1
|
Tian L, Qi T, Zhang F, Tran VG, Yuan J, Wang Y, He N, Cao M. Synthetic biology approaches to improve tolerance of inhibitors in lignocellulosic hydrolysates. Biotechnol Adv 2025; 78:108477. [PMID: 39551454 DOI: 10.1016/j.biotechadv.2024.108477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/01/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024]
Abstract
Increasing attention is being focused on using lignocellulose for valuable products. Microbial decomposition can convert lignocellulose into renewable biofuels and other high-value bioproducts, contributing to sustainable development. However, the presence of inhibitors in lignocellulosic hydrolysates can negatively affect microorganisms during fermentation. Improving microbial tolerance to these hydrolysates is a major focus in metabolic engineering. Traditional detoxification methods increase costs, so there is a need for cheap and efficient cell-based detoxification strategies. Synthetic biology approaches offer several strategies for improving microbial tolerance, including redox balancing, membrane engineering, omics-guided technologies, expression of protectants and transcription factors, irrational engineering, cell flocculation, and other novel technologies. Advances in molecular biology, high-throughput sequencing, and artificial intelligence (AI) allow for precise strain modification and efficient industrial production. Developing AI-based computational models to guide synthetic biology efforts and creating large-scale heterologous libraries with automation and high-throughput technologies will be important for future research.
Collapse
Affiliation(s)
- Linyue Tian
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China; Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Tianqi Qi
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Fenghui Zhang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Vinh G Tran
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jifeng Yuan
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian 361102, China
| | - Yuanpeng Wang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Ning He
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China.
| | - Mingfeng Cao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China; Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China.
| |
Collapse
|
2
|
Egas RA, Sahonero-Canavesi DX, Bale NJ, Koenen M, Yildiz Ç, Villanueva L, Sousa DZ, Sánchez-Andrea I. Acetic acid stress response of the acidophilic sulfate reducer Acididesulfobacillus acetoxydans. Environ Microbiol 2024; 26:e16565. [PMID: 38356112 DOI: 10.1111/1462-2920.16565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/12/2023] [Indexed: 02/16/2024]
Abstract
Acid mine drainage (AMD) waters are a severe environmental threat, due to their high metal content and low pH (pH <3). Current technologies treating AMD utilize neutrophilic sulfate-reducing microorganisms (SRMs), but acidophilic SRM could offer advantages. As AMDs are low in organics these processes require electron donor addition, which is often incompletely oxidized into organic acids (e.g., acetic acid). At low pH, acetic acid is undissociated and toxic to microorganisms. We investigated the stress response of the acetotrophic Acididesulfobacillus acetoxydans to acetic acid. A. acetoxydans was cultivated in bioreactors at pH 5.0 (optimum). For stress experiments, triplicate reactors were spiked until 7.5 mM of acetic acid and compared with (non-spiked) triplicate reactors for physiological, transcriptomic, and membrane lipid changes. After acetic acid spiking, the optical density initially dropped, followed by an adaptation phase during which growth resumed at a lower growth rate. Transcriptome analysis revealed a downregulation of genes involved in glutamate and aspartate synthesis following spiking. Membrane lipid analysis revealed a decrease in iso and anteiso fatty acid relative abundance; and an increase of acetyl-CoA as a fatty acid precursor. These adaptations allow A. acetoxydans to detoxify acetic acid, creating milder conditions for other microorganisms in AMD environments.
Collapse
Affiliation(s)
- Reinier A Egas
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Diana X Sahonero-Canavesi
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research (NIOZ), Texel, Den Burg, The Netherlands
| | - Nicole J Bale
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research (NIOZ), Texel, Den Burg, The Netherlands
| | - Michel Koenen
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research (NIOZ), Texel, Den Burg, The Netherlands
| | - Çağlar Yildiz
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Laura Villanueva
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research (NIOZ), Texel, Den Burg, The Netherlands
- Department of Earth Sciences, Utrecht University, Utrecht, The Netherlands
| | - Diana Z Sousa
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
- Centre for Living Technologies, Alliance TU/e, WUR, UU, UMC Utrecht, Utrecht, The Netherlands
| | - Irene Sánchez-Andrea
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
- Environmental Sciences and Sustainability Department, Science & Technology School, IE University, Segovia, Spain
| |
Collapse
|
3
|
Matsuda F, Komori S, Yamada Y, Hara D, Okahashi N. Data Processing of Product Ion Spectra: Quality Improvement by Averaging Multiple Similar Spectra of Small Molecules. Mass Spectrom (Tokyo) 2022; 11:A0106. [PMID: 36713802 PMCID: PMC9853114 DOI: 10.5702/massspectrometry.a0106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
In metabolomics studies using high-resolution mass spectrometry (MS), a set of product ion spectra is comprehensively acquired from observed ions using the data-dependent acquisition (DDA) mode of various tandem MS. However, especially for low-intensity signals, it is sometimes difficult to distinguish artifact signals from true fragment ions derived from a precursor ion. Inadequate precision in the measured m/z value is also one of the bottlenecks to narrowing down the candidate compositional formula. In this study, we report that averaging multiple product ion spectra can improve m/z precision as well as the reliability of fragment ions that are observed in such spectra. A graph-based method was applied to cluster a set of similar spectra from multiple DDA data files resulting in creating an averaged product-ion spectrum. The error levels for the m/z values declined following the central limit theorem, which allowed us to reduce the number of candidate compositional formulas. The improved reliability and precision of the averaged spectra will contribute to a more efficient annotation of product ion spectral data.
Collapse
Affiliation(s)
- Fumio Matsuda
- Graduate School of Information Science and Technology, Osaka University, Osaka, Japan,Osaka University Shimadzu Omics Innovation Research Laboratories, Osaka University, Osaka, Japan,Correspondence to: Fumio Matsuda, Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1–5 Yamadaoka, Suita, Osaka 565–0871, Japan, e-mail:
| | - Shuka Komori
- Graduate School of Information Science and Technology, Osaka University, Osaka, Japan
| | - Yuki Yamada
- Graduate School of Information Science and Technology, Osaka University, Osaka, Japan
| | - Daiki Hara
- Graduate School of Information Science and Technology, Osaka University, Osaka, Japan
| | - Nobuyuki Okahashi
- Graduate School of Information Science and Technology, Osaka University, Osaka, Japan,Osaka University Shimadzu Omics Innovation Research Laboratories, Osaka University, Osaka, Japan
| |
Collapse
|
4
|
Dielectric property measurements as a method to determine the physiological state of Kluyveromyces marxianus and Saccharomyces cerevisiae stressed with furan aldehydes. Appl Microbiol Biotechnol 2019; 103:9633-9642. [DOI: 10.1007/s00253-019-10152-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/06/2019] [Accepted: 09/22/2019] [Indexed: 02/07/2023]
|
5
|
Gryz E, Perlińska-Lenart U, Gawarecka K, Jozwiak A, Piłsyk S, Lipko A, Jemiola-Rzeminska M, Bernat P, Muszewska A, Steczkiewicz K, Ginalski K, Długoński J, Strzalka K, Swiezewska E, Kruszewska JS. Poly-Saturated Dolichols from Filamentous Fungi Modulate Activity of Dolichol-Dependent Glycosyltransferase and Physical Properties of Membranes. Int J Mol Sci 2019; 20:ijms20123043. [PMID: 31234450 PMCID: PMC6628320 DOI: 10.3390/ijms20123043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/19/2019] [Accepted: 06/21/2019] [Indexed: 11/17/2022] Open
Abstract
Mono-saturated polyprenols (dolichols) have been found in almost all Eukaryotic cells, however, dolichols containing additional saturated bonds at the ω-end, have been identified in A. fumigatus and A. niger. Here we confirm using an LC-ESI-QTOF-MS analysis, that poly-saturated dolichols are abundant in other filamentous fungi, Trichoderma reesei, A. nidulans and Neurospora crassa, while the yeast Saccharomyces cerevisiae only contains the typical mono-saturated dolichols. We also show, using differential scanning calorimetry (DSC) and fluorescence anisotropy of 1,6-diphenyl-l,3,5-hexatriene (DPH) that the structure of dolichols modulates the properties of membranes and affects the functioning of dolichyl diphosphate mannose synthase (DPMS). The activity of this enzyme from T. reesei and S. cerevisiae was strongly affected by the structure of dolichols. Additionally, the structure of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) model membranes was more strongly disturbed by the poly-saturated dolichols from Trichoderma than by the mono-saturated dolichols from yeast. By comparing the lipidome of filamentous fungi with that from S. cerevisiae, we revealed significant differences in the PC/PE ratio and fatty acids composition. Filamentous fungi differ from S. cerevisiae in the lipid composition of their membranes and the structure of dolichols. The structure of dolichols profoundly affects the functioning of dolichol-dependent enzyme, DPMS.
