1
|
Gulcin İ. Antioxidants: a comprehensive review. Arch Toxicol 2025:10.1007/s00204-025-03997-2. [PMID: 40232392 DOI: 10.1007/s00204-025-03997-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 02/18/2025] [Indexed: 04/16/2025]
Abstract
Antioxidants had a growing interest owing to their protective roles in food and pharmaceutical products against oxidative deterioration and in the body and against oxidative stress-mediated pathological processes. Screening of antioxidant properties of plants and plant derived compounds requires appropriate methods, which address the mechanism of antioxidant activity and focus on the kinetics of the reactions including the antioxidants. Many studies have been conducted with evaluating antioxidant activity of various samples of research interest using by different methods in food and human health. These methods were classified methods described and discussed in this review. Methods based on inhibited autoxidation are the most suited for termination-enhancing antioxidants and, for chain-breaking antioxidants while different specific studies are needed for preventive antioxidants. For this purpose, the most commonly methods used in vitro determination of antioxidant capacity of food and pharmaceutical constituents are examined and also a selection of chemical testing methods is critically reviewed and highlighting. In addition, their advantages, disadvantages, limitations and usefulness were discussed and investigated for pure molecules and raw plant extracts. The effect and influence of the reaction medium on performance of antioxidants is also addressed. Hence, this overview provides a basis and rationale for developing standardized antioxidant capacity methods for the food, nutraceuticals, and dietary supplement industries. Also, the most important advantages and shortcomings of each method were detected and highlighted. The underlying chemical principles of these methods have been explained and thoroughly analyzed. The chemical principles of methods of 1,1-diphenyl-2-picrylhydrazyl (DPPH•) radical scavenging, 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulphonate) radical (ABTS·+) scavenging, ferric ions (Fe3+) reducing assay, ferric reducing antioxidant power (FRAP) assay, cupric ions (Cu2+) reducing power assay (Cuprac), Folin-Ciocalteu reducing capacity (FCR assay), superoxide radical anion (O2·-), hydroxyl radical (OH·) scavenging, peroxyl radical (ROO·) removing, hydrogen peroxide (H2O2) decomposing, singlet oxygen (1O2) quenching assay, nitric oxide radical (NO·) scavenging assay and chemiluminescence assay are overviewed and critically discussed. Also, the general antioxidant aspects of the main food and pharmaceutical components were discussed through several methods currently used for detecting antioxidant properties of these components. This review consists of two main sections. The first section is devoted to the main components in food and their pharmaceutical applications. The second general section includes definitions of the main antioxidant methods commonly used for determining the antioxidant activity of components. In addition, some chemical, mechanistic, and kinetic properties, as well as technical details of the above mentioned methods, are provided. The general antioxidant aspects of main food components have been discussed through various methods currently used to detect the antioxidant properties of these components.
Collapse
Affiliation(s)
- İlhami Gulcin
- Faculty of Sciences, Department of Chemistry, Atatürk University, 25240, Erzurum, Türkiye.
| |
Collapse
|
2
|
Jakubczyk K, Melkis K, Maciejewska-Markiewicz D, Muzykiewicz-Szymańska A, Nowak A, Skonieczna-Żydecka K. Innovative approaches to enhancing kombucha through flavour additives: a phytochemical and antioxidant analysis. Food Funct 2025; 16:1442-1457. [PMID: 39898619 DOI: 10.1039/d4fo05135a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
This study aimed to determine the phytochemical profile (flavonoids, phenolic acids, caffeine, vitamin C, and acetic acid), antioxidant potential (DPPH, ABTS, and FRAP method), total polyphenol (TPC) and flavonoid (TFC) content, as well as pH of eight commercial green tea-based kombuchas. The beverages were enriched with lemongrass; lavender; liquorice and mint; turmeric and lemon; mango; reishi and chaga; mint, rose, and pomegranate. The highest tested properties were found for kombucha with reishi and chaga (FRAP), with mint, rose, and pomegranate (ABTS), as well as with turmeric and lemon (DPPH, TPC, TFC). Among the identified phenolic acids, p-coumaric acid was found in the highest concentration (kombucha with reishi and chaga), while among the flavonoids - rutin (kombucha with liquorice and mint). Kombucha with reishi and chaga was the richest source of vitamin C, caffeine, and acetic acid. The addition of certain plant materials significantly affects the phytonutrient content of green tea-based kombucha.
Collapse
Affiliation(s)
- Karolina Jakubczyk
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 24 Broniewskiego St., 71-460 Szczecin, Poland.
| | - Klaudia Melkis
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 24 Broniewskiego St., 71-460 Szczecin, Poland.
| | - Dominika Maciejewska-Markiewicz
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 24 Broniewskiego St., 71-460 Szczecin, Poland.
| | - Anna Muzykiewicz-Szymańska
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, 72 Powstańców Wielkopolskich Ave., 70-111 Szczecin, Poland.
| | - Anna Nowak
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, 72 Powstańców Wielkopolskich Ave., 70-111 Szczecin, Poland.
| | - Karolina Skonieczna-Żydecka
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, 24 Broniewskiego St., 71-460 Szczecin, Poland.
| |
Collapse
|
3
|
Jakubczyk K, Szymczykowska K, Melkis K, Maciejewska-Markiewicz D, Nowak A, Muzykiewicz-Szymańska A, Skonieczna-Żydecka K. The Role of Light in Enhancing the Nutritional and Antioxidant Qualities of Basil, Mint and Lemon Balm. Foods 2024; 13:3954. [PMID: 39683026 DOI: 10.3390/foods13233954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/14/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
Mint (Mentha L.), basil, (Ocimum basilicum) and Melissa (Melissa officinalis L.) are herbaceous plants from the Lamiaceae family. They have a wide range of health benefits and flavour properties which are highly valued around the world. Alternative methods of growing plants to minimise greenhouse gas emissions during autumn and winter are being sought in the face of increasing climate change. One way to achieve this is to switch from HPS to LED lighting. LED lighting has a longer lifespan and higher efficiency while using less energy and better matching the colour of the light to the needs of the herbs. This study tested the hypothesis that the type of illumination (solar, HPS, and LED) significantly impacts the antioxidant and nutritional qualities of herbs. The results indicated that LED lighting enhanced biochemical properties, supporting its adoption for sustainable plant cultivation.
Collapse
Affiliation(s)
- Karolina Jakubczyk
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, Broniewskiego Street 24, 71-460 Szczecin, Poland
| | - Kinga Szymczykowska
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, Broniewskiego Street 24, 71-460 Szczecin, Poland
| | - Klaudia Melkis
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, Broniewskiego Street 24, 71-460 Szczecin, Poland
| | - Dominika Maciejewska-Markiewicz
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, Broniewskiego Street 24, 71-460 Szczecin, Poland
| | - Anna Nowak
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich Street 72, 70-111 Szczecin, Poland
| | - Anna Muzykiewicz-Szymańska
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich Street 72, 70-111 Szczecin, Poland
| | - Karolina Skonieczna-Żydecka
- Department of Biochemical Research, Pomeranian Medical University in Szczecin, Broniewskiego Street 24, 71-460 Szczecin, Poland
| |
Collapse
|
4
|
Phan Van T, Nguyen QD, Nguyen NN, Do AD. Efficiency of freeze- and spray-dried microbial preparation as active dried starter culture in kombucha fermentation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:8707-8719. [PMID: 38924118 DOI: 10.1002/jsfa.13697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/17/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Kombucha is a widely consumed fermented beverage produced by fermenting sweet tea with a symbiotic culture of bacteria and yeast (SCOBY). The dynamic nature of microbial communities in SCOBY may pose challenges to production scale-up due to unpredictable variations in microbial composition. Using identified starter strains is a novel strategy to control microorganism composition, thereby ensuring uniform fermentation quality across diverse batches. However, challenges persist in the cultivation and maintenance of these microbial strains. This study examined the potential of microencapsulated kombucha fermentation starter cultures, specifically Komagataeibacter saccharivorans, Levilactobacillus brevis and Saccharomyces cerevisiae, through spray-drying and freeze-drying. RESULTS Maltodextrin and gum arabic-maltodextrin were employed as carrier agents. Our results revealed that both spray-dried and freeze-dried samples adhered to physicochemical criteria, with low moisture content (2.18-7.75%) and relatively high solubility (65.75-87.03%) which are appropriate for food application. Freeze-drying demonstrated greater effectiveness in preserving bacterial strain viability (88.30-90.21%) compared to spray drying (74.92-78.66%). Additionally, the freeze-dried starter strains demonstrated similar efficacy in facilitating kombucha fermentation, compared to the SCOBY group. The observations included pH reduction, acetic acid production, α-amylase inhibition and elevated total polyphenol and flavonoid content. Moreover, the biological activity, including antioxidant potential and in vitro tyrosinase inhibition activity, was enhanced in the same pattern. The freeze-dried strains exhibited consistent kombucha fermentation capabilities over a three-month preservation, regardless of storage temperature at 30 or 4 °C. CONCLUSION These findings highlight the suitability of freeze-dried starter cultures for kombucha production, enable microbial composition control, mitigate contamination risks and ensure consistent product quality. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Thach Phan Van
- Department of Biotechnology, NTT Hi-tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Quoc-Duy Nguyen
- Department of Food Technology, Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Nhu-Ngoc Nguyen
- Department of Food Technology, Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Anh Duy Do
- Department of Biotechnology, NTT Hi-tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| |
Collapse
|
5
|
Poyraz F, Akbaş G, Duranoğlu D, Acar S, Mansuroğlu B, Ersöz M. Sinapic-Acid-Loaded Nanoparticles Optimized via Experimental Design Methods: Cytotoxic, Antiapoptotoic, Antiproliferative, and Antioxidant Activity. ACS OMEGA 2024; 9:40329-40345. [PMID: 39371991 PMCID: PMC11447863 DOI: 10.1021/acsomega.4c00216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 10/08/2024]
Abstract
Nanoparticles are frequently investigated as carrier systems that increase the biological activities of hydrophobic molecules, especially by providing them with water solubility. Sinapic acid (Sa), commonly found in plants, is a phenolic compound with a wide spectrum of biological activities and extensive pharmacological properties. The aim of this study was the synthesis/characterization of optimized sinapic-acid-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (SaNPs) to improve the solubility of sinapic acid (Sa) that limit its use in the biological system and investigate the biological activities of these nanoparticles in the breast cancer cell line. For this purpose, sinapic-acid-loaded PLGA nanoparticles were obtained and optimized by experimental design methods. Then, cytotoxic (MTT method), antiapoptotic (terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay), antiproliferative (immunocytochemically by PCNA assay), and antioxidant activities (superoxide dismutase (SOD) and catalase activities, glutathione, malondialdehyde (MDA), and caspase-3 levels) of optimized nanoparticles were examined comperatively with free drug on MCF-7 cells. The IC50 values of the SaNPs (170.6 ± 3.6 nm size) in MCF-7 cells were determined at 180, 168, and 145 μg/mL for 24, 48, and 72 h, respectively, and at these doses, the nanoparticles did not show any toxic effect on the MCF10A cell line. Treatment of Sa and SaNPs at doses of 24 and 48 h showed a statistically significant reduction in the PCNA level in MCF-7 cells, with an increase in the number of cells leading to apoptosis. In MCF-7 cells treated with SaNP at concentrations of 150 and 200 μg/mL for 24 h, MDA levels were significantly increased, SOD activities were significantly decreased, and reduced glutathione (GSH) and catalase levels were increased compared with control groups. The findings of this study indicate that polyphenolic compounds can contribute to the design of drugs for treatment by forming nanoparticle formulations. The developed nanoparticle formulation is thought to be a useful model for other hydrophobic biological active substances.
