1
|
Yang W, Chen R, Sun L, Li Q, Lai X, Zhang Z, Lai Z, Hao M, Li Q, Lin S, Ni H, Sun S. Effects of Pile-Fermentation Duration on the Taste Quality of Single-Cultivar Large-Leaf Dark Tea: Insights from Metabolomics and Microbiomics. Foods 2025; 14:670. [PMID: 40002114 PMCID: PMC11854364 DOI: 10.3390/foods14040670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/10/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
The pile-fermentation conditions and raw materials used play a vital role in determining the stability and quality of dark tea. In this study, sensory quality evaluation, metabolomics, and microbiomics techniques were used to investigate the effect of pile-fermentation duration on the taste quality of single-cultivar large-leaf dark tea (SLDT) and its underlying metabolite and microbial mechanisms. The study revealed that a 60-day duration resulted in a better SLDT sensory quality, with astringency and bitterness significantly reduced and sweetness increased. Catechins and theaflavins with ester structures, L-epicatechin, methyl gallate, protocatechuic acid, gallic acid, salicin, chlorogenic acid, and neochlorogenic acid were key taste metabolites contributing to the reduction of astringency and bitterness. Salicylic acid and D-sorbitol helped form the sweetness. Correlation analysis found out Aspergillus, Thermomyces, Bacillus, Staphylococcus, and Micrococcaceae were core functional microorganisms linked to these metabolites, helping to foster the higher quality of SLDT. Microorganisms shaped the taste quality of SLDT through metabolic processes and enzyme secretion during pile-fermentation. This study provided insights into the metabolite basis and microbiological mechanisms of SLDT taste formation and offered guidance for optimizing production processes to improve the stability and quality of dark tea.
Collapse
Affiliation(s)
- Wanying Yang
- Guangdong Provincial Key Lab of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China;
| | - Ruohong Chen
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China; (R.C.); (L.S.); (Q.L.); (X.L.); (Z.Z.); (Z.L.); (M.H.)
| | - Lingli Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China; (R.C.); (L.S.); (Q.L.); (X.L.); (Z.Z.); (Z.L.); (M.H.)
| | - Qiuhua Li
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China; (R.C.); (L.S.); (Q.L.); (X.L.); (Z.Z.); (Z.L.); (M.H.)
| | - Xingfei Lai
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China; (R.C.); (L.S.); (Q.L.); (X.L.); (Z.Z.); (Z.L.); (M.H.)
| | - Zhenbiao Zhang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China; (R.C.); (L.S.); (Q.L.); (X.L.); (Z.Z.); (Z.L.); (M.H.)
| | - Zhaoxiang Lai
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China; (R.C.); (L.S.); (Q.L.); (X.L.); (Z.Z.); (Z.L.); (M.H.)
| | - Mengjiao Hao
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China; (R.C.); (L.S.); (Q.L.); (X.L.); (Z.Z.); (Z.L.); (M.H.)
| | - Qian Li
- Guangdong Academy of Agricultural Sciences, Sericultural & Agri-Food Research Institute/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China; (Q.L.); (S.L.)
| | - Sen Lin
- Guangdong Academy of Agricultural Sciences, Sericultural & Agri-Food Research Institute/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China; (Q.L.); (S.L.)
| | - He Ni
- Guangdong Provincial Key Lab of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China;
| | - Shili Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China; (R.C.); (L.S.); (Q.L.); (X.L.); (Z.Z.); (Z.L.); (M.H.)
| |
Collapse
|
2
|
Jiang S, Zhang H, Song Y, Xiao M, Hu H, Yu S, Xie F. Metabolic profiles and potential antioxidant mechanisms of hawk tea. Sci Rep 2025; 15:3600. [PMID: 39875806 PMCID: PMC11775316 DOI: 10.1038/s41598-025-88160-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/24/2025] [Indexed: 01/30/2025] Open
Abstract
Hawk tea has received increasing attention for its unique flavor and potential health benefits, with antioxidant function being one of its significant bioactivities. However, the metabolic profiles, potential antioxidant components, and action mechanisms of different types of hawk tea are still unclear. In this study, the chemical components of five hawk teas were determined using untargeted metabolomics. Then, the potential antioxidant metabolites and their possible action mechanisms were revealed by integrating network pharmacology and molecular docking. The results showed that the metabolic profiles of various hawk teas differed significantly, but the content of flavonoids was the highest in each group. Network pharmacology analyses suggested that 11 potential antioxidant metabolites-four of which were the same metabolites with high levels in the five types, and seven were differential metabolites-could be involved in several metabolic pathways in vivo. These pathways included the MAPK and PI3K/AKT signaling pathways, which may be closely related to antioxidant activity. Finally, molecular docking revealed potential antioxidant metabolites bound to 25 core antioxidant targets through hydrogen bonding and hydrophobic interactions. Among them, artemisinin, astragalin, isoquercetrin, isoquercitrin, kaempferol-3-glucuronide, and UDP-L-rhamnose exhibited low binding energies to core antioxidant targets such as AKT1, RELA, and MTOR, forming stable conformation. These insights lay the basis for further elucidating the antioxidant mechanism of hawk tea.
Collapse
Affiliation(s)
- Sixia Jiang
- Department of Food Science and Engineering, Moutai Institute, Renhuai, 564502, People's Republic of China
| | - Hong Zhang
- Department of Food Science and Engineering, Moutai Institute, Renhuai, 564502, People's Republic of China
| | - Ya Song
- Department of Food Science and Engineering, Moutai Institute, Renhuai, 564502, People's Republic of China
| | - Mingji Xiao
- Institute of Biology, Guizhou Academy of Sciences, Guiyang, 50009, Guizhou, People's Republic of China
| | - Hao Hu
- Department of Food Science and Engineering, Moutai Institute, Renhuai, 564502, People's Republic of China
| | - Shirui Yu
- Department of Food Science and Engineering, Moutai Institute, Renhuai, 564502, People's Republic of China.
| | - Feng Xie
- Department of Food Science and Engineering, Moutai Institute, Renhuai, 564502, People's Republic of China.
| |
Collapse
|
3
|
Dong H, Li Y, Lai X, Hao M, Sun L, Li Q, Chen R, Li Q, Sun S, Wang B, Zhang Z, Liu X. Effects of fermentation duration on the flavour quality of large leaf black tea based on metabolomics. Food Chem 2024; 444:138680. [PMID: 38325077 DOI: 10.1016/j.foodchem.2024.138680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/26/2024] [Accepted: 02/03/2024] [Indexed: 02/09/2024]
Abstract
Fermentation durations are crucial in determining the quality of black tea flavour. The mechanism underlying the degradation of black tea flavour caused by inappropriate fermentation duration remains unclear. In this study, the taste of black teas with different fermentation durations (BTFs) was analysed using sensory evaluation, electronic tongue, and metabolomics. The results revealed significant differences in 46 flavour profile components within the BTFs. Notably, metabolites such as gallocatechin gallate, gallocatechin, and epigallocatechin were found to be primarily reduced during fermentation, leading to a reduction in the astringency of black tea. Conversely, an increase in d-mandelic acid and guanine among others was observed to enhance the bitter flavour of black tea, while 3-Hydroxy-5-methylphenol nucleotides were found to contribute to sweetness. Furthermore, succinic acid and cyclic-3',5'-adenine nucleotides were associated with diminished freshness. This study offers a theoretical foundation for the regulation of flavour quality in large leaf black tea.
Collapse
Affiliation(s)
- Haiyu Dong
- College of Tea Science, Yunnan Agriculture University, Kunming 650201, China.
| | - Yonghui Li
- College of Tea Science, Yunnan Agriculture University, Kunming 650201, China.
| | - Xingfei Lai
- Tea Research Institute, Guangdong Academy of Agricultural Sciences / Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Mengjiao Hao
- Tea Research Institute, Guangdong Academy of Agricultural Sciences / Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Lingli Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences / Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Qiuhua Li
- Tea Research Institute, Guangdong Academy of Agricultural Sciences / Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Ruohong Chen
- Tea Research Institute, Guangdong Academy of Agricultural Sciences / Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Qian Li
- Guangdong Academy of Agricultural Sciences, Sericultural & Agri-Food Research Institute / Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs / Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China.
| | - Shili Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences / Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Baijuan Wang
- College of Tea Science, Yunnan Agriculture University, Kunming 650201, China.
| | - Zhenbiao Zhang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences / Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Xiaohui Liu
- College of Tea Science, Yunnan Agriculture University, Kunming 650201, China.
| |
Collapse
|
4
|
Cui J, Wu B, Zhou J. Changes in amino acids, catechins and alkaloids during the storage of oolong tea and their relationship with antibacterial effect. Sci Rep 2024; 14:10424. [PMID: 38710752 DOI: 10.1038/s41598-024-60951-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 04/29/2024] [Indexed: 05/08/2024] Open
Abstract
The storage process has a significant impact on tea quality. Few is known about effect of storage on quality of oolong tea. This study aimed to assess the effect of different storage times on the key chemical components of oolong tea by measuring changes in catechin, free amino acid, and alkaloid content. Variation in the main substances was determined by principal component analysis and heat map analysis. The results revealed notable effects of the storage process on the levels of theanine, epigallocatechin gallate (EGCG), and glutamine. These findings suggest that these compounds could serve as indicators for monitoring changes in oolong tea quality during storage. Additionally, the study observed an increase in the antibacterial ability of tea over time. Correlation analysis indicated that the antibacterial ability against Micrococcus tetragenus and Escherichia coli was influenced by metabolites such as aspartic acid, threonine, serine, gamma-aminobutyric acid, ornithine, alanine, arginine, and EGCG. Overall, this study presents an approach for identifying key metabolites to monitor tea quality effectively with relatively limited data.
