1
|
Liu PY, Zhao YM, Xu Y, Wang S, Song L, Meng Q, Zhang Z, Yu F, He YP. Experiment and Computational Study on Pd-Catalyzed Methoxyiminoacyl-Directed γ-Alkoxylation of Alkylamides. J Org Chem 2023; 88:14445-14453. [PMID: 37815929 DOI: 10.1021/acs.joc.3c01460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
The direct alkoxylation of amides has been accomplished via methoxyiminoacyl (MIA)-mediated Pd-catalyzed C-H functionalization. A diverse array of alkylamide substrates is amenable to this protocol, providing γ-C(sp3)-alkoxylation of alkylamide derivatives with good to high efficiency. Two aspects of the research were completed to explore the reaction mechanism. On the one hand, the result of the kinetic isotopic effect experiment and control experiment indicated that reductive elimination is a rate-limiting step. On the other hand, density functional theory calculations demonstrated that a concerted Sn2 reductive elimination mechanism pathway is prior. Finally, the MIA group could be efficiently hydrogenated and protected in a one-pot procedure, which provides a short synthetic route to γ-methoxy amino acid derivatives.
Collapse
Affiliation(s)
- Peng-Yu Liu
- Key Laboratory for Functional Material, Educational Department of Liaoning Province, School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China
- State Key Laboratory Fine Chemicals, Ningbo Institute of Dalian University of Technology, Ningbo 315016, China
| | - Yi-Min Zhao
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China
- State Key Laboratory Fine Chemicals, Ningbo Institute of Dalian University of Technology, Ningbo 315016, China
| | - Yuehui Xu
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China
- State Key Laboratory Fine Chemicals, Ningbo Institute of Dalian University of Technology, Ningbo 315016, China
| | - Shuai Wang
- State Key Laboratory Fine Chemicals, Ningbo Institute of Dalian University of Technology, Ningbo 315016, China
| | - Lijuan Song
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China
| | - Qingtao Meng
- Key Laboratory for Functional Material, Educational Department of Liaoning Province, School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China
| | - Zhiqiang Zhang
- Key Laboratory for Functional Material, Educational Department of Liaoning Province, School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China
| | - Fang Yu
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China
- State Key Laboratory Fine Chemicals, Ningbo Institute of Dalian University of Technology, Ningbo 315016, China
- School of pharmaceutical engineering, Zhejiang Pharmaceutical University, No 666 Siming road, Fenghua District, Ningbo 315599, China
| | - Yu-Peng He
- Key Laboratory for Functional Material, Educational Department of Liaoning Province, School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China
- State Key Laboratory Fine Chemicals, Ningbo Institute of Dalian University of Technology, Ningbo 315016, China
| |
Collapse
|
2
|
Senjor E, Kos J, Nanut MP. Cysteine Cathepsins as Therapeutic Targets in Immune Regulation and Immune Disorders. Biomedicines 2023; 11:biomedicines11020476. [PMID: 36831012 PMCID: PMC9953096 DOI: 10.3390/biomedicines11020476] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Cysteine cathepsins, as the most abundant proteases found in the lysosomes, play a vital role in several processes-such as protein degradation, changes in cell signaling, cell morphology, migration and proliferation, and energy metabolism. In addition to their lysosomal function, they are also secreted and may remain functional in the extracellular space. Upregulation of cathepsin expression is associated with several pathological conditions including cancer, neurodegeneration, and immune-system dysregulation. In this review, we present an overview of cysteine-cathepsin involvement and possible targeting options for mitigation of aberrant function in immune disorders such as inflammation, autoimmune diseases, and immune response in cancer.
Collapse
Affiliation(s)
- Emanuela Senjor
- Department of Biotechnology, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Janko Kos
- Department of Biotechnology, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Milica Perišić Nanut
- Department of Biotechnology, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
- Correspondence:
| |
Collapse
|
3
|
Exploring the role of cathepsin in rheumatoid arthritis. Saudi J Biol Sci 2022; 29:402-410. [PMID: 35002435 PMCID: PMC8716961 DOI: 10.1016/j.sjbs.2021.09.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/17/2021] [Accepted: 09/05/2021] [Indexed: 02/06/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease which is marked by leukocytes infiltration inside synovial tissue, joints and also inside synovial fluid which causes progressive destruction of joint cartilage. There are numerous genetical and lifestyle factors, responsible for rheumatoid arthritis. One such factor can be cysteine cathepsins, which act as proteolytic enzymes. These proteolytic enzyme gets activated at acidic pH and are found in lysosomes and are also termed as cysteine proteases. These proteases belong to papain family and have their elucidated role in musculoskeletal disorders. Numerous cathepsins have their targeted role in rheumatoid arthritis. These proteases are secreted through various cell types which includes matrix metalloproteases and papain like cysteine proteases. These proteases can potentially lead to bone and cartilage destruction which causes an immune response in case of inflammatory arthritis.
Collapse
|
4
|
Lu J, Wang M, Wang Z, Fu Z, Lu A, Zhang G. Advances in the discovery of cathepsin K inhibitors on bone resorption. J Enzyme Inhib Med Chem 2018; 33:890-904. [PMID: 29723068 PMCID: PMC6010086 DOI: 10.1080/14756366.2018.1465417] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cathepsin K (Cat K), highly expressed in osteoclasts, is a cysteine protease member of the cathepsin lysosomal protease family and has been of increasing interest as a target of medicinal chemistry efforts for its role in bone matrix degradation. Inhibition of the Cat K enzyme reduces bone resorption and thus, has rendered the enzyme as an attractive target for anti-resorptive osteoporosis therapy. Over the past decades, considerable efforts have been made to design and develop highly potent, excellently selective and orally applicable Cat K inhibitors. These inhibitors are derived from synthetic compounds or natural products, some of which have passed preclinical studies and are presently in clinical trials at different stages of advancement. In this review, we briefly summarised the historic development of Cat K inhibitors and discussed the relationship between structures of inhibitors and active sites in Cat K for the purpose of guiding future development of inhibitors.