Collapse
Affiliation(s)
- Elżbieta Gryz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland.
| | - Urszula Perlińska-Lenart
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland.
| | - Katarzyna Gawarecka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland.
| | - Adam Jozwiak
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland.
| | - Sebastian Piłsyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland.
| | - Agata Lipko
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland.
| | - Malgorzata Jemiola-Rzeminska
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland.
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland.
| | - Przemysław Bernat
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland.
| | - Anna Muszewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland.
| | - Kamil Steczkiewicz
- Laboratory of Bioinformatics and Systems Biology, CeNT, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland.
| | - Krzysztof Ginalski
- Laboratory of Bioinformatics and Systems Biology, CeNT, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland.
| | - Jerzy Długoński
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland.
| | - Kazimierz Strzalka
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland.
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland.
| | - Ewa Swiezewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland.
| | - Joanna S Kruszewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland.
| |
Collapse
|
6
|
Okonkwo CC, Ujor V, Ezeji TC. Chromosomal integration of aldo-keto-reductase and short-chain dehydrogenase/reductase genes in Clostridium beijerinckii NCIMB 8052 enhanced tolerance to lignocellulose-derived microbial inhibitory compounds. Sci Rep 2019; 9:7634. [PMID: 31114009 PMCID: PMC6529405 DOI: 10.1038/s41598-019-44061-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 05/08/2019] [Indexed: 12/23/2022] Open
Abstract
In situ detoxification of lignocellulose-derived microbial inhibitory compounds is an economical strategy for the fermentation of lignocellulose-derived sugars to fuels and chemicals. In this study, we investigated homologous integration and constitutive expression of Cbei_3974 and Cbei_3904, which encode aldo-keto reductase and previously annotated short chain dehydrogenase/reductase, respectively, in Clostridium beijerinckii NCIMB 8052 (Cb), resulting in two strains: Cb_3974 and Cb_3904. Expression of Cbei_3974 led to 2-fold increase in furfural detoxification relative to Cb_3904 and Cb_wild type. Correspondingly, butanol production was up to 1.2-fold greater in furfural-challenged cultures of Cb_3974 relative to Cb_3904 and Cb_wild type. With 4-hydroxybezaldehyde and syringaldehyde supplementation, Cb_3974 showed up to 2.4-fold increase in butanol concentration when compared to Cb_3904 and Cb_wild type. Syringic and vanillic acids were considerably less deleterious to all three strains of Cb tested. Overall, Cb_3974 showed greater tolerance to furfural, 4-hydroxybezaldehyde, and syringaldehyde with improved capacity for butanol production. Hence, development of Cb_3974 represents a significant progress towards engineering solventogenic Clostridium species that are tolerant to lignocellulosic biomass hydrolysates as substrates for ABE fermentation.
Collapse
Affiliation(s)
- Christopher Chukwudi Okonkwo
- Department of Animal Sciences, The Ohio State University, and Ohio State Agricultural Research and Development Center (OARDC), 305 Gerlaugh Hall, 1680 Madison Avenue, Wooster, OH, 44691, USA
| | - Victor Ujor
- Bioenergy and Biological Waste Management Program, Agricultural Technical Institute, The Ohio State University, 1328 Dover Road, Wooster, OH, 44691, USA
| | - Thaddeus Chukwuemeka Ezeji
- Department of Animal Sciences, The Ohio State University, and Ohio State Agricultural Research and Development Center (OARDC), 305 Gerlaugh Hall, 1680 Madison Avenue, Wooster, OH, 44691, USA.
| |
Collapse
|
7
|
Henson WR, Hsu FF, Dantas G, Moon TS, Foston M. Lipid metabolism of phenol-tolerant Rhodococcus opacus strains for lignin bioconversion. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:339. [PMID: 30607174 PMCID: PMC6309088 DOI: 10.1186/s13068-018-1337-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 12/11/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Lignin is a recalcitrant aromatic polymer that is a potential feedstock for renewable fuel and chemical production. Rhodococcus opacus PD630 is a promising strain for the biological upgrading of lignin due to its ability to tolerate and utilize lignin-derived aromatic compounds. To enhance its aromatic tolerance, we recently applied adaptive evolution using phenol as a sole carbon source and characterized a phenol-adapted R. opacus strain (evol40) and the wild-type (WT) strain by whole genome and RNA sequencing. While this effort increased our understanding of the aromatic tolerance, the tolerance mechanisms were not completely elucidated. RESULTS We hypothesize that the composition of lipids plays an important role in phenol tolerance. To test this hypothesis, we applied high-resolution mass spectrometry analysis to lipid samples obtained from the WT and evol40 strains grown in 1 g/L glucose (glucose), 0.75 g/L phenol (low phenol), or 1.5 g/L phenol (high phenol, evol40 only) as a sole carbon source. This analysis identified > 100 lipid species of mycolic acids, phosphatidylethanolamines (PEs), phosphatidylinositols (PIs), and triacylglycerols. In both strains, mycolic acids had fewer double bond numbers in phenol conditions than the glucose condition, and evol40 had significantly shorter mycolic acid chain lengths than the WT strain in phenol conditions. These results indicate that phenol adaptation affected mycolic acid membrane composition. In addition, the percentage of unsaturated phospholipids decreased for both strains in phenol conditions compared to the glucose condition. Moreover, the PI content increased for both strains in the low phenol condition compared to the glucose condition, and the PI content increased further for evol40 in the high phenol condition relative to the low phenol condition. CONCLUSIONS This work represents the first comprehensive lipidomic study on the membrane of R. opacus grown using phenol as a sole carbon source. Our results suggest that the alteration of the mycolic acid and phospholipid membrane composition may be a strategy of R. opacus for phenol tolerance.