Collapse
Affiliation(s)
- Jilai Cui
- College of Life Science, Xinyang Normal University, 237 Nanhu R., Xinyang, 464000, Henan, People's Republic of China.
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang Ave W., Hefei, 230036, Anhui, People's Republic of China.
| | - Bin Wu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang Ave W., Hefei, 230036, Anhui, People's Republic of China
| | - Jie Zhou
- College of Life Science, Xinyang Normal University, 237 Nanhu R., Xinyang, 464000, Henan, People's Republic of China
| |
Collapse
|
5
|
Chen Z, Dai W, Xiong M, Gao J, Zhou H, Chen D, Li Y. Metabolomics investigation of the chemical variations in white teas with different producing areas and storage durations. Food Chem X 2024; 21:101127. [PMID: 38292681 PMCID: PMC10825419 DOI: 10.1016/j.fochx.2024.101127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 02/01/2024] Open
Abstract
In this study, we employed nontargeted metabolomics and quantitative analysis to explore the variations in metabolites among white teas from different production areas and with varying storage durations. A total of 83 compounds exhibited differential levels between Zhenghe and Fuding white tea, 89 between Zhenghe and Jinggu, and 75 between Fuding and Jinggu white tea. Concerning the storage of white tea, the concentrations of flavanols, dimeric catechins, and amino acids decreased over time, while N-ethyl-2-pyrrolidone-substituted flavanols (EPSFs), caffeine, adenosine monophosphate (AMP), and adenosine increased. Galloylated flavanols showed a higher propensity to form EPSFs with theanine compared to nongalloylated flavanols during storage. Theanine and epigallocatechin gallate were more inclined to generate S-configuration EPSFs during storage in Fuding and Jinggu white tea samples, while R-configuration EPSFs were more readily formed in Zhenghe white tea samples. This study offers a comprehensive understanding of the changes in metabolites during the storage of white tea.
Collapse
Affiliation(s)
- Zewen Chen
- College of Tea, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Weidong Dai
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang 310008, China
| | - Mengfan Xiong
- College of Tea, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Jianjian Gao
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang 310008, China
| | - Hongjie Zhou
- College of Tea, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Dan Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang 310008, China
| | - Yali Li
- College of Tea, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| |
Collapse
|
6
|
Wei L, Hu Q, He L, Li G, Zhang J, Chen Y. Diversity in storage age enables discrepancy in quality attributes and metabolic profile of Citrus grandis "Tomentosa" in China. J Food Sci 2024; 89:1454-1472. [PMID: 38258880 DOI: 10.1111/1750-3841.16935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/23/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024]
Abstract
The folk proverb "the older, the better" is usually used to describe the quality of Citrus grandis "Tomentosa" (CGT) in China. In this study, CGT aged for 6-, 12-, 16-, and 19-years were collected for the investigation of infusion color, main bioactive components, antioxidant activity, metabolic composition, and pathway. The results found that infusion color, the total phenolic and flavonoid, and antioxidant activity of CGT were obviously changed by aging process. Through untargeted metabolomics, 55 critical metabolites were identified to in discrimination of CGT with different storage ages, mainly including phenylpropanoids, lipids, and organic oxygen compounds. Twenty compounds that showed good linear relationships with storage ages could be used for year prediction of CGT. Kyoto encyclopedia of genes and genomes enrichment pathway analysis uncovered important metabolic pathways related to the accumulation of naringin, kaempferol, and choline as well as the degradation of benzenoids, thus supporting that aged CGT might be more beneficial to health. Correlation analysis provided that some key metabolites with bitter taste and biological activity were involved in the darkening and reddening of CGT infusion during aging, and total phenolic and flavonoid were more strongly associated with the antioxidant activity of CGT. This study systematically revealed the quality changes and key metabolic pathways during CGT aging at first time. PRACTICAL APPLICATION: This study reveals the differences in quality attributes and metabolic profile between CGT with different storage ages, providing guidance for consumers' consumption, and also providing more scientific basis for the quality evaluation and improvement of CGT.
Collapse
Affiliation(s)
- Liyang Wei
- Chinese Academy of Inspection and Quarantine, Beijing, People's Republic of China
- School of Biotechnology and Food Engineering, Anhui Polytechnic University, Wuhu, People's Republic of China
| | - Qian Hu
- Chinese Academy of Inspection and Quarantine, Beijing, People's Republic of China
| | - Lei He
- Chinese Academy of Inspection and Quarantine, Beijing, People's Republic of China
| | - Guoping Li
- Chinese Academy of Inspection and Quarantine, Beijing, People's Republic of China
| | - Jiukai Zhang
- Chinese Academy of Inspection and Quarantine, Beijing, People's Republic of China
| | - Ying Chen
- Chinese Academy of Inspection and Quarantine, Beijing, People's Republic of China
| |
Collapse
|
7
|
Zhang J, Sun M, Elmaidomy AH, Youssif KA, Zaki AMM, Hassan Kamal H, Sayed AM, Abdelmohsen UR. Emerging trends and applications of metabolomics in food science and nutrition. Food Funct 2023; 14:9050-9082. [PMID: 37740352 DOI: 10.1039/d3fo01770b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
The study of all chemical processes involving metabolites is known as metabolomics. It has been developed into an essential tool in several disciplines, such as the study of plant physiology, drug development, human diseases, and nutrition. The field of food science, diagnostic biomarker research, etiological analysis in the field of medical therapy, and raw material quality, processing, and safety have all benefited from the use of metabolomics recently. Food metabolomics includes the use of metabolomics in food production, processing, and human diets. As a result of changing consumer habits and the rising of food industries all over the world, there is a remarkable increase in interest in food quality and safety. It requires the employment of various technologies for the food supply chain, processing of food, and even plant breeding. This can be achieved by understanding the metabolome of food, including its biochemistry and composition. Additionally, Food metabolomics can be used to determine the similarities and differences across crop kinds, as an indicator for tracking the process of ripening to increase crops' shelf life and attractiveness, and identifying metabolites linked to pathways responsible for postharvest disorders. Moreover, nutritional metabolomics is used to investigate the connection between diet and human health through detection of certain biomarkers. This review assessed and compiled literature on food metabolomics research with an emphasis on metabolite extraction, detection, and data processing as well as its applications to the study of food nutrition, food-based illness, and phytochemical analysis. Several studies have been published on the applications of metabolomics in food but further research concerning the use of standard reproducible procedures must be done. The results published showed promising uses in the food industry in many areas such as food production, processing, and human diets. Finally, metabolome-wide association studies (MWASs) could also be a useful predictor to detect the connection between certain diseases and low molecular weight biomarkers.
Collapse
Affiliation(s)
- Jianye Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Mingna Sun
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Abeer H Elmaidomy
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Khayrya A Youssif
- Department of Pharmacognosy, Faculty of Pharmacy, El-Saleheya El Gadida University, Cairo, Egypt
| | - Adham M M Zaki
- Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Hossam Hassan Kamal
- Faculty of Pharmacy, Deraya University, 7 Universities Zone, New Minia 61111, Egypt
| | - Ahmed M Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, 62513 Beni-Suef, Egypt.
- Department of Pharmacognosy, Faculty of Pharmacy, Almaaqal University, 61014 Basra, Iraq
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt.
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, 7 Universities Zone, New Minia 61111, Egypt
| |
Collapse
|
8
|
Karwowska K, Kozłowska-Tylingo K, Skotnicka M, Śmiechowska M. Theogallin-to-Gallic-Acid Ratio as a Potential Biomarker of Pu-Erh Teas. Foods 2023; 12:2453. [PMID: 37444191 DOI: 10.3390/foods12132453] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/12/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
There are two types of Pu-erh tea available on the world market: Raw and Ripe. It is not difficult to tell them apart if the Raw version is relatively young. Researchers have already developed various tools to identify Pu-erh teas. However, they are quite complicated and require advanced statistical analyses. In addition, they are characterized by different levels of accuracy. The aim of the work was to identify relationships or differences that would easily give specific results for identifying types of Pu-erh tea. The content of selected methylxanthines was determined by high-performance liquid chromatography (HPLC) on an Agilent 1200 chromatograph with a UV-VIS diode array detector. The total analysis time was 28 min. A combination of liquid chromatography and a triple quadrupole mass spectrophotometer was used to identify gallic acid and theogallin in the analyzed samples. A multivariate cluster analysis was used to compare the results for single samples, and its results were presented in horizontal hierarchical tree plots. The quantitative determination showed that theophylline is present only in Ripe Pu-erh teas. In addition, it was shown that the ratio of theogallin to gallic acid can be an effective tool to verify the authenticity of Pu-erh varieties.