Collapse
Affiliation(s)
- Jun Lu
- a Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University , Hong Kong SAR , China.,b Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University , Hong Kong SAR , China
| | - Maolin Wang
- a Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University , Hong Kong SAR , China.,b Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University , Hong Kong SAR , China
| | - Ziyue Wang
- a Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University , Hong Kong SAR , China
| | - Zhongqi Fu
- a Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University , Hong Kong SAR , China
| | - Aiping Lu
- a Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University , Hong Kong SAR , China.,b Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University , Hong Kong SAR , China
| | - Ge Zhang
- a Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University , Hong Kong SAR , China.,b Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University , Hong Kong SAR , China
| |
Collapse
|
5
|
Cysteine proteases as therapeutic targets: does selectivity matter? A systematic review of calpain and cathepsin inhibitors. Acta Pharm Sin B 2015; 5:506-19. [PMID: 26713267 PMCID: PMC4675809 DOI: 10.1016/j.apsb.2015.08.001] [Citation(s) in RCA: 170] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/09/2015] [Accepted: 07/14/2015] [Indexed: 01/17/2023] Open
Abstract
Cysteine proteases continue to provide validated targets for treatment of human diseases. In neurodegenerative disorders, multiple cysteine proteases provide targets for enzyme inhibitors, notably caspases, calpains, and cathepsins. The reactive, active-site cysteine provides specificity for many inhibitor designs over other families of proteases, such as aspartate and serine; however, a) inhibitor strategies often use covalent enzyme modification, and b) obtaining selectivity within families of cysteine proteases and their isozymes is problematic. This review provides a general update on strategies for cysteine protease inhibitor design and a focus on cathepsin B and calpain 1 as drug targets for neurodegenerative disorders; the latter focus providing an interesting query for the contemporary assumptions that irreversible, covalent protein modification and low selectivity are anathema to therapeutic safety and efficacy.
Collapse
Key Words
- AD, Alzheimer׳s disease
- ALS, amyotrophic lateral sclerosis
- APP, amyloid precursor protein
- APP/PS1, Aβ overexpressing mice APP (K670N/M671L) and PS1 (M146L) mutants
- Ala, alanine
- Alzheimer׳s disease
- AppLon, London familial amyloid precursor protein mutation, APP (V717I)
- AppSwe, Swedish amyloid precursor protein mutation, APP (K670N/M671L)
- Arg, arginine
- Aβ, amyloid β
- Aβ1-42, amyloid β, 42 amino acid protein
- BACE-1, β-amyloid cleaving enzyme
- BBB, blood–brain barrier
- CANP, calcium-activated neutral protease
- CNS, central nervous system
- CREB, cyclic adenosine monophosphate response element binding protein
- CaMKII, Ca2+/calmodulin-dependent protein kinases II
- Calpain
- Cathepsin
- Cdk5/p35, activator of cyclin-dependent kinase 5
- Cysteine protease
- DTT, dithioerythritol
- EGFR, epidermal growth factor receptor
- ERK1/2, extracellular signal-regulated kinase 1/2
- Enzyme inhibitors
- GSH, glutathione
- Gln, glutamine
- Glu, glutamic acid
- Gly, glutamine
- Hsp70.1, heat shock protein 70.1
- Ile, isoleucine
- KO, knockout
- Leu, leucine
- Lys, lysine
- MAP-2, microtubule-associated protein 2
- MMP-9, matrix metalloproteinase 9
- Met, methionine
- NFT, neurofibrilliary tangles
- Neurodegeneration
- Nle, norleucine
- PD, Parkinson׳s disease
- PK, pharmacokinetic
- PKC, protein kinase C
- PTP1B, protein-tyrosine phosphatase 1B
- Phe, phenylalanine
- Pro, proline
- SP, senile plaques
- TBI, traumatic brain injury
- TNF, tumor necrosis factor
- Thr, threonine
- Tyr, tyrosine
- Val, valine
- WRX, Trp-Arg containing epoxysuccinate cysteine protease inhibitor
- WT, wildtype
- isoAsp, isoaspartate
- pGlu, pyroglutamate
- pyroGluAβ, pyroglutamate-amyloid β
Collapse
|
6
|
Shah F, Gut J, Legac J, Shivakumar D, Sherman W, Rosenthal PJ, Avery MA. Computer-aided drug design of falcipain inhibitors: virtual screening, structure-activity relationships, hydration site thermodynamics, and reactivity analysis. J Chem Inf Model 2012; 52:696-710. [PMID: 22332946 DOI: 10.1021/ci2005516] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Falcipains (FPs) are hemoglobinases of Plasmodium falciparum that are validated targets for the development of antimalarial chemotherapy. A combined ligand- and structure-based virtual screening of commercial databases was performed to identify structural analogs of virtual screening hits previously discovered in our laboratory. A total of 28 low micromolar inhibitors of FP-2 and FP-3 were identified and the structure-activity relationship (SAR) in each series was elaborated. The SAR of the compounds was unusually steep in some cases and could not be explained by a traditional analysis of the ligand-protein interactions (van der Waals, electrostatics, and hydrogen bonds). To gain further insights, a statistical thermodynamic analysis of explicit solvent in the ligand binding domains of FP-2 and FP-3 was carried out to understand the roles played by water molecules in binding of these inhibitors. Indeed, the energetics associated with the displacement of water molecules upon ligand binding explained some of the complex trends in the SAR. Furthermore, low potency of a subset of FP-2 inhibitors that could not be understood by the water energetics was explained in the context of poor chemical reactivity of the reactive centers of these compounds. The present study highlights the importance of considering energetic contributors to binding beyond traditional ligand-protein interactions.