Collapse
Affiliation(s)
- William R. Henson
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130 USA
| | - Fong-Fu Hsu
- Mass Spectrometry Resource, Division of Endocrinology, Diabetes, Metabolism, and Lipid Research, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Gautam Dantas
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO 63108 USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110 USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130 USA
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO 63108 USA
| | - Tae Seok Moon
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130 USA
| | - Marcus Foston
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130 USA
| |
Collapse
|
8
|
Lipidomics Studies on Mitochondrial Damage of Saccharomyces cerevisiae Induced by Heavy Ion Beam Radiation. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2018. [DOI: 10.1016/s1872-2040(18)61123-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
9
|
Liu ZL. Understanding the tolerance of the industrial yeast Saccharomyces cerevisiae against a major class of toxic aldehyde compounds. Appl Microbiol Biotechnol 2018; 102:5369-5390. [PMID: 29725719 DOI: 10.1007/s00253-018-8993-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/03/2018] [Accepted: 04/05/2018] [Indexed: 12/27/2022]
Abstract
Development of the next-generation biocatalyst is vital for fermentation-based industrial applications and a sustainable bio-based economy. Overcoming the major class of toxic compounds associated with lignocellulose-to-biofuels conversion is one of the significant challenges for new strain development. A significant number of investigations have been made to understand mechanisms of the tolerance for industrial yeast. It is humbling to learn how complicated the cell's response to the toxic chemicals is and how little we have known about yeast tolerance in the universe of the living cell. This study updates our current knowledge on the tolerance of industrial yeast against aldehyde inhibitory compounds at cellular, molecular and the genomic levels. It is comprehensive yet specific based on reproducible evidence and cross confirmed findings from different investigations using varied experimental approaches. This research approaches a rational foundation toward a more comprehensive understanding on the yeast tolerance. Discussions and perspectives are also proposed for continued exploring the puzzle of the yeast tolerance to aid the next-generation biocatalyst development.
Collapse
Affiliation(s)
- ZongLin Lewis Liu
- The US Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, Bioenergy Research Unit, 1815 N University Street, Peoria, IL, 61604, USA.
| |
Collapse
|
10
|
Zhu Y, Wu L, Zhu J, Xu Y, Yong Q, Yu S. Quantitative lipidomic insights in the inhibitory response of Pichia stipitis to vanillin, 5-hydroxymethylfurfural, and acetic acid. Biochem Biophys Res Commun 2018; 497:7-12. [DOI: 10.1016/j.bbrc.2018.01.161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 01/25/2018] [Indexed: 10/18/2022]
|
11
|
Tambellini NP, Zaremberg V, Krishnaiah S, Turner RJ, Weljie AM. Primary Metabolism and Medium-Chain Fatty Acid Alterations Precede Long-Chain Fatty Acid Changes Impacting Neutral Lipid Metabolism in Response to an Anticancer Lysophosphatidylcholine Analogue in Yeast. J Proteome Res 2017; 16:3741-3752. [PMID: 28849941 DOI: 10.1021/acs.jproteome.7b00430] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The nonmetabolizable lysophosphatidylcholine (LysoPC) analogue edelfosine is the prototype of a class of compounds being investigated for their potential as selective chemotherapeutic agents. Edelfosine targets membranes, disturbing cellular homeostasis. Is not clear at this point how membrane alterations are communicated between intracellular compartments leading to growth inhibition and eventual cell death. In the present study, a combined metabolomics/lipidomics approach for the unbiased identification of metabolic pathways altered in yeast treated with sublethal concentrations of the LysoPC analogue was employed. Mass spectrometry of polar metabolites, fatty acids, and lipidomic profiling was used to study the effects of edelfosine on yeast metabolism. Amino acid and sugar metabolism, the Krebs cycle, and fatty acid profiles were most disrupted, with polar metabolites and short-medium chain fatty acid changes preceding long and very long-chain fatty acid variations. Initial increases in metabolites such as trehalose, proline, and γ-amino butyric acid with a concomitant decrease in metabolites of the Krebs cycle, citrate and fumarate, are interpreted as a cellular attempt to offset oxidative stress in response to mitochondrial dysfunction induced by the treatment. Notably, alanine, inositol, and myristoleic acid showed a steady increase during the period analyzed (2, 4, and 6 h after treatment). Of importance was the finding that edelfosine induced significant alterations in neutral glycerolipid metabolism resulting in a significant increase in the signaling lipid diacylglycerol.
Collapse
Affiliation(s)
- Nicolas P Tambellini
- Department of Biological Sciences, University of Calgary , Calgary, Alberta T2N 1N4, Canada.,Metabolomics Research Centre, University of Calgary , Calgary, Alberta T2N 1N4, Canada
| | - Vanina Zaremberg
- Department of Biological Sciences, University of Calgary , Calgary, Alberta T2N 1N4, Canada
| | - Saikumari Krishnaiah
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine , Philadelphia, Pennsylvania 19104-5158, United States of America
| | - Raymond J Turner
- Department of Biological Sciences, University of Calgary , Calgary, Alberta T2N 1N4, Canada
| | - Aalim M Weljie
- Department of Biological Sciences, University of Calgary , Calgary, Alberta T2N 1N4, Canada.,Metabolomics Research Centre, University of Calgary , Calgary, Alberta T2N 1N4, Canada.,Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine , Philadelphia, Pennsylvania 19104-5158, United States of America
| |
Collapse
|
12
|
Jung YH, Kim S, Yang J, Seo JH, Kim KH. Intracellular metabolite profiling of Saccharomyces cerevisiae evolved under furfural. Microb Biotechnol 2016; 10:395-404. [PMID: 27928897 PMCID: PMC5328829 DOI: 10.1111/1751-7915.12465] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 11/01/2016] [Accepted: 11/02/2016] [Indexed: 12/21/2022] Open
Abstract
Furfural, one of the most common inhibitors in pre‐treatment hydrolysates, reduces the cell growth and ethanol production of yeast. Evolutionary engineering has been used as a selection scheme to obtain yeast strains that exhibit furfural tolerance. However, the response of Saccharomyces cerevisiae to furfural at the metabolite level during evolution remains unknown. In this study, evolutionary engineering and metabolomic analyses were applied to determine the effects of furfural on yeasts and their metabolic response to continuous exposure to furfural. After 50 serial transfers of cultures in the presence of furfural, the evolved strains acquired the ability to stably manage its physiological status under the furfural stress. A total of 98 metabolites were identified, and their abundance profiles implied that yeast metabolism was globally regulated. Under the furfural stress, stress‐protective molecules and cofactor‐related mechanisms were mainly induced in the parental strain. However, during evolution under the furfural stress, S. cerevisiae underwent global metabolic allocations to quickly overcome the stress, particularly by maintaining higher levels of metabolites related to energy generation, cofactor regeneration and recovery from cellular damage. Mapping the mechanisms of furfural tolerance conferred by evolutionary engineering in the present study will be led to rational design of metabolically engineered yeasts.
Collapse
Affiliation(s)
- Young Hoon Jung
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, 41566, South Korea
| | - Sooah Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul, 02841, South Korea
| | - Jungwoo Yang
- Department of Biotechnology, Graduate School, Korea University, Seoul, 02841, South Korea
| | - Jin-Ho Seo
- Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, South Korea
| | - Kyoung Heon Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul, 02841, South Korea
| |
Collapse
|
13
|
Pan X, Liu H, Liu J, Wang C, Wen J. Omics-based approaches reveal phospholipids remodeling of Rhizopus oryzae responding to furfural stress for fumaric acid-production from xylose. BIORESOURCE TECHNOLOGY 2016; 222:24-32. [PMID: 27697734 DOI: 10.1016/j.biortech.2016.09.101] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 09/23/2016] [Accepted: 09/24/2016] [Indexed: 06/06/2023]
Abstract
In order to relieve the toxicity of furfural on Rhizopus oryzae fermentation, the molecular mechanism of R. oryzae responding to furfural stress for fumaric acid-production was investigated by omics-based approaches. In metabolomics analysis, 29 metabolites including amino acid, sugars, polyols and fatty acids showed significant changes for maintaining the basic cell metabolism at the cost of lowering fumaric acid production. To further uncover the survival mechanism, lipidomics was carried out, revealing that phosphatidylcholine, phosphatidylglycerol, phosphatidylinositol and polyunsaturated acyl chains might be closely correlated with R. oryzae's adapting to furfural stress. Based on the above omics analysis, lecithin, inositol and soybean oil were exogenously supplemented separately with an optimized concentration in the presence of furfural, which increased fumaric acid titer from 5.78g/L to 10.03g/L, 10.05g/L and 12.13g/L (increased by 73.5%, 73.8% and 110%, respectively). These findings provide a methodological guidance for hemicellulose-fumaric acid development.