Collapse
Affiliation(s)
- Kaja Karwowska
- Division of Food Commodity Science, Faculty of Health Sciences with the Institute of Maritime and Tropical Medicine, Medical University of Gdańsk, ul. M. Skłodowskiej-Curie 3A, 80-210 Gdańsk, Poland
| | - Katarzyna Kozłowska-Tylingo
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Magdalena Skotnicka
- Division of Food Commodity Science, Faculty of Health Sciences with the Institute of Maritime and Tropical Medicine, Medical University of Gdańsk, ul. M. Skłodowskiej-Curie 3A, 80-210 Gdańsk, Poland
| | - Maria Śmiechowska
- Department of Quality Management, Faculty of Management and Quality Science, Gdynia Maritime University, 81-225 Gdynia, Poland
| |
Collapse
|
9
|
Farag MA, Elmetwally F, Elghanam R, Kamal N, Hellal K, Hamezah HS, Zhao C, Mediani A. Metabolomics in tea products; a compile of applications for enhancing agricultural traits and quality control analysis of Camellia sinensis. Food Chem 2023; 404:134628. [DOI: 10.1016/j.foodchem.2022.134628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/06/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022]
|
10
|
Xu J, Wei Y, Li F, Weng X, Wei X. Regulation of fungal community and the quality formation and safety control of Pu-erh tea. Compr Rev Food Sci Food Saf 2022; 21:4546-4572. [PMID: 36201379 DOI: 10.1111/1541-4337.13051] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 01/28/2023]
Abstract
Pu-erh tea belongs to dark tea among six major teas in China. As an important kind of post-fermented tea with complex microbial composition, Pu-erh tea is highly praised by many consumers owing to its unique and rich flavor and taste. In recent years, Pu-erh tea has exhibited various physiological activities to prevent and treat metabolic diseases. This review focuses on the fungi in Pu-erh tea and introduces the sources, types, and functions of fungi in Pu-erh tea, as well as the influence on the quality of Pu-erh tea and potential safety risks. During the process of fermentation and aging of Pu-erh tea, fungi contribute to complex chemical changes in bioactive components of tea. Therefore, we examine the important role that fungi play in the quality formation of Pu-erh tea. The associations among the microbial composition, chemicals excreted, and potential food hazards are discussed during the pile-fermentation of Pu-erh tea. The quality of Pu-erh tea has exhibited profound changes during the process of pile-fermentation, including color, aroma, taste, and the bottom of the leaves, which are inseparable from the fungus in the pile-fermentation of Pu-erh tea. Specifically, the application prospects of various detection methods of mycotoxins in assessing the safety of Pu-erh tea are proposed. This review aims to fully understand the importance of fungi in the production of Pu-erh tea and further provides new insights into subtly regulating the piling process to improve the nutritional properties and guarantee the safety of Pu-erh tea.
Collapse
Affiliation(s)
- Jia Xu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Minghang, Shanghai, People's Republic of China.,School of Environmental and Chemical Engineering, Shanghai University, Baoshan, Shanghai, People's Republic of China
| | - Yang Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, Minghang, Shanghai, People's Republic of China
| | - Fanglan Li
- Institute of Food Engineering, College of Life Science, Shanghai Normal University, Xuhui, Shanghai, People's Republic of China
| | - Xinchu Weng
- School of Environmental and Chemical Engineering, Shanghai University, Baoshan, Shanghai, People's Republic of China
| | - Xinlin Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, Minghang, Shanghai, People's Republic of China
| |
Collapse
|
11
|
Wu S, Yu Q, Shen S, Shan X, Hua J, Zhu J, Qiu J, Deng Y, Zhou Q, Jiang Y, Yuan H, Li J. Non-targeted metabolomics and electronic tongue analysis reveal the effect of rolling time on the sensory quality and nonvolatile metabolites of congou black tea. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Hu S, Li X, Gao C, Meng X, Li M, Li Y, Xu T, Hao Q. Detection of composition of functional component theabrownins in Pu-erh tea by degradation method. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.12.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Ren Y, Hou Y, Granato D, Zha M, Xu W, Zhang L. Metabolomics, sensory evaluation, and enzymatic hydrolysis reveal the effect of storage on the critical astringency-active components of crude Pu-erh tea. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Dynamic evolution and correlation between microorganisms and metabolites during manufacturing process and storage of Pu-erh tea. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
15
|
Discriminant Analysis of Pu-Erh Tea of Different Raw Materials Based on Phytochemicals Using Chemometrics. Foods 2022; 11:foods11050680. [PMID: 35267314 PMCID: PMC8909724 DOI: 10.3390/foods11050680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 02/01/2023] Open
Abstract
Pu-erh tea processed from the sun-dried green tea leaves can be divided into ancient tea (AT) and terrace tea (TT) according to the source of raw material. However, their similar appearance makes AT present low market identification, resulting in a disruption in the tea market rules of fair trade. Therefore, this study analyzed the classification by principal component analysis/hierarchical clustering analysis and conducted the discriminant model through stepwise Fisher discriminant analysis and decision tree analysis based on the contents of water extract, phenolic components, alkaloid, and amino acids, aiming to investigate whether phytochemicals coupled with chemometric analyses distinguish AT and TT. Results showed that there were good separations between AT and TT, which was caused by 16 components with significant (p < 0.05) differences. The discriminant model of AT and TT was established based on six discriminant variables including water extract, (+)-catechin, (−)-epicatechin, (−)-epigallocatechin, theacrine, and theanine. Among them, water extract comprised multiple soluble solids, representing the thickness of tea infusion. The model had good generalization capability with 100% of performance indexes according to scores of the training set and model set. In conclusion, phytochemicals coupled with chemometrics analyses are a good approach for the identification of different raw materials.
Collapse
|
16
|
Su D, Xu T, Li Y, Zhou H. Flavor evolution in raw Pu-erh tea during manufacturing using different processing types. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
17
|
Phytonutrients and Metabolism Changes in Topped Radish Root and Its Detached Leaves during 1 °C Cold Postharvest Storage. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae8010042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Glucosinolates, lipid-soluble vitamins E and K contents, primary metabolites and plant hormones were analyzed from topped radish root and detached leaf during storage at 1 °C. The topped root was analyzed at 0, 5, 15, 30, and 90 days after storage while the detached leaf was analyzed at 0, 5, 15, 30, and 45 days in an airtight storage atmosphere environment. The results showed that aliphatic glucosinolates were gradually decreased in leaf but not in root. There was a highly significant correlation between tryptophan and 4-methoxyindoleglucobrassicin in both tissues (r = 0.922, n = 10). There was no significant difference in vitamins E and K in leaf and root during storage. Plant hormones partially explained the significantly changed metabolites by tissue and time, which were identified during cold storage. Phenylalanine, lysine, tryptophan, and myo-inositol were the most important biomarkers that explained the difference in leaf and root tissue during cold storage. The most different metabolism between leaf and root tissue was starch and sucrose metabolism. Therefore, different postharvest technology or regimes should be applied to these tissues.
Collapse
|
18
|
Chen D, Zhao Y, Peng J, Zhang Y, Gao J, Wu W, Xie D, Hu Z, Lin Z, Dai W. Metabolomics Analysis Reveals Four Novel N-Ethyl-2-pyrrolidinone-Substituted Theaflavins as Storage-Related Marker Compounds in Black Tea. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14037-14047. [PMID: 34780189 DOI: 10.1021/acs.jafc.1c05850] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Tea market is currently oversupplied, and unsold tea often needs to be properly stored for a period of time. However, the chemical changes occurring in black tea during storage are limitedly understood. In this study, a comprehensive nontargeted and targeted metabolomics approach was used to investigate the dynamic changes in compounds in time-series (0-19 months)-stored black teas. The contents of flavanols, theaflavins (TFs), theasinensins, procyanidins, most phenolic acids, amino acids, quercetin-O-glycosides, and myricetin-O-glycosides decreased during storage, while the contents of N-ethyl-2-pyrrolidinone-substituted flavanols, flavone-C-glycosides, and most kaempferol-O-glycosides increased. More importantly, four novel compounds strongly positively correlated with storage duration (r = 0.922-0.969) were structurally assigned as N-ethyl-2-pyrrolidinone-substituted TFs and validated with synthetic reactions of TFs and theanine standards. The content of N-ethyl-2-pyrrolidinone-substituted TFs was 51.54 μg/g in black tea stored for 19 months. To the best of our knowledge, N-ethyl-2-pyrrolidinone-substituted TFs were discovered in tea for the first time.