Collapse
Affiliation(s)
- Fatma
Şayan Poyraz
- Department
of Molecular Biology and Genetics, Faculty of Art and Sciences, Yildiz Technical University, Istanbul 34349, Turkey
| | - Gülşah Akbaş
- Department
of Molecular Biology and Genetics, Faculty of Art and Sciences, Yildiz Technical University, Istanbul 34349, Turkey
| | - Dilek Duranoğlu
- Department
of Chemical Engineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul 34210, Turkey
| | - Serap Acar
- Department
of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul 34220, Turkey
| | - Banu Mansuroğlu
- Department
of Molecular Biology and Genetics, Faculty of Art and Sciences, Yildiz Technical University, Istanbul 34349, Turkey
| | - Melike Ersöz
- Department
of Molecular Biology and Genetics, Faculty of Arts and Sciences, Demiroglu Bilim University, Istanbul 34394, Turkey
| |
Collapse
|
6
|
Tokarz KM, Mazur T, Hanula M, Makowski W, Zawal P, Jędrzejczyk RJ, Szacilowski K, Mazur S, Wesołowski W, Tokarz B. Effect of silver nanoparticles foliar application on the nutritional properties of potato tubers. Sci Rep 2024; 14:21753. [PMID: 39294225 PMCID: PMC11411065 DOI: 10.1038/s41598-024-73096-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024] Open
Abstract
The aim of presented study was to test nutritional properties of potato tubers and silver ions accumulation pattern after foliar application of silver nanoparticles (AgNPs) during potato vegetation. Potato plants were sprayed with different concentration of Ag nanoparticles (0.1, 1.0 and 10 mg·dm-3) synthesized with incorporation with sodium dodecyl sulphate (SDS) and sodium citrate as stabilizing agent. The lowest amounts of silver ions were transported to the tubers after spraying with AgNPs synthesized with SDS, rather than with citrate. Nevertheless silver ions accumulation in tubers was negligible. SDS method of synthesis was more favourable in terms of nutritional properties of potato tubers. The highest tested concentration of AgNPs_SDS had a favourable effect on a variety of macro- and micronutrients, ascorbic acid and soluble sugars. In turn, lower concentrations of AgNPs_SDS increased the content of phenolic compounds and free radical scavenging efficiency of tubers. These correlations were also confirmed by Principal Component Analysis.
Collapse
Affiliation(s)
- Krzysztof M Tokarz
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, al. 29 Listopada 54, Kraków, 31-425, Poland.
| | - Tomasz Mazur
- Academic Centre for Materials and Nanotechnology, AGH University of Krakow al. A, Mickiewicza 30, Kraków, 30-059, Poland
| | - Monika Hanula
- Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c Street 32, Warsaw, 02-776, Poland
| | - Wojciech Makowski
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, al. 29 Listopada 54, Kraków, 31-425, Poland
| | - Piotr Zawal
- Academic Centre for Materials and Nanotechnology, AGH University of Krakow al. A, Mickiewicza 30, Kraków, 30-059, Poland
| | - Roman J Jędrzejczyk
- Plant-Microorganisms Interaction Group, Malopolska Centre of Biotechnology, Jagiellonian University, ul. Gronostajowa 7A, Kraków, 30-387, Poland
| | - Konrad Szacilowski
- Academic Centre for Materials and Nanotechnology, AGH University of Krakow al. A, Mickiewicza 30, Kraków, 30-059, Poland
| | - Stanisław Mazur
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, al. 29 Listopada 54, Kraków, 31-425, Poland
| | | | - Barbara Tokarz
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, al. 29 Listopada 54, Kraków, 31-425, Poland.
| |
Collapse
|
7
|
Gumul D, Oracz J, Litwinek D, Żyżelewicz D, Zięba T, Sabat R, Wywrocka-Gurgul A, Ziobro R. Quality- and Health-Promoting Compounds of Whole Wheat Bread with the Addition of Stale Bread, Cornmeal, and Apple Pomace. Foods 2024; 13:1767. [PMID: 38890995 PMCID: PMC11171573 DOI: 10.3390/foods13111767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/20/2024] Open
Abstract
The aim of this study was to evaluate the effect of extruded preparations on the bioactive and nutritional properties, vitamin B content, volatile compound profile, and quality of whole wheat bread. Extruded preparations based on stale bread (secondary raw materials) and apple pomace (byproducts) were used as bread additives. It was found that the preparations did not enrich the bread in protein but in health-promoting compounds, especially gallic acid, protocatechuic acid, caffeic acid, p-coumaric acid, rutin, quercetin, and B vitamins. Extruded preparations had a positive effect on the quality of the bread produced, such as yield and cohesiveness, and gave it a pleasant aroma. It was shown that among all the examined bread samples with added extruded preparations of stale bread, the cornmeal and apple pomace bread samples with 15% extruded preparation (containing 55% cornmeal, 30% stale bread, and 15% apple pomace) had sufficient nutritional value, the highest amounts of gallic acid, protocatechuic acid, p-coumaric acid, caffeic acid, rutin, and quercetin; medium amounts of ellagic acid; high antioxidant activity determined in vitro using four methods (by DPPH, ABTS, power (FRAP), and Fe(II) chelating assays); adequate quality; and significant amounts of vitamins, especially B1, B2, and B3. This type of extruded preparation should utilize apple pomace, which is a byproduct, and stale bread, which is a secondary waste. Such a combination is an excellent low-cost, easy, and prospective solution for the baking industry that could be applied to obtain bread with elevated nutritional value and enhanced health potential, as proven in this publication.
Collapse
Affiliation(s)
- Dorota Gumul
- Department of Carbohydrate Technology and Cereal Processing, Faculty of Food Technology, University of Agriculture in Krakow, 122 Balicka Street, 30-149 Krakow, Poland; (D.L.); (R.S.); (A.W.-G.); (R.Z.)
| | - Joanna Oracz
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 2/22 Stefanowskiego Street, 90-537 Lodz, Poland; (J.O.); (D.Ż.)
| | - Dorota Litwinek
- Department of Carbohydrate Technology and Cereal Processing, Faculty of Food Technology, University of Agriculture in Krakow, 122 Balicka Street, 30-149 Krakow, Poland; (D.L.); (R.S.); (A.W.-G.); (R.Z.)
| | - Dorota Żyżelewicz
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 2/22 Stefanowskiego Street, 90-537 Lodz, Poland; (J.O.); (D.Ż.)
| | - Tomasz Zięba
- Department of Food Storage, The Faculty of Life Sciences and Technology, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wrocław, Poland;
| | - Renata Sabat
- Department of Carbohydrate Technology and Cereal Processing, Faculty of Food Technology, University of Agriculture in Krakow, 122 Balicka Street, 30-149 Krakow, Poland; (D.L.); (R.S.); (A.W.-G.); (R.Z.)
| | - Anna Wywrocka-Gurgul
- Department of Carbohydrate Technology and Cereal Processing, Faculty of Food Technology, University of Agriculture in Krakow, 122 Balicka Street, 30-149 Krakow, Poland; (D.L.); (R.S.); (A.W.-G.); (R.Z.)
| | - Rafał Ziobro
- Department of Carbohydrate Technology and Cereal Processing, Faculty of Food Technology, University of Agriculture in Krakow, 122 Balicka Street, 30-149 Krakow, Poland; (D.L.); (R.S.); (A.W.-G.); (R.Z.)
| |
Collapse
|
8
|
Melkis K, Jakubczyk K. The Chemical Profiles and Antioxidant Properties of Live Fruit or Vegetable Vinegars Available on the Polish Food Market. Foods 2024; 13:1488. [PMID: 38790788 PMCID: PMC11119752 DOI: 10.3390/foods13101488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Live vinegar is a product formed through a two-step fermentation process of a sugar substrate that has not been subjected to filtration or pasteurization. This is considered to preserve all nutrients and biologically active microorganisms, making it a product with a valuable composition and beneficial properties. Therefore, the purpose of this study was to analyze the chemical composition and antioxidant properties of the selected vinegars available on the Polish food market. The material in the study consisted of four live (naturally turbid, unfiltered, unpasteurized) fruit or vegetable vinegars: apple, pear, rhubarb, and lemon. Spectrophotometric, HPLC, and GC methods were used. Among the vinegars tested, lemon vinegar had the highest vitamin C content-15.95 mg/100 mL. Apple vinegar proved to be the best source of polyphenols and flavonoids (TPC-191.97 mg GAE/L, TFC-70.22 mg RE/L). All of the vinegars contained dihydroxybenzoic acid, 4-hydroxybenzoic acid, caffeic acid, 2-hydroxycinnamic acid, and myricetin. The acetic acid content of the tested vinegars ranged from 29.180 to 38.125 mM/L. The pH values ranged from 3.14 to 3.41. In conclusion, the most promising nutraceutical with potentially beneficial health-promoting properties seems to be apple vinegar.
Collapse
Affiliation(s)
| | - Karolina Jakubczyk
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 24 Broniewskiego Street, 71-460 Szczecin, Poland;
| |
Collapse
|
9
|
Jakubczyk K, Szymczykowska K, Kika J, Janda-Milczarek K, Palma J, Melkis K, Alshekh R, Maciejewska-Markiewicz D. Exploring the Influence of Origin, Harvest Time, and Cultivation Method on Antioxidant Capacity and Bioactive Compounds of Matcha Teas. Foods 2024; 13:1270. [PMID: 38672941 PMCID: PMC11048880 DOI: 10.3390/foods13081270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/13/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Matcha, or powdered green tea, has been gaining popularity and is no longer consumed only in the form of infusions, finding new uses in gastronomy and the food industry. The range of teas available on the food market has expanded considerably; hence, the aim of this study was to determine, for the first time, the antioxidant capacity and contents of antioxidant compounds in various Matcha teas available on the Polish market, taking into account the country of origin, time of harvest, and conventional vs. organic cultivation. Eleven green-tea powders were used in the analyses performed using spectrophotometric methods (Trolox equivalent antioxidant capacity, Ferric-Ion-Reducing Antioxidant Power, Total Polyphenol Content, Total Flavonoid Content, Vitamin C Content) and HPLC methods (polyphenolic acids, flavonoids, and caffeine). Antioxidant capacity ranged from 7.26 to 9.54 mM Trolox equivalent/L while reducing power ranged from 1845.45 to 2266.12 Fe(II)/L. Total phenolic content amounted to 820.73-1017.83 mg gallic acid equivalent/L, and total flavonoid content was 864.71-1034.40 mg rutin equivalent /L. A high vitamin C content was found, ranging from 38.92 to 70.15 mg/100 mL. Additionally, a high content of caffeine that ranged between 823.23 and 7313.22 mg/L was noted. Moreover, a high content of polyphenolic compounds, including epicatechin gallate, myricetin, gallic acid, and 4-hydroxybenzoic acid, was found. The phytochemical composition and antioxidant properties depended on the harvest time, type of cultivation, and country of origin. Therefore, Matcha tea infusions have been shown to be a valuable source of antioxidants that can be used in the daily diet.
Collapse
Affiliation(s)
- Karolina Jakubczyk
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 24 Broniewskiego Street, 71-460 Szczecin, Poland; (K.S.); (J.K.); (K.J.-M.); (K.M.); (R.A.); (D.M.-M.)
| | - Kinga Szymczykowska
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 24 Broniewskiego Street, 71-460 Szczecin, Poland; (K.S.); (J.K.); (K.J.-M.); (K.M.); (R.A.); (D.M.-M.)
| | - Joanna Kika
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 24 Broniewskiego Street, 71-460 Szczecin, Poland; (K.S.); (J.K.); (K.J.-M.); (K.M.); (R.A.); (D.M.-M.)
| | - Katarzyna Janda-Milczarek
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 24 Broniewskiego Street, 71-460 Szczecin, Poland; (K.S.); (J.K.); (K.J.-M.); (K.M.); (R.A.); (D.M.-M.)
| | - Joanna Palma
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland;
| | - Klaudia Melkis
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 24 Broniewskiego Street, 71-460 Szczecin, Poland; (K.S.); (J.K.); (K.J.-M.); (K.M.); (R.A.); (D.M.-M.)
| | - Rami Alshekh
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 24 Broniewskiego Street, 71-460 Szczecin, Poland; (K.S.); (J.K.); (K.J.-M.); (K.M.); (R.A.); (D.M.-M.)
| | - Dominika Maciejewska-Markiewicz
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 24 Broniewskiego Street, 71-460 Szczecin, Poland; (K.S.); (J.K.); (K.J.-M.); (K.M.); (R.A.); (D.M.-M.)
| |
Collapse
|
10
|
Gębczyński P, Tabaszewska M, Kur K, Zbylut-Górska M, Słupski J. Effect of the Drying Method and Storage Conditions on the Quality and Content of Selected Bioactive Compounds of Green Legume Vegetables. Molecules 2024; 29:1732. [PMID: 38675551 PMCID: PMC11052391 DOI: 10.3390/molecules29081732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/03/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
This study aimed to determine the effect of the drying method (freeze-drying, air-drying), storage period (12 months), and storage conditions (2-4 °C, 18-22 °C) applied to two legume species: green beans and green peas. The raw and dried materials were determined for selected physical parameters typical of dried vegetables, contents of bioactive components (vitamin C and E, total chlorophyll, total carotenoids, β-carotene, and total polyphenols), antioxidative activity against the DPPH radical, and sensory attributes (overall quality and profiles of color, texture, and palatability). Green beans had a significantly higher content of bioactive components compared to peas. Freeze-drying and cold storage conditions facilitated better retention of these compounds, i.e., by 9-39% and 3-11%, respectively. After 12 months of storage, higher retention of bioactive components, except for total chlorophyll, was determined in peas regardless of the drying method, i.e., by 38-75% in the freeze-dried product and 30-77% in the air-dried product, compared to the raw material.
