1
|
Das S, Wang W, Reeves S, Dalal RC, Dang YP, Gonzalez A, Kopittke PM. Non-target impacts of pesticides on soil N transformations, abundances of nitrifying and denitrifying genes, and nitrous oxide emissions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:157043. [PMID: 35779727 DOI: 10.1016/j.scitotenv.2022.157043] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Agriculture is the leading contributor to global nitrous oxide (N2O) emissions, mostly from soils. We examined the non-target impacts of four pesticides on N transformations, N cycling genes and N2O emissions from sugarcane-cropped soil. The pesticides, including a herbicide glyphosate (GLY), an insecticide imidacloprid (IMI), a fungicide methoxy ethyl mercuric chloride (MEMC) and a fumigant methyl isothiocyanate (MITC), were added to the soil and incubated in laboratory at 25 °C. The soil microcosms were maintained at two water contents, 55 % and 90 % water holding capacity (WHC), to simulate aerobic and partly anaerobic conditions, respectively. Half of the soil samples received an initial application of KNO3 and were then maintained at 90 % WHC for 38 d, whilst the other half received (NH4)2SO4 and were maintained at 55 % WHC for 28 d followed by 10 d at 90 % WHC to favour denitrification. Responses of individual functional genes involved in nitrification and denitrification to the pesticides and their relationships to N2O emissions varied with time and soil water. Overall, MITC had pronounced repressive effects on AOA and AOB amoA gene abundances and gross nitrification. Under 55 % WHC during the initial 28 d, N2O emissions were low for all treatments (≤62 μg N kg-1 soil). However, under 90 % WHC (either during the first 28 d or the increase in water content from 55 to 90 % WHC after 28 d) the cumulative N2O emissions increased markedly. Overall, under 90 % WHC the cumulative N2O emissions were 19 (control) to 79-fold (MITC) higher than under 55% WHC; with the highest emissions observed in the MITC treatment (3140 μg N kg-1 soil). This was associated with increases in gross nitrate consumption rates and abundances of denitrifying genes (nirK, nirS and qnorB). Therefore, to minimise N2O emissions, MITC should not be applied to field under wet conditions favouring denitrification.
Collapse
Affiliation(s)
- Shilpi Das
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, QLD 4072, Australia; Science and Technology Division, Department of Environment and Science, GPO Box 2454, Brisbane, QLD 4001, Australia; Soil Science Division, Bangladesh Institute of Nuclear Agriculture, Mymensingh 2202, Bangladesh.
| | - Weijin Wang
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, QLD 4072, Australia; Science and Technology Division, Department of Environment and Science, GPO Box 2454, Brisbane, QLD 4001, Australia.
| | - Steven Reeves
- Science and Technology Division, Department of Environment and Science, GPO Box 2454, Brisbane, QLD 4001, Australia
| | - Ram C Dalal
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Yash P Dang
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Axayacatl Gonzalez
- Australian Institute of Bioengineering and Nanotechnology, St Lucia, QLD 4072, Australia
| | - Peter M Kopittke
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
2
|
Aloo BN, Mbega ER, Makumba BA, Tumuhairwe JB. Effects of agrochemicals on the beneficial plant rhizobacteria in agricultural systems. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:60406-60424. [PMID: 34535866 DOI: 10.1007/s11356-021-16191-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Conventional agriculture relies heavily on chemical pesticides and fertilizers to control plant pests and diseases and improve production. Nevertheless, the intensive and prolonged use of agrochemicals may have undesirable consequences on the structure, diversity, and activities of soil microbiomes, including the beneficial plant rhizobacteria in agricultural systems. Although literature continues to mount regarding the effects of these chemicals on the beneficial plant rhizobacteria in agricultural systems, our understanding of them is still limited, and a proper account is required. With the renewed efforts and focus on agricultural and environmental sustainability, understanding the effects of different agrochemicals on the beneficial plant rhizobacteria in agricultural systems is both urgent and important to deduce practical solutions towards agricultural sustainability. This review critically evaluates the effects of various agrochemicals on the structure, diversity, and functions of the beneficial plant rhizobacteria in agricultural systems and propounds on the prospects and general solutions that can be considered to realize sustainable agricultural systems. This can be useful in understanding the anthropogenic effects of common and constantly applied agrochemicals on symbiotic systems in agricultural soils and shed light on the need for more environmentally friendly and sustainable agricultural practices.
