 10.1007/s00003-009-0543-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
47
|
Ferreres F, Pereira DM, Valentão P, Andrade PB. First report of non-coloured flavonoids in Echium plantagineum bee pollen: differentiation of isomers by liquid chromatography/ion trap mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2010; 24:801-806. [PMID: 20187084 DOI: 10.1002/rcm.4454] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Apicultural products have been widely used in diet complements as well as in phytotherapy. Bee pollen from Echium plantagineum was analysed by high-performance liquid chromatography/photodiode-array detection coupled to ion trap mass spectrometry (HPLC-PAD-MS(n)) with an electrospray ionisation interface. The structures have been determined by the study of the ion mass fragmentation, which characterises the interglycosidic linkage in glycosylated flavonoids and differentiates positional isomers. Twelve non-coloured flavonoids were characterised, being kaempferol-3-O-neohesperidoside the major compound, besides others in trace amounts. These include quercetin, kaempferol and isorhamnetin glycosides, with several of them being isomers. Acetylated derivatives are also described. This is the first time that non-coloured flavonoids are reported from this pollen, with MS fragmentation proving to be most useful in the elucidation of isomeric structures.
Collapse
Affiliation(s)
- Federico Ferreres
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), P.O. Box 164, 30100 Campus University Espinardo (Murcia), Spain.
| | | | | | | |
Collapse
|
48
|
Kempf M, Reinhard A, Beuerle T. Pyrrolizidine alkaloids (PAs) in honey and pollen-legal regulation of PA levels in food and animal feed required. Mol Nutr Food Res 2009; 54:158-68. [DOI: 10.1002/mnfr.200900529] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
49
|
Reinhard A, Janke M, von der Ohe W, Kempf M, Theuring C, Hartmann T, Schreier P, Beuerle T. Feeding Deterrence and Detrimental Effects of Pyrrolizidine Alkaloids Fed to Honey Bees (Apis mellifera). J Chem Ecol 2009; 35:1086-95. [DOI: 10.1007/s10886-009-9690-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Revised: 08/25/2009] [Accepted: 09/09/2009] [Indexed: 10/20/2022]
|
50
|
Crews C, Berthiller F, Krska R. Update on analytical methods for toxic pyrrolizidine alkaloids. Anal Bioanal Chem 2009; 396:327-38. [DOI: 10.1007/s00216-009-3092-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Revised: 08/20/2009] [Accepted: 08/21/2009] [Indexed: 10/20/2022]
|