Collapse
Affiliation(s)
- Falgun Shah
- Department of Medicinal Chemistry, School of Pharmacy, University of Mississippi, University, Mississippi 38677, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Cysteine cathepsins: from structure, function and regulation to new frontiers. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1824:68-88. [PMID: 22024571 PMCID: PMC7105208 DOI: 10.1016/j.bbapap.2011.10.002] [Citation(s) in RCA: 889] [Impact Index Per Article: 68.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 10/03/2011] [Accepted: 10/04/2011] [Indexed: 02/06/2023]
Abstract
It is more than 50 years since the lysosome was discovered. Since then its hydrolytic machinery, including proteases and other hydrolases, has been fairly well identified and characterized. Among these are the cysteine cathepsins, members of the family of papain-like cysteine proteases. They have unique reactive-site properties and an uneven tissue-specific expression pattern. In living organisms their activity is a delicate balance of expression, targeting, zymogen activation, inhibition by protein inhibitors and degradation. The specificity of their substrate binding sites, small-molecule inhibitor repertoire and crystal structures are providing new tools for research and development. Their unique reactive-site properties have made it possible to confine the targets simply by the use of appropriate reactive groups. The epoxysuccinyls still dominate the field, but now nitriles seem to be the most appropriate “warhead”. The view of cysteine cathepsins as lysosomal proteases is changing as there is now clear evidence of their localization in other cellular compartments. Besides being involved in protein turnover, they build an important part of the endosomal antigen presentation. Together with the growing number of non-endosomal roles of cysteine cathepsins is growing also the knowledge of their involvement in diseases such as cancer and rheumatoid arthritis, among others. Finally, cysteine cathepsins are important regulators and signaling molecules of an unimaginable number of biological processes. The current challenge is to identify their endogenous substrates, in order to gain an insight into the mechanisms of substrate degradation and processing. In this review, some of the remarkable advances that have taken place in the past decade are presented. This article is part of a Special Issue entitled: Proteolysis 50 years after the discovery of lysosome.
Collapse
|
8
|
Azepanone-based inhibitors of human cathepsin S: optimization of selectivity via the P2 substituent. Bioorg Med Chem Lett 2011; 21:4409-15. [PMID: 21733692 DOI: 10.1016/j.bmcl.2011.06.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 06/07/2011] [Accepted: 06/10/2011] [Indexed: 12/31/2022]
Abstract
A series of azepanone inhibitors of cathepsin S is described. Selectivity over both cathepsin K and cathepsin L was achieved by varying the P2 substituent. Ultimately, a balanced potency and selectivity profile was achieved in compound 39 possessing a 1-methylcyclohexyl alanine at P2 and nicotinamide as the P' substituent. The cellular potency of selected analogs is also described.
Collapse
|
9
|
Shah F, Mukherjee P, Gut J, Legac J, Rosenthal PJ, Tekwani BL, Avery MA. Identification of novel malarial cysteine protease inhibitors using structure-based virtual screening of a focused cysteine protease inhibitor library. J Chem Inf Model 2011; 51:852-64. [PMID: 21428453 DOI: 10.1021/ci200029y] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Malaria, in particular that caused by Plasmodium falciparum , is prevalent across the tropics, and its medicinal control is limited by widespread drug resistance. Cysteine proteases of P. falciparum , falcipain-2 (FP-2) and falcipain-3 (FP-3), are major hemoglobinases, validated as potential antimalarial drug targets. Structure-based virtual screening of a focused cysteine protease inhibitor library built with soft rather than hard electrophiles was performed against an X-ray crystal structure of FP-2 using the Glide docking program. An enrichment study was performed to select a suitable scoring function and to retrieve potential candidates against FP-2 from a large chemical database. Biological evaluation of 50 selected compounds identified 21 diverse nonpeptidic inhibitors of FP-2 with a hit rate of 42%. Atomic Fukui indices were used to predict the most electrophilic center and its electrophilicity in the identified hits. Comparison of predicted electrophilicity of electrophiles in identified hits with those in known irreversible inhibitors suggested the soft-nature of electrophiles in the selected target compounds. The present study highlights the importance of focused libraries and enrichment studies in structure-based virtual screening. In addition, few compounds were screened against homologous human cysteine proteases for selectivity analysis. Further evaluation of structure-activity relationships around these nonpeptidic scaffolds could help in the development of selective leads for antimalarial chemotherapy.
Collapse
Affiliation(s)
- Falgun Shah
- Department of Medicinal Chemistry, School of Pharmacy, University of Mississippi , University, Mississippi 38677, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Li R, Jansen DJ, Datta A. Intramolecular azide-alkyne [3 + 2] cycloaddition: versatile route to new heterocyclic structural scaffolds. Org Biomol Chem 2009; 7:1921-30. [PMID: 19590789 DOI: 10.1039/b818962e] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Investigating the relatively unexplored intramolecular version of the azide-alkyne [3 + 2] cycloaddition, the present studies demonstrate the utility of the above reaction in the synthesis of a variety of as yet unreported heterocyclic structural scaffolds. The approach involved initial installation of strategic azide and alkyne moieties on a common structural framework, followed by their intramolecular cycloaddition studies. The pivotal azidoalkyne intermediates were efficiently accessed from a variety of easily available starting materials such as olefins, epoxides, amino acids, amino alcohols, ketones etc. The key reactions for incorporation of the azide functionality into the desired framework involved azidolysis of epoxides, displacement of hydroxy groups with azide nucleophiles, and diazo transfer on amine. Attachment of the desired alkyne functionalities was accomplished by either N-, or, O-alkylation with appropriate propargylic halides. The azidoalkynes thus prepared underwent smooth intramolecular cycloaddition, resulting in a variety of novel triazolooxazine and triazolopyrazine derivatives. Interestingly, unlike in the intermolecular version, metal catalysis was not necessary for the performance of the above cycloadditions. It is expected that the results from the present studies and its further extension will provide a potentially fertile pathway to a variety of unique chemical entities of structural and biological significance.