Collapse
Affiliation(s)
- Becky Nancy Aloo
- Department of Biological Sciences, University of Eldoret, P.O. Box 1125-30100, Eldoret, Kenya.
| | - Ernest Rashid Mbega
- Department of Sustainable Agriculture and Biodiversity Conservation, Nelson Mandela African Institution of Science and Technology, P.O. Box 447, Arusha, Tanzania
| | - Billy Amendi Makumba
- Department of Biological Sciences, Moi University, P.O. Box 3900-30100, Eldoret, Kenya
| | - John Baptist Tumuhairwe
- Department of Agricultural Production, College of Agricultural and Environmental Sciences, Makerere University, P.O. Box, 7062, Kampala, Uganda
| |
Collapse
|
3
|
Li JT, Lu JL, Wang HY, Fang Z, Wang XJ, Feng SW, Wang Z, Yuan T, Zhang SC, Ou SN, Yang XD, Wu ZH, Du XD, Tang LY, Liao B, Shu WS, Jia P, Liang JL. A comprehensive synthesis unveils the mysteries of phosphate-solubilizing microbes. Biol Rev Camb Philos Soc 2021; 96:2771-2793. [PMID: 34288351 PMCID: PMC9291587 DOI: 10.1111/brv.12779] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 12/22/2022]
Abstract
Phosphate-solubilizing microbes (PSMs) drive the biogeochemical cycling of phosphorus (P) and hold promise for sustainable agriculture. However, their global distribution, overall diversity and application potential remain unknown. Here, we present the first synthesis of their biogeography, diversity and utility, employing data from 399 papers published between 1981 and 2017, the results of a nationwide field survey in China consisting of 367 soil samples, and a genetic analysis of 12986 genome-sequenced prokaryotic strains. We show that at continental to global scales, the population density of PSMs in environmental samples is correlated with total P rather than pH. Remarkably, positive relationships exist between the population density of soil PSMs and available P, nitrate-nitrogen and dissolved organic carbon in soil, reflecting functional couplings between PSMs and microbes driving biogeochemical cycles of nitrogen and carbon. More than 2704 strains affiliated with at least nine archaeal, 88 fungal and 336 bacterial species were reported as PSMs. Only 2.59% of these strains have been tested for their efficiencies in improving crop growth or yield under field conditions, providing evidence that PSMs are more likely to exert positive effects on wheat growing in alkaline P-deficient soils. Our systematic genetic analysis reveals five promising PSM genera deserving much more attention.
Collapse
Affiliation(s)
- Jin-Tian Li
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China.,School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Jing-Li Lu
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Hong-Yu Wang
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Zhou Fang
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Xiao-Juan Wang
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Shi-Wei Feng
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Zhang Wang
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Ting Yuan
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Sheng-Chang Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Shu-Ning Ou
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Xiao-Dan Yang
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Zhuo-Hui Wu
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Xiang-Deng Du
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Ling-Yun Tang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Bin Liao
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Wen-Sheng Shu
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China.,Guangdong Provincial Key Laboratory of Chemical Pollution, South China Normal University, Guangzhou, 510006, PR China
| | - Pu Jia
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Jie-Liang Liang
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| |
Collapse
|
4
|
Abstract
The World Health Organization (WHO) states that in developing nations, there are three million cases of agrochemical poisoning. The prolonged intensive and indiscriminate use of agrochemicals adversely affected the soil biodiversity, agricultural sustainability, and food safety, bringing in long-term harmful effects on nutritional security, human and animal health. Most of the agrochemicals negatively affect soil microbial functions and biochemical processes. The alteration in diversity and composition of the beneficial microbial community can be unfavorable to plant growth and development either by reducing nutrient availability or by increasing disease incidence. Currently, there is a need for qualitative, innovative, and demand-driven research in soil science, especially in developing countries for facilitating of high-quality eco-friendly research by creating a conducive and trustworthy work atmosphere, thereby rewarding productivity and merits. Hence, we reviewed (1) the impact of various agrochemicals on the soil microbial diversity and environment; (2) the importance of smallholder farmers for sustainable crop protection and enhancement solutions, and (3) management strategies that serve the scientific community, policymakers, and land managers in integrating soil enhancement and sustainability practices in smallholder farming households. The current review provides an improved understanding of agricultural soil management for food and nutritional security.