Collapse
Affiliation(s)
- Xinrong Pan
- Key Laboratory of System Bioengineering (Tianjin University), Ministry of Education, Tianjin 300072, People's Republic of China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Huanhuan Liu
- Key Laboratory of System Bioengineering (Tianjin University), Ministry of Education, Tianjin 300072, People's Republic of China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Jiao Liu
- Key Laboratory of System Bioengineering (Tianjin University), Ministry of Education, Tianjin 300072, People's Republic of China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Cheng Wang
- Key Laboratory of System Bioengineering (Tianjin University), Ministry of Education, Tianjin 300072, People's Republic of China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Jianping Wen
- Key Laboratory of System Bioengineering (Tianjin University), Ministry of Education, Tianjin 300072, People's Republic of China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China.
| |
Collapse
|
14
|
Felczak A, Bernat P, Różalska S, Lisowska K. Quinoline biodegradation by filamentous fungus Cunninghamella elegans and adaptive modifications of the fungal membrane composition. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:8872-8880. [PMID: 26810790 PMCID: PMC4850185 DOI: 10.1007/s11356-016-6116-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 01/13/2016] [Indexed: 06/05/2023]
Abstract
Quinoline, which belongs to N-heterocyclic compounds, occurs naturally in the environment and is used in numerous industrial processes. The structures of various chemicals, such as dyes and medicines, are based on this compound. Due to that fact, quinoline and its derivatives are widely distributed in environment and can exert toxic effects on organisms from different trophic levels. The ability of the filamentous fungus Cunninghamella elegans IM 1785/21Gp to degrade quinoline and modulate the membrane composition in response to the pollutant was studied. C. elegans IM 1785/21Gp removes quinoline with high efficiency and transforms the pollutant into two novel hydroxylated derivatives, 2-hydroxyquinoline and 3-hydroxyquinoline. Moreover, due to the disruption in the membrane stability by quinoline, C. elegans IM 1785/21Gp modulates the fatty acid composition and phospholipid profile.
Collapse
Affiliation(s)
- Aleksandra Felczak
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-237, Lodz, Poland
| | - Przemysław Bernat
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-237, Lodz, Poland
| | - Sylwia Różalska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-237, Lodz, Poland
| | - Katarzyna Lisowska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-237, Lodz, Poland.
| |
Collapse
|
15
|
Antimicrobial ε-poly-l-lysine induced changes in cell membrane compositions and properties of Saccharomyces cerevisiae. Food Control 2016. [DOI: 10.1016/j.foodcont.2015.09.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Sundararaman N, Ash C, Guo W, Button R, Singh J, Feng X. iTAP: integrated transcriptomics and phenotype database for stress response of Escherichia coli and Saccharomyces cerevisiae. BMC Res Notes 2015; 8:771. [PMID: 26653323 PMCID: PMC4676837 DOI: 10.1186/s13104-015-1759-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 11/26/2015] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Organisms are subject to various stress conditions, which affect both the organism's gene expression and phenotype. It is critical to understand microbial responses to stress conditions and uncover the underlying molecular mechanisms. To this end, it is necessary to build a database that collects transcriptomics and phenotypic data of microbes growing under various stress factors for in-depth systems biology analysis. Despite of numerous databases that collect gene expression profiles, to our best knowledge, there are few, if any, databases that collect both transcriptomics and phenotype data simultaneously. In light of this, we have developed an open source, web-based database, namely integrated transcriptomics and phenotype (iTAP) database, that records and links the transcriptomics and phenotype data for two model microorganisms, Escherichia coli and Saccharomyces cerevisiae in response to exposure of various stress conditions. RESULTS To collect the data, we chose relevant research papers from the PubMed database containing all the necessary information for data curation including experimental conditions, transcriptomics data, and phenotype data. The transcriptomics data, including the p value and fold change, were obtained through the comparison of test strains against control strains using Gene Expression Omnibus's GEO2R analyzer. The phenotype data, including the cell growth rate and the productivity, volumetric rate, and mass-based yield of byproducts, were calculated independently from charts or graphs within the reference papers. Since the phenotype data was never reported in a standardized format, the curation of correlated transcriptomics-phenotype datasets became extremely tedious and time-consuming. Despite the challenges, till now, we successfully correlated 57 and 143 datasets of transcriptomics and phenotype for E. coli and S. cerevisiae, respectively, and applied a regression model within the iTAP database to accurately predict over 93 and 73 % of the growth rates of E. coli and S. cerevisiae, respectively, directly from the transcriptomics data. CONCLUSION This is the first time that transcriptomics and phenotype data are categorized and correlated in an open-source database. This allows biologists to access the database and utilize it to predict the phenotype of microorganisms from their transcriptomics data. The iTAP database is freely available at https://sites.google.com/a/vt.edu/biomolecular-engineering-lab/software .
Collapse
Affiliation(s)
- Niveda Sundararaman
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Christine Ash
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Weihua Guo
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Rebecca Button
- Commonwealth Governor's School, Fredericksburg, VA, 22407, USA.
| | - Jugroop Singh
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Xueyang Feng
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
17
|
Zawadzka K, Bernat P, Felczak A, Lisowska K. Carbazole hydroxylation by the filamentous fungi of the Cunninghamella species. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:19658-66. [PMID: 26276273 PMCID: PMC4679103 DOI: 10.1007/s11356-015-5146-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 08/03/2015] [Indexed: 05/28/2023]
Abstract
Nitrogen heterocyclic compounds, especially carbazole, quinolone, and pyridine are common types of environmental pollutants. Carbazole has a toxic influence on living organisms, and the knowledge of its persistence and bioconversion in ecosystems is still not complete. There is an increasing interest in detoxification of hazardous xenobiotics by microorganisms. In this study, the ability of three filamentous fungi of the Cunninghamella species to eliminate carbazole was evaluated. The Cunninghamella elegans IM 1785/21Gp and Cunninghamella echinulata IM 2611 strains efficiently removed carbazole. The IM 1785/21Gp and IM 2611 strains converted 93 and 82 % of the initial concentration of the xenobiotic (200 mg L(-1)) after 120 h incubation. 2-Hydroxycarbazole was for the first time identified as a carbazole metabolite formed by the filamentous fungi of the Cunninghamella species. There was no increase in the toxicity of the postculture extracts toward Artemia franciscana. Moreover, we showed an influence of carbazole on the phospholipid composition of the cells of the tested filamentous fungi, which indicated its harmful effect on the fungal cell membrane. The most significant modification of phospholipid levels after the cultivation of filamentous fungi with the addition of carbazole was showed for IM 1785/21Gp strain.