Collapse
Affiliation(s)
- Piotr Gębczyński
- Department of Plant Product Technology and Nutrition Hygiene, Faculty of Food Technology, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Krakow, Poland; (P.G.); (K.K.); (J.S.)
| | - Małgorzata Tabaszewska
- Department of Plant Product Technology and Nutrition Hygiene, Faculty of Food Technology, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Krakow, Poland; (P.G.); (K.K.); (J.S.)
| | - Katarzyna Kur
- Department of Plant Product Technology and Nutrition Hygiene, Faculty of Food Technology, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Krakow, Poland; (P.G.); (K.K.); (J.S.)
| | - Maria Zbylut-Górska
- Department of Land Surveying, Faculty of Environmental Engineering and Land Surveying, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Krakow, Poland;
| | - Jacek Słupski
- Department of Plant Product Technology and Nutrition Hygiene, Faculty of Food Technology, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Krakow, Poland; (P.G.); (K.K.); (J.S.)
| |
Collapse
|
11
|
Koźmińska A, Kamińska I, Hanus-Fajerska E. Sulfur-Oxidizing Bacteria Alleviate Salt and Cadmium Stress in Halophyte Tripolium pannonicum (Jacq.) Dobrocz. Int J Mol Sci 2024; 25:2455. [PMID: 38473702 DOI: 10.3390/ijms25052455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 03/14/2024] Open
Abstract
The aim of this study was to investigate how introducing halophilic sulfur-oxidizing bacteria (SOB) Halothiobacillus halophilus to the growth substrate affects the physiological and biochemical responses of the halophyte Tripolium pannonicum (also known as sea aster or seashore aster) under salt and cadmium stress conditions. This study assessed the plant's response to these stressors and bacterial inoculation by analyzing various factors including the accumulation of elements such as sodium (Na), chloride (Cl), cadmium (Cd) and sulfur (S); growth parameters; levels of photosynthetic pigments, proline and phenolic compounds; the formation of malondialdehyde (MDA); and the plant's potential to scavenge 2,2-Diphenyl-1-picrylhydrazyl (DPPH). The results revealed that bacterial inoculation was effective in mitigating the deleterious effect of cadmium stress on some growth criteria. For instance, stem length was 2-hold higher, the growth tolerance index was 3-fold higher and there was a 20% increase in the content of photosynthetic pigments compared to non-inoculated plants. Furthermore, the SOB contributed to enhancing cadmium tolerance in Tripolium pannonicum by increasing the availability of sulfur in the plant's leaves, which led to the maintenance of an appropriate, about 2-fold-higher level of phenolic compounds (phenylpropanoids and flavonols), as well as chloride ions. The level of MDA decreased after bacterial application in all experimental variants except when both salt and cadmium stress were present. These findings provide novel insights into how halophytes respond to abiotic stress following inoculation of the growth medium with sulfur-oxidizing bacteria. The data suggest that inoculating the substrate with SOB has a beneficial effect on T. pannonicum's tolerance to cadmium stress.
Collapse
Affiliation(s)
- Aleksandra Koźmińska
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Cracow, Poland
| | - Iwona Kamińska
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Cracow, Poland
| | - Ewa Hanus-Fajerska
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Cracow, Poland
| |
Collapse
|
12
|
Van TP, Phan QK, Quang HP, Pham GB, Thi NHN, Thi HTT, Do AD. Multi-Strain Probiotics Enhance the Bioactivity of Cascara Kombucha during Microbial Composition-Controlled Fermentation. Prev Nutr Food Sci 2023; 28:502-513. [PMID: 38188087 PMCID: PMC10764222 DOI: 10.3746/pnf.2023.28.4.502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 01/09/2024] Open
Abstract
Kombucha is a widely consumed fermented tea beverage with diverse health benefits. In a previous study, we demonstrated that the use of cascara as a substrate results in a special kombucha beverage with high bioactivity. Traditional kombucha fermentation using a symbiotic culture of bacteria and yeast (SCOBY) can lead to inconsistent product quality because of the lack of control over microbial composition. We successfully isolated and identified yeast and bacteria, including Saccharomyces cerevisiae, Komagataeibacter rhaeticus, and Lactobacillus brevis that are appropriate starter cultures for cascara kombucha fermentation. We also demonstrated that a supplementation with lactic acid bacteria (LAB) and a mixture of S. cerevisiae and K. rhaeticus resulted in higher total polyphenol and flavonoid content of cascara kombucha compared with the traditionally fermented product using SCOBY as the inoculum. The free radical scavenging activity, inhibitory effects on α-amylase, tyrosinase activity, and antibacterial properties of cascara kombucha were also enhanced as a result of LAB supplement. These findings provide valuable insights into the controlled microbiological composition required for the fermentation of cascara kombucha, thereby ensuring consistent quality and enhanced bioactivity of the product. Further, the use of cascara as a substrate for kombucha production not only offers various health benefits and biological effects, but also repurposes by-products from the coffee industry, which contributes to sustainable development and is eco-friendly.
Collapse
Affiliation(s)
- Thach Phan Van
- Department of Biotechnology, NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Quang Khai Phan
- Department of Biotechnology, NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam
| | - Hoa Pham Quang
- Department of Biotechnology, NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam
| | - Gia Bao Pham
- Department of Biotechnology, NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam
| | - Ngoc Han Ngo Thi
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam
| | - Hong Tham Truong Thi
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam
| | - Anh Duy Do
- Department of Biotechnology, NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
13
|
Jakubczyk K, Melkis K, Janda-Milczarek K, Skonieczna-Żydecka K. Phenolic Compounds and Antioxidant Properties of Fermented Beetroot Juices Enriched with Different Additives. Foods 2023; 13:102. [PMID: 38201130 PMCID: PMC10778454 DOI: 10.3390/foods13010102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Fermented beetroot juice is a beverage obtained from the fermentation of beetroot, most commonly red beet (Beta vulgaris L. var. conditiva). Nowadays, this product is increasingly recognised as a functional food with potentially beneficial health properties. It has been suggested to have antioxidant, anti-inflammatory, anticancer, antihypertensive, immunomodulatory, and probiotic effects, among others. Moreover, with the increasing popularity of the drink, newer variants are appearing in the food market, obtained by modifying the traditional recipe, adding other raw materials, herbs, and spices. Therefore, the aim of this study was to evaluate and compare the antioxidant potential and phytochemical composition of the selected fermented beetroot juices in different flavour variants available in the Polish food market. The study material consisted of six fermented beetroot juices: traditional, with garlic, with horseradish, with acerola, without salt, and iodized. The obtained results showed that the addition of acerola, horseradish, garlic, salt, and iodine in the form of sodium iodide and potassium iodide influenced the composition and properties of fermented beetroot juice. The most promising product in terms of potentially beneficial health properties related to the prevention of free radical diseases was fermented beetroot juice without salt (FRAP-5663.40 µM Fe (II)/L, ABTS-96.613%, TPC-760.020 mg GAE/L, TFC-221.280 mg RE/L). Iodized fermented beetroot juice had the highest vitamin C content-51.859 mg/100 mL. However, all the products tested were characterised by a significant content of biologically active substances with antioxidant properties and showed a high antioxidant potential. Moreover, all the fermented beetroot juices were rated positively in terms of flavour intensity, sweetness, acidity, colour, and overall acceptability. They can, therefore, be a good source of antioxidants in the daily diet.
Collapse
Affiliation(s)
- Karolina Jakubczyk
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 24 Broniewskiego Street, 71-460 Szczecin, Poland (K.J.-M.)
| | - Klaudia Melkis
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 24 Broniewskiego Street, 71-460 Szczecin, Poland (K.J.-M.)
| | - Katarzyna Janda-Milczarek
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 24 Broniewskiego Street, 71-460 Szczecin, Poland (K.J.-M.)
| | | |
Collapse
|
14
|
Jakubczyk K, Łopusiewicz Ł, Kika J, Janda-Milczarek K, Skonieczna-Żydecka K. Fermented Tea as a Food with Functional Value-Its Microbiological Profile, Antioxidant Potential and Phytochemical Composition. Foods 2023; 13:50. [PMID: 38201078 PMCID: PMC10778390 DOI: 10.3390/foods13010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Kombucha is a fermented tea drink produced by a symbiotic culture of bacteria and yeast, known as SCOBY. Its base has traditionally been black tea, which has been recognized for its health-promoting properties, particularly its antioxidant activity based on its high content of pol-yphenolic compounds. A number of previous studies have demonstrated the equally favourable biochemical and phytochemical composition of green tea. The aim of this study was to analyse and compare the basic biochemical composition, microbiological composition and antioxidant properties of black and green tea-based Kombucha. The green tea-based Kombucha showed a quantitatively more abundant microbial composition (Lactic Acid Bacteria, Acetobacter sp., Yeast), a higher reducing potential (FRAP-4326.58 Fe(II)µM/L) and a higher content of total polyphenols (23.84 mg GAE/100 mL, reducing sugars (3212.00 mg/100 mL) as well as free amino acids (849.00 mg GLY/mL). Kombucha made from black tea, on the other hand, showed a higher anti-oxidant potential (1.17 Trolox (mM) TEAC), neutralising the DPPH radical at 94.33% and ABTS at 97.74%. It also had a higher level of acetic acid (0.08 g/100 mL). Green tea kombucha had a higher scavenging capacity of 90.6% for superoxide radical (O2-) and 69.28% for hydroxyl radical (·OH) than black tea kombucha. In the present study, both kombucha drinks tested were shown to be source of potent antioxidants. In addition, green tea, as a kombucha base, has proven to be as beneficial a raw material that will provide full nutritional and health-promoting values as traditional kombucha.
Collapse
Affiliation(s)
- Karolina Jakubczyk
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 24 Broniewskiego Street, 71-460 Szczecin, Poland; (J.K.); (K.J.-M.)
| | - Łukasz Łopusiewicz
- Center of Bioimmobilisation and Innovative Packaging Materials, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology, 35 K. Janickiego, 71-270 Szczecin, Poland;
| | - Joanna Kika
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 24 Broniewskiego Street, 71-460 Szczecin, Poland; (J.K.); (K.J.-M.)
| | - Katarzyna Janda-Milczarek
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 24 Broniewskiego Street, 71-460 Szczecin, Poland; (J.K.); (K.J.-M.)
| | - Karolina Skonieczna-Żydecka
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, 24 Broniewskiego Street, 71-460 Szczecin, Poland;
| |
Collapse
|
15
|
Skoczylas J, Jędrszczyk E, Dziadek K, Dacewicz E, Kopeć A. Basic Chemical Composition, Antioxidant Activity and Selected Polyphenolic Compounds Profile in Garlic Leaves and Bulbs Collected at Various Stages of Development. Molecules 2023; 28:6653. [PMID: 37764429 PMCID: PMC10537509 DOI: 10.3390/molecules28186653] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Garlic is commonly used as vegetable or spice and as a herb in folklore as well as traditional medicine in many countries. The current study aimed to compare the chemical composition, antioxidant activity, and the content of selected polyphenolic compounds in cloves as well as leaves of winter garlic plants of the Harnaś and Ornak cultivars, which are of Polish origin. Garlic was grown from cloves for three years (2018-2020) in the experimental field of the University of Agriculture in Krakow, Poland. The research material was harvested on three dates: May; June, unripe garlic plants; and in July, the plant at full maturity. The content of vitamin C in the fresh material was determined. The proximate analysis was determined in the freeze-dried plants of garlic, and the total carbohydrate content was calculated. The antioxidant activity and the content of selected polyphenolic compounds were also determined. Garlic cloves showed a higher content of dry matter, and total carbohydrates than the leaves of garlic plants. On the other hand, in the leaves, a significantly higher content of protein, total fat and ash were observed. Additionally, garlic leaves were characterised by a higher content of vitamin C, total polyphenols, and a higher antioxidant activity than garlic cloves. The leaves of young garlic plants from the May harvest were distinguished by a higher content of these compounds. The dominant phenolic compounds were catechin and epicatechin. The leaves of young plants can be a valuable source of bioactive substances, especially in early spring.