Collapse
|
5
|
Walvekar VA, Bajaj S, Singh DK, Sharma S. Ecotoxicological assessment of pesticides and their combination on rhizospheric microbial community structure and function of Vigna radiata. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:17175-17186. [PMID: 28585016 DOI: 10.1007/s11356-017-9284-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 05/17/2017] [Indexed: 06/07/2023]
Abstract
India is one of the leading countries in production and indiscriminate consumption of pesticides. Owing to their xenobiotic nature, pesticides affect soil microorganisms that serve as mediators in plant growth promotion. Our study aimed to deliver a comprehensive picture, by comparing the effects of synthetic pesticides (chlorpyriphos, cypermethrin, and a combination of both) with a biopesticide (azadirachtin) at their recommended field application level (L), and three times the recommended dosage (H) on structure and function of microbial community in rhizosphere of Vigna radiata. Effect on culturable fraction was assessed by enumeration on selective media, while PCR-denaturing gradient gel electrophoresis (DGGE) was employed to capture total bacterial community diversity. This was followed by a metabolic sketch using community-level physiological profiling (CLPP), to obtain a broader picture of the non-target effects on rhizospheric microbial community. Although plant parameters were not significantly affected by pesticide application, the microbial community structure experienced an undesirable impact as compared to control devoid of pesticide treatment. Examination of DGGE banding patterns through cluster analysis revealed that microbial community structure of pesticide-treated soils had only 70% resemblance to control rhizospheric soil even at 45 days post application. Drastic changes in the metabolic profiles of pesticide-treated soils were also detected in terms of substrate utilization, rhizospheric diversity, and evenness. It is noteworthy that the effects exacerbated by biopesticide were comparable to that of synthetic pesticides, thus emphasizing the significance of ecotoxicological assessments before tagging biopesticides as "safe alternatives."
Collapse
Affiliation(s)
- Varsha Ashok Walvekar
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Swati Bajaj
- Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Dileep K Singh
- Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Shilpi Sharma
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
6
|
Kumar U, Berliner J, Adak T, Rath PC, Dey A, Pokhare SS, Jambhulkar NN, Panneerselvam P, Kumar A, Mohapatra SD. Non-target effect of continuous application of chlorpyrifos on soil microbes, nematodes and its persistence under sub-humid tropical rice-rice cropping system. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 135:225-235. [PMID: 27744192 DOI: 10.1016/j.ecoenv.2016.10.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 09/02/2016] [Accepted: 10/04/2016] [Indexed: 06/06/2023]
Abstract
Application of pesticide in agricultural fields is "unnecessary evil" for non-target microflora and fauna. Hence, to identify the safer pesticide molecules against non-target microbes, a long-term pesticide experiment was initiated at National Rice Research Institute, Cuttack, India. In the present study, the effect of continuous application of chlorpyrifos (0.5kgha-1) in rice fields on non-target groups of soil microbes and nematodes was studied for seven seasons (four wet and three dry seasons) during 2009-2013. Treatments were arranged in a randomized complete block design with four replications of chlorpyrifos-treated (0.5kg a.i. ha-1) (CT) and untreated control (UT) plots. During seven seasons of experimentation, regular application of chlorpyrifos had no significant effect on population of heterotrophic aerobic, anaerobic, oligotrophic and copiotrophic bacteria in CT compared to UT, whereas, population of asymbiotic aerobic nitrogen fixer, nitrifiers, denitrifiers, gram positive and spore-forming bacteria were significantly reduced by nearly 0.25-2 fold in CT than UT. However, comparatively less deviation in population of actinomycetes, fungi, phosphate solubilizing and sulfur oxidizing bacteria were observed in CT than UT. Significant interactions were found between effects of chlorpyrifos with time in population dynamics of microbes. In plant parasitic nematode species, Meloidogyne graminicola (RRKN) and Hirschmanniella spp. (RRN), were significantly lower (p<0.01) in CT compared to UT after first year onwards. The overall observation of five years data indicated that the RRKN population showed a decreasing trend (R2=0.644) whereas RRN showed increasing trend (R2=0.932) in CT. The drastic chlorpyrifos dissipation was noticed after 15 days of application from the initial residue of 0.25mgkg-1 soil, which indicated that chlorpyrifos residue in rice field soil was not persistent and its half-life was found to be 4.02 days. Overall, the present findings revealed that non-target effect of repetitive application of chloropyrifos (0.5kgha-1) on soil microbes and nematodes was found less under rice-rice cropping system.