Collapse
Affiliation(s)
- Rongti Li
- Department of Medicinal Chemistry, The University of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas 66045, USA
| | | | | |
Collapse
|
11
|
Investigation of ketone warheads as alternatives to the nitrile for preparation of potent and selective cathepsin K inhibitors. Bioorg Med Chem Lett 2009; 19:675-9. [DOI: 10.1016/j.bmcl.2008.12.053] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Revised: 12/09/2008] [Accepted: 12/10/2008] [Indexed: 11/20/2022]
|
12
|
Cherney RJ, Nelson DJ, Lo YC, Yang G, Scherle PA, Jezak H, Solomon KA, Carter PH, Decicco CP. Synthesis and evaluation of cis-3,4-disubstituted piperidines as potent CC chemokine receptor 2 (CCR2) antagonists. Bioorg Med Chem Lett 2008; 18:5063-5. [PMID: 18722120 DOI: 10.1016/j.bmcl.2008.07.123] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Revised: 07/29/2008] [Accepted: 07/31/2008] [Indexed: 11/16/2022]
Abstract
A series of cis-3,4-disubstituted piperidines was synthesized and evaluated as CC chemokine receptor 2 (CCR2) antagonists. Compound 24 emerged with an attractive profile, possessing excellent binding (CCR2 IC(50)=3.4 nM) and functional antagonism (calcium flux IC(50)=2.0 nM and chemotaxis IC(50)=5.4 nM). Studies to explore the binding of these piperidine analogs utilized a key CCR2 receptor mutant (E291A) with compound 14 and revealed a significant reliance on Glu291 for binding.
Collapse
Affiliation(s)
- Robert J Cherney
- Research and Development, Bristol-Myers Squibb Company, Princeton, NJ 08543-4000, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Reyes García R, Muñoz-Torres M. Catepsina K: aspectos biológicos y posibilidades terapéuticas. Med Clin (Barc) 2008; 131:218-20. [DOI: 10.1157/13124608] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Lecaille F, Brömme D, Lalmanach G. Biochemical properties and regulation of cathepsin K activity. Biochimie 2007; 90:208-26. [PMID: 17935853 DOI: 10.1016/j.biochi.2007.08.011] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Accepted: 08/24/2007] [Indexed: 02/02/2023]
Abstract
Cysteine cathepsins (11 in humans) are mostly located in the acidic compartments of cells. They have been known for decades to be involved in intracellular protein degradation as housekeeping proteases. However, the discovery of new cathepsins, including cathepsins K, V and F, has provided strong evidence that they also participate in specific biological events. This review focuses on the current knowledge of cathepsin K, the major bone cysteine protease, which is a drug target of clinical interest. Nevertheless, we will not discuss recent developments in cathepsin K inhibitor design since they have been extensively detailed elsewhere. We will cover features of cathepsin K structure, cellular and tissue distribution, substrate specificity, and regulation (pH, propeptide, glycosaminoglycans, oxidants), and its putative roles in physiological or pathophysiological processes. Finally, we will review the kinetic data of its inhibition by natural endogenous inhibitors (stefin B, cystatin C, H- and L-kininogens).
Collapse
Affiliation(s)
- Fabien Lecaille
- INSERM, U618, Protéases et Vectorisation Pulmonaires, Equipe Protéases et Pathologies Pulmonaires, Faculté de Médecine, Université François Rabelais, 10 Boulevard Tonnellé, F-37032 Tours Cedex, France.
| | | | | |
Collapse
|
15
|
Kumar S, Dare L, Vasko-Moser JA, James IE, Blake SM, Rickard DJ, Hwang SM, Tomaszek T, Yamashita DS, Marquis RW, Oh H, Jeong JU, Veber DF, Gowen M, Lark MW, Stroup G. A highly potent inhibitor of cathepsin K (relacatib) reduces biomarkers of bone resorption both in vitro and in an acute model of elevated bone turnover in vivo in monkeys. Bone 2007; 40:122-31. [PMID: 16962401 DOI: 10.1016/j.bone.2006.07.015] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Revised: 07/13/2006] [Accepted: 07/20/2006] [Indexed: 11/30/2022]
Abstract
Cathepsin K is an osteoclast-derived cysteine protease that has been implicated as playing a major role in bone resorption. A substantial body of evidence indicates that cathepsin K is critical in osteoclast-mediated bone resorption and suggests that its pharmacological inhibition should result in inhibition of bone resorption in vivo. Here we report the pharmacological characterization of SB-462795 (relacatib) as a potent and orally bioavailable small molecule inhibitor of cathepsin K that inhibits bone resorption both in vitro in human tissue and in vivo in cynomolgus monkeys. SB-462795 is a potent inhibitor of human cathepsins K, L, and V (K(i, app)=41, 68, and 53 pM, respectively) that exhibits 39-300-fold selectivity over other cathepsins. SB-462795 inhibited endogenous cathepsin K in situ in human osteoclasts and human osteoclast-mediated bone resorption with IC50 values of approximately 45 nM and approximately 70 nM, respectively. The anti-resorptive potential of SB-462795 was evaluated in normal as well as medically ovariectomized (Ovx) female cynomolgus monkeys. Serum levels of the C- and N-terminal telopeptides of Type I collagen (CTx and NTx, respectively) and urinary levels of NTx were monitored as biomarkers of bone resorption. Administration of SB-462795 to medically ovariectomized or normal monkeys resulted in an acute reduction in both serum and urinary markers of bone resorption within 1.5 h after dosing, and this effect lasted up to 48 h depending on the dose administered. Our data indicate that SB-462795 potently inhibits human cathepsin K in osteoclasts, resulting in a rapid inhibition of bone resorption both in vitro and in vivo in the monkey. These studies also demonstrate the therapeutic potential of relacatib in the treatment of postmenopausal osteoporosis and serves to model the planned clinical trials in human subjects.