Collapse
Affiliation(s)
- Joanna Skoczylas
- Department of Human Nutrition, Faculty of Food Technology, University of Agriculture in Krakow, Balicka 122, 31-149 Kraków, Poland; (J.S.); (K.D.)
| | - Elżbieta Jędrszczyk
- Department of Horticulture, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, al. 29 Listopada 54, 31-425 Kraków, Poland;
| | - Kinga Dziadek
- Department of Human Nutrition, Faculty of Food Technology, University of Agriculture in Krakow, Balicka 122, 31-149 Kraków, Poland; (J.S.); (K.D.)
| | - Ewa Dacewicz
- Department of Sanitary Engineering and Water Management, Faculty of Environmental Engineering and Land Surveying, University of Agriculture in Kraków, Adam Mickiewicz Ave. 24/28, 30-059 Kraków, Poland;
| | - Aneta Kopeć
- Department of Human Nutrition, Faculty of Food Technology, University of Agriculture in Krakow, Balicka 122, 31-149 Kraków, Poland; (J.S.); (K.D.)
| |
Collapse
|
16
|
Verdejo B, Inclán M, Blasco S, Ballesteros-Garrido R, Savastano M, Bianchi A, García-España E. Selective recognition of neurotransmitters in aqueous solution by hydroxyphenyl aza-scorpiand ligands. Org Biomol Chem 2023. [PMID: 37335019 DOI: 10.1039/d3ob00562c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
The synthesis, acid-base behaviour and anion recognition of neurotransmitters (dopamine, tyramine and serotonin) in aqueous solution of different aza-scorpiand ligands functionalized with hydroxyphenyl and phenyl moieties (L1-L3 and L4, respectively) have been studied by potentiometry, NMR, UV-Vis and fluorescence spectroscopy and isothermal titration calorimetry (ITC). The analysis of the potentiometric results shows the selective recognition of serotonin at physiological pH (Keff = 8.64 × 104) by L1. This selectivity has an entropic origin probably coming from a fine pre-organization of the interacting partners. Thus, the complementarity of the receptor and the substrate allows the reciprocal formation of hydrogen bonds, π-π and cation-π interactions, stabilizing the receptors and slowing the rate of oxidative degradation, and satisfactory results are obtained at acidic and neutral pH values. NMR and molecular dynamics studies reveal the rotation blockage in the neurotransmitter side chain once complexed with L1.
Collapse
Affiliation(s)
- Begoña Verdejo
- Instituto de Ciencia Molecular, C/Catedrático José Beltrán 2, 46980 Paterna, Valencia, Spain.
| | - Mario Inclán
- Instituto de Ciencia Molecular, C/Catedrático José Beltrán 2, 46980 Paterna, Valencia, Spain.
| | - Salvador Blasco
- Instituto de Ciencia Molecular, C/Catedrático José Beltrán 2, 46980 Paterna, Valencia, Spain.
| | - Rafael Ballesteros-Garrido
- Departamento de Química Orgánica, Universidad de Valencia, C/Dr Moliner 50, 46100 Burjassot, Valencia, Spain
| | - Matteo Savastano
- Dipartimento di Chimica "Ugo Schiff" Via della Lastruccia, 3-13, 50019 Sesto Fiorentino, Italy
| | - Antonio Bianchi
- Dipartimento di Chimica "Ugo Schiff" Via della Lastruccia, 3-13, 50019 Sesto Fiorentino, Italy
| | - Enrique García-España
- Instituto de Ciencia Molecular, C/Catedrático José Beltrán 2, 46980 Paterna, Valencia, Spain.
| |
Collapse
|
17
|
Okubanjo SS, Brooke SJ, Ward R, Mostert N, Loveday SM, Ye A, Wilde PJ, Singh H, Waterland M. The use of confocal Raman microscopy and microfluidic channels to monitor the location and mobility of β-carotene incorporated in droplet-stabilized oil-in-water emulsions. Curr Res Food Sci 2023; 6:100515. [PMID: 37229312 PMCID: PMC10205456 DOI: 10.1016/j.crfs.2023.100515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/27/2023] Open
Abstract
This study sought to explore the combined use of confocal Raman microscopy and microfluidic channels to probe the location and mobility of hydrophobic antioxidant (β-carotene) incorporated at the interface of food-grade droplet-stabilized emulsions (DSEs). Microfluidic channels were used to isolate emulsion droplets for efficient investigation of antioxidant mobility. This approach proved more conclusive than fixing the sample in agarose, because a single layer of droplets could be obtained. Results also indicated that the migration of β-carotene incorporated in shell droplets of olive oil and trimyristin DSEs to core droplets was minimal and beta-carotene remained mostly localised at the interface even after 3 days of production. This work demonstrates that microfluidic isolation of emulsion droplets combined with confocal Raman microscopy can give new insights into the spatial variation of chemical composition within emulsions. This study revealed that the migration of β-carotene between shell and core was minimal and hence it may be possible to concurrently deliver two incompatible compounds by spatially segregating them between shell and core compartments of DSEs.
Collapse
Affiliation(s)
- Sewuese S. Okubanjo
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North, 4442, New Zealand
- Norwegian University of Science and Technology (NTNU), Department of Biotechnology and Food Science, Trondheim, Norway
| | - Sam J. Brooke
- Institute of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North, 4472, New Zealand
| | - Rob Ward
- White Rabbit Scientific Limited, Palmerston North, New Zealand
| | - Nic Mostert
- Institute of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North, 4472, New Zealand
| | - Simon M. Loveday
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 138673, Singapore
| | - Aiqian Ye
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North, 4442, New Zealand
| | - Peter J. Wilde
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk, NR4 7UA, UK
| | - Harjinder Singh
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North, 4442, New Zealand
| | - Mark Waterland
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North, 4442, New Zealand
- Institute of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North, 4472, New Zealand
| |
Collapse
|
18
|
Wiszniewska A, Makowski W. Assessment of Shoot Priming Efficiency to Counteract Complex Metal Stress in Halotolerant Lobularia maritima. PLANTS (BASEL, SWITZERLAND) 2023; 12:1440. [PMID: 37050070 PMCID: PMC10096694 DOI: 10.3390/plants12071440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/18/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
The study investigated whether short-term priming supports plant defense against complex metal stress and multiple stress (metals and salinity) in halophyte Lobularia maritima (L.) Desv. Plants were pre-treated with ectoine (Ect), nitric oxide donor-sodium nitroprusside (SNP), or hydrogen sulfide donor-GYY4137 for 7 days, and were transferred onto medium containing a mixture of metal ions: Zn, Pb, and Cd. To test the effect of priming agents in multiple stress conditions, shoots were also subjected to low salinity (20 mM NaCl), applied alone, or combined with metals. Hydropriming was a control priming treatment. Stress impact was evaluated on a basis of growth parameters, whereas defense responses were on a basis of the detoxification activity of glutathione S-transferase (GST), radical scavenging activity, and accumulation of thiols and phenolic compounds. Exposure to metals reduced shoot biomass and height but had no impact on the formation of new shoots. Priming with nitric oxide annihilated the toxic effects of metals. It was related to a sharp increase in GST activity, glutathione accumulation, and boosted radical scavenging activity. In NO-treated shoots level of total phenolic compounds (TPC) and flavonoids remained unaffected, in contrast to other metal-treated shoots. Under combined metal stress and salinity, NO and H2S were capable of restoring or improving growth parameters, as they stimulated radical scavenging activity. Ect and H2S did not exert any effect on metal-treated shoots in comparison to hydropriming. The results revealed the stimulatory role of nitric oxide and low doses of NaCl in combating the toxic effects of complex metal stress in L. maritima. Both NO and NaCl interfered with thiol metabolism and antioxidant activity, whereas NaCl also contributed to the accumulation of phenolic compounds.
Collapse
|
19
|
Distributions of α- and δ-TOCopherol in Intact Olive and Soybean Oil-in-Water Emulsions at Various Acidities: A Test of the Sensitivity of the Pseudophase Kinetic Model. Antioxidants (Basel) 2022; 11:antiox11122477. [PMID: 36552687 PMCID: PMC9774782 DOI: 10.3390/antiox11122477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
During the last years, the formalism of the pseudophase kinetic model (PKM) has been successfully applied to determine the distributions of antioxidants and their effective interfacial concentrations, and to assess the relative importance of emulsion and antioxidant properties (oil and surfactant nature, temperature, acidity, chemical structure, hydrophilic-liphophilic balance (HLB), etc.) on their efficiency in intact lipid-based emulsions. The PKM permits separating the contributions of the medium and of the concentration to the overall rate of the reaction. In this paper, we report the results of a specifically designed experiment to further test the suitability of the PKM to evaluate the distributions of antioxidants among the various regions of intact lipid-based emulsions and provide insights into their chemical reactivity in multiphasic systems. For this purpose, we employed the antioxidants α- and δ-TOCopherol (α- and δ-TOC, respectively) and determined, at different acidities well below their pKa, the interfacial rate constants kI for the reaction between 16-ArN2+ and α- and δ-TOC, and the antioxidant distributions in intact emulsions prepared with olive and soybean oils. Results show that the effective interfacial concentration of δ-TOC is higher than that of α-TOC in 1:9 (v/v) soybean and 1:9 olive oil emulsions. The effective interfacial concentrations of tocopherols are much higher (15-96-fold) than the stoichiometric concentrations, as the effective interfacial concentrations of both δ-TOC and α-TOC in soybean oil emulsions are higher (2-fold) than those in olive oil emulsions. Overall, the results demonstrate that the PKM grants an effective separation of the medium and concentration effects, demonstrating that the PKM constitutes a powerful non-destructive tool to determine antioxidant concentrations in intact emulsions and to assess the effects of various factors affecting them.
Collapse
|
20
|
Aljawish A, Chevalot I, Paris C, Muniglia L. Enzymatic Oxidation of Ferulic Acid as a Way of Preparing New Derivatives. BIOTECH 2022; 11:55. [PMID: 36546909 PMCID: PMC9775523 DOI: 10.3390/biotech11040055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
The ferulic acid (FA)-oxidation by Myceliophthora thermophila laccase was performed in phosphate buffer at 30 °C and pH 7.5 as an eco-friendly procedure. LC-MS analysis showed that oxidation products were four dehydrodimers (P1, P2, P3, P5) at MM = 386 g/mol, two dehydrotetramers (P6, P7) at MM = 770 g/mol and one decarboxylated dehydrodimer (P4) at MM = 340 g/mol. Structural characterization showed that FA-dehydrodimers were symmetric for P1 and P5 while asymmetric for P2, P3 and P4. Physicochemical characterization showed that oxidation products presented a higher lipophilicity than that of FA. Moreover, symmetric dimers and tetra dimers had a higher melting point compared to FA and its asymmetric dimers. Antioxidant and anti-proliferative assessments indicated that enzymatic oligomerization increased antioxidant and anti-proliferative properties of oxidation products for P2, P3 and P6 compared to FA. Finally, this enzymatic process in water could produce new molecules, having good antiradical and anti-proliferative activities.
Collapse
Affiliation(s)
- Abdulhadi Aljawish
- Laboratory of Biomolecules Engineering (LIBio), Lorraine University, 2 avenue de la Forêt de Haye, TSA40602, F-54518 Vandœuvre-lès Nancy, France
| | - Isabelle Chevalot
- Laboratory of Reactions and Process Engineering (LRGP-UMR 7274), Lorraine University, 2 avenue de la Forêt de Haye, TSA40602, F-54518 Nancy, France
| | - Cédric Paris
- Laboratory of Biomolecules Engineering (LIBio), Lorraine University, 2 avenue de la Forêt de Haye, TSA40602, F-54518 Vandœuvre-lès Nancy, France
| | - Lionel Muniglia
- Laboratory of Biomolecules Engineering (LIBio), Lorraine University, 2 avenue de la Forêt de Haye, TSA40602, F-54518 Vandœuvre-lès Nancy, France
| |
Collapse
|
21
|
Helal NM, Khattab HI, Emam MM, Niedbała G, Wojciechowski T, Hammami I, Alabdallah NM, Darwish DBE, El-Mogy MM, Hassan HM. Improving Yield Components and Desirable Eating Quality of Two Wheat Genotypes Using Si and NanoSi Particles under Heat Stress. PLANTS (BASEL, SWITZERLAND) 2022; 11:1819. [PMID: 35890453 PMCID: PMC9316522 DOI: 10.3390/plants11141819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/02/2022] [Accepted: 07/06/2022] [Indexed: 01/07/2023]
Abstract
Global climate change is a significant challenge that will significantly lower crop yield and staple grain quality. The present investigation was conducted to assess the effects of the foliar application of either Si (1.5 mM) or Si nanoparticles (1.66 mM) on the yield and grain quality attributes of two wheat genotypes (Triticum aestivum L.), cv. Shandweel 1 and cv. Gemmeiza 9, planted at normal sowing date and late sowing date (heat stress). Si and Si nanoparticles markedly mitigated the observed decline in yield and reduced the heat stress intensity index value at late sowing dates, and improved yield quality via the decreased level of protein, particularly glutenin, as well as the lowered activity of α-amylase in wheat grains, which is considered a step in improving grain quality. Moreover, Si and nanoSi significantly increased the oil absorption capacity (OAC) of the flour of stressed wheat grains. In addition, both silicon and nanosilicon provoked an increase in cellulose, pectin, total phenols, flavonoid, oxalic acid, total antioxidant power, starch and soluble protein contents, as well as Ca and K levels, in heat-stressed wheat straw, concomitant with a decrease in lignin and phytic acid contents. In conclusion, the pronounced positive effects associated with improving yield quantity and quality were observed in stressed Si-treated wheat compared with Si nanoparticle-treated ones, particularly in cv. Gemmeiza 9.