Collapse
Affiliation(s)
- Dan Chen
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang 310008, P. R. China
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Yanni Zhao
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Jiakun Peng
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang 310008, P. R. China
| | - Yue Zhang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang 310008, P. R. China
| | - Jianjian Gao
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang 310008, P. R. China
| | - Wenliang Wu
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang 310008, P. R. China
- Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan 410125, P. R. China
| | - Dongchao Xie
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang 310008, P. R. China
| | - Zhengyan Hu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang 310051, P. R. China
| | - Zhi Lin
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang 310008, P. R. China
| | - Weidong Dai
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang 310008, P. R. China
| |
Collapse
|
19
|
Wu Y, Zhang C, Huang Z, Lyu L, Li J, Li W, Wu W. The color difference of rubus fruits is closely related to the composition of flavonoids including anthocyanins. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111825] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
Sobolev AP, Di Lorenzo A, Circi S, Santarcangelo C, Ingallina C, Daglia M, Mannina L. NMR, RP-HPLC-PDA-ESI-MS n, and RP-HPLC-FD Characterization of Green and Oolong Teas ( Camellia sinensis L.). Molecules 2021; 26:molecules26175125. [PMID: 34500554 PMCID: PMC8434197 DOI: 10.3390/molecules26175125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/18/2021] [Accepted: 08/18/2021] [Indexed: 11/16/2022] Open
Abstract
Untargeted (NMR) and targeted (RP-HPLC-PDA-ESI-MSn, RP-HPLC-FD) analytical methodologies were used to determine the bioactive components of 19 tea samples, characterized by different production processes (common tea and GABA tea), degrees of fermentation (green and oolong teas), and harvesting season (autumn and spring). The combination of NMR data and a multivariate statistical approach led to a statistical model able to discriminate between GABA and non-GABA teas and green and oolong teas. Targeted analyses showed that green and GABA green teas had similar polyphenol and caffeine contents, but the GABA level was higher in GABA green teas than in regular green tea samples. GABA oolong teas showed lower contents of polyphenols, caffeine, and amino acids, and a higher content of GABA, in comparison with non-GABA oolong teas. In conclusion, the results of this study suggest that the healthy properties of teas, especially GABA teas, have to be evaluated via comprehensive metabolic profiling rather than only the GABA content.
Collapse
Affiliation(s)
- Anatoly P. Sobolev
- Institute for Biological Systems, Magnetic Resonance Laboratory “Segre-Capitani”, CNR, Via Salaria Km 29.300, 00015 Monterotondo, Italy;
| | - Arianna Di Lorenzo
- Dipartimento di Scienze del Farmaco, Università degli Studi di Pavia, Viale Taramelli 12, 27100 Pavia, Italy;
| | - Simone Circi
- Department of Chemistry and Technologies of Drugs, Laboratory of Food Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (S.C.); (L.M.)
| | | | - Cinzia Ingallina
- Department of Chemistry and Technologies of Drugs, Laboratory of Food Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (S.C.); (L.M.)
- Correspondence: (C.I.); (M.D.)
| | - Maria Daglia
- Department of Pharmacy, University of Naples Federico II, 80138 Naples, Italy;
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- Correspondence: (C.I.); (M.D.)
| | - Luisa Mannina
- Department of Chemistry and Technologies of Drugs, Laboratory of Food Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (S.C.); (L.M.)
| |
Collapse
|
21
|
Wu W, Hu Y, Zhang S, Liu D, Li Q, Lin Y, Liu Z. Untargeted metabolomic and lipid metabolism-related gene expression analyses of the effects and mechanism of aged Liupao tea treatment in HFD-induced obese mice. RSC Adv 2021; 11:23791-23800. [PMID: 35479821 PMCID: PMC9036539 DOI: 10.1039/d1ra04438a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 06/30/2021] [Indexed: 12/14/2022] Open
Abstract
Liupao tea (LPT) has been demonstrated to have beneficial effects on obesity induced by a high-fat diet (HFD); however, the effects and mechanism of aged Liupao tea (different storage years) treatment on obesity have not yet been reported. In this study, mice were divided into four groups as follows: the control group fed a normal diet; the model group fed an HFD; and the LPT aged 1 year (1Y) and LPT aged 10 years (10Y) groups receiving an HFD and water extractions from LPTs of different ages for 5 weeks. Our results revealed that aged LPT significantly alleviated HFD-induced obesity symptoms, especially in the 10Y group. Additionally, metabolomic analysis identified 11 common differential metabolites that were partly recovered to normal levels after aged LPT treatment, involved mainly in the metabolic pathways of the citrate cycle, purine metabolism, fatty acid metabolism, and amino acid metabolism. Aged LPT treatment also regulated lipid metabolism-related gene expression in the liver, which decreased the mRNA levels of SREBP-1C/HMGR/FAS involved in de novo lipogenesis and increased the mRNA levels of PPARα, LDLR and LCAT. Our study demonstrated that aged LPT may be used as a potential dietary supplement for improving obesity-related diseases caused by an HFD.
Collapse
Affiliation(s)
- Wenliang Wu
- Tea Research Institute, Hunan Academy of Agricultural Sciences Changsha Hunan 410125 PR China
| | - Yao Hu
- Nuclear Agronomy and Aerospace Breeding Research Institute, Hunan Academy of Agricultural Sciences Changsha Hunan 410125 PR China
| | - Shuguang Zhang
- Tea Research Institute, Hunan Academy of Agricultural Sciences Changsha Hunan 410125 PR China
| | - Dongming Liu
- Changsha University of Science & Technology Changsha 410114 PR China
| | - Qing Li
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University Changsha 410128 PR China
| | - Yong Lin
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University Changsha 410128 PR China
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University Changsha 410128 PR China
| |
Collapse
|
22
|
Cheng L, Wang Y, Zhang J, Zhu J, Liu P, Xu L, Wei K, Zhou H, Peng L, Zhang J, Wei X, Liu Z. Dynamic changes of metabolic profile and taste quality during the long-term aging of Qingzhuan Tea: The impact of storage age. Food Chem 2021; 359:129953. [PMID: 34000695 DOI: 10.1016/j.foodchem.2021.129953] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/28/2022]
Abstract
Qingzhuan tea (QZT) with longer aging year is usually believed to have higher quality and commercial value. In this study, a 20 years sequence of aged QZT were subjected to an electronic tongue and liquid chromatography-mass spectrometry to investigate the effect of storage age on its metabolic profile and taste quality. The changes in both taste quality and metabolic profile exhibited a parabolic trend in the 20 years of QZT aging and reached the maximum at the 10th year. A total of 47 compounds were identified as critical metabolites responsible for the age variation of QZT quality, with the methylation of catechins, glycosylation of flavonoids, degradation of flavoalkaloids, biosynthesis of triterpenoids, and formation of theabrownins. These results suggested that the taste of QZT was improved after 10 years of storage, with the reduction of bitterness and astringency and a general increase of key quality-related compounds.
Collapse
Affiliation(s)
- Lizeng Cheng
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Yuanfeng Wang
- College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, PR China
| | - Jiarong Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Jiangxiong Zhu
- College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, PR China
| | - Pinhe Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Lurong Xu
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Kang Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Hui Zhou
- College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, PR China
| | - Lanlan Peng
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Jie Zhang
- Shanghai Linong Agriculture Technology Co., Ltd., 328 Xingfang Road, Shanghai 201502, PR China
| | - Xinlin Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China.
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, PR China.
| |
Collapse
|
23
|
Huang A, Jiang Z, Tao M, Wen M, Xiao Z, Zhang L, Zha M, Chen J, Liu Z, Zhang L. Targeted and nontargeted metabolomics analysis for determining the effect of storage time on the metabolites and taste quality of keemun black tea. Food Chem 2021; 359:129950. [PMID: 33945989 DOI: 10.1016/j.foodchem.2021.129950] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 01/20/2023]
Abstract
The black tea could be stored for a long time, and subsequently affects the flavor characteristics. In the present study, the effects of storage years (1, 2, 3, 4, 5, 10, 17 and 20 years) on the chemical profiling and taste quality of keemun black tea (KBT) were compared by metabolomics and quantitative sensory evaluation. The main polyphenols were degraded during the storing, especially 10-year storage, but caffeine and theobromine were stable. The intensity of bitterness, astringency, umami was negatively correlated to storage years, with correlation coefficient at -0.95, -0.91 and -0.83 respectively, whereas sweetness had positive correlation coefficient at 0.74. Quinic acid, galloylated catechins, linolenic acid, linoleic acid, malic acid, palamitic acid, and theaflavin-3́-gallate were marker compounds which were responsible for distinguishing short and long time preserved KBT. The contents of fatty acids were positively correlated to storage time and sweet intensity.
Collapse
Affiliation(s)
- Ai Huang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Zongde Jiang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Meng Tao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Mingchun Wen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Zhipeng Xiao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Lan Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Minyu Zha
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Jiayu Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Zhengquan Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China.
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
24
|
Zhang W, Cao J, Li Z, Li Q, Lai X, Sun L, Chen R, Wen S, Sun S, Lai Z. HS-SPME and GC/MS volatile component analysis of Yinghong No. 9 dark tea during the pile fermentation process. Food Chem 2021; 357:129654. [PMID: 33866239 DOI: 10.1016/j.foodchem.2021.129654] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/14/2021] [Accepted: 03/16/2021] [Indexed: 02/06/2023]
Abstract
Each type of tea has a unique volatile profile due to its variety, processing technologies and origin. Using HS-SPME and GC/MS, we analyzed the changes of volatile components in cultivar Yinghong No. 9 during pile-fermentation every 10 days. A total of 94 compounds showed significant differences during a total of 60 days mainly including alkanes, ketones, esters, terpenes, aromatics and heterocyclic compounds. Interestingly, 13 metabolites were progressively reduced during the first 20 days and remained unchanged in subsequent procedures, while 17 metabolites remained unchanged in the early stage and progressively increased during the last 20 days of pile fermentation, indicating that they are characteristic volatile compounds of raw material sun-dried green tea and dark tea, respectively. β-ionone, phenylethyl alcohol, and a-ionone could be the top three contributed aroma compounds in the final dark tea. Our study provides a theoretical basis for process and quality improvement of Yinghong No. 9.