Collapse
Affiliation(s)
- S Kumar
- Department of Musculoskeletal Diseases, GlaxoSmithKline, Collegeville, PA 19426, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Xue F, Seto CT. Structure–activity studies of cyclic ketone inhibitors of the serine protease plasmin: Design, synthesis, and biological activity. Bioorg Med Chem 2006; 14:8467-87. [PMID: 16971130 DOI: 10.1016/j.bmc.2006.08.040] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Revised: 08/23/2006] [Accepted: 08/28/2006] [Indexed: 11/16/2022]
Abstract
Three series of cyclic ketone inhibitors were synthesized and evaluated against the serine protease plasmin. Peptide inhibitors that incorporated 3-oxotetrahydrofuran and 3-oxotetrahydrothiophene 1,1-dioxide groups had the highest activities. Alkylamino substituents, which were designed to bind in the S1 subsite of plasmin, were attached to the inhibitors. Compounds 5c and 5g, which incorporated 6-aminohexyl substituents, were found to be optimal and demonstrated IC(50) values in the low micromolar range. Incorporating conformationally constrained peptide segments into the inhibitors did not improve their activities.
Collapse
Affiliation(s)
- Fengtian Xue
- Department of Chemistry, Brown University, 324 Brook Street, Box H, Providence, RI 02912, USA
| | | |
Collapse
|
17
|
Shinozuka T, Shimada K, Matsui S, Yamane T, Ama M, Fukuda T, Taki M, Naito S. 4-Aminophenoxyacetic acids as a novel class of reversible cathepsin K inhibitors. Bioorg Med Chem Lett 2006; 16:1502-5. [PMID: 16380250 DOI: 10.1016/j.bmcl.2005.12.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Revised: 12/07/2005] [Accepted: 12/12/2005] [Indexed: 11/16/2022]
Abstract
We have designed and synthesized a novel series of 3-biphenylamino acid amides as cathepsin K inhibitors based on compound I. In these inhibitors, we have discovered 4-aminophenoxyacetic acids 43 and 47 with good IC(50) values, although lipophilic groups are favorable for the hydrophobic S1' pocket.
Collapse
Affiliation(s)
- Tsuyoshi Shinozuka
- Medicinal Chemistry Research Laboratories, Sankyo Co., Ltd, 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Kerschan-Schindl K, Hawa G, Kudlacek S, Woloszczuk W, Pietschmann P. Serum levels of cathepsin K decrease with age in both women and men. Exp Gerontol 2005; 40:532-5. [PMID: 15935595 DOI: 10.1016/j.exger.2005.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2005] [Revised: 04/01/2005] [Accepted: 04/01/2005] [Indexed: 10/25/2022]
Abstract
Bone turnover increases with age. In a previous study, we reported on bone metabolism in young and elderly women and men. The aim of the present investigation was to evaluate potential age- and gender-related changes in cathepsin K, a cysteine protease that plays an important role in the degradation of the organic matrix of bone. Twenty-five healthy premenopausal women, 24 young healthy men, 26 elderly women, and 25 elderly men participated in the study. Elderly women and men had significantly lower cathepsin K levels than younger ones. In both men and women, serum levels of cathepsin K were negatively correlated with age. In men there was a statistically significant negative correlation between serum levels of cathepsin K and osteoprotegerin, which inhibits osteoclast differentiation and activation. No association was found between serum levels of cathepsin K and bone-specific alkaline phosphatase, osteocalcin, or 25-hydroxy vitamin D. Thus, the age-related increase in OPG, which markedly inhibits the expression of cathepsin K, may also reduce serum levels of cathepsin K. Despite the age-related increase in bone resorption, this study shows lower cathepsin K values in elderly women and men than in younger subjects. It might be speculated that a different enzyme could compensate for the decline in cathepsin K during old age.
Collapse
Affiliation(s)
- K Kerschan-Schindl
- Department of Physical Medicine and Rehabilitation, University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria.
| | | | | | | | | |
Collapse
|
19
|
Quibell M, Benn A, Flinn N, Monk T, Ramjee M, Wang Y, Watts J. Bicyclic peptidomimetic tetrahydrofuro[3,2-b]pyrrol-3-one and hexahydrofuro[3,2-b]pyridine-3-one based scaffolds: synthesis and cysteinyl proteinase inhibition. Bioorg Med Chem 2005; 12:5689-710. [PMID: 15465346 DOI: 10.1016/j.bmc.2004.07.054] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2004] [Accepted: 07/23/2004] [Indexed: 12/13/2022]
Abstract
A stereoselective synthesis of (3aS,6aR)-tetrahydrofuro[3,2-b]pyrrol-3-ones and (3aS,7aR)-hexahydrofuro[3,2-b]pyridine-3-ones has been developed through Fmoc protected scaffolds 12 and 13. A key design element within these novel bicyclic scaffolds, in particular the 5,5-fused system, was the inherent stability of the cis-fused geometry in comparison to that of the corresponding trans-fused. Since the bridgehead stereocentre situated beta to the ketone was of a fixed and stable configuration, the fact that cis ring fusion is both kinetically and thermodynamically stable with respect to trans ring fusion provides chiral stability to the bridgehead stereocentre that is situated alpha to the ketone. To exemplify this principle, building blocks 12 and 13 were designed, prepared and utilised in a solid phase combinatorial synthesis of peptidomimetic inhibitors 10, 45a-e, 11 and 46. Both series were chirally stable with 5,5-series 10 and 45a-e exhibiting potent in vitro activity against a range of CAC1 cysteinyl proteinases. Compound 10, a potent and selective inhibitor of cathepsin K, possessed good primary DMPK properties along with promising activity in an in vitro cell-based human osteoclast assay of bone resorption.