Collapse
Affiliation(s)
- Nesma M. Helal
- Botany Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt; (N.M.H.); (H.I.K.); (M.M.E.)
| | - Hemmat I. Khattab
- Botany Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt; (N.M.H.); (H.I.K.); (M.M.E.)
| | - Manal M. Emam
- Botany Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt; (N.M.H.); (H.I.K.); (M.M.E.)
| | - Gniewko Niedbała
- Department of Biosystems Engineering, Faculty of Environmental and Mechanical Engineering, Poznań University of Life Sciences, Wojska Polskiego 50, 60-627 Poznań, Poland;
| | - Tomasz Wojciechowski
- Department of Biosystems Engineering, Faculty of Environmental and Mechanical Engineering, Poznań University of Life Sciences, Wojska Polskiego 50, 60-627 Poznań, Poland;
| | - Inès Hammami
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (I.H.); (N.M.A.)
| | - Nadiyah M. Alabdallah
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (I.H.); (N.M.A.)
| | - Doaa Bahaa Eldin Darwish
- Botany Department, Faculty of Science, Mansoura University, Mansoura 35511, Egypt;
- Biology Department, Faculty of Science, University of Tabuk, Tabuk 46429, Saudi Arabia
| | - Mohamed M. El-Mogy
- Vegetable Crops Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt;
| | - Heba M. Hassan
- Botany Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt; (N.M.H.); (H.I.K.); (M.M.E.)
| |
Collapse
|
22
|
Ultra-High-Performance Micellar Liquid Chromatography Comparing Tween 20 and Tween 40 for the Determination of Hydroxycinnamic Acids. SEPARATIONS 2022. [DOI: 10.3390/separations9030061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
A simple and green ultra-high-performance micellar liquid chromatography (MLC) method was developed here, comparing Tween 20 and Tween 40 for the first time as the only mobile phase modifiers with a C18 column. Its application to the separation of nine hydroxycinnamic acid (HCA) derivatives (cinnamic, caffeic, ferulic, sinapic, o-, m-, p-coumaric, 3,4-dihydroxyhydrocinnamic, and chlorogenic acids) was made, due to their importance as antioxidants in a variety of natural beverages such as wine and coffee. The optimal conditions of 45 °C temperature (T), 1% surfactant in the mobile phase, and pH control with 2.5 mM sulfuric acid were determined and used to elucidate the analytical figures of merit. Although the effect of these conditions was insignificant between the two surfactants, the nine-component HCA mixture was separated faster—in about 15 min—and with less peak tailing using Tween 20 than with Tween 40. The linearity of the Van’t Hoff (lnk versus 1/T) plots was evident for Tween 20, indicating a single retention mechanism—but less so for Tween 40. The equilibrium constants of the analytes with the micelles and the stationary phase were calculated. The developed method was successfully used to analyze organic red wine, spiked organic red wine, and green coffee diet pills. The percent recoveries of the nine HCA compounds spiked in the organic red wine ranged from 90% to 107%. The green coffee extract diet pills showed the presence of a significant amount of chlorogenic acid.
Collapse
|
23
|
Bravo-Díaz C. Advances in the control of lipid peroxidation in oil-in-water emulsions: kinetic approaches †. Crit Rev Food Sci Nutr 2022; 63:6252-6284. [PMID: 35104177 DOI: 10.1080/10408398.2022.2029827] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Large efforts have been, and still are, devoted to minimize the harmful effects of lipid peroxidation. Much of the early work focused in understanding both the lipid oxidation mechanisms and the action of antioxidants in bulk solution. However, food-grade oils are mostly present in the form of oil-in-water emulsions, bringing up an increasing complexity because of the three-dimensional interfacial region. This review presents an overview of the kinetic approaches employed in controlling the oxidative stability of edible oil-in-water emulsions and of the main outcomes, with particular emphasis on the role of antioxidants and on the kinetics of the inhibition reaction. Application of physical-organic chemistry methods, such as the pseudophase models to investigate antioxidant partitioning, constitute a remarkable example on how kinetic methodologies contribute to model chemical reactivity in multiphasic systems and to rationalize the role of interfaces, opening new opportunities for designing novel antioxidants with tailored properties and new prospects for modulating environmental conditions in attempting to optimize their efficiency. Here we will summarize the main kinetic features of the inhibition reaction and will discuss on the main factors affecting its rate, including the determination of antioxidant efficiencies from kinetic profiles, structure-reactivity relationships, partitioning of antioxidants and concentration effects.
Collapse
Affiliation(s)
- Carlos Bravo-Díaz
- Facultad de Ciencias, Departamento de Química Física, Universidad de Vigo, Vigo, Spain
| |
Collapse
|
24
|
Bioactive Compounds in Aegopodium podagraria Leaf Extracts and Their Effects against Fluoride-Modulated Oxidative Stress in the THP-1 Cell Line. Pharmaceuticals (Basel) 2021; 14:ph14121334. [PMID: 34959734 PMCID: PMC8704125 DOI: 10.3390/ph14121334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/01/2021] [Accepted: 12/14/2021] [Indexed: 12/05/2022] Open
Abstract
Aegopodium podagraria L. (goutweed), a member of the Apiaceae family, is a common perennial plant found all around the world that has been used in folk medicine since antiquity. Goutweed leaves contain polyacetylenes, essential oils, mono- and sesquiterpenes, vitamins, macro- and microelements, and phenolic compounds. In spite of its many health-promoting properties, including antioxidant effects, the plant has not been thoroughly studied. The aim of this study was to investigate the antioxidant properties of different goutweed leaf extracts and their effects on the THP-1 cell line, and also to describe the chemical characteristics of goutweed. Falcarinol and falcarindiol and essential oil were determined by gas chromatography coupled with mass spectrometry. Spectrophotometry was used to measure the total content of polyphenols and antioxidant activity–by DPPH and FRAP methods. Oxidative stress in THP-1 cells was induced via sodium fluoride. Then, goutweed leaf extracts were added to evaluate their influence on antioxidant potential (ABTS) and the activity of antioxidant enzymes. Confocal microscopy was used to visualise the production of cytoplasmic and mitochondrial reactive oxygen species (ROS) and for in vitro imaging of apoptosis. The ethanol extracts have a high total content of polyphenols, polyacetylenes, and essential oil, as well as high antioxidant potential. The main volatiles represented diverse chemical groups, which are both oxygenated derivatives of sesquiterpenes and monoterpenes. We also demonstrated positive effects of the high antioxidant potential and increased activity of antioxidant enzymes on cell cultures under severe fluoride-induced oxidative stress. Extraction at 80 ℃ and the use of ethanol as a solvent increased the antioxidant capacity of the extract. The leaves of Aegopodium podagraria may serve as a valuable source of antioxidants in the daily diet and assist in the prevention and treatment of oxidative stress-mediated conditions, e.g., inflammatory conditions, cardiovascular diseases, neurodegenerative diseases, and even obesity.
Collapse
|
25
|
The Influence of Time and Storage Conditions on the Antioxidant Potential and Total Phenolic Content in Homemade Grape Vinegars. Molecules 2021; 26:molecules26247616. [PMID: 34946694 PMCID: PMC8703868 DOI: 10.3390/molecules26247616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/05/2021] [Accepted: 12/10/2021] [Indexed: 11/17/2022] Open
Abstract
Fermented foods have been an integral part of the cuisines of almost all cultures in the world. In recent years, they have gained ground again, mainly due to their potential health benefits. One such product is grape vinegar, which apart from characteristic taste, is also a source of compounds with antioxidant activity. The aim of the study was to determine the changes in the antioxidant potential and the content of polyphenols that occur during the storage of grape vinegar obtained by spontaneous fermentation. The research material consisted of vinegar made from different white grape varieties grown in Poland. For each variety, two variants were prepared: with and without the addition of sugar in the fermentation process. The antioxidant potential, polyphenol content, soluble solids content and pH were monitored both during the two-month fermentation process and the subsequent 6-months storage under various conditions. Storage conditions and time of the storage affected the antioxidant activity and polyphenol content. The content of these compounds was also influenced by the variety of grapes used as well as the method of vinegar preparation.
Collapse
|
26
|
Li N, Su J, Wang H, Cavaco-Paulo A. Production of antimicrobial powders of guaiacol oligomers by a laccase-catalyzed synthesis reaction. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.07.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Microwave vacuum drying of lotus (Nelumbo nucifera Gaertn.) seeds: Effects of ultrasonic pretreatment on color, antioxidant activity, and rehydration capacity. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111603] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
28
|
Jakubczyk K, Tuchowska A, Janda-Milczarek K. Plant hydrolates - Antioxidant properties, chemical composition and potential applications. Biomed Pharmacother 2021; 142:112033. [PMID: 34416628 DOI: 10.1016/j.biopha.2021.112033] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/01/2021] [Accepted: 08/07/2021] [Indexed: 10/20/2022] Open
Abstract
Hydrolates, are by-products of the hydrodistillation of plants. They consist of the distillation water in which very small amounts of essential oils remain dispersed. Hydrosols are widely used in cosmetics. One of the greatest challenges in skin care, whether it is healthy or affected by a pathological condition, is how to minimize oxidative stress. Extract also lend themselves to applications in the agri-food industry, to inhibit the development of pathological microorganisms in food and to remove biofilms constituting a threat to public health in food, pharmaceuticals and beauty products. Therefore, the aim of this study was to analyze the antioxidant potential of hydrosols available in the cosmetics market, taking into account for the first time in scientific literature not only plant species, but also origin (country, farming system, part of plant) and method of preservation. Antioxidant activity, expressed as percentage inhibition of DPPH (1,1-diphenyl-2-picrylhydrazyl), ferric ion reducing antioxidant power (FRAP) and content of polyphenolic compounds (Folin-Ciocalteu method), was determined in seventeen hydrosols by spectrophotometric methods. Antioxidant potential was in the range of 4.43-39.87% of DPPH radical inhibition and 1325.65-5794.38 µM Fe(II)/L. Total phenolic content (TPC) in the hydrosols amounted to 9.33-44.23 mg GAE/L, while total flavonoid content (TFC) ranged from 1.48 to 14.82 mg rutin/L. The hydrosols had a pH in the range of 3.31-5.42. Conclusions: Plant hydrosols appear to have a high antioxidant potential, which depends on not only the plant species, but also its origin, part of the plant from which the hydrosol was obtained and the preservation method used in the finished product.
Collapse
Affiliation(s)
- Karolina Jakubczyk
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 24 Broniewskiego Street, 71-460 Szczecin, Poland.
| | - Aleksandra Tuchowska
- Department of Studies in Aesthetic Dermatology, Pomeranian Medical University in Szczecin, 72, Powstańców Wielkopolskich Street, 70-111 Szczecin, Poland.
| | - Katarzyna Janda-Milczarek
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 24 Broniewskiego Street, 71-460 Szczecin, Poland.
| |
Collapse
|
29
|
Antoniewicz J, Jakubczyk K, Kwiatkowski P, Maciejewska-Markiewicz D, Kochman J, Rębacz-Maron E, Janda-Milczarek K. Analysis of Antioxidant Capacity and Antimicrobial Properties of Selected Polish Grape Vinegars Obtained by Spontaneous Fermentation. Molecules 2021; 26:molecules26164727. [PMID: 34443313 PMCID: PMC8397985 DOI: 10.3390/molecules26164727] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/27/2021] [Accepted: 08/03/2021] [Indexed: 11/16/2022] Open
Abstract
Nowadays, products of natural origin with health-promoting properties are increasingly more common. Research shows that fruit vinegars can be a source of compounds with antioxidant activity. Research on the total antioxidant capacity, total phenolic content, and antimicrobial properties against Staphylococcus aureus, Escherichia coli, and Candida albicans of grape vinegars were conducted. Moreover, gas chromatography was used to measure acetic acid content in the vinegars. The research material consisted of vinegars produced from five different grape varieties. For each variety, two variants were prepared: with and without the addition of sugar in the fermentation process. The highest antimicrobial activity against all micro-organisms was observed in vinegar produced from Solaris grapes with added sugar. The highest polyphenol content was observed in vinegar produced from the Prior grape variety with added sugar and the highest total antioxidant capacity is the Johanniter grape variety with added sugar. The vinegars examined in this study differed, depending on grape variety, in terms of antimicrobial properties, antioxidant capacity, total phenolic content, as well as acetic acid content. Sugar addition caused significant differences in the antioxidant capacity of vinegar samples.