Collapse
Affiliation(s)
- Wenji Zhang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China
| | - Junxi Cao
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China
| | - Zhigang Li
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China
| | - Qiuhua Li
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China
| | - Xingfei Lai
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China
| | - Lingli Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China
| | - Ruohong Chen
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China
| | - Shuai Wen
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China
| | - Shili Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Zhaoxiang Lai
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China
| |
Collapse
|
25
|
Xiao S, Huang J, Huang Y, Lai H, Zheng Y, Liang D, Xiao H, Zhang X. Flavor Characteristics of Ganpu Tea Formed During the Sun-Drying Processing and Its Antidepressant-Like Effects. Front Nutr 2021; 8:647537. [PMID: 33869264 PMCID: PMC8044837 DOI: 10.3389/fnut.2021.647537] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/01/2021] [Indexed: 01/02/2023] Open
Abstract
Ganpu tea is a novel type of tea beverage with unique and pleasant flavor that encases Pu-erh tea leaves within an intact mandarin peel. However, to date, no holistic and detail studies on its chemical composition and biological activities have been reported yet. In the present study, by applying UPLC-Q-TOF and UPLC-MS technology, we systematically identified and analyzed 104 water-soluble compounds of Ganpu tea and their variation trend during the sun-drying processing. The results showed that the generation of pigments and gallic acid coincided with a dramatic decrease in catechin content, and a significant increase in alkaloid and flavonoid contents. The conversion of these compounds can contribute to the improvement of sensory attributes of Ganpu tea and maybe indispensable to its unique flavor. Moreover, the mice given orally with high dose of Ganpu tea (0.4 g/kg) showed a significantly reduced immobility duration as compared to that of the negative control group (p < 0.01) both in the forced swimming test and tail suspension test. Together, these results indicate that the sun-drying processing was indispensable to the formation of the unique flavor for Ganpu tea. Multiple types of compounds of Ganpu tea may collectively provide the synergistic attributes to its antidepressant-like properties.
Collapse
Affiliation(s)
- Sui Xiao
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Jingyuan Huang
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
| | - Yahui Huang
- Department of Tea Science, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Huiqing Lai
- Yunding Ganpu Tea Industry Co., LTD, Guangzhou, China
| | - Yi Zheng
- Yunding Ganpu Tea Industry Co., LTD, Guangzhou, China
| | - Dahua Liang
- Yunding Ganpu Tea Industry Co., LTD, Guangzhou, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
| | - Xu Zhang
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
26
|
Yang Z, Miao N, Zhang X, Li Q, Wang Z, Li C, Sun X, Lan Y. Employment of an electronic tongue combined with deep learning and transfer learning for discriminating the storage time of Pu-erh tea. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107608] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
27
|
Wu X, Liu Y, Guo J, Wang J, Li M, Tan Y, Zheng Q, Feng Y. Differentiating Pu-erh raw tea from different geographical origins by 1 H-NMR and U-HPLC/Q-TOF-MS combined with chemometrics. J Food Sci 2021; 86:779-791. [PMID: 33598925 DOI: 10.1111/1750-3841.15624] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 12/22/2020] [Accepted: 01/11/2021] [Indexed: 11/29/2022]
Abstract
Pu-erh tea is believed to be a beneficial beverage for health due to its many kinds of pharmacological effects. Nevertheless, detailed information related to differences in metabolites of Pu-erh raw tea from different geographical origins remains scarce. In this study, 43 elements were found in water-soluble components of Pu-erh raw tea by highly sensitive ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (U-HPLC/Q-TOF-MS). The characteristic groups of 29 metabolites from nondestructive proton nuclear magnetic resonance (1 H-NMR) spectroscopy were assigned. The variables contributed largely to the origin classification, mainly including valine, threonine, chlorogenic acid, quinic acid, epiafzelechin, and gallic acid ester, were screened out by sparse partial least squares discriminant analysis (sPLS-DA) method. This study provided a feasible and rapid technique for distinguishing Pu-erh tea from different areas by 1 H-NMR combined with sPLS-DA.
Collapse
Affiliation(s)
- Xia Wu
- New Drug Research Laboratory, Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510006, China
| | - Ying Liu
- New Drug Research Laboratory, Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510006, China
| | - Jieqing Guo
- New Drug Research Laboratory, Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510006, China
| | - Juanxia Wang
- New Drug Research Laboratory, Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510006, China
| | - Meizhen Li
- New Drug Research Laboratory, Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510006, China
| | - Youzhen Tan
- New Drug Research Laboratory, Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510006, China
| | - Qifan Zheng
- Second Affiliated Hospital of Guangzhou, University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Yifan Feng
- New Drug Research Laboratory, Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510006, China
| |
Collapse
|
28
|
Armstrong L, Araújo Vieira do Carmo M, Wu Y, Antônio Esmerino L, Azevedo L, Zhang L, Granato D. Optimizing the extraction of bioactive compounds from pu-erh tea (Camellia sinensis var. assamica) and evaluation of antioxidant, cytotoxic, antimicrobial, antihemolytic, and inhibition of α-amylase and α-glucosidase activities. Food Res Int 2020; 137:109430. [DOI: 10.1016/j.foodres.2020.109430] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 05/13/2020] [Accepted: 06/07/2020] [Indexed: 12/13/2022]
|
29
|
Zhou B, Ma C, Wu T, Xu C, Wang J, Xia T. Classification of raw Pu-erh teas with different storage time based on characteristic compounds and effect of storage environment. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109914] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
30
|
Li F, Lu Q, Li M, Yang X, Xiong C, Yang B. Comparison and Risk Assessment for Trace Heavy Metals in Raw Pu-erh Tea with Different Storage Years. Biol Trace Elem Res 2020; 195:696-706. [PMID: 31625054 DOI: 10.1007/s12011-019-01886-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 08/26/2019] [Indexed: 12/07/2022]
Abstract
This research conducted an exploration of the content of microelements (As, Cr, Cd, Pb, Cu, Zn, Mn, and Hg) in raw Pu-erh tea with different storage years. The contents of As, Cr, Cd, Pb, Cu, Zn, Mn, and Hg were 0.14, 0.82, 0.02, 0.52, 14.59, 33.51, 564.02, and 0.01 μg/g, respectively, and were all less than the national standard limit values in China. The target hazard quotients (THQs) of each heavy metal were all lower than 1, and the value of combined risk hazard index (HI) of all to adults was 0.221, which presents no health risk when consumed properly by adults of the raw Pu-erh tea infusions. Interestingly, there was no significant correlation between the heavy metal element (As, Cr, Cd, Pb, Cu, Zn, Mn, and Hg) contents and the THQ values of raw Pu-erh tea samples and storage years; the correlation coefficients (R2) range from 0.01 to 0.33 and from 0.01 to 0.57, respectively. The result showed that the storage years showed no effect on the exposure risk of heavy metals; the heavy metal elements in tea samples come from the atmosphere and soil.
Collapse
Affiliation(s)
- Fen Li
- College of Tea (Pu'er), West Yunnan University of Applied Sciences, Pu'er, 665000, China
| | - Qinhui Lu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550002, China
| | - Mei Li
- College of Tea (Pu'er), West Yunnan University of Applied Sciences, Pu'er, 665000, China
| | - Xuemei Yang
- College of Tea (Pu'er), West Yunnan University of Applied Sciences, Pu'er, 665000, China
| | - Changyun Xiong
- College of Tea (Pu'er), West Yunnan University of Applied Sciences, Pu'er, 665000, China
| | - Bin Yang
- College of Tea (Pu'er), West Yunnan University of Applied Sciences, Pu'er, 665000, China.
| |
Collapse
|
31
|
Shevchuk A, Megías-Pérez R, Zemedie Y, Kuhnert N. Evaluation of carbohydrates and quality parameters in six types of commercial teas by targeted statistical analysis. Food Res Int 2020; 133:109122. [PMID: 32466950 DOI: 10.1016/j.foodres.2020.109122] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 12/15/2022]
Abstract
The content of low molecular weight carbohydrates (LMWC) of six types of tea produced from the leaves of Camellia sinensis were analyzed by hydrophilic interaction chromatography (HILIC) coupled to mass spectrometry. Quantities of sucrose, glucose, fructose, myo-inositol, maltose, mannitol, raffinose, galactinol, and stachyose were determined in samples of white, yellow, green, black, oolong, and dark tea. Sucrose was the most abundant carbohydrate in all types of tea. The concentration of all measured carbohydrates except mannitol was lowest in dark tea samples. Correlation analyses using quantitative data of LMWCs, antioxidant activity, and color parameters were performed on black tea samples to evaluate the interaction of different quality parameters. Carbohydrates depletion was observed during tea processing with formation of Amadori compounds with theanine.