Collapse
Affiliation(s)
- Martin Quibell
- Amura Therapeutics Limited, Incenta House, Horizon Park, Barton Road, Comberton, Cambridge CB3 7AJ, UK.
| | | | | | | | | | | | | |
Collapse
|
20
|
Quibell M, Benn A, Flinn N, Monk T, Ramjee M, Ray P, Wang Y, Watts J. Synthesis and evaluation of cis-hexahydropyrrolo[3,2-b]pyrrol-3-one peptidomimetic inhibitors of CAC1 cysteinyl proteinases. Bioorg Med Chem 2005; 13:609-25. [PMID: 15653329 DOI: 10.1016/j.bmc.2004.10.060] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2004] [Accepted: 10/29/2004] [Indexed: 10/26/2022]
Abstract
A stereoselective synthesis of functionalised cis-hexahydropyrrolo[3,2-b]pyrrol-3-ones has been developed through Fmoc and Cbz-protected intermediates 5 and 6. Building blocks 5 and 6 were prepared via the intramolecular cyclisation of anti-epoxide 17. The intramolecular reaction occurred exclusively through the anti-epoxide to provide the 5,5-cis-fused bicycle, whereas the syn-epoxide, which theoretically would provide the 5,5-trans-fused bicycle, remained unchanged. These experimental observations are consistent with a key design element that we have introduced within this novel bicyclic ketone scaffold. Our bicyclic design strategy provides chiral stability to the bridgehead stereocentre that is situated alpha to the ketone because the cis-fused geometry is both thermodynamically and kinetically stable. Building blocks 5 and 6 have been utilised in both solid phase and solution phase syntheses of peptidomimetics 22, 36-40, which exhibit potent in vitro inhibition against a range of CAC1 cysteinyl proteinases. Compound 22, a potent and selective inhibitor of human cathepsin K exhibited good primary DMPK properties along with promising activity in an in vitro cell-based human osteoclast assay of bone resorption.
Collapse
Affiliation(s)
- Martin Quibell
- Amura Therapeutics Limited, Incenta House, Horizon Park, Barton Road, Comberton, Cambridge CB37AJ, UK.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Watts J, Benn A, Flinn N, Monk T, Ramjee M, Ray P, Wang Y, Quibell M. Functionalised 2,3-dimethyl-3-aminotetrahydrofuran-4-one and N-(3-oxo-hexahydrocyclopenta[b]furan-3a-yl)acylamide based scaffolds: synthesis and cysteinyl proteinase inhibition. Bioorg Med Chem 2004; 12:2903-25. [PMID: 15142551 DOI: 10.1016/j.bmc.2004.03.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2004] [Accepted: 03/16/2004] [Indexed: 12/13/2022]
Abstract
A stereoselective synthesis of functionalised (2R,3R)-2,3-dimethyl-3-amidotetrahydrofuran-4-one, its (2S,3R)-epimer and (3aR,6aR)-N-(3-oxo-hexahydrocyclopenta[b]furan-3a-yl)acylamide cysteinyl proteinase inhibitors has been developed using Fmoc-protected scaffolds 6-8 in a solid-phase combinatorial strategy. Within these scaffolds, the introduction of an alkyl substituent alpha to the ketone affords chiral stability to an otherwise configurationally labile molecule. Preparation of scaffolds 6-8 required stereoselective syntheses of suitably protected alpha-diazomethylketone intermediates 9-11, derived from appropriately protected alpha-methylthreonines (2R,3R)-12, (2R,3S)-13 and a protected analogue of (1R,2R)-1-amino-2-hydroxycyclopentanecarboxylic acid 14. Application of standard methods for the preparation of amino acid alpha-diazomethylketones, through treatment of the mixed anhydride or pre-formed acyl fluorides of intermediates 12-14 with diazomethane, proved troublesome giving complex mixtures. However, the desired alpha-diazomethylketones were isolated and following a lithium chloride/acetic acid promoted insertion reaction provided scaffolds 6-8. Elaboration of 6-8 on the solid phase gave alpha,beta-dimethyl monocyclic ketone based inhibitors 38a-f, 39a,b,d,e,f and bicyclic inhibitors 40a-e that exhibited low micromolar activity against a variety of cysteinyl proteinases.
Collapse
Affiliation(s)
- John Watts
- Amura Therapeutics Limited, Incenta House, Horizon Park, Barton Road, Comberton, Cambridge CB3 7AJ, UK
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Enzymatic resolution of (±)-glycidyl butyrate in aqueous media. Strong modulation of the properties of the lipase from Rhizopus oryzae via immobilization techniques. ACTA ACUST UNITED AC 2004. [DOI: 10.1016/j.tetasy.2004.03.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
23
|
Yamashita DS, Xie R, Lin H, Wang B, Shi SDH, Quinn CJ, Hemling ME, Hissong C, Tomaszek TA, Veber DF. Benzodioxocin-3-ones and N-acyl-3-amino-3-buten-2-ones: novel classes of cathepsin K cysteine protease inhibitors. THE JOURNAL OF PEPTIDE RESEARCH : OFFICIAL JOURNAL OF THE AMERICAN PEPTIDE SOCIETY 2004; 63:265-9. [PMID: 15049838 DOI: 10.1111/j.1399-3011.2004.00138.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The design, synthesis, enzymologic, and protein mass spectrometric characterization of benzodioxocin-3-one and N-acyl-3-amino-3-buten-2-one inhibitors of the cysteine protease cathepsin K are described. The benzodioxocin-3-one ring system is chemically unstable giving rise to a mixture of N-acyl-3-amino-3-buten-2-one and hemiketals. This mixture of N-acyl-3-amino-3-buten-2-one and hemiketals potently inhibits recombinant, human cathepsin K (IC50 = 36 nM) by a time-independent, irreversible mechanism. Formation of a covalent adduct between cathepsin K and inhibitor has been confirmed by mass spectrometry.