Collapse
Affiliation(s)
- Upendra Kumar
- ICAR-National Rice Research Institute, Cuttack 753006, Odisha, India.
| | - J Berliner
- ICAR-National Rice Research Institute, Cuttack 753006, Odisha, India
| | - Totan Adak
- ICAR-National Rice Research Institute, Cuttack 753006, Odisha, India
| | - Prakash C Rath
- ICAR-National Rice Research Institute, Cuttack 753006, Odisha, India
| | - Avro Dey
- ICAR-National Rice Research Institute, Cuttack 753006, Odisha, India
| | - Somnath S Pokhare
- ICAR-National Rice Research Institute, Cuttack 753006, Odisha, India
| | | | - P Panneerselvam
- ICAR-National Rice Research Institute, Cuttack 753006, Odisha, India
| | - Anjani Kumar
- ICAR-National Rice Research Institute, Cuttack 753006, Odisha, India
| | | |
Collapse
|
7
|
Impact of fungicide mancozeb at different application rates on soil microbial populations, soil biological processes, and enzyme activities in soil. ScientificWorldJournal 2014; 2014:702909. [PMID: 25478598 PMCID: PMC4248338 DOI: 10.1155/2014/702909] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 10/19/2014] [Indexed: 11/17/2022] Open
Abstract
The use of fungicides is the continuous exercise particularly in orchard crops where fungal diseases, such as white root rot, have the potential to destroy horticultural crops rendering them unsaleable. In view of above problem, the present study examines the effect of different concentrations of mancozeb (0-2000 ppm) at different incubation periods for their harmful side effects on various microbiological processes, soil microflora, and soil enzymes in alluvial soil (pH 6.8) collected from apple orchards of Shimla in Himachal Pradesh (India). Low concentrations of mancozeb were found to be deleterious towards fungal and actinomycetes population while higher concentrations (1000 and 2000 ppm) were found to be detrimental to soil bacteria. Mancozeb impaired the process of ammonification and nitrification. Similar results were observed for nitrifying and ammonifying bacteria. Phosphorus solubilization was increased by higher concentration of mancozeb, that is, 250 ppm and above. In unamended soil, microbial biomass carbon and carbon mineralization were adversely affected by mancozeb. Soil enzymes, that is, amylase, invertase, and phosphatase showed adverse and disruptive effect when mancozeb used was above 10 ppm in unamended soil. These results conclude that, to lessen the harmful effects in soil biological processes caused by this fungicide, addition of higher amount of nitrogen based fertilizers is required.
Collapse
|
8
|
Das AC, Nayek H, Nongthombam SD. Effect of pendimethalin and quizalofop on N2-fixing bacteria in relation to availability of nitrogen in a Typic Haplustept soil of West Bengal, India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2012; 184:1985-1989. [PMID: 21674227 DOI: 10.1007/s10661-011-2093-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 04/19/2011] [Indexed: 05/30/2023]
Abstract
An experiment was conducted under laboratory conditions to investigate the effect of two systemic herbicides viz., pendimethalin and quizalofop, at their recommended field rates (1.0 kg and 50 g active ingredient ha(- 1), respectively) on the growth and activities of non-symbiotic N(2)-fixing bacteria in relation to mineralization and availability of nitrogen in a Typic Haplustept soil. Both the herbicides, either singly or in a combination, stimulated the growth and activities of N(2)-fixing bacteria resulting in higher mineralization and availability of nitrogen in soil. The single application of quizalofop increased the proliferation of aerobic non-symbiotic N(2)-fixing bacteria to the highest extent while that of pendimethalin exerted maximum stimulation to their N(2)-fixing capacity in soil. Both the herbicides, either alone or in a combination, did not have any significant difference in the stimulation of total nitrogen content and availability of exchangeable NH(4)(+) while the solubility of NO(3)(-) was highly manifested when the herbicides were applied separately in soil.