Collapse
Affiliation(s)
- Anastasiia Shevchuk
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany.
| | - Roberto Megías-Pérez
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany.
| | - Yeweynwuha Zemedie
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany.
| | - Nikolai Kuhnert
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany.
| |
Collapse
|
32
|
Xue J, Yang L, Yang Y, Yan J, Ye Y, Hu C, Meng Y. Contrasting microbiomes of raw and ripened Pu-erh tea associated with distinct chemical profiles. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109147] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Xu S, Wang JJ, Wei Y, Deng WW, Wan X, Bao GH, Xie Z, Ling TJ, Ning J. Metabolomics Based on UHPLC-Orbitrap-MS and Global Natural Product Social Molecular Networking Reveals Effects of Time Scale and Environment of Storage on the Metabolites and Taste Quality of Raw Pu-erh Tea. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:12084-12093. [PMID: 31560531 DOI: 10.1021/acs.jafc.9b05314] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Raw Pu-erh tea (RPT) needs ageing before drinking. However, the influence from environment and time of storage on chemical profile and flavor of RPT is unclear. In this study, the RPTs stored in wet-hot or dry-cold environment for 1-9 years were assessed using metabolomics based on UHPLC-Orbitrap-MS and global natural product social (GNPS) feature-based molecular networking as well as electronic tongue measurement. The results exhibited that the chemical profiles of RPTs were similar at an early stage but started to differentiate from each other at the 5th and the 7th year in wet-hot and dry-cold environments. The discriminating features including N-ethyl-2-pyrrolidinone-substituted flavan-3-ols (flavoalkaloids), unsaturated fatty acids, lysophosphatidylcholines, flavan-3-ols, amino acids, and flavonol-O-glycosides among the three chemical profiles were discovered and analyzed by means of multivariate statistics, GNPS multilibraries matching, and SIRIUS calculation. The metabolomic data were consistent with the results obtained through electronic tongue measurement.
Collapse
Affiliation(s)
- Shanshan Xu
- State Key Laboratory of Tea Plant Biology and Utilization , Anhui Agricultural University , 130 West Changjiang Road , Hefei , Anhui 230036 , China
| | - Jing-Jing Wang
- State Key Laboratory of Tea Plant Biology and Utilization , Anhui Agricultural University , 130 West Changjiang Road , Hefei , Anhui 230036 , China
| | - Yuming Wei
- State Key Laboratory of Tea Plant Biology and Utilization , Anhui Agricultural University , 130 West Changjiang Road , Hefei , Anhui 230036 , China
| | - Wei-Wei Deng
- State Key Laboratory of Tea Plant Biology and Utilization , Anhui Agricultural University , 130 West Changjiang Road , Hefei , Anhui 230036 , China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization , Anhui Agricultural University , 130 West Changjiang Road , Hefei , Anhui 230036 , China
| | - Guan-Hu Bao
- State Key Laboratory of Tea Plant Biology and Utilization , Anhui Agricultural University , 130 West Changjiang Road , Hefei , Anhui 230036 , China
| | - Zhongwen Xie
- State Key Laboratory of Tea Plant Biology and Utilization , Anhui Agricultural University , 130 West Changjiang Road , Hefei , Anhui 230036 , China
| | - Tie-Jun Ling
- State Key Laboratory of Tea Plant Biology and Utilization , Anhui Agricultural University , 130 West Changjiang Road , Hefei , Anhui 230036 , China
| | - Jingming Ning
- State Key Laboratory of Tea Plant Biology and Utilization , Anhui Agricultural University , 130 West Changjiang Road , Hefei , Anhui 230036 , China
| |
Collapse
|
34
|
Zhang YM, Zhang YY, Zhang Q, Lv Y, Sun T, Han L, Bai CC, Yu YJ. Automatic peak detection coupled with multivariate curve resolution–alternating least squares for peak resolution in gas chromatography–mass spectrometry. J Chromatogr A 2019; 1601:300-309. [DOI: 10.1016/j.chroma.2019.04.065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 12/22/2022]
|
35
|
Zeng C, Lin H, Liu Z, Liu Z. Analysis of Young Shoots of 'Anji Baicha' (Camellia sinensis) at Three Developmental Stages Using Nontargeted LC-MS-Based Metabolomics. J Food Sci 2019; 84:1746-1757. [PMID: 31206686 DOI: 10.1111/1750-3841.14657] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/08/2019] [Accepted: 04/23/2019] [Indexed: 02/06/2023]
Abstract
'Anji Baicha' (Camellia sinensis) is a low-temperature-sensitive tea variety. During the development of young shoots, the leaves of 'Anji Baicha' exhibit periodic albinism. The quality of 'Anji Baicha' is closely related to the color of the fresh leaves, with whiter leaves affording a higher amino acid content and superior sensory quality after processing. However, the metabolic mechanism of its quality formation is still unclear. In this study, we analyzed the metabolomic changes of young shoots of 'Anji Baicha' and screened for metabolic markers that may be involved in the periodic albinism. Positive- and negative-mode UPLC-QTOF-MS was applied to the metabolomic analysis of young leaves of 'Anji Baicha' during three developmental stages (i.e., the pre-albescent, albescent, and regreening stages). The results revealed significant differences in the metabolic profiles of the young leaves at the three stages. The differential metabolites were mainly related to the pathways of flavonoid, phenylpropanoid, and amino acid biosynthesis. The concentrations of several amino acids (primarily l-theanine, l-glutamate, N2 -acetyl-l-ornithine, l-aspartic acid, d-proline, l-glutamine, l-leucine, and pyroglutamic acid) and 12-OPDA were significantly higher in the albescent stage. In contrast, during the albescent stages, the concentrations of several carbohydrates (d-fructose, β-d-galactopyranose, 3-O-fucopyranosyl-2-acetamido-2-deoxyglucopyranose, galactose-β-1, 4-xylose acetyl-maltose, and 2-fucosyllactose) were significantly lower. Moreover, catechins (mainly epigallocatechin and catechin derivatives), dimeric catechins (primarily proanthocyanidins), and flavonol and flavonol/flavone glycosides (mainly kaempferol, myricetin, quercetin, cyanidin, and delphinidin glycosides) were detected at the highest levels in the regreening or pre-albescent stages. The obtained results enhance the current understanding of the metabolic mechanisms of periodic albinism and quality development formation in 'Anji Baicha'. PRACTICAL APPLICATION: The obtained results not only provide information regarding differential metabolites but also advance the understanding of the mechanism of periodic albinism in 'Anji Baicha' at the metabolite level and open up new possibilities for the genetic improvement of tea cultivars.
Collapse
Affiliation(s)
- Chaozhen Zeng
- College of Life Science and Technology, Central South Univ. of Forestry and Technology, Changsha, Hunan, 410004, China.,Hunan Provincial Base for Scientific and Technological Innovation Cooperation, Changsha, 410004, China.,Hunan Provincial Key Lab. of Crop Germplasm Innovation and Utilization, Changsha, 410128, China.,Key Lab. of Tea Science, Ministry of Education, Hunan Agricultural Univ., Changsha, Hunan, 410128, China
| | - Haiyan Lin
- Key Lab. of Tea Science, Ministry of Education, Hunan Agricultural Univ., Changsha, Hunan, 410128, China
| | - Zhixiang Liu
- College of Life Science and Technology, Central South Univ. of Forestry and Technology, Changsha, Hunan, 410004, China.,Hunan Provincial Base for Scientific and Technological Innovation Cooperation, Changsha, 410004, China.,Hunan Provincial Key Lab. of Crop Germplasm Innovation and Utilization, Changsha, 410128, China
| | - Zhonghua Liu
- Key Lab. of Tea Science, Ministry of Education, Hunan Agricultural Univ., Changsha, Hunan, 410128, China.,Natl. Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Changsha, Hunan, 410128, China
| |
Collapse
|
36
|
Zhou J, Wu Y, Long P, Ho CT, Wang Y, Kan Z, Cao L, Zhang L, Wan X. LC-MS-Based Metabolomics Reveals the Chemical Changes of Polyphenols during High-Temperature Roasting of Large-Leaf Yellow Tea. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:5405-5412. [PMID: 30485095 DOI: 10.1021/acs.jafc.8b05062] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Large-leaf yellow tea (LYT) is made from mature tea leaves with stems and has unique sensory characteristics different from other teas. To study the chemical changes of LYT during processing, samples were collected from each step for quantitative and qualitative analyses by high-performance liquid chromatography and liquid chromatography-mass spectrometry (LC-MS). LC-MS-based nontargeted and targeted metabolomics analyses revealed that the tea sample after roasting was markedly different from samples before roasting, with the levels of epicatechins and free amino acids significantly decreased, but the epimerized catechins increased dramatically. After accounting for common compounds in tea, N-ethyl-2-pyrrolidinone-substituted flavan-3-ols were found to be the marker compounds responsible for the classification of all samples, as they rapidly rose with increasing processing temperature. These findings suggested that the predominant changes in the tea constituents during large-leaf yellow tea roasting were the thermally induced degradation and epimerization of catechins and the formation of N-ethyl-2-pyrrolidinone-substituted flavan-3-ols from l-theanine.