Collapse
Affiliation(s)
- K Zawadzka
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-237, Lodz, Poland
| | - P Bernat
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-237, Lodz, Poland
| | - A Felczak
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-237, Lodz, Poland
| | - K Lisowska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-237, Lodz, Poland.
| |
Collapse
|
18
|
Wallace-Salinas V, Brink DP, Ahrén D, Gorwa-Grauslund MF. Cell periphery-related proteins as major genomic targets behind the adaptive evolution of an industrial Saccharomyces cerevisiae strain to combined heat and hydrolysate stress. BMC Genomics 2015; 16:514. [PMID: 26156140 PMCID: PMC4496855 DOI: 10.1186/s12864-015-1737-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 06/29/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Laboratory evolution is an important tool for developing robust yeast strains for bioethanol production since the biological basis behind combined tolerance requires complex alterations whose proper regulation is difficult to achieve by rational metabolic engineering. Previously, we reported on the evolved industrial Saccharomyces cerevisiae strain ISO12 that had acquired improved tolerance to grow and ferment in the presence of lignocellulose-derived inhibitors at high temperature (39 °C). In the current study, we used comparative genomics to uncover the extent of the genomic alterations that occurred during the evolution process and investigated possible associations between the mutations and the phenotypic traits in ISO12. RESULTS Through whole-genome sequencing and variant calling we identified a high number of strain-unique SNPs and INDELs in both ISO12 and the parental strain Ethanol Red. The variants were predicted to have 760 non-synonymous effects in both strains combined and were significantly enriched in Gene Ontology terms related to cell periphery, membranes and cell wall. Eleven genes, including MTL1, FLO9/FLO11, and CYC3 were found to be under positive selection in ISO12. Additionally, the FLO genes exhibited changes in copy number, and the alterations to this gene family were correlated with experimental results of multicellularity and invasive growth in the adapted strain. An independent lipidomic analysis revealed further differences between the strains in the content of nine lipid species. Finally, ISO12 displayed improved viability in undiluted spruce hydrolysate that was unrelated to reduction of inhibitors and changes in cell wall integrity, as shown by HPLC and lyticase assays. CONCLUSIONS Together, the results of the sequence comparison and the physiological characterisations indicate that cell-periphery proteins (e.g. extracellular sensors such as MTL1) and peripheral lipids/membranes are important evolutionary targets in the process of adaptation to the combined stresses. The capacity of ISO12 to develop complex colony formation also revealed multicellularity as a possible evolutionary strategy to improve competitiveness and tolerance to environmental stresses (also reflected by the FLO genes). Although a panel of altered genes with high relevance to the novel phenotype was detected, this study also demonstrates that the observed long-term molecular effects of thermal and inhibitor stress have polygenetic basis.
Collapse
Affiliation(s)
- Valeria Wallace-Salinas
- Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, Lund, SE-22100, Sweden.
| | - Daniel P Brink
- Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, Lund, SE-22100, Sweden.
| | - Dag Ahrén
- Microbial Ecology Group, Department of Biology, Lund University, Ecology Building, Lund, Sweden.
| | - Marie F Gorwa-Grauslund
- Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, Lund, SE-22100, Sweden.
| |
Collapse
|
19
|
Bernat P, Gajewska E, Szewczyk R, Słaba M, Długoński J. Tributyltin (TBT) induces oxidative stress and modifies lipid profile in the filamentous fungus Cunninghamella elegans. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:4228-35. [PMID: 24306727 PMCID: PMC3945233 DOI: 10.1007/s11356-013-2375-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 11/14/2013] [Indexed: 05/24/2023]
Abstract
To investigate the response of the tributyltin-degrading fungal strain Cunninghamella elegans to the organotin, a comparative lipidomics strategy was employed using an LC/MS-MS technique. A total of 49 lipid species were identified. Individual phospholipids were then quantified using a multiple reaction monitoring method. Tributyltin (TBT) caused a decline in the amounts of many molecular species of phosphatidylethanolamine or phosphatidylserine and an increase in the levels of phosphatidic acid, phosphatidylinositol and phosphatidylcholine. In the presence of TBT, it was observed that overall unsaturation was lower than in the control. Lipidome data were analyzed using principal component analysis, which confirmed the compositional changes in membrane lipids in response to TBT. Additionally, treatment of fungal biomass with butyltin led to a significant increase in lipid peroxidation. It is suggested that modification of the phospholipids profile and lipids peroxidation may reflect damage to mycelium caused by TBT.
Collapse
Affiliation(s)
- Przemysław Bernat
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 90-237 Łódź, Poland
| | - Ewa Gajewska
- Department of Plant Physiology and Biochemistry, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 90-237 Łódź, Poland
| | - Rafał Szewczyk
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 90-237 Łódź, Poland
| | - Mirosława Słaba
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 90-237 Łódź, Poland
| | - Jerzy Długoński
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 90-237 Łódź, Poland
| |
Collapse
|
20
|
Lv YJ, Wang X, Ma Q, Bai X, Li BZ, Zhang W, Yuan YJ. Proteomic analysis reveals complex metabolic regulation in Saccharomyces cerevisiae cells against multiple inhibitors stress. Appl Microbiol Biotechnol 2014; 98:2207-21. [PMID: 24442506 DOI: 10.1007/s00253-014-5519-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 12/20/2013] [Accepted: 12/28/2013] [Indexed: 11/24/2022]
Abstract
Toxic compounds including acids, furans, and phenols (AFP) were generated from the pretreatment of lignocellulose. We cultivated Saccharomyces cerevisiae cells in a batch mode, besides the cell culture of original yeast strain in AFP-free medium which was referred as C0, three independent subcultures were cultivated under multiple inhibitors AFP and were referred as C1, C2, and C3 in time sequence. Comparing to C0, the cell density was lowered while the ethanol yield was maintained stably in the three yeast cultures under AFP stress, and the lag phase of C1 was extended while the lag phases of C2 and C3 were not extended. In proteomic analysis, 194 and 215 unique proteins were identified as differently expressed proteins at lag phase and exponential phase, respectively. Specifically, the yeast cells co-regulated protein folding and protein synthesis process to prevent the generation of misfolded proteins and to save cellular energy, they increased the activity of glycolysis, redirected metabolic flux towards phosphate pentose pathway and the biosynthesis of ethanol instead of the biosynthesis of glycerol and acetic acid, and they upregulated several oxidoreductases especially at lag phase and induced programmed cell death at exponential phase. When the yeast cells were cultivated under AFP stress, the new metabolism homeostasis in favor of cellular energy and redox homeostasis was generated in C1, then it was inherited and optimized in C2 and C3, enabling the yeast cells in C2 and C3 to enter the exponential phase in a short period after inoculation, which thus significantly shortened the fermentation time.
Collapse
Affiliation(s)
- Ya-Jin Lv
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, 300072, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
21
|
Lindberg L, Santos AX, Riezman H, Olsson L, Bettiga M. Lipidomic profiling of Saccharomyces cerevisiae and Zygosaccharomyces bailii reveals critical changes in lipid composition in response to acetic acid stress. PLoS One 2013; 8:e73936. [PMID: 24023914 PMCID: PMC3762712 DOI: 10.1371/journal.pone.0073936] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 07/26/2013] [Indexed: 01/03/2023] Open
Abstract
When using microorganisms as cell factories in the production of bio-based fuels or chemicals from lignocellulosic hydrolysate, inhibitory concentrations of acetic acid, released from the biomass, reduce the production rate. The undissociated form of acetic acid enters the cell by passive diffusion across the lipid bilayer, mediating toxic effects inside the cell. In order to elucidate a possible link between lipid composition and acetic acid stress, the present study presents detailed lipidomic profiling of the major lipid species found in the plasma membrane, including glycerophospholipids, sphingolipids and sterols, in Saccharomyces cerevisiae (CEN.PK 113_7D) and Zygosaccharomyces bailii (CBS7555) cultured with acetic acid. Detailed physiological characterization of the response of the two yeasts to acetic acid has also been performed in aerobic batch cultivations using bioreactors. Physiological characterization revealed, as expected, that Z. bailii is more tolerant to acetic acid than S. cerevisiae. Z. bailii grew at acetic acid concentrations above 24 g L−1, while limited growth of S. cerevisiae was observed after 11 h when cultured with only 12 g L−1 acetic acid. Detailed lipidomic profiling using electrospray ionization, multiple-reaction-monitoring mass spectrometry (ESI-MRM-MS) showed remarkable changes in the glycerophospholipid composition of Z. bailii, including an increase in saturated glycerophospholipids and considerable increases in complex sphingolipids in both S. cerevisiae (IPC 6.2×, MIPC 9.1×, M(IP)2C 2.2×) and Z. bailii (IPC 4.9×, MIPC 2.7×, M(IP)2C 2.7×), when cultured with acetic acid. In addition, the basal level of complex sphingolipids was significantly higher in Z. bailii than in S. cerevisiae, further emphasizing the proposed link between lipid saturation, high sphingolipid levels and acetic acid tolerance. The results also suggest that acetic acid tolerance is associated with the ability of a given strain to generate large rearrangements in its lipid profile.