Collapse
Affiliation(s)
- Amal C Das
- Department of Agricultural Chemistry and Soil Science, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, 741 252, West Bengal, India.
| | | | | |
Collapse
|
9
|
Ahemad M, Khan MS. Insecticide-tolerant and plant-growth-promoting Rhizobium improves the growth of lentil (Lens esculentus) in insecticide-stressed soils. PEST MANAGEMENT SCIENCE 2011; 67:423-429. [PMID: 21394875 DOI: 10.1002/ps.2080] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
BACKGROUND Application of insecticides in modern agriculture in order to enhance legume production has led to their accumulation in soils to levels that adversely affect soil microflora such as rhizobia and exert a negative impact on the physiological activities associated with them. This study was therefore designed to identify rhizobial strains expressing higher tolerance to insecticides fipronil and pyriproxyfen and synthesising plant growth regulators even amid insecticide stress. RESULTS The fipronil- and pyriproxyfen-tolerant Rhizobium sp. strain MRL3 produced plant-growth-promoting substances in substantial amounts, both in the presence and in the absence of the insecticides. In general, both insecticides at recommended and higher rates reduced plant dry biomass, symbiotic properties, nutrient uptake and seed yield of lentil plants. Interestingly, when applied with any concentration of the two insecticides, Rhizobium sp. strain MRL3 significantly increased the measured parameters compared with plants grown in soils treated solely with the same concentration of each insecticide but without inoculant. CONCLUSION This study suggests that Rhizobium strain MRL3 may be exploited as a bioinoculant to augment the efficiency of lentil exposed to insecticide-stressed soils.
Collapse
Affiliation(s)
- Munees Ahemad
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, UP, India
| | | |
Collapse
|
10
|
Microbial characteristics of sandy soils exposed to diazinon under laboratory conditions. World J Microbiol Biotechnol 2009. [DOI: 10.1007/s11274-009-0183-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Chen WC, Yen JH, Chang CS, Wang YS. Effects of herbicide butachlor on soil microorganisms and on nitrogen-fixing abilities in paddy soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2009; 72:120-127. [PMID: 18490058 DOI: 10.1016/j.ecoenv.2008.03.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Revised: 02/29/2008] [Accepted: 03/23/2008] [Indexed: 05/26/2023]
Abstract
The composition of culture-independent microbial communities and the change of nitrogenase activities under the application of butachlor in paddy soil were investigated. Nitrogen-fixation ability was expressed by the amount of acetylene reduction, and changes of microbial communities were studied by using denaturing gradient gel electrophoresis (DGGE) technique; afterward, minimum distance (MD, in brief) statistics was applied to determine the cluster numbers in UPGMA dendrograms. The results showed that the reduction of acetylene was suppressed shortly after butachlor application but was augmented after 37 days in both upper and lower layer soils. From UPGMA dendrograms, the diazotrophic divergences ranged from 33% to 64% throughout rice growth stages. For general bacterial communities, the diversities ranged from 28% to 52%. The divergences became higher with the cultivation period, and the application of butachlor imposed a significant variation on microbial community shift, which may be a reason for the boosting nitrogen-fixation ability in paddy soils.
Collapse
Affiliation(s)
- Wen-Ching Chen
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosvelet Road, Taipei 10617, Taiwan
| | - Jui-Hung Yen
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosvelet Road, Taipei 10617, Taiwan
| | - Ching-Shu Chang
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosvelet Road, Taipei 10617, Taiwan
| | - Yei-Shung Wang
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosvelet Road, Taipei 10617, Taiwan.
| |
Collapse
|
12
|
Latif MA, Razzaque MA, Rahman MM. Impact of some selected insecticides application on soil microbial respiration. Pak J Biol Sci 2008; 11:2018-2022. [PMID: 19266909 DOI: 10.3923/pjbs.2008.2018.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The aim of present study was to investigate the impact of selected insecticides used for controlling brinjal shoot and fruit borer on soil microorganisms and to find out the insecticides or nontoxic to soil microorganism the impact of nine selected insecticides on soil microbial respiration was studied in the laboratory. After injection of different insecticides solutions, the soil was incubated in the laboratory at room temperature for 32 days. The amount of CO2 evolved due to soil microbial respiration was determined at 2, 4, 8, 16, 24 and 32 days of incubation. Flubendiamide, nimbicidine, lambda-cyhalothrin, abamectin and thiodicarb had stimulatory effect on microbial respiration during the initial period of incubation. Chlorpyriphos, cartap and carbosulfan had inhibitory effect on microbial respiration and cypermethrin had no remarkable effect during the early stage of incubation. The negative effect of chlorpyriphos, cartap and carbosulfan was temporary, which was disappeared after 4 days of insecticides application. No effect of the selected insecticides on soil microorganisms was observed after 24 or 32 days of incubation.