Collapse
Affiliation(s)
| | | | | | - Chi-Tang Ho
- Department of Food Science , Rutgers University , New Brunswick , New Jersey , United States
| | | | | | | | | | | |
Collapse
|
37
|
Ripe and Raw Pu-Erh Tea: LC-MS Profiling, Antioxidant Capacity and Enzyme Inhibition Activities of Aqueous and Hydro-Alcoholic Extracts. Molecules 2019; 24:molecules24030473. [PMID: 30699941 PMCID: PMC6384787 DOI: 10.3390/molecules24030473] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/22/2019] [Accepted: 01/24/2019] [Indexed: 11/17/2022] Open
Abstract
Herein, we reported a detailed profiling of soluble components of two fermented varieties of Chinese green tea, namely raw and ripe pu-erh. The identification and quantification of the main components was carried out by means of mass spectrometry and UV spectroscopy, after chromatographic separation. The antioxidant capacity towards different radical species, the anti-microbial and the enzyme inhibition activities of the extracts were then correlated to their main constituents. Despite a superimposable qualitative composition, a similar caffeine content, and similar enzyme inhibition and antimicrobial activities, raw pu-erh tea extract had a better antioxidant capacity owing to its higher polyphenol content. However, the activity of raw pu-erh tea seems not to justify its higher production costs and ripe variety appears to be a valid and low-cost alternative for the preparation of products with antioxidant or antimicrobial properties.
Collapse
|
38
|
Wang T, Li X, Yang H, Wang F, Kong J, Qiu D, Li Z. Mass spectrometry-based metabolomics and chemometric analysis of Pu-erh teas of various origins. Food Chem 2018; 268:271-278. [DOI: 10.1016/j.foodchem.2018.06.041] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/07/2018] [Accepted: 06/08/2018] [Indexed: 12/26/2022]
|
39
|
Next generation crop improvement program: Progress and prospect in tea ( Camellia sinensis (L.) O. Kuntze). ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.aasci.2018.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
40
|
An Improved Weighted Partial Least Squares Method Coupled with Near Infrared Spectroscopy for Rapid Determination of Multiple Components and Anti-Oxidant Activity of Pu-Erh Tea. Molecules 2018; 23:molecules23051058. [PMID: 29724034 PMCID: PMC6102534 DOI: 10.3390/molecules23051058] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/24/2018] [Accepted: 04/25/2018] [Indexed: 01/11/2023] Open
Abstract
Background: Pu-erh tea is a unique microbially fermented tea, which distinctive chemical constituents and activities are worthy of systematic study. Near infrared spectroscopy (NIR) coupled with suitable chemometrics approaches can rapidly and accurately quantitatively analyze multiple compounds in samples. Methods: In this study, an improved weighted partial least squares (PLS) algorithm combined with near infrared spectroscopy (NIR) was used to construct a fast calibration model for determining four main components, i.e., tea polyphenols, tea polysaccharide, total flavonoids, theanine content, and further determine the total antioxidant capacity of pu-erh tea. Results: The final correlation coefficients R square for tea polyphenols, tea polysaccharide, total flavonoids content, theanine content, and total antioxidant capacity were 0.8288, 0.8403, 0.8415, 0.8537 and 0.8682, respectively. Conclusions: The current study provided a comprehensive study of four main ingredients and activity of pu-erh tea, and demonstrated that NIR spectroscopy technology coupled with multivariate calibration analysis could be successfully applied to pu-erh tea quality assessment.
Collapse
|
41
|
Yuan E, Duan X, Xiang L, Ren J, Lai X, Li Q, Sun L, Sun S. Aged Oolong Tea Reduces High-Fat Diet-Induced Fat Accumulation and Dyslipidemia by Regulating the AMPK/ACC Signaling Pathway. Nutrients 2018; 10:nu10020187. [PMID: 29419789 PMCID: PMC5852763 DOI: 10.3390/nu10020187] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/01/2018] [Accepted: 02/06/2018] [Indexed: 11/16/2022] Open
Abstract
While oolong tea (OT) has been shown to induce weight loss and reduce fat accumulation, the mechanisms remain poorly defined, especially for aged OT. In this study, five groups of mice (n = 9/group) were used including a normal diet with vehicle treatment, and a high-fat diet (HFD) with vehicle or the water extracts from aged OTs (EAOTs, three different storage years) by oral gavage at 1000 mg/kg·BW for 6 weeks. Body weight, fat accumulation, and serum biochemical parameters were used to evaluate obesity. The morphology of hepatocytes and adipocytes was analyzed by being stained with hematoxylin and eosin. The levels of p-AMPK, p-ACC (and non-phosphorylated versions), CPT-1 and FAS were determined by Western blotting and immunohistochemistry. EAOTs decreased HFD-induced body weight, fat accumulation, serum levels of triglyceride, total cholesterol, and low-density lipoprotein cholesterol, while enhancing the serum high-density lipoprotein cholesterol level. At the same time, EAOTs clearly alleviated fatty liver and reduced the size of adipocytes in the epididymal fat, especially in the 2006 group. Most importantly, EAOTs increased the phosphorylation of AMPK and ACC, and up-regulated the expression of CPT-1 but down-regulated the expression of fatty acid synthase, TNF-α and iNOS. Thus, EAOTs may inhibit obesity by up-regulating energy expenditure and fatty acid oxidation while inhibiting fatty acid synthesis and inflammation.
Collapse
Affiliation(s)
- Erdong Yuan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Xuefei Duan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Limin Xiang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Jiaoyan Ren
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.
- Sino-Singapore International Joint Research Institution, Guangzhou Knowledge City, Guangzhou 510000, China.
| | - Xingfei Lai
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Qiuhua Li
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Lingli Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Shili Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China.
| |
Collapse
|
42
|
Fujimura Y, Miura D, Tachibana H. A Phytochemical-Sensing Strategy Based on Mass Spectrometry Imaging and Metabolic Profiling for Understanding the Functionality of the Medicinal Herb Green Tea. Molecules 2017; 22:molecules22101621. [PMID: 28953237 PMCID: PMC6151411 DOI: 10.3390/molecules22101621] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 09/25/2017] [Accepted: 09/25/2017] [Indexed: 11/25/2022] Open
Abstract
Low-molecular-weight phytochemicals have health benefits and reduce the risk of diseases, but the mechanisms underlying their activities have remained elusive because of the lack of a methodology that can easily visualize the exact behavior of such small molecules. Recently, we developed an in situ label-free imaging technique, called mass spectrometry imaging, for visualizing spatially-resolved biotransformations based on simultaneous mapping of the major bioactive green tea polyphenol and its phase II metabolites. In addition, we established a mass spectrometry-based metabolic profiling technique capable of evaluating the bioactivities of diverse green tea extracts, which contain multiple phytochemicals, by focusing on their compositional balances. This methodology allowed us to simultaneously evaluate the relative contributions of the multiple compounds present in a multicomponent system to its bioactivity. This review highlights small molecule-sensing techniques for visualizing the complex behaviors of herbal components and linking such information to an enhanced understanding of the functionalities of multicomponent medicinal herbs.
Collapse
Affiliation(s)
- Yoshinori Fujimura
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan.
| | - Daisuke Miura
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan.
| | - Hirofumi Tachibana
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan.
| |
Collapse
|
43
|
Unno K, Noda S, Kawasaki Y, Yamada H, Morita A, Iguchi K, Nakamura Y. Reduced Stress and Improved Sleep Quality Caused by Green Tea Are Associated with a Reduced Caffeine Content. Nutrients 2017; 9:nu9070777. [PMID: 28753943 DOI: 10.1080/07352689.2012.747384] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 07/11/2017] [Accepted: 07/16/2017] [Indexed: 05/25/2023] Open
Abstract
Caffeine, one of the main components in green tea, can interfere with sleep and block the effect of theanine. Since theanine, the main amino acid in tea leaves, has significant anti-stress effects in animals and humans, we examined the effects of green tea with lowered caffeine content, i.e., low-caffeine green tea (LCGT), on stress and quality of sleep of middle-aged individuals (n = 20, mean age 51.3 ± 6.7 years) in a double-blind crossover design. Standard green tea (SGT) was used as the control. These teas (≥300 mL/day), which were eluted with room temperature water, were consumed over a period of seven days after a single washout term. The level of salivary α-amylase activity (sAA), a stress marker, was significantly lower in participants that consumed LCGT (64.7 U/mL) than in those that consumed SGT (73.9 U/mL). Sleep quality was higher in participants that consumed a larger quantity of LCGT. In addition, a self-diagnostic check for accumulated fatigue was significantly lower in those participants that consumed LCGT than SGT. These results indicate that LCGT intake can reduce stress in middle-aged individuals and improve their quality of sleep. The reduction in caffeine is suggested to be a valid reason for enhancing the anti-stress effect of green tea.
Collapse
Affiliation(s)
- Keiko Unno
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Shizuoka 422-8526, Japan.