Collapse
Affiliation(s)
- Lina Lindberg
- Department of Chemical and Biological Engineering, Industrial Biotechnology, Chalmers University of Technology, Gothenburg, Sweden
| | | | | | | | | |
Collapse
|
22
|
Qiao B, Lu H, Cao YX, Chen R, Yuan YJ. Phospholipid profiles ofPenicillium chrysogenumin different scales of fermentations. Eng Life Sci 2013. [DOI: 10.1002/elsc.201200139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Bin Qiao
- Key Laboratory of Systems Bioengineering, Ministry of Education; School of Chemical Engineering and Technology, Tianjin University; Tianjin P. R. China
| | - Hua Lu
- Key Laboratory of Systems Bioengineering, Ministry of Education; School of Chemical Engineering and Technology, Tianjin University; Tianjin P. R. China
- Hebei Zhongrun Pharmaceutical Co., Ltd; China, Shijiazhuang Pharmaceutical Group Co., Ltd. (CSPC); Shijiazhuang P. R. China
| | - Ying-Xiu Cao
- Key Laboratory of Systems Bioengineering, Ministry of Education; School of Chemical Engineering and Technology, Tianjin University; Tianjin P. R. China
| | - Rao Chen
- Hebei Zhongrun Pharmaceutical Co., Ltd; China, Shijiazhuang Pharmaceutical Group Co., Ltd. (CSPC); Shijiazhuang P. R. China
| | - Ying-Jin Yuan
- Key Laboratory of Systems Bioengineering, Ministry of Education; School of Chemical Engineering and Technology, Tianjin University; Tianjin P. R. China
| |
Collapse
|
23
|
Wang X, Jin M, Balan V, Jones AD, Li X, Li BZ, Dale BE, Yuan YJ. Comparative metabolic profiling revealed limitations in xylose-fermenting yeast during co-fermentation of glucose and xylose in the presence of inhibitors. Biotechnol Bioeng 2013; 111:152-64. [DOI: 10.1002/bit.24992] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Xin Wang
- Key Laboratory of Systems Bioengineering; Ministry of Education; Department of Pharmaceutical Engineering; School of Chemical Engineering and Technology; Tianjin University; Tianjin 300072 P.R. China
| | - Mingjie Jin
- Biomass Conversion Research Laboratory (BCRL); Department of Chemical Engineering and Materials Science; Michigan State University; 3900 Collins Road MBI International Building Lansing Michigan 48910
| | - Venkatesh Balan
- Biomass Conversion Research Laboratory (BCRL); Department of Chemical Engineering and Materials Science; Michigan State University; 3900 Collins Road MBI International Building Lansing Michigan 48910
| | - A. Daniel Jones
- Department of Biochemistry and Molecular Biology; Michigan State University; East Lansing Michigan
- Department of Chemistry; Michigan State University; East Lansing Michigan
| | - Xia Li
- Key Laboratory of Systems Bioengineering; Ministry of Education; Department of Pharmaceutical Engineering; School of Chemical Engineering and Technology; Tianjin University; Tianjin 300072 P.R. China
| | - Bing-Zhi Li
- Key Laboratory of Systems Bioengineering; Ministry of Education; Department of Pharmaceutical Engineering; School of Chemical Engineering and Technology; Tianjin University; Tianjin 300072 P.R. China
| | - Bruce E. Dale
- Biomass Conversion Research Laboratory (BCRL); Department of Chemical Engineering and Materials Science; Michigan State University; 3900 Collins Road MBI International Building Lansing Michigan 48910
| | - Ying-Jin Yuan
- Key Laboratory of Systems Bioengineering; Ministry of Education; Department of Pharmaceutical Engineering; School of Chemical Engineering and Technology; Tianjin University; Tianjin 300072 P.R. China
| |
Collapse
|
24
|
Lu S, Han Y, Duan X, Luo F, Zhu L, Li S, Huang H. Cell Morphology Variations of Klebsiella pneumoniae Induced by Acetate Stress Using Biomimetic Vesicle Assay. Appl Biochem Biotechnol 2013; 171:731-43. [DOI: 10.1007/s12010-013-0368-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 06/23/2013] [Indexed: 10/26/2022]
|
25
|
Wang X, Li BZ, Ding MZ, Zhang WW, Yuan YJ. Metabolomic Analysis Reveals Key Metabolites Related to the Rapid Adaptation of Saccharomyce cerevisiae to Multiple Inhibitors of Furfural, Acetic Acid, and Phenol. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2013; 17:150-9. [DOI: 10.1089/omi.2012.0093] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Xin Wang
- Key Laboratory of Systems Bioengineering, Ministry of Education; Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, People's Republic of China
| | - Bing-Zhi Li
- Key Laboratory of Systems Bioengineering, Ministry of Education; Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, People's Republic of China
| | - Ming-Zhu Ding
- Key Laboratory of Systems Bioengineering, Ministry of Education; Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, People's Republic of China
| | - Wei-Wen Zhang
- Key Laboratory of Systems Bioengineering, Ministry of Education; Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, People's Republic of China
| | - Ying-Jin Yuan
- Key Laboratory of Systems Bioengineering, Ministry of Education; Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, People's Republic of China
| |
Collapse
|
26
|
Yang J, Ding MZ, Li BZ, Liu ZL, Wang X, Yuan YJ. Integrated Phospholipidomics and Transcriptomics Analysis ofSaccharomyces cerevisiaewith Enhanced Tolerance to a Mixture of Acetic Acid, Furfural, and Phenol. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2012; 16:374-86. [DOI: 10.1089/omi.2011.0127] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Jie Yang
- Key Laboratory of Systems Bioengineering, Ministry of Education; Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, P.R. China
| | - Ming-Zhu Ding
- Key Laboratory of Systems Bioengineering, Ministry of Education; Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, P.R. China
| | - Bing-Zhi Li
- Key Laboratory of Systems Bioengineering, Ministry of Education; Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, P.R. China
| | - Z. Lewis Liu
- Bioenergy Research Unit, National Center for Agricultural Utilization Research, U.S. Department of Agriculture-Agricultural Research Service, Peoria, Illinois
| | - Xin Wang
- Key Laboratory of Systems Bioengineering, Ministry of Education; Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, P.R. China
| | - Ying-Jin Yuan
- Key Laboratory of Systems Bioengineering, Ministry of Education; Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, P.R. China
| |
Collapse
|
27
|
Comparative lipidomic analysis of Cephalosporium acremonium insights into industrial and pilot fermentations. BIOTECHNOL BIOPROC E 2012. [DOI: 10.1007/s12257-011-0494-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
28
|
Ding MZ, Wang X, Yang Y, Yuan YJ. Metabolomic Study of Interactive Effects of Phenol, Furfural, and Acetic Acid onSaccharomyces cerevisiae. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2011; 15:647-53. [DOI: 10.1089/omi.2011.0003] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ming-Zhu Ding
- Key Laboratory of Systems Bioengineering (Tianjin University), Ministry of Education; Department of Pharmaceutical Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin, People's Republic of China
| | - Xin Wang
- Key Laboratory of Systems Bioengineering (Tianjin University), Ministry of Education; Department of Pharmaceutical Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin, People's Republic of China
| | - Yang Yang
- Key Laboratory of Systems Bioengineering (Tianjin University), Ministry of Education; Department of Pharmaceutical Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin, People's Republic of China
| | - Ying-Jin Yuan
- Key Laboratory of Systems Bioengineering (Tianjin University), Ministry of Education; Department of Pharmaceutical Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin, People's Republic of China
| |
Collapse
|
29
|
