1
|
Smith MT, Kong D, Kuo A, Imam MZ, Williams CM. Multitargeted Opioid Ligand Discovery as a Strategy to Retain Analgesia and Reduce Opioid-Related Adverse Effects. J Med Chem 2023; 66:3746-3784. [PMID: 36856340 DOI: 10.1021/acs.jmedchem.2c01695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
The global "opioid crisis" has placed enormous pressure on the opioid ligand discovery community to produce novel opioid analgesics with superior opioid-related adverse-effect profiles compared with morphine. In this Perspective, the multitargeted opioid ligand strategy for the discovery of opioid analgesics with superior preclinical therapeutic indices relative to morphine is reviewed and discussed. Dual-targeted μ-opioid (MOP)/δ-opioid (DOP) ligands in which the in vitro DOP antagonist potency at least equals that of the MOP agonist activity, and are devoid of DOP or κ-opioid (KOP) agonist activity, are sufficiently promising candidates to warrant further investigation. Dual-targeted MOP/NOP partial agonists have superior preclinical therapeutic indices to morphine and/or fentanyl in nonhuman primates and are also considered promising. Based on the poor preclinical and clinical therapeutic indices of cebranopadol, which is a full agonist at MOP, DOP, and NOP receptors and a partial agonist at the KOP receptor, this pharmacologic template should be avoided.
Collapse
|
2
|
Differential Effects of a Novel Opioid Ligand UTA1003 on Antinociceptive Tolerance and Motor Behaviour. Pharmaceuticals (Basel) 2022; 15:ph15070789. [PMID: 35890089 PMCID: PMC9318816 DOI: 10.3390/ph15070789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/18/2022] [Accepted: 06/21/2022] [Indexed: 02/05/2023] Open
Abstract
Analgesic tolerance is a major problem in the clinic for the maintenance of opioid-induced long-term pain relief. Opioids with mixed activity on multiple opioid receptors promise reduced antinociceptive tolerance in preclinical studies, but these compounds typically show poor bioavailability upon oral, subcutaneous, intraperitoneal, or intravenous administration. We designed UTA1003 as a novel opioid that acts as a mu (MOP) and kappa (KOP) opioid receptor agonist and a partial agonist for delta (DOP) opioid receptor. In the present study, its antinociceptive effects, as well as its effects on antinociceptive tolerance and motor behaviour, were investigated in male rats. Acute antinociception was measured before (basal) and at different time points after subcutaneous injection of UTA1003 or morphine using the tail flick and hot plate assays. Various motor behavioural activities, including horizontal locomotion, rearing, and turning, were automatically measured in an open-field arena. The antinociceptive and behavioural effects of repeated administration of UTA1003 and morphine were determined over eight days. UTA1003 induced mild antinociceptive effects after acute administration but induced no tolerance after repeated treatment. Importantly, UTA1003 co-treatment with morphine prevented antinociceptive tolerance compared to morphine alone. UTA1003 showed less motor suppression than morphine in both acute and sub-chronic treatment regimens, while it did not affect morphine-induced motor suppression or hyper-excitation. Based on these activities, we speculate that UTA1003 crosses the blood-brain barrier after subcutaneous administration and, therefore, could be developed as a lead molecule to avoid opioid-induced antinociceptive tolerance and motor suppression. Further structural modifications to improve its antinociceptive effects, toxicity profile, and ADME parameters are nevertheless required.
Collapse
|
3
|
Fujita W. Aiming at Ideal Therapeutics-MOPr/DOPr or MOPr-DOPr Heteromertargeting Ligand. Curr Top Med Chem 2021; 20:2843-2851. [PMID: 32324516 DOI: 10.2174/1568026620666200423095231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 03/18/2020] [Accepted: 03/29/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND OBJECTIVE The recent alarming reports related to "opioid crisis" necessitate the development of safer and effective analgesics without unwanted side effects. Thus, there needs to be an alternative target or strategy for the development of drugs for the treatment of opioid use/abuse. As one of the novel targets, in these two decades, ligands targeting opioid receptor "heteromerization" including mu-opioid receptor (MOPr)-delta opioid receptor (DOPr) heteromer have been proposed and the pharmacological advancement of reduced side effects has been broadly accepted and well recognized. In this review, some of the ligands targeting both MOPr and DOPr or MOPr-DOPr heteromers are introduced especially focusing on their pharmacological effects in vivo. CONCLUSION It has been found that most of those ligands possess potent antinociceptive activity (as much as or higher than that of morphine) with reduced side effects such as tolerance. In addition, some of them are also able to reduce or prevent physiological withdrawal symptoms observed under chronic opioid use. Importantly, there are an increasing number of evidence that show changes in heteromer expression in various pathological animal models and these strongly argue for targeting heteromers for the development of the next generation of pain medication in the near future.