- Tea Science Center, Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka 422-8526, Japan.
| | - Shigenori Noda
- Division of Drug Evaluation & Informatics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan.
| | - Yohei Kawasaki
- Division of Drug Evaluation & Informatics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan.
| | - Hiroshi Yamada
- Division of Drug Evaluation & Informatics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan.
| | - Akio Morita
- Department of Functional Plant Physiology, Faculty of Agriculture, Shizuoka University, Shizuoka 422-8529, Japan.
| | - Kazuaki Iguchi
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Shizuoka 422-8526, Japan.
| | - Yoriyuki Nakamura
- Tea Science Center, Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka 422-8526, Japan.
| |
Collapse
|
44
|
Kellogg J, Graf TN, Paine MF, McCune JS, Kvalheim OM, Oberlies NH, Cech NB. Comparison of Metabolomics Approaches for Evaluating the Variability of Complex Botanical Preparations: Green Tea (Camellia sinensis) as a Case Study. JOURNAL OF NATURAL PRODUCTS 2017; 80:1457-1466. [PMID: 28453261 PMCID: PMC5469520 DOI: 10.1021/acs.jnatprod.6b01156] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Indexed: 05/08/2023]
Abstract
A challenge that must be addressed when conducting studies with complex natural products is how to evaluate their complexity and variability. Traditional methods of quantifying a single or a small range of metabolites may not capture the full chemical complexity of multiple samples. Different metabolomics approaches were evaluated to discern how they facilitated comparison of the chemical composition of commercial green tea [Camellia sinensis (L.) Kuntze] products, with the goal of capturing the variability of commercially used products and selecting representative products for in vitro or clinical evaluation. Three metabolomic-related methods-untargeted ultraperformance liquid chromatography-mass spectrometry (UPLC-MS), targeted UPLC-MS, and untargeted, quantitative 1HNMR-were employed to characterize 34 commercially available green tea samples. Of these methods, untargeted UPLC-MS was most effective at discriminating between green tea, green tea supplement, and non-green-tea products. A method using reproduced correlation coefficients calculated from principal component analysis models was developed to quantitatively compare differences among samples. The obtained results demonstrated the utility of metabolomics employing UPLC-MS data for evaluating similarities and differences between complex botanical products.
Collapse
Affiliation(s)
- Joshua
J. Kellogg
- Department
of Chemistry & Biochemistry, University
of North Carolina at Greensboro, Greensboro, North Carolina 27412, United States
| | - Tyler N. Graf
- Department
of Chemistry & Biochemistry, University
of North Carolina at Greensboro, Greensboro, North Carolina 27412, United States
| | - Mary F. Paine
- College
of Pharmacy, Washington State University, Spokane, Washington 99202, United States
| | - Jeannine S. McCune
- Department
of Pharmaceutics, University of Washington, Seattle, Washington 99202, United States
| | - Olav M. Kvalheim
- Department
of Chemistry, University of Bergen, Bergen 5020, Norway
| | - Nicholas H. Oberlies
- Department
of Chemistry & Biochemistry, University
of North Carolina at Greensboro, Greensboro, North Carolina 27412, United States
| | - Nadja B. Cech
- Department
of Chemistry & Biochemistry, University
of North Carolina at Greensboro, Greensboro, North Carolina 27412, United States
| |
Collapse
|
45
|
Pu-erh ripened tea resists to hyperuricemia through xanthine oxidase and renal urate transporters in hyperuricemic mice. J Funct Foods 2017. [DOI: 10.1016/j.jff.2016.12.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
46
|
Song JH, Miyazaki H, Yoshida S. Simple Method for the Preparation of Teadenols A and B by a Combined Process of Submerged Culture with Aspergillus sp. and Chromatographic Separation. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2017. [DOI: 10.3136/fstr.23.91] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Ji-Hyun Song
- Department of Life Science and Bioengineering, Graduate School of Life and Environmental Sciences, University of Tsukuba
| | - Hitoshi Miyazaki
- Faculty of Life and Environmental Sciences, University of Tsukuba
| | - Shigeki Yoshida
- Faculty of Life and Environmental Sciences, University of Tsukuba
| |
Collapse
|
47
|
Wang YF, Tian J, Ji ZH, Song MY, Li H. Intracellular metabolic changes of Clostridium acetobutylicum and promotion to butanol tolerance during biobutanol fermentation. Int J Biochem Cell Biol 2016; 78:297-306. [DOI: 10.1016/j.biocel.2016.07.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 07/22/2016] [Accepted: 07/27/2016] [Indexed: 12/16/2022]
|
48
|
A fermented tea with high levels of gallic acid processed by anaerobic solid-state fermentation. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2016.03.047] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
49
|
Jensen GS, Beaman JL, He Y, Guo Z, Sun H. Reduction of body fat and improved lipid profile associated with daily consumption of a Puer tea extract in a hyperlipidemic population: a randomized placebo-controlled trial. Clin Interv Aging 2016; 11:367-76. [PMID: 27069360 PMCID: PMC4818050 DOI: 10.2147/cia.s94881] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE The goal for this study was to evaluate the effects of daily consumption of Puer tea extract (PTE) on body weight, body-fat composition, and lipid profile in a non-Asian population in the absence of dietary restrictions. MATERIALS AND METHODS A randomized, double-blind, placebo-controlled study design was used. A total of 59 overweight or mildly obese subjects were enrolled upon screening to confirm fasting cholesterol level at or above 220 mg/dL (5.7 mmol/dL). After giving informed consent, subjects were randomized to consume PTE (3 g/day) or placebo for 20 weeks. At baseline and at 4-week intervals, blood lipids, C-reactive protein, and fasting blood glucose were evaluated. A dual-energy X-ray absorptiometry scan was performed at baseline and at study exit to evaluate changes to body composition. Appetite and physical and mental energy were scored at each visit using visual analog scales (0-100). RESULTS Consumption of PTE was associated with statistically significant weight loss when compared to placebo (P<0.05). Fat loss was seen for arms, legs, and the gynoid region (hip/belly), as well as for total fat mass. The fat reduction reached significance on within-group analysis, but did not reach between-group significance. Consumption of PTE was associated with improvements to lipid profile, including a mild reduction in cholesterol and the cholesterol:high-density lipoprotein ratio after only 4 weeks, as well as a reduction in triglycerides and very small-density lipoproteins, where average blood levels reached normal range at 8 weeks and remained within normal range for the duration of the study (P<0.08). No significant changes between the PTE group and the placebo group were seen for fasting glucose or C-reactive protein. A transient reduction in appetite was seen in the PTE group when compared to placebo (P<0.1). CONCLUSION The results from this clinical study showed that the daily consumption of PTE was associated with significant weight loss, reduced body mass index, and an improved lipid profile.
Collapse
Affiliation(s)
| | | | - Yi He
- Modern TCM Research Center, Tasly Academy, Tianjin, People's Republic of China
| | - Zhixin Guo
- Modern TCM Research Center, Tasly Academy, Tianjin, People's Republic of China
| | - Henry Sun
- Tasly Pharmaceuticals Inc, Rockville, MD, USA
| |
Collapse
|
50
|
Ding Y, Zou X, Jiang X, Wu J, Zhang Y, Chen D, Liang B. Pu-erh tea down-regulates sterol regulatory element-binding protein and stearyol-CoA desaturase to reduce fat storage in Caenorhaditis elegans. PLoS One 2015; 10:e0113815. [PMID: 25659129 PMCID: PMC4319740 DOI: 10.1371/journal.pone.0113815] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 10/30/2014] [Indexed: 11/18/2022] Open
Abstract
Consumption of Pu-erh has been reported to result in numerous health benefits, but the mechanisms underlying purported weight-loss and lowering of lipid are poorly understood. Here, we used the nematode Caenorhaditis elegans to explore the water extract of Pu-erh tea (PTE) functions to reduce fat storage. We found that PTE down-regulates the expression of the master fat regulator SBP-1, a homologue of sterol regulatory element binding protein (SREBP) and its target stearoyl-CoA desaturase (SCD), a key enzyme in fat biosynthesis, leading to an increased ratio of stearic acid (C18:0) to oleic acid (C18:1n-9), and subsequently decreased fat storage. We also found that both the pharyngeal pumping rate and food uptake of C. elegans decreased with exposure to PTE. Collectively, these results provide an experimental basis for explaining the ability of Pu-erh tea in promoting inhibition of food uptake and the biosynthesis of fat via SBP-1 and SCD, thereby reducing fat storage.
Collapse
Affiliation(s)
- YiHong Ding
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - XiaoJu Zou
- Department of Life Science and Technology, Key Laboratory of Special Biological Resource Development and Utilization of University in Yunnan Province, Kunming University, Kunming, 650214, China
- * E-mail: (BL); (XJZ)
| | - Xue Jiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - JieYu Wu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - YuRu Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Dan Chen
- Department of Life Science and Technology, Key Laboratory of Special Biological Resource Development and Utilization of University in Yunnan Province, Kunming University, Kunming, 650214, China
| | - Bin Liang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- * E-mail: (BL); (XJZ)
| |
Collapse
|