Collapse
Affiliation(s)
- M A Latif
- Department of Entomology, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka, Bangladesh
| | | | | |
Collapse
|
13
|
Jiang J, Zhang R, Li R, Gu JD, Li S. Simultaneous biodegradation of methyl parathion and carbofuran by a genetically engineered microorganism constructed by mini-Tn5 transposon. Biodegradation 2006; 18:403-12. [PMID: 17091349 DOI: 10.1007/s10532-006-9075-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Accepted: 08/01/2006] [Indexed: 10/23/2022]
Abstract
A genetically engineered microorganism (GEM) capable of simultaneous degrading methyl parathion (MP) and carbofuran was successfully constructed by random insertion of a methyl parathion hydrolase gene (mpd) into the chromosome of a carbofuran degrading Sphingomonas sp. CDS-1 with the mini-transposon system. The GEM constructed was relatively stable and cell viability and original degrading characteristic was not affected compared with the original recipient CDS-1. The effects of temperature, initial pH value, inoculum size and alternative carbon source on the biodegradation of MP and carbofuran were investigated. GEM cells could degrade MP and carbofuran efficiently in a relatively broad range of temperatures from 20 to 30 degrees C, initial pH values from 6.0 to 9.0, and with all initial inoculation cell densities (10(5)-10(7) CFU ml(-1)), even if alternative glucose existed. The optimal temperature and initial pH value for GEM cells to simultaneously degrade MP and carbofuran was at 30 degrees C and at pH 7.0. The removal of MP and carbofuran by GEM cells in sterile and non-sterile soil were also studied. In both soil samples, 50 mg kg(-1) MP and 25 mg kg(-1) carbofuran could be degraded to an undetectable level within 25 days even if there were indigenous microbial competition and carbon sources effect. In sterile soil, the biodegradation rates of MP and carbofuran were faster, and the decline of the inoculated GEM cells was slower compared with that in non-sterile soil. The GEM constructed in this study was potential useful for pesticides bioremediation in natural environment.
Collapse
Affiliation(s)
- Jiandong Jiang
- Department of Microbiology, MOA Key Lab of Microbiological Engineering of Agricultural Environment, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | | | | | | | | |
Collapse
|
14
|
Das AC, Chakravarty A, Sen G, Sukul P, Mukherjee D. A comparative study on the dissipation and microbial metabolism of organophosphate and carbamate insecticides in orchaqualf and fluvaquent soils of West Bengal. CHEMOSPHERE 2005; 58:579-584. [PMID: 15620751 DOI: 10.1016/j.chemosphere.2004.07.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2004] [Indexed: 05/24/2023]
Abstract
An experiment has been conducted under laboratory conditions to investigate the effect of phorate (an organophosphate insecticide) and carbofuran (a carbamate insecticide) at their recommended field rates (1.5 and 1.0 kga.i.ha-1, respectively) on the growth and multiplication of microorganisms as well as rate of dissipation and persistence of the insecticidal residues including their metabolites in laterite (typic orchaqualf) and alluvial (typic fluvaquent) soils of West Bengal. Application of phorate and carbofuran in general, induced growth and development of bacteria, actinomycetes, fungi, N2-fixing bacteria and phosphate solubilizing microorganisms in both the soils and the stimulation was more pronounced with phorate as compared to carbofuran. Application of phorate recorded highest stimulation of fungi in laterite and actinomycetes in alluvial soil. Carbofuran on the other hand, augmented fungi and N2-fixing bacteria in laterite and actinomycetes in alluvial soil. Bacterial population was inhibited due to the application of carbofuran in alluvial soil. Phorate sulfoxide and phorate sulfone, the two metabolites of phorate and 3-hydroxycarbofuran and 3-ketocarbofuran, the two metabolites of carbofuran isolated were less persistent in both the soils. Phorate persisted in laterite and alluvial soils up to 45 and 60 days, respectively depicting the half-life (T1/2) 9.7 and 11.5 days, respectively while the T1/2 of carbofuran for the said soils were 16.9 and 8.8 days, respectively. No metabolite of carbofuran was detected in soils after 30 days of incubation while phorate sulfone persisted in alluvial soil even after 60 days of application of the insecticide.