Collapse
Affiliation(s)
- Justyna Antoniewicz
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 24 Broniewskiego Street, 71-460 Szczecin, Poland; (J.A.); (K.J.); (D.M.-M.); (J.K.)
| | - Karolina Jakubczyk
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 24 Broniewskiego Street, 71-460 Szczecin, Poland; (J.A.); (K.J.); (D.M.-M.); (J.K.)
| | - Paweł Kwiatkowski
- Department of Diagnostic Immunology, Chair of Microbiology, Immunology and Laboratory Medicine, Pomeranian Medical University in Szczecin, 72 Powstańców Wlkp. Street, 70-111 Szczecin, Poland;
| | - Dominika Maciejewska-Markiewicz
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 24 Broniewskiego Street, 71-460 Szczecin, Poland; (J.A.); (K.J.); (D.M.-M.); (J.K.)
| | - Joanna Kochman
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 24 Broniewskiego Street, 71-460 Szczecin, Poland; (J.A.); (K.J.); (D.M.-M.); (J.K.)
| | - Ewa Rębacz-Maron
- Department of Ecology and Anthropology, Institute of Biology, University of Szczecin, 13 Wąska Street, 71-415 Szczecin, Poland;
| | - Katarzyna Janda-Milczarek
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 24 Broniewskiego Street, 71-460 Szczecin, Poland; (J.A.); (K.J.); (D.M.-M.); (J.K.)
- Correspondence: ; Tel.: +48-91-441-4818
| |
Collapse
|
30
|
Ekin MM, Kutlu N, Meral R, Ceylan Z, Cavidoglu İ. A novel nanotechnological strategy for obtaining fat-reduced cookies in bakery industry: Revealing of sensory, physical properties, and fatty acid profile of cookies prepared with oil-based nanoemulsions. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
31
|
Chowaniak M, Niemiec M, Zhu Z, Rashidov N, Gródek-Szostak Z, Szeląg-Sikora A, Sikora J, Kuboń M, Fayzullo SA, Mahmadyorzoda UM, Józefowska A, Lepiarczyk A, Gambuś F. Quality Assessment of Wild and Cultivated Green Tea from Different Regions of China. Molecules 2021; 26:3620. [PMID: 34199199 PMCID: PMC8231865 DOI: 10.3390/molecules26123620] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 11/16/2022] Open
Abstract
Natural products have always enjoyed great popularity among consumers. Wild tea is an interesting alternative to tea from intensive plantations. The term "wild tea" is applied to many different varieties of tea, the most desirable and valued of which are native or indigenous tea plants. Special pro-health properties of wild tea are attributed to the natural conditions in which it grows. However, there are no complex studies that describe quality and health indicators of wild tea. The aim of this research was to evaluate the quality of wild and cultivated green tea from different regions of China: Wuzhishan, Baisha, Kunlushan, and Pu'Er. The assessment was carried out by verifying the concentration of selected chemical components in tea and relating it to the health risks they may pose, as well as to the nutritional requirements of adults. Wild tea was characterized by higher micronutrient concentration. The analyzed teas can constitute a valuable source of Mn in the diet. A higher concentration of nitrates and oxalates in cultivated tea can be associated with fertilizer use. The analyzed cultivated tea was a better source of antioxidants with a higher concentration of caffeine. There were no indications of health risks for wild or cultivated teas.
Collapse
Affiliation(s)
- Maciej Chowaniak
- Department of Agroecology and Crop Production, Faculty of Agriculture and Economics, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Krakow, Poland;
| | - Marcin Niemiec
- Department of Agricultural and Environmental Chemistry, Faculty of Agriculture and Economics, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Krakow, Poland; (M.N.); (F.G.)
| | - Zhiqiang Zhu
- Department of Agricultural Resources and Environment, College of Tropical Crops, Hainan University, Renmin Avenue, Haikou, Hainan Province 570228, China;
| | - Naim Rashidov
- Department of Food Products and Agrotechnology, Polytechnical Institute of Tajik Technical University by Academician M.S. Osimi in Khujand, Lenin St. 226, Khujand 735700, Tajikistan;
| | - Zofia Gródek-Szostak
- Department of Economics and Enterprise Organization, Cracow University of Economics, 31-510 Krakow, Poland;
| | - Anna Szeląg-Sikora
- Faculty of Production and Power Engineering, University of Agriculture in Krakow, 30-149 Kraków, Poland; (A.S.-S.); (J.S.); (M.K.)
| | - Jakub Sikora
- Faculty of Production and Power Engineering, University of Agriculture in Krakow, 30-149 Kraków, Poland; (A.S.-S.); (J.S.); (M.K.)
| | - Maciej Kuboń
- Faculty of Production and Power Engineering, University of Agriculture in Krakow, 30-149 Kraków, Poland; (A.S.-S.); (J.S.); (M.K.)
- Eastern European State College of Higher Education in Przemyśl, Książąt Lubomirskich 6, 37-700 Przemyśl, Poland
| | | | - Usmon Mamur Mahmadyorzoda
- Tajik Agrarian University Named After Shirinsho Shotemur, Rudaki Avenue 146, Dushanbe 734003, Tajikistan;
| | - Agnieszka Józefowska
- Department of Soil Science and Agrophysics, Faculty of Agriculture and Economics, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Krakow, Poland;
| | - Andrzej Lepiarczyk
- Department of Agroecology and Crop Production, Faculty of Agriculture and Economics, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Krakow, Poland;
| | - Florian Gambuś
- Department of Agricultural and Environmental Chemistry, Faculty of Agriculture and Economics, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Krakow, Poland; (M.N.); (F.G.)
| |
Collapse
|
32
|
Jeong H, Jeon YE, Yang JK, Kim J, Chung WJ, Lee YS, Shin DS. Synthesis of Caffeoyl-Prolyl-Histidyl-Xaa Derivatives and Evaluation of Their Activities and Stability upon Long-Term Storage. Int J Mol Sci 2021; 22:ijms22126301. [PMID: 34208348 PMCID: PMC8231216 DOI: 10.3390/ijms22126301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 11/16/2022] Open
Abstract
Antioxidants play a critical role in the treatment of degenerative diseases and delaying the aging of dermal tissue. Caffeic acid (CA) is a representative example of the antioxidants found in plants. However, CA is unsuitable for long-term storage because of its poor stability under ambient conditions. Caffeoyl-Pro-His-NH2 (CA-Pro-His-NH2, CA-PH) exhibits the highest antioxidant activity, free radical scavenging and lipid peroxidation inhibition activity among the histidine-containing CA-conjugated dipeptides reported to date. The addition of short peptides to CA, such as Pro-His, is assumed to synergistically enhance its antioxidative activity. In this study, several caffeoyl-prolyl-histidyl-Xaa-NH2 derivatives were synthesized and their antioxidative activities evaluated. CA-Pro-His-Asn-NH2 showed enhanced antioxidative activity and higher structural stability than CA-PH, even after long-term storage. CA-Pro-His-Asn-NH2 was stable for 3 months, its stability being evaluated by observing the changes in its NMR spectra. Moreover, the solid-phase synthetic strategy used to prepare these CA-Pro-His-Xaa-NH2 derivatives was optimized for large-scale production. We envision that CA-Pro-His-Xaa-NH2 derivatives can be used as potent dermal therapeutic agents and useful cosmetic ingredients.
Collapse
Affiliation(s)
- Hyeri Jeong
- Department of Chemical and Biological Engineering, Sookmyung Women’s University, Seoul 04310, Korea; (H.J.); (Y.-E.J.)
| | - Young-Eun Jeon
- Department of Chemical and Biological Engineering, Sookmyung Women’s University, Seoul 04310, Korea; (H.J.); (Y.-E.J.)
| | - Jin-Kyoung Yang
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Korea; (J.-K.Y.); (J.K.)
| | - Jaehi Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Korea; (J.-K.Y.); (J.K.)
| | - Woo-Jae Chung
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea;
| | - Yoon-Sik Lee
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Korea; (J.-K.Y.); (J.K.)
- BeadTech Inc., 10-dong 4th, 49 Wonsi-ro, Danwon-gu, Ansan-si 15610, Korea
- Correspondence: (Y.-S.L.); (D.-S.S.); Tel.: +82-31-8084-8359 (Y.-S.L.); +82-2-2077-7236 (D.-S.S.)
| | - Dong-Sik Shin
- Department of Chemical and Biological Engineering, Sookmyung Women’s University, Seoul 04310, Korea; (H.J.); (Y.-E.J.)
- Industry Collaboration Center, Sookmyung Women’s University, Seoul 04310, Korea
- Correspondence: (Y.-S.L.); (D.-S.S.); Tel.: +82-31-8084-8359 (Y.-S.L.); +82-2-2077-7236 (D.-S.S.)
| |
Collapse
|
33
|
Probing the structure-antioxidant activity relationships of four cinnamic acids porous starch esters. Carbohydr Polym 2021; 256:117428. [PMID: 33483017 DOI: 10.1016/j.carbpol.2020.117428] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 11/12/2020] [Accepted: 11/17/2020] [Indexed: 11/20/2022]
Abstract
For investigation of antioxidant capacity relationship, four cinnamic acids (CNAs), including cinnamic (CA), ferulic (FA), p-coumaric (p-CA) and sinapic (SA) acids, were selected to modify porous starch (PS) with different degrees of substitution by esterification, respectively. The ester linkage of CNAs modified PS was confirmed by 1H NMR, 13C solid-state NMR and FT-IR. The porous structure was maintained after esterification. Three in vitro antioxidant assays were applied to measure antioxidant capacities. The order of antioxidant capacity was SA@PS > FA@PS > p-CA@PS > CA@PS, due to the presence of phenolic hydroxyl groups with hydrogen donating abilities. Besides electron-donating group on ortho or para positions the benzene ring further enhances the hydrogen donating ability and the stability of hydroxyl radical. This study not only investigated the antioxidant mechanism of CNA modified starch derivatives but probed the way for synthesis of biodegradable antioxidant materials for the food industries.
Collapse
|
34
|
Edible Flowers Extracts as a Source of Bioactive Compounds with Antioxidant Properties—In Vitro Studies. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11052120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Edible plants began to play an important role in past decade as a part of therapy, a recovery process or a healthy life style. The availability and relatively low price of the raw material, as well as proven bioactive health benefits, are key to consumers’ choice of nutrients. The red clover (Trifolium pratense) is a popular plant with healthy properties such as antiseptic and analgesic effects. The less known white clover (Trifolium repens), a fodder and honey plant, has anti-rheumatic and anti-diabetic properties. Both species may serve as a potential source of bioactive substances with antioxidant properties as a food additive or supplement. The study material consisted of flower extracts of Trifolium repens and Trifolium pratense. The total content of polyphenols and DPPH (2.2-diphenyl-1-picrylhydrazyl) and ferric reducing antioxidant power (FRAP) were measured using spectrophotometry methods. Oxidative stress in THP1 cells was induced via sodium fluoride. Subsequently, flower extracts were added and their influences on proliferation, antioxidant potential and the activity of antioxidant enzymes were evaluated. The extracts have a high total content of polyphenols as well as high antioxidant potential. We also demonstrated positive extracts impact on cells proliferation, high antioxidant potential and increasing activity of antioxidant enzymes on cell cultures under high oxidative stress induced by fluoride. Both red clover and the less known white clover may serve as valuable sources of antioxidants in the everyday diet.
Collapse
|
35
|
Microstructured Lipid Carriers (MLC) Based on N-Acetylcysteine and Chitosan Preventing Pseudomonas aeruginosa Biofilm. Int J Mol Sci 2021; 22:ijms22020891. [PMID: 33477393 PMCID: PMC7830306 DOI: 10.3390/ijms22020891] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 12/31/2022] Open
Abstract
The aim of this work was the development of microstructured lipid carriers (MLC) based on chitosan (CH) and containing N-acetylcysteine (NAC), a mucolytic and antioxidant agent, to inhibit the formation of Pseudomonas aeruginosa biofilm. MLC were prepared using the high shear homogenization technique. The MLC were characterized for morphology, particle size, Z potential, encapsulation efficiency and drug release. The antioxidant properties of NAC-loaded microstructured carriers were evaluated through an in vitro spectrophotometer assay. Finally, the activity of NAC-CH-MLC on biofilm production by Pseudomonas aeruginosa was also evaluated. Results obtained from this study highlighted that the use of chitosan into the inner aqueous phase permitted to obtain microstructured particles with a narrow size range and with good encapsulation efficiency. NAC-loaded MLC showed higher antioxidant activity than the free molecule, demonstrating how encapsulation increases the antioxidant effect of the molecule. Furthermore, the reduction of biofilm growth resulted extremely high with MLC being 64.74% ± 6.2% and 83.74% ± 9.95%, respectively, at 0.5 mg/mL and 2 mg/mL. In conclusion, this work represents a favorable technological strategy against diseases in which bacterial biofilm is relevant, such as cystic fibrosis.