Collapse
Affiliation(s)
- D S Yamashita
- Department of Medicinal Chemistry, GlaxoSmithKline, Collegeville, PA, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Inhibition of the Cysteine Protease Cathepsin K (EC 3.4.22.38). ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2004. [DOI: 10.1016/s0065-7743(04)39007-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
25
|
Giraudeau FS, McGinnis RE, Gray IC, O'Brien EJ, Doncaster KE, Spurr NK, Ralston SH, Reid DM, Wood J. Characterization of common genetic variants in cathepsin K and testing for association with bone mineral density in a large cohort of perimenopausal women from Scotland. J Bone Miner Res 2004; 19:31-41. [PMID: 14753734 DOI: 10.1359/jbmr.0301205] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
UNLABELLED BMD values in approximately 3000 perimenopausal Scottish women were adjusted by regression to identify and account for nongenetic factors. Adjusted BMD values were not associated with simple tandem repeat (STR) markers or single nucleotide polymorphisms (SNPs) at the Cathepsin K (CTSK) locus. We present a thorough analysis of common CTSK polymorphisms and genetic relatedness among CTSK haplotypes. INTRODUCTION CTSK is a cysteine protease of the papain family and is thought to play a critical role in osteoclast-mediated bone degradation. Rare, inactivating mutations in CTSK cause pychodysostosis, an autosomal recessive osteochondrodysplasia characterized by osteosclerosis and short stature. However, there have been no studies of common genetic variants in CTSK and their possible association with bone density in the general population. MATERIALS AND METHODS To identify common single nucleotide polymorphisms (SNPs) and simple tandem repeat (STR) polymorphisms in and around CTSK, we screened all CTSK exons, intron A, all intron-exon boundaries, and the putative CTSK promoter region in 130 random whites using both high-performance liquid chromatography (HPLC) and DNA sequencing. CTSK markers were genotyped in approximately 3000 perimenopausal Scottish women whose hip and spine bone mineral density (BMD) had been measured by DXA. We performed linear regression analysis to identify and adjust for nongenetic predictors of BMD, and adjusted BMD values (regression residuals) were tested for association with individual CTSK markers and haplotypes by ANOVA and the composite haplotype method of Zaykin et al. RESULTS AND CONCLUSIONS We discovered two intronic SNPs (8% and 9% frequency), but no common exonic SNPs (> 1% frequency), and found that three STRs at the immediate 5' end of the CTSK locus are highly polymorphic. The population frequencies of haplotypes defined by these five polymorphisms were estimated, and a cladogram was derived showing proximity of relationship and likely descent of the 30 most common CTSK haplotypes. Regression analyses revealed that approximately 39% of spine and 19% of hip rate of change in BMD was accounted for by nongenetic factors. For baseline BMD values in premenopausal women, nongenetic predictors explained 11% of the variance at the spine and 13% at the hip. Adjusted BMD values showed no statistically significant association with any of the individual CTSK polymorphisms or CTSK haplotypes.
Collapse
Affiliation(s)
- Fabienne S Giraudeau
- Department of Discovery Genetics, GlaxoSmithKline Research and Development, New Frontiers Science Park, Harlow, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Deaton DN, Kumar S. Cathepsin K Inhibitors: Their Potential as Anti-Osteoporosis Agents. PROGRESS IN MEDICINAL CHEMISTRY 2004; 42:245-375. [PMID: 15003723 DOI: 10.1016/s0079-6468(04)42006-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- David N Deaton
- Medicinal Chemistry Department, GlaxoSmithKline Inc., 5 Moore Drive, Research Triangle Park, NC 27709, USA
| | | |
Collapse
|
27
|
Aragonès S, Bravo F, Dı́az Y, Matheu MI, Castillón S. Synthesis of amino-1,4-anhydro-d-pentitols and amino-1,5-anhydro-d-hexitols with the arabino configuration from (R)-glycidol. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s0957-4166(03)00325-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Setti EL, Davis D, Chung T, McCarter J. 3,4-disubstituted azetidinones as selective inhibitors of the cysteine protease cathepsin K. Exploring P2 elements for selectivity. Bioorg Med Chem Lett 2003; 13:2051-3. [PMID: 12781193 DOI: 10.1016/s0960-894x(03)00304-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A novel series of 3,4-disubstituted azetidinones based inhibitors of the cysteine protease cathepsin K (Cat K) has been identified. Although not optimized, some of these compounds show at least 100-fold selectivity against other cathepsins. The use of cyclic moieties as P2 elements has proven to be crucial to achieve a high degree of selectivity.
Collapse
Affiliation(s)
- Eduardo L Setti
- Department of Medicinal Chemisty, Celera, 180 Kimball Way, South San Francisco, CA 94080, USA.
| | | | | | | |
Collapse
|
29
|
Altmann E, Green J, Tintelnot-Blomley M. Arylaminoethyl amides as inhibitors of the cysteine protease cathepsin K-investigating P1' substituents. Bioorg Med Chem Lett 2003; 13:1997-2001. [PMID: 12781182 DOI: 10.1016/s0960-894x(03)00344-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Modeling, synthesis and in vitro activities of a series of arylaminoethyl amide based inhibitors of the cysteine protease cathepsin K are described.
Collapse
Affiliation(s)
- Eva Altmann
- Arthritis & Bone Metabolism Therapeutic Area, Novartis Pharma AG, CH-4002, Basel, Switzerland,
| | | | | |
Collapse
|
30
|
Kunakbaeva Z, Carrasco R, Rozas I. An approximation to the mechanism of inhibition of cystein proteases: nucleophilic sulphur addition to Michael acceptors type compounds. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s0166-1280(03)00086-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
31
|
Zhou NE, Guo D, Thomas G, Reddy AVN, Kaleta J, Purisima E, Menard R, Micetich RG, Singh R. 3-Acylamino-azetidin-2-one as a novel class of cysteine proteases inhibitors. Bioorg Med Chem Lett 2003; 13:139-41. [PMID: 12467634 DOI: 10.1016/s0960-894x(02)00831-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A new class of inhibitors for cysteine proteases cathepsin B, L, K and S is described. These inhibitors are based on the beta-lactam ring designed to interact with the nucleophilic thiol of the cysteine in the active site of cysteine proteases. Some 3-acylamino-azetidin-2-one derivatives showed very potent inhibition activities for cathepsins L, K and S at the nanomolar or subnanomolar IC(50) values.