Collapse
Affiliation(s)
- Amal Chandra Das
- Department of Agricultural Chemistry and Soil Science, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur 741252, West Bengal, India.
| | | | | | | | | |
Collapse
|
15
|
Das AC, Chakravarty A, Sukul P, Mukherjee D. Influence and persistence of phorate and carbofuran insecticides on microorganisms in rice field. CHEMOSPHERE 2003; 53:1033-7. [PMID: 14505726 DOI: 10.1016/s0045-6535(03)00713-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
An experiment was conducted in microplots (4 m x 4 m) with two insecticides, phorate and carbofuran at rates of 1.5 and 1.0 kga.i.ha(-1) respectively, to investigate its effect on the population and distribution of bacteria, actinomycetes and fungi as well as the persistence of the insecticidal residues in rhizosphere soils of rice (Oryza sativa L., variety IR-50). Application of the insecticides stimulated the population of bacteria, actinomycetes and fungi in the rhizosphere soils, and the stimulation was more pronounced with phorate as compared to carbofuran. Both the insecticides did not have marked effect on the numbers of Streptomyces and Nocardia in the rhizosphere soils. However, the growth of Bacillus, Escherichia, Flavobacterium, Micromonospora, Penicillium, Aspergillus and Trichoderma with phorate and that of Bacillus, Corynebacterium, Flavobacterium, Aspergillus and Phytophthora with carbofuran were increased. On the other hand, the numbers of Staphylococcus, Micrococcus, Fusarium, Humicola and Rhizopus under phorate and Pseudomonas, Staphylococcus, Micrococcus, Klebsiella, Fusarium, Humicola and Rhizopus under carbofuran were inhibited. Both the insecticides persisted in the rhizosphere soil for a short period of time and the rate of dissipation of carbofuran was higher than that of phorate in the soil depicting the half-life (T1/2) 9.1 and 10.4 days, respectively.
Collapse
Affiliation(s)
- Amal Chandra Das
- Department of Agricultural Chemistry and Soil Science, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur 741252, India.
| | | | | | | |
Collapse
|
16
|
Das AC, Debnath A, Mukherjee D. Effect of the herbicides oxadiazon and oxyfluorfen on phosphates solubilizing microorganisms and their persistence in rice fields. CHEMOSPHERE 2003; 53:217-221. [PMID: 12919781 DOI: 10.1016/s0045-6535(03)00440-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A field experiment has been conducted with two herbicides viz. oxadiazon [5-terbutyl-3-(2,4-dichloro-5-isopropoxyphenyl)-1,3,4-oxadiazol-2-one] and oxyfluorfen [2-chloro-1-(3-ethoxy-4-nitrophenyl)-4-(trifluoromethyl) benzene] at rates of 0.4 and 0.12 kg a.i. ha(-1), respectively, to investigate their effect on the growth and activities of phosphate solubilizing microorganisms in relation to availability of phosphorus as well as persistence of the herbicides in the rhizosphere soil of wetland rice (Oryza sativa L. variety IR-36). Application of herbicides stimulated the population and activities of phosphate solubilizing microorganisms and also the availability of phosphorus in the rhizosphere soil. Oxyfluorfen provided greater microbial stimulation than oxadiazon. Dissipation of oxyfluorfen and oxadiazon followed first order reaction kinetics with half-life (T(1/2)) of 8.8 and 12 days, respectively. Sixty days after application 0.5% and 3% of the applied oxadiazon and oxyfluorfen residues persisted, respectively, in the rhizosphere soil of rice.
Collapse
Affiliation(s)
- Amal Chandra Das
- Department of Agricultural Chemistry and Soil Science, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur 741 252, India.
| | | | | |
Collapse
|