Collapse
|
36
|
Grajzer M, Szmalcel K, Kuźmiński Ł, Witkowski M, Kulma A, Prescha A. Characteristics and Antioxidant Potential of Cold-Pressed Oils-Possible Strategies to Improve Oil Stability. Foods 2020; 9:E1630. [PMID: 33171600 PMCID: PMC7695170 DOI: 10.3390/foods9111630] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/01/2020] [Accepted: 11/06/2020] [Indexed: 01/08/2023] Open
Abstract
The relations of the antiradical capacity to oxidative stability parameters and the contents of fatty acids, sterols, tocopherols, phenols, flavonoids, chlorophyll, Cu, and Fe were assessed in 33 cold-pressed seed oils: Walnut (7 brands of oils), rosehip (3), camelina (6), milk thistle (5), flax (6), and pumpkin (6). The antiradical capacity of oils depended strongly on tocopherol contents with a synergistic effect with polyphenols. The efficacy of tocopherols in cold-pressed oils was accompanied by a negative correlation of their antioxidant capacity with the peroxide value increase after 3 months of shelf life. This study also showed a positive correlation between the content of phytosterols and the antiradical capacity in the lipophilic fraction of cold-pressed oils rich in n-3 polyunsaturated fatty acids (PUFAs). Multiple regression analysis identified groups of antioxidants naturally occurring in cold-pressed oils in relation to their fatty acid composition, which added to the cold-pressed oils could provide possible strategies to improve their stability. Achieving high stability is primarily a result of high phytosterol content exceeding the molar ratio of 1:100 for total phytosterols to α-linolenic acid. However, the molar ratios of tocopherols to linoleic acid below 1:2000 and polyphenols to linoleic acid below 1:3000 does not prevent oxidation in oils with the predominance of linoleic acid.
Collapse
Affiliation(s)
- Magdalena Grajzer
- Department of Food Science and Dietetics, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland; (M.W.); (A.P.)
| | - Karolina Szmalcel
- Student Scientific Club at Food Science and Dietetics Department, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland;
| | - Łukasz Kuźmiński
- Department of Process Management, Management Department, Wroclaw University of Economics, 50-556 Wroclaw, Poland;
| | - Mateusz Witkowski
- Department of Food Science and Dietetics, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland; (M.W.); (A.P.)
| | - Anna Kulma
- Department of Genetic Biochemistry, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wrocław, Poland;
| | - Anna Prescha
- Department of Food Science and Dietetics, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland; (M.W.); (A.P.)
| |
Collapse
|
37
|
Vandemoortele A, Simon M, Claes A, De Meulenaer B. Behavior of Hexanal, ( E)-Hex-2-enal, 4-Hydroxyhex-2-enal, and 4-Hydroxynon-2-enal in Oil-in-Water Emulsions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:11568-11577. [PMID: 32924473 DOI: 10.1021/acs.jafc.0c04060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The reactivity of hexanal, (E)-hex-2-enal, 4-hydroxyhex-2-enal, and 4-hydroxynon-2-enal in oil-in-water emulsions and their respective compartments, in the presence and absence of protein, was studied at 40 °C. In aqueous buffer, hexanal oxidized to hexanoic acid. In the presence of protein, an additional loss occurred, presumably as a result of adduct formation with cysteine. Similarly, (E)-hex-2-enal oxidized to (E)-hex-2-enoic acid in aqueous buffer, and the results suggested that this acid is also able to form adducts with proteins. 4-Hydroxyalk-2-enals showed the highest reactivity in all models evaluated. Especially in protein-containing systems, they were not detectable anymore or their initial concentration was seriously reduced. 4-Hydroxynon-2-enal was the most reactive of the substances studied. The reactivity of the aldehydes was influenced by their partition within emulsions, which was remarkably not correlated with their hydrophobicity. These findings need to be considered when using these aldehydes as lipid oxidation markers in foods.
Collapse
Affiliation(s)
- Angelique Vandemoortele
- NutriFOODchem Unit, Department of Food Technology, Safety and Health (Partner in Food2Know), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Marie Simon
- NutriFOODchem Unit, Department of Food Technology, Safety and Health (Partner in Food2Know), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Arnaud Claes
- NutriFOODchem Unit, Department of Food Technology, Safety and Health (Partner in Food2Know), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Bruno De Meulenaer
- NutriFOODchem Unit, Department of Food Technology, Safety and Health (Partner in Food2Know), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| |
Collapse
|
38
|
Noon J, Mills TB, Norton IT. The use of natural antioxidants to combat lipid oxidation in O/W emulsions. J FOOD ENG 2020. [DOI: 10.1016/j.jfoodeng.2020.110006] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
39
|
Abstract
In this study, water-in-extra virgin olive oil emulsions were enriched with vitamins. Water-in oil emulsions are heterogeneous systems able to solubilize both hydrophilic and hydrophobic compounds. Thus, hydrophilic vitamin C and lipophilic vitamin E were loaded separately or together in emulsion. A suitable emulsion composition was selected after considering different surfactant (mono and diglycerides of fatty acids, E471; sorbitan monooleate, Span 80; polyoxyethylene sorbitan monooleate, Tween 80) and water concentrations. The most appropriate emulsion, for the high stability, resulted the one containing concentrations of Span 80 1% w/w and water 1% w/w. The antioxidant effect of vitamins in emulsions was studied considering the variation of the peroxide values during storage. The oxidation reaction was slowed down in emulsions containing vitamin C, but it was quickened by the loading of vitamin E for its high concentration. In emulsions containing vitamin E, indeed, the peroxide values were higher than in emulsions prepared in the absence of vitamins or in oil. The antioxidant activity generated by the co-loading of vitamin C and E was very effective to the point that in presence of high amounts of vitamins the peroxide values did not change in about 40 days of storage, due to the vitamin E regeneration by vitamin C.
Collapse
|
40
|
Sujkowska-Rybkowska M, Muszyńska E, Labudda M. Structural Adaptation and Physiological Mechanisms in the Leaves of Anthyllis vulneraria L. from Metallicolous and Non-Metallicolous Populations. PLANTS (BASEL, SWITZERLAND) 2020; 9:E662. [PMID: 32456189 PMCID: PMC7284905 DOI: 10.3390/plants9050662] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/15/2020] [Accepted: 05/20/2020] [Indexed: 01/24/2023]
Abstract
Calamine wastes highly contaminated with trace metals (TMs) are spontaneously inhabited by a legume plant Anthyllis vulneraria L. This study determined an adaptation strategy of metallicolous (M) A. vulneraria and compared it with that of the non-metallicolous (NM) ecotype. We hypothesized that TMs may lead to (i) leaf apoplast modifications and (ii) changes in the antioxidant machinery efficiency that facilitate plant growth under severe contamination. To verify our hypothesis, we implemented immunolabelling, transmission electron microscopy and biochemical measurements. NM leaves were larger and thicker compared to the M ecotype. Microscopic analysis of M leaves showed a lack of dysfunctions in mesophyll cells exposed to TMs. However, changes in apoplast composition and thickening of the mesophyll and epidermal cell walls in these plants were observed. Thick walls were abundant in xyloglucan, pectins, arabinan, arabinogalactan protein and extensin. The tested ecotypes differed also in their physiological responses. The metallicolous ecotype featured greater accumulation of photosynthetic pigments, enhanced activity of superoxide dismutase and increased content of specific phenol groups in comparison with the NM one. Despite this, radical scavenging activity at the level of 20% was similar in M and NM ecotypes, which may implicate effective reduction of oxidative stress in M plants. In summary, our results confirmed hypotheses and suggest that TMs induced cell wall modifications of leaves, which may play a role in metal stress avoidance in Anthyllis species. However, when TMs reach the protoplast, activation of antioxidant machinery may significantly strengthen the status of plants naturally growing in TM-polluted environment.
Collapse
Affiliation(s)
- Marzena Sujkowska-Rybkowska
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, Building 37, 02-776 Warsaw, Poland;
| | - Ewa Muszyńska
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, Building 37, 02-776 Warsaw, Poland;
| | - Mateusz Labudda
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, Building 37, 02-776 Warsaw, Poland;
| |
Collapse
|
41
|
Jakubczyk K, Kałduńska J, Kochman J, Janda K. Chemical Profile and Antioxidant Activity of the Kombucha Beverage Derived from White, Green, Black and Red Tea. Antioxidants (Basel) 2020; 9:E447. [PMID: 32455926 PMCID: PMC7278673 DOI: 10.3390/antiox9050447] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 11/17/2022] Open
Abstract
Kombucha is a fermented tea beverage prepared as a result of the symbiotic nature of bacterial cultures and yeast, the so-called SCOBY (Symbiotic Cultures of Bacteria and Yeasts). Kombucha is characterised by rich chemical content and healthy properties. It includes organic acids, minerals and vitamins originating mainly from tea, amino acids, and biologically active compounds-polyphenols in particular. Kombucha is prepared mainly in the form of black tea, but other tea types are increasingly often used as well, which can significantly impact its content and health benefits. This work shows that the type of tea has a significant influence on the parameters associated with the antioxidant potential, pH, as well as the content of acetic acid, alcohol or sugar. Red tea and green tea on the 1st and 14th day of fermentation are a particularly prominent source of antioxidants, especially polyphenols, including flavonoids. Therefore, the choice of other tea types than the traditionally used black tea and the subjection of these tea types to fermentation seems to be beneficial in terms of the healthy properties of kombucha.
Collapse
Affiliation(s)
| | | | | | - Katarzyna Janda
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 24 Broniewskiego Street, 71-460 Szczecin, Poland; (K.J.); (J.K.); (J.K.)
| |
Collapse
|
42
|
Antioxidant Properties and Nutritional Composition of Matcha Green Tea. Foods 2020; 9:foods9040483. [PMID: 32290537 PMCID: PMC7231151 DOI: 10.3390/foods9040483] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/02/2020] [Accepted: 04/08/2020] [Indexed: 12/12/2022] Open
Abstract
Matcha green tea (Camellia sinensis), which originates from Japan, is commonly considered as particularly beneficial to health. A large content of polyphenols, amino acids (mainly tannins) and caffeine potentially increase the antioxidant properties of the drink. The aim of the study was to determine the antioxidant potential and the content of substances with an antioxidant effect-vitamin C, total polyphenol content including flavonoids-in infusions made from Traditional Matcha (from the first and second harvests) and Daily Matcha (from the second and third harvests) at different temperatures. The infusions were made by pouring 100 mL of distilled water once at various temperatures (25 °C, 70 °C, 80 °C and 90 °C) over 1.75 g of the plant material. Matcha tea is characterized by a high level of antioxidant substances (flavonoids 1968.8 mg/L; polyphenols 1765.1 mg/L; vitamin C 44.8 mg/L) as well as antioxidant potential (41.2% DPPH (10× dilution); 6129.5 µM Fe(II)/dm3 FRAP). The concentration of these compounds depends on the time at which the plant material was harvested as well as on the temperature of water used to prepare the infusions. For most parameters, the highest values were observed in infusions prepared at 90 °C and from the daily Matcha.
Collapse
|
43
|
Antioxidants and antioxidant methods: an updated overview. Arch Toxicol 2020; 94:651-715. [PMID: 32180036 DOI: 10.1007/s00204-020-02689-3] [Citation(s) in RCA: 845] [Impact Index Per Article: 169.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 02/24/2020] [Indexed: 02/07/2023]
Abstract
Antioxidants had a growing interest owing to their protective roles in food and pharmaceutical products against oxidative deterioration and in the body and against oxidative stress-mediated pathological processes. Screening of antioxidant properties of plants and plant-derived compounds requires appropriate methods, which address the mechanism of antioxidant activity and focus on the kinetics of the reactions including the antioxidants. Many studies evaluating the antioxidant activity of various samples of research interest using different methods in food and human health have been conducted. These methods are classified, described, and discussed in this review. Methods based on inhibited autoxidation are the most suited for termination-enhancing antioxidants and for chain-breaking antioxidants, while different specific studies are needed for preventive antioxidants. For this purpose, the most common methods used in vitro determination of antioxidant capacity of food constituents were examined. Also, a selection of chemical testing methods was critically reviewed and highlighted. In addition, their advantages, disadvantages, limitations and usefulness were discussed and investigated for pure molecules and raw extracts. The effect and influence of the reaction medium on the performance of antioxidants are also addressed. Hence, this overview provides a basis and rationale for developing standardized antioxidant methods for the food, nutraceuticals, and dietary supplement industries. In addition, the most important advantages and shortcomings of each method were detected and highlighted. The chemical principles of these methods are outlined and critically discussed. The chemical principles of methods of 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulphonate) radical (ABTS·+) scavenging, 1,1-diphenyl-2-picrylhydrazyl (DPPH·) radical scavenging, Fe3+-Fe2+ transformation assay, ferric reducing antioxidant power (FRAP) assay, cupric ions (Cu2+) reducing power assay (Cuprac), Folin-Ciocalteu reducing capacity (FCR assay), peroxyl radical (ROO·), superoxide radical anion (O2·-), hydrogen peroxide (H2O2) scavenging assay, hydroxyl radical (OH·) scavenging assay, singlet oxygen (1O2) quenching assay, nitric oxide radical (NO·) scavenging assay and chemiluminescence assay are outlined and critically discussed. Also, the general antioxidant aspects of main food components were discussed by a number of methods, which are currently used for the detection of antioxidant properties of food components. This review consists of two main sections. The first section is devoted to the main components in the food and pharmaceutical applications. The second general section comprises some definitions of the main antioxidant methods commonly used for the determination of the antioxidant activity of components. In addition, some chemical, mechanistic and kinetic basis, and technical details of the used methods are given.