Li X, Yuan YJ. Lipidomic Analysis of Apoptotic Hela Cells Induced by Paclitaxel. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2011; 15:655-64. [DOI: 10.1089/omi.2011.0027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Xia Li
- Key Laboratory of Systems Bioengineering, Ministry of Education and Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, People's Republic of China
| | - Ying-Jin Yuan
- Key Laboratory of Systems Bioengineering, Ministry of Education and Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, People's Republic of China
| |
Collapse
|
30
|
Ding MZ, Li BZ, Cheng JS, Yuan YJ. Metabolome analysis of differential responses of diploid and haploid yeast to ethanol stress. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2011; 14:553-61. [PMID: 20955008 DOI: 10.1089/omi.2010.0015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Metabolomic analysis was carried out to investigate the metabolic differences of diploid (α/a) and homogenous haploid (α,a) yeasts, and further assess their response to ethanol stress. The dynamic metabolic variations of diploid and haploid caused by 3 and 7% (v/v) ethanol stress were evaluated by gas chromatography coupled to time-of-flight mass spectrometry combined with statistical analysis. Metabolite profiles originating from three strains in presence/absence of ethanol stress were distinctive and could be distinguished by principal components analysis. Results showed that the divergence among the strains with ethanol stress was smaller than without it. Furthermore, the levels of most glycolytic intermediates and amino acids in haploid were lower than these in diploid with/without ethanol stress, which was considered as species-specific behaviors. The increases of protective metabolites including polyols, amino acids, precursors of phospholipids, and unsaturated fatty acids under ethanol stress in three strains revealed the ethanol stress-specific responses. Higher fold change in most of these protectants in haploid indicated that haploid was more susceptible to ethanol stress than diploid. These findings provided underlying basis for better understanding diploid and haploid yeasts, and further breeding tolerant strains for efficient ethanol fermentation.
Collapse
Affiliation(s)
- Ming-Zhu Ding
- Key Laboratory of Systems Bioengineering, Ministry of Education and Department of Pharmaceutical Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin, People's Republic of China
| | | | | | | |
Collapse
|
31
|
Alriksson B, Cavka A, Jönsson LJ. Improving the fermentability of enzymatic hydrolysates of lignocellulose through chemical in-situ detoxification with reducing agents. BIORESOURCE TECHNOLOGY 2011; 102:1254-63. [PMID: 20822900 DOI: 10.1016/j.biortech.2010.08.037] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 08/11/2010] [Accepted: 08/12/2010] [Indexed: 05/02/2023]
Abstract
Inhibitory lignocellulose hydrolysates were treated with the reducing agents dithionite and sulfite to achieve improved fermentability. Addition of these reducing agents (in the concentration range 5.0-17.5 mM) to enzymatic hydrolysates of spruce wood or sugarcane bagasse improved processes based on both SHF (simultaneous hydrolysis and fermentation) and SSF (simultaneous saccharification and fermentation). The approach was exemplified in ethanolic fermentations with Saccharomyces cerevisiae and by using hydrolysates with sugar concentrations>100 g/L (for SHF) and with 10% dry-matter content (for SSF). In the SHF experiments, treatments with dithionite raised the ethanol productivities of the spruce hydrolysate from 0.2 to 2.5 g×L(-1)×h(-1) and of the bagasse hydrolysate from 0.9 to 3.9 g×L(-1)×h(-1), values even higher than those of fermentations with reference sugar solutions without inhibitors. Benefits of the approach include that the addition of the reducing agent can be made in-situ directly in the fermentation vessel, that the treatment can be performed at a temperature and pH suitable for fermentation, and that the treatment results in dramatically improved fermentability without degradation of fermentable sugars. The many benefits and the simplicity of the approach offer a new way to achieve more efficient manufacture of fermentation products from lignocellulose hydrolysates.
Collapse
Affiliation(s)
- Björn Alriksson
- Processum Biorefinery Initiative AB, SE-891 80 Örnsköldsvik, Sweden
| | | | | |
Collapse
|
32
|
Recent advances of chromatography and mass spectrometry in lipidomics. Anal Bioanal Chem 2010; 399:243-9. [DOI: 10.1007/s00216-010-4327-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 10/03/2010] [Accepted: 10/10/2010] [Indexed: 11/26/2022]
|
33
|
Zhou X, Zhou J, Tian H, Yuan Y. Dynamic Lipidomic Insights into the Adaptive Responses ofSaccharomyces cerevisiaeto the Repeated Vacuum Fermentation. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2010; 14:563-74. [DOI: 10.1089/omi.2010.0016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Xiao Zhou
- Key Laboratory of Systems Bioengineering, Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Jian Zhou
- Key Laboratory of Systems Bioengineering, Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Hongchi Tian
- Key Laboratory of Systems Bioengineering, Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Yingjin Yuan
- Key Laboratory of Systems Bioengineering, Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| |
Collapse
|
34
|
Xia J, Jones AD, Lau MW, Yuan YJ, Dale BE, Balan V. Comparative lipidomic profiling of xylose-metabolizing S. cerevisiae and its parental strain in different media reveals correlations between membrane lipids and fermentation capacity. Biotechnol Bioeng 2010; 108:12-21. [DOI: 10.1002/bit.22910] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
35
|
Tian HC, Zhou J, Qiao B, Liu Y, Xia JM, Yuan YJ. Lipidome profiling of Saccharomyces cerevisiae reveals pitching rate-dependent fermentative performance. Appl Microbiol Biotechnol 2010; 87:1507-16. [DOI: 10.1007/s00253-010-2615-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2009] [Revised: 04/03/2010] [Accepted: 04/11/2010] [Indexed: 11/30/2022]
|
36
|
Li BZ, Yuan YJ. Transcriptome shifts in response to furfural and acetic acid in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2010; 86:1915-24. [PMID: 20309542 DOI: 10.1007/s00253-010-2518-2] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 02/20/2010] [Accepted: 02/22/2010] [Indexed: 11/30/2022]
Abstract
Furfural and acetic acid are two prevalent inhibitors to microorganisms during cellulosic ethanol production, but molecular mechanisms of tolerance to these inhibitors are still unclear. In this study, genome-wide transcriptional responses to furfural and acetic acid were investigated in Saccharomyces cerevisiae using microarray analysis. We found that 103 and 227 genes were differentially expressed in the response to furfural and acetic acid, respectively. Furfural downregulated genes related to transcriptional control and translational control, while it upregulated stress-responsive genes. Furthermore, furfural also interrupted the transcription of genes involved in metabolism of essential chemicals, such as etrahydrofolate, spermidine, spermine, and riboflavin monophosphate. Acetic acid downregulated genes encoding mitochondrial ribosomal proteins and genes involved in carbohydrate metabolism and regulation and upregulated genes related to amino acid metabolism. The results revealed that furfural and acetic acid had effects on multiple aspects of cellular metabolism on the transcriptional level and that mitochondria might play important roles in response to both furfural and acetic acid. This research has provided insights into molecular response to furfural and acetic acid in S. cerevisiae, and it will be helpful to construct more resistant strains for cellulosic ethanol production.