Collapse
Affiliation(s)
- Nian E Zhou
- SynPhar Laboratories, currently NAEJA Pharmaceutical Inc., 4290-91A Street, Edmonton, Alberta, Canada T6E 5V2
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Lecaille F, Kaleta J, Brömme D. Human and parasitic papain-like cysteine proteases: their role in physiology and pathology and recent developments in inhibitor design. Chem Rev 2002; 102:4459-88. [PMID: 12475197 DOI: 10.1021/cr0101656] [Citation(s) in RCA: 395] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fabien Lecaille
- Mount Sinai School of Medicine, Department of Human Genetics, Fifth Avenue at 100th Street, New York, New York 10029, USA
| | | | | |
Collapse
|
33
|
Huang L, Ellman JA. General solid-phase method to prepare novel cyclic ketone inhibitors of the cysteine protease cruzain. Bioorg Med Chem Lett 2002; 12:2993-6. [PMID: 12270191 DOI: 10.1016/s0960-894x(02)00619-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A series of constrained ketone-based inhibitors has been developed that show low nanomolar Ki values. These ketone inhibitors showed promising activity towards cruzain, the cysteine protease implicated in Chagas' disease. This series of constrained inhibitors, which can be accessed quickly and efficiently using a solid-phase combinatorial strategy, should be applicable to other members of the cysteine protease class.
Collapse
Affiliation(s)
- Lily Huang
- Center for New Directions in Organic Synthesis, Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | | |
Collapse
|
34
|
Hernandez AA, Roush WR. Recent advances in the synthesis, design and selection of cysteine protease inhibitors. Curr Opin Chem Biol 2002; 6:459-65. [PMID: 12133721 DOI: 10.1016/s1367-5931(02)00345-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Inhibition of cysteine proteases is emerging as an important strategy for the treatment of a variety of human diseases. Intense efforts involving structure-based inhibitor design have been directed toward several cysteine proteases, including cathepsin K, calpain, human rhinovirus 3C protease and several parasitic cysteine protease targets. Other successful recent efforts have involved combinatorial synthesis and screening for identification of new inhibitor templates.
Collapse
|
35
|
Smith RA, Bhargava A, Browe C, Chen J, Dumas J, Hatoum-Mokdad H, Romero R. Discovery and parallel synthesis of a new class of cathepsin K inhibitors. Bioorg Med Chem Lett 2001; 11:2951-4. [PMID: 11677133 DOI: 10.1016/s0960-894x(01)00600-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Peptidomimetic aminomethyl ketones have been identified as a new class of cathepsin K inhibitors. Traditional and high-speed parallel synthesis techniques were applied to investigate this series. Structure-activity relationships were established, and certain analogues were characterized with IC(50) values in the range 200-500 nM.
Collapse
Affiliation(s)
- R A Smith
- Department of Chemistry Research, Bayer Research Center, 400 Morgan Lane, West Haven, CT 06516, USA.
| | | | | | | | | | | | | |
Collapse
|
36
|
|
37
|
Stroup GB, Lark MW, Veber DF, Bhattacharyya A, Blake S, Dare LC, Erhard KF, Hoffman SJ, James IE, Marquis RW, Ru Y, Vasko-Moser JA, Smith BR, Tomaszek T, Gowen M. Potent and selective inhibition of human cathepsin K leads to inhibition of bone resorption in vivo in a nonhuman primate. J Bone Miner Res 2001; 16:1739-46. [PMID: 11585335 DOI: 10.1359/jbmr.2001.16.10.1739] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cathepsin K is a cysteine protease that plays an essential role in osteoclast-mediated degradation of the organic matrix of bone. Knockout of the enzyme in mice, as well as lack of functional enzyme in the human condition pycnodysostosis, results in osteopetrosis. These results suggests that inhibition of the human enzyme may provide protection from bone loss in states of elevated bone turnover, such as postmenopausal osteoporosis. To test this theory, we have produced a small molecule inhibitor of human cathepsin K, SB-357114, that potently and selectively inhibits this enzyme (Ki = 0.16 nM). This compound potently inhibited cathepsin activity in situ, in human osteoclasts (inhibitor concentration [IC]50 = 70 nM) as well as bone resorption mediated by human osteoclasts in vitro (IC50 = 29 nM). Using SB-357114, we evaluated the effect of inhibition of cathepsin K on bone resorption in vivo using a nonhuman primate model of postmenopausal bone loss in which the active form of cathepsin K is identical to the human orthologue. A gonadotropin-releasing hormone agonist (GnRHa) was used to render cynomolgus monkeys estrogen deficient, which led to an increase in bone turnover. Treatment with SB-357114 (12 mg/kg subcutaneously) resulted in a significant reduction in serum markers of bone resorption relative to untreated controls. The effect was observed 1.5 h after the first dose and was maintained for 24 h. After 5 days of dosing, the reductions in N-terminal telopeptides (NTx) and C-terminal telopeptides (CTx) of type I collagen were 61% and 67%, respectively. A decrease in serum osteocalcin of 22% was also observed. These data show that inhibition of cathepsin K results in a significant reduction of bone resorption in vivo and provide further evidence that this may be a viable approach to the treatment of postmenopausal osteoporosis.
Collapse
Affiliation(s)
- G B Stroup
- Department of Bone and Cartilage Biology, SmithKline Beecham Pharmaceuticals, King of Prussia, Pennsylvania 19406, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Langston S, Barlocco D, Tranter D. Monitor: molecules and profiles. Drug Discov Today 2001; 6:545-547. [PMID: 11369294 DOI: 10.1016/s1359-6446(01)01764-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Monitor provides an insight into the latest developments in drug discovery through brief synopses of recent presentations and publications together with expert commentaries on the latest technologies. There are two sections: Molecules summarizes the chemistry and the pharmacological significance and biological relevance of new molecules reported in the literature and on the conference scene; Profiles offers commentary on promising lines of research, emerging molecular targets, novel technology, advances in synthetic and separation techniques and legislative issues.
Collapse
Affiliation(s)
- S Langston
- Millennium Pharmaceuticals, Merryfield Centre, Rosemary Lane, CB1 3LQ Tel: +44 (0)1223 722400, Cambridge, UK
| | | | | |
Collapse
|