Collapse
|
44
|
Muszyńska E, Labudda M, Kral A. Ecotype-Specific Pathways of Reactive Oxygen Species Deactivation in Facultative Metallophyte Silene Vulgaris (Moench) Garcke Treated with Heavy Metals. Antioxidants (Basel) 2020; 9:E102. [PMID: 31991666 PMCID: PMC7070611 DOI: 10.3390/antiox9020102] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/17/2020] [Accepted: 01/22/2020] [Indexed: 12/31/2022] Open
Abstract
This research aimed to indicate mechanisms involved in protection against the imbalanced generation of reactive oxygen species (ROS) during heavy metals (HMs) exposition of Silene vulgaris ecotypes with different levels of metal tolerance. Specimens of non-metallicolous (NM), calamine (CAL), and serpentine (SER) ecotypes were treated in vitro with Zn, Pb, and Cd ions applied simultaneously in concentrations that reflected their contents in natural habitats of the CAL ecotype (1× HMs) and 2.5- or 5.0-times higher than the first one. Our findings confirmed the sensitivity of the NM ecotype and revealed that the SER ecotype was not fully adapted to the HM mixture, since intensified lipid peroxidation, ultrastructural alternations, and decline in photosynthetic pigments' content were ascertained under HM treatment. These changes resulted from insufficient antioxidant defense mechanisms based only on ascorbate peroxidase (APX) activity assisted (depending on HMs concentration) by glutathione-S-transferase (GST) and peroxidase activity at pH 6.8 in the NM ecotype or by GST and guaiacol-type peroxidase in the SER one. In turn, CAL specimens showed a hormetic reaction to 1× HMs, which manifested by both increased accumulation of pigments and most non-enzymatic antioxidants and enhanced activity of catalase and enzymes from the peroxidase family (with the exception of APX). Interestingly, no changes in superoxide dismutase activity were noticed in metallicolous ecotypes. To sum up, the ROS scavenging pathways in S. vulgaris relied on antioxidants specific to the respective ecotypes, however the synthesis of polyphenols was proved to be a universal reaction to HMs.
Collapse
Affiliation(s)
- Ewa Muszyńska
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, Building 37, 02-776 Warsaw, Poland;
| | - Mateusz Labudda
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, Building 37, 02-776 Warsaw, Poland;
| | - Adam Kral
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, Building 37, 02-776 Warsaw, Poland;
| |
Collapse
|
45
|
Topolska J, Kostecka-Gugała A, Ostachowicz B, Latowski D. Selected metal content and antioxidant capacity of Sambucus nigra flowers from the urban areas versus soil parameters and traffic intensity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:668-677. [PMID: 31808083 DOI: 10.1007/s11356-019-06921-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/31/2019] [Indexed: 06/10/2023]
Abstract
The metal accumulation and antioxidant contents in flowers of wild specimens of European elder (Sambucus nigra L.), a famous medicinal plant and valuable component in the urban landscape, were determined. The total reflection X-ray fluorescence revealed the presence of K, Rb, Ca, Sr, Cr, Mn, Fe, Cu, and Zn associated with flowers. A typical, large, non-industrial city with considerable traffic and atmospheric pollution resulting from smog was chosen as a place of sampling. Obtained results were correlated with selected parameters of soil and the intensity of surrounding traffic. The flowers were relatively rich in elements K, Ca, Cu, Rb, and antioxidants, while it did not accumulate heavy metals potentially bioavailable in the soil. The correlation between street traffic and the content of Fe, Cr, and Zn in elderflowers was revealed; the metal quantities were below levels harmful to humans. Flowers from the city center exhibited higher antioxidant and radical scavenging capacities comparing to plants from the areas of little traffic. The antioxidant parameters were negatively correlated with the silty fraction content and positively with the potentially bioavailable levels of Ti and Mn in soils and increased with the amount of Rb in the flowers. It was proven for the first time that the urban specimens of wild S. nigra can perform as a local source of beneficial flowers providing cost-effective support in disease prevention and treatment.
Collapse
Affiliation(s)
- Justyna Topolska
- Department of Mineralogy, Petrography and Geochemistry, Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, al. Mickiewicza 30, 30-059, Krakow, Poland
| | - Anna Kostecka-Gugała
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, al. 29 Listopada 54, 31-425, Krakow, Poland
| | - Beata Ostachowicz
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Reymonta 19, 30-059, Krakow, Poland
| | - Dariusz Latowski
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, 30-387, Krakow, Poland.
| |
Collapse
|
46
|
Ingeniously regulating the antioxidant activities of hydroxyanthraquinone-based compounds via ESIPT reaction: Combining experiment and theory methods. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.111937] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
47
|
Mildner-Szkudlarz S, Różańska M, Piechowska P, Waśkiewicz A, Zawirska-Wojtasiak R. Effects of polyphenols on volatile profile and acrylamide formation in a model wheat bread system. Food Chem 2019; 297:125008. [DOI: 10.1016/j.foodchem.2019.125008] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/05/2019] [Accepted: 06/12/2019] [Indexed: 12/12/2022]
|
48
|
Wiszniewska A, Koźmińska A, Hanus-Fajerska E, Dziurka M, Dziurka K. Insight into mechanisms of multiple stresses tolerance in a halophyte Aster tripolium subjected to salinity and heavy metal stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 180:12-22. [PMID: 31059903 DOI: 10.1016/j.ecoenv.2019.04.059] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/16/2019] [Accepted: 04/18/2019] [Indexed: 06/09/2023]
Abstract
The study aimed at comparing metabolic reactions of a halophyte Aster tripolium to abiotic stresses. Profiling of endogenous phytohormones, soluble carbohydrates and stress-related amino acids was conducted in plants exposed to moderate and high salinity (150 and 300 mM NaCl), and heavy metal salts CdCl2 or PbCl2 (100 and 200 μM). High NaCl and Pb doses inhibited growth of A. tripolium (Stress Tolerance Index STI) of 37% and 32-35%, respectively. The plants tolerated moderate salinity and Cd (STI = 91% and STI = 83-96%, respectively). Toxic metals accumulated mainly in the roots but Cd translocation to the shoots was also observed. The stressors did not affect total concentrations of the main growth promoting phytohormones but we observed enhanced deactivation of auxins and gibberellins, and reduced accumulation of jasmonate precursor. ABA content increased under stress except for moderate salinity. A common reaction was also activation of osmotic adjustment, however it was disparately manifested under salinity and metallic stress. The distinct responses to salinity and metallic stresses involved changes in carbohydrate profile and altered interplay between salicylic acid content and the pool of active gibberellins. The content of active jasmonates diversified A. tripolium reactions to salt excess and each of the heavy metals. This parameter was linked to the accumulation of ethylene precursor. The results of the study can be used to decipher potential co-tolerance mechanism of this halophyte species to multiple environmental stresses.
Collapse
Affiliation(s)
- Alina Wiszniewska
- Unit of Botany and Plant Physiology, Institute of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, Al. 29 Listopada 54, 31-425, Kraków, Poland.
| | - Aleksandra Koźmińska
- Unit of Botany and Plant Physiology, Institute of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, Al. 29 Listopada 54, 31-425, Kraków, Poland
| | - Ewa Hanus-Fajerska
- Unit of Botany and Plant Physiology, Institute of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, Al. 29 Listopada 54, 31-425, Kraków, Poland
| | - Michał Dziurka
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland
| | - Kinga Dziurka
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland
| |
Collapse
|
49
|
Red Wine-Enriched Olive Oil Emulsions: Role of Wine Polyphenols in the Oxidative Stability. COLLOIDS AND INTERFACES 2019. [DOI: 10.3390/colloids3030059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The benefits associated with the consumption of red wine due to its rich pool of phenolic compounds are well-recognized, thanks to the antioxidant activity related to these kinds of molecules. However, wine drinking should be done in moderation, or is forbidden for some populations for ethnic or religious reasons. One way to still enjoy the advantages of red wine is to use its dry extract. In order to test the ability of the red wine dry extract to reveal its antioxidant activity, it was solubilized in water to produce water-in-oil (W/O) emulsions based on olive oil. After the selection of the right emulsion composition, kinetics of oil oxidation were carried out in oil and emulsions in the presence of an increasing amount of red wine extract, whose presence influenced the rate of oxidation by slowing it down. This behavior was confirmed by monitoring the oxidation reaction in two ways; i.e., with the classical method that consists of the determination of the peroxide value, and with an accelerated test making use of 2,2′-azobis(2,4-dimethylvaleronitrile) (AMVN) and diphenyl1-pyrenylphosphine (DPPP). The first is a molecule that triggers the reaction at 40 °C, and the other is a molecule that by reacting with hydroperoxides becomes fluorescent (DPPP=O). Moreover, by comparing the emulsion structures observed by optical microscopy, no differences in the size of the dispersed aqueous phase were detected with the increase of the wine dry extract, which is an aspect that confirmed that the antioxidant activity was directly proportional to the wine extract concentration, and thus to the phenolic content.
Collapse
|
50
|
Muszyńska E, Labudda M, Różańska E, Hanus-Fajerska E, Koszelnik-Leszek A. Structural, physiological and genetic diversification of Silene vulgaris ecotypes from heavy metal-contaminated areas and their synchronous in vitro cultivation. PLANTA 2019; 249:1761-1778. [PMID: 30826883 DOI: 10.1007/s00425-019-03123-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 02/27/2019] [Indexed: 05/20/2023]
Abstract
Results provide significant comparison of leaf anatomy, pigment content, antioxidant response and phenolic profile between individuals from miscellaneous populations and describe unified cultivation protocols for further research on stress biology. The plant communities growing on heavy metal-polluted areas have attracted considerable attention due to their unique ability to tolerate enormous amounts of toxic ions. Three ecotypes of Silene vulgaris representing calamine (CAL), serpentine (SER) and non-metallicolous (NM) populations were evaluated to reveal specific adaptation traits to harsh environment. CAL leaves presented a distinct anatomical pattern compared to leaves of SER and NM plants, pointing to their xeromorphic adaptation. These differences were accompanied by divergent accumulation and composition of photosynthetic pigments as well as antioxidant enzyme activity. In CAL ecotype, the mechanism of reactive oxygen species scavenging is based on the joint action of superoxide dismutase and catalase, but in SER ecotype on superoxide dismutase and guaiacol-type peroxidase. On the contrary, the concentration of phenylpropanoids and flavonols in the ecotypes was unchanged, implying the existence of similar pathways of their synthesis/degradation functioning in CAL and SER populations. The tested specimens showed genetic variation (atpA/MspI marker). Based on diversification of S. vulgaris populations, we focused on the elaboration of similar in vitro conditions for synchronous cultivation of various ecotypes. The most balanced shoot culture growth was obtained on MS medium containing 0.1 mg l-1 NAA and 0.25 mg l-1 BA, while the most abundant callogenesis was observed on MS medium enriched with 0.5 mg l-1 NAA and 5.0 mg l-1 BA. For the first time, unified in vitro protocols were described for metallophytes providing the opportunity to conduct basic and applied research on stress biology and tolerance mechanisms under freely controlled conditions.
Collapse
Affiliation(s)
- Ewa Muszyńska
- Department of Botany, Faculty of Agriculture and Biology, Warsaw, University of Life Sciences-SGGW, Nowoursynowska 159, Building 37, 02-776, Warsaw, Poland.
| | - Mateusz Labudda
- Department of Biochemistry, Faculty of Agriculture and Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, Building 37, 02-776, Warsaw, Poland
| | - Elżbieta Różańska
- Department of Botany, Faculty of Agriculture and Biology, Warsaw, University of Life Sciences-SGGW, Nowoursynowska 159, Building 37, 02-776, Warsaw, Poland
| | - Ewa Hanus-Fajerska
- Unit of Botany and Plant Physiology, Institute of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture, Al. 29 Listopada 54, 31-425, Krakow, Poland
| | - Anna Koszelnik-Leszek
- Department of Botany and Plant Ecology, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375, Wrocław, Poland
| |
Collapse
|