Collapse
Affiliation(s)
- Bing-Zhi Li
- Key Laboratory of Systems Bioengineering (Tianjin University), Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, P. O. Box 6888, Tianjin, 300072, People's Republic of China
| | | |
Collapse
|
37
|
Cheng JS, Ding MZ, Tian HC, Yuan YJ. Inoculation-density-dependent responses and pathway shifts in Saccharomyces cerevisiae. Proteomics 2010; 9:4704-13. [PMID: 19743421 DOI: 10.1002/pmic.200900249] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The cell-density-dependent responses of Saccharomyces cerevisiae to inoculation sizes were explored by a proteomic approach. According to their gene ontology, 100 protein spots with differential expression, corresponding to 67 proteins, were identified and classed into 17 different functional groups. Upregulation of eight heat shock, oxidative response and amino acid biosynthesis-related proteins (e.g. Hsp78p, Ssa1p, Hsp60p, Ctt1p, Sod1p, Ahp1p, Met6p and Met17p), which may jointly maintain the cell redox homeostasis, was dependant on inoculation density. Significant increases in the levels of five proteins involved in glycolysis and alcohol biosynthesis pathways (e.g. Glk1p, Fba1p, Eno1p, Pdc1p and Adh1p) might play critical roles in improving ethanol productivity of the fermentation process and shortening the fermentation time when inoculation sizes were increased. Cell-density-dependent glycolytic variations of proteins involved in trehalose, glycerol biosynthesis and pentose phosphate pathway revealed shifts among metabolic pathways during fermentation with different inoculation sizes. Upregulation of three signal transduction proteins (Bmh1p, Bmh2p and Fpr1p) indicated that adequate cell-cell contacts improved cellular communication at high inoculation sizes. These findings provide insights into yeast responses to inoculation size and optimizing the direct inoculation of active dry yeast fermentation, so as to improve the ethanol production.
Collapse
Affiliation(s)
- Jing-Sheng Cheng
- Department of Pharmaceutical Engineering, Tianjin University, Tianjin, P R China
| | | | | | | |
Collapse
|
38
|
Lin FM, Tan Y, Yuan YJ. Temporal quantitative proteomics of Saccharomyces cerevisiae in response to a nonlethal concentration of furfural. Proteomics 2009; 9:5471-83. [DOI: 10.1002/pmic.200900100] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
39
|
Li BZ, Cheng JS, Qiao B, Yuan YJ. Genome-wide transcriptional analysis of Saccharomyces cerevisiae during industrial bioethanol fermentation. J Ind Microbiol Biotechnol 2009; 37:43-55. [PMID: 19821132 DOI: 10.1007/s10295-009-0646-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Accepted: 09/22/2009] [Indexed: 10/20/2022]
Abstract
Saccharomyces cerevisiae is widely applied in large-scale industrial bioethanol fermentation; however, little is known about the molecular responses of industrial yeast during large-scale fermentation processes. We investigated the global transcriptional responses of an industrial strain of S. cerevisiae during industrial continuous and fed-batch fermentation by oligonucleotide-based microarrays. About 28 and 62% of all genes detected showed differential gene expression during continuous and fed-batch fermentation, respectively. The overrepresented functional categories of differentially expressed genes in continuous fermentation overlapped with those in fed-batch fermentation. Downregulation of glycosylation as well as upregulation of the unfolded protein stress response was observed in both fermentation processes, suggesting dramatic changes of environment in endoplasmic reticulum during industrial fermentation. Genes related to ergosterol synthesis and genes involved in glycogen and trehalose metabolism were downregulated in both fermentation processes. Additionally, changes in the transcription of genes involved in carbohydrate metabolism coincided with the responses to glucose limitation during the early main fermentation stage in both processes. We also found that during the late main fermentation stage, yeast cells exhibited similar but stronger transcriptional changes during the fed-batch process than during the continuous process. Furthermore, repression of glycosylation has been suggested to be a secondary stress in the model proposed to explain the transcriptional responses of yeast during industrial fermentation. Together, these findings provide insights into yeast performance during industrial fermentation processes for bioethanol production.
Collapse
Affiliation(s)
- Bing-Zhi Li
- Tianjin University, People's Republic of China
| | | | | | | |
Collapse
|
40
|
Cheng JS, Zhou X, Ding MZ, Yuan YJ. Proteomic insights into adaptive responses of Saccharomyces cerevisiae to the repeated vacuum fermentation. Appl Microbiol Biotechnol 2009; 83:909-23. [PMID: 19488749 DOI: 10.1007/s00253-009-2037-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 05/03/2009] [Accepted: 05/04/2009] [Indexed: 10/20/2022]
Abstract
The responses and adaptation mechanisms of the industrial Saccharomyces cerevisiae to vacuum fermentation were explored using proteomic approach. After qualitative and quantitative analyses, a total of 106 spots corresponding to 68 different proteins were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The differentially expressed proteins were involved in amino acid and carbohydrate metabolisms, various signal pathways (Ras/MAPK, Ras-cyclic adenosine monophosphate, and HOG pathway), and heat shock and oxidative responses. Among them, alternations in levels of 17 proteins associated with carbohydrate metabolisms, in particular, the upregulations of proteins involved in glycolysis, trehalose biosynthesis, and the pentose phosphate pathway, suggested vacuum-induced redistribution of the metabolic fluxes. The upregulation of 17 heat stress and oxidative response proteins indicated that multifactors contributed to oxidative stresses by affecting cell redox homeostasis. Taken together with upregulation in 14-3-3 proteins levels, 22 proteins were detected in multispots, respectively, indicating that vacuum might have promoted posttranslational modifications of some proteins in S. cerevisiae. Further investigation revealed that the elevations of the differentially expressed proteins were mainly derived from vacuum stress rather than the absence of oxygen. These findings provide new molecular mechanisms for understanding of adaptation and tolerance of yeast to vacuum fermentation.
Collapse
|
41
|
|
42
|
Comparative proteomic analysis of tolerance and adaptation of ethanologenic Saccharomyces cerevisiae to furfural, a lignocellulosic inhibitory compound. Appl Environ Microbiol 2009; 75:3765-76. [PMID: 19363068 DOI: 10.1128/aem.02594-08] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The molecular mechanism involved in tolerance and adaptation of ethanologenic Saccharomyces cerevisiae to inhibitors (such as furfural, acetic acid, and phenol) represented in lignocellulosic hydrolysate is still unclear. Here, (18)O-labeling-aided shotgun comparative proteome analysis was applied to study the global protein expression profiles of S. cerevisiae under conditions of treatment of furfural compared with furfural-free fermentation profiles. Proteins involved in glucose fermentation and/or the tricarboxylic acid cycle were upregulated in cells treated with furfural compared with the control cells, while proteins involved in glycerol biosynthesis were downregulated. Differential levels of expression of alcohol dehydrogenases were observed. On the other hand, the levels of NADH, NAD(+), and NADH/NAD(+) were reduced whereas the levels of ATP and ADP were increased. These observations indicate that central carbon metabolism, levels of alcohol dehydrogenases, and the redox balance may be related to tolerance of ethanologenic yeast for and adaptation to furfural. Furthermore, proteins involved in stress response, including the unfolded protein response, oxidative stress, osmotic and salt stress, DNA damage and nutrient starvation, were differentially expressed, a finding that was validated by quantitative real-time reverse transcription-PCR to further confirm that the general stress responses are essential for cellular defense against furfural. These insights into the response of yeast to the presence of furfural will benefit the design and development of inhibitor-tolerant ethanologenic yeast by metabolic engineering or synthetic biology.
Collapse
|