Collapse
Affiliation(s)
- Wakako Fujita
- Department of Frontier Life Science, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
4
|
Wang L, Lin J, Sun Q, Xia C, Sun W. Amino Acid Derived Chiral Aminobenzimidazole Manganese Catalysts for Asymmetric Transfer Hydrogenation of Ketones. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00616] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Lixian Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, LLanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Jin Lin
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, LLanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, People’s Republic of China
| | - Qiangsheng Sun
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, LLanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, People’s Republic of China
| | - Chungu Xia
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, LLanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, People’s Republic of China
| | - Wei Sun
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, LLanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, People’s Republic of China
| |
Collapse
|
5
|
Lee YS, Remesic M, Ramos-Colon C, Wu Z, LaVigne J, Molnar G, Tymecka D, Misicka A, Streicher JM, Hruby VJ, Porreca F. Multifunctional Enkephalin Analogs with a New Biological Profile: MOR/DOR Agonism and KOR Antagonism. Biomedicines 2021; 9:biomedicines9060625. [PMID: 34072734 PMCID: PMC8229567 DOI: 10.3390/biomedicines9060625] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 11/25/2022] Open
Abstract
In our previous studies, we developed a series of mixed MOR/DOR agonists that are enkephalin-like tetrapeptide analogs with an N-phenyl-N-piperidin-4-ylpropionamide (Ppp) moiety at the C-terminus. Further SAR study on the analogs, initiated by the findings from off-target screening, resulted in the discovery of LYS744 (6, Dmt-DNle-Gly-Phe(p-Cl)-Ppp), a multifunctional ligand with MOR/DOR agonist and KOR antagonist activity (GTPγS assay: IC50 = 52 nM, Imax = 122% cf. IC50 = 59 nM, Imax = 100% for naloxone) with nanomolar range of binding affinity (Ki = 1.3 nM cf. Ki = 2.4 nM for salvinorin A). Based on its unique biological profile, 6 is considered to possess high therapeutic potential for the treatment of chronic pain by modulating pathological KOR activation while retaining analgesic efficacy attributed to its MOR/DOR agonist activity.
Collapse
Affiliation(s)
- Yeon Sun Lee
- Department of Pharmacology, University of Arizona, Tucson, AZ 85724, USA; (J.L.); (G.M.); (J.M.S.); (F.P.)
- Correspondence: ; Tel.: +1-520-626-2820
| | - Michael Remesic
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA; (M.R.); (C.R.-C.); (V.J.H.)
| | - Cyf Ramos-Colon
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA; (M.R.); (C.R.-C.); (V.J.H.)
| | - Zhijun Wu
- ABC Resource, Plainsboro, NJ 08536, USA;
| | - Justin LaVigne
- Department of Pharmacology, University of Arizona, Tucson, AZ 85724, USA; (J.L.); (G.M.); (J.M.S.); (F.P.)
| | - Gabriella Molnar
- Department of Pharmacology, University of Arizona, Tucson, AZ 85724, USA; (J.L.); (G.M.); (J.M.S.); (F.P.)
| | - Dagmara Tymecka
- Faculty of Chemistry, University of Warsaw, Pasteura, PL-02-093 Warsaw, Poland; (D.T.); (A.M.)
| | - Aleksandra Misicka
- Faculty of Chemistry, University of Warsaw, Pasteura, PL-02-093 Warsaw, Poland; (D.T.); (A.M.)
| | - John M. Streicher
- Department of Pharmacology, University of Arizona, Tucson, AZ 85724, USA; (J.L.); (G.M.); (J.M.S.); (F.P.)
| | - Victor J. Hruby
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA; (M.R.); (C.R.-C.); (V.J.H.)
| | - Frank Porreca
- Department of Pharmacology, University of Arizona, Tucson, AZ 85724, USA; (J.L.); (G.M.); (J.M.S.); (F.P.)
| |
Collapse
|
6
|
Atigari DV, Paton KF, Uprety R, Váradi A, Alder AF, Scouller B, Miller JH, Majumdar S, Kivell BM. The mixed kappa and delta opioid receptor agonist, MP1104, attenuates chemotherapy-induced neuropathic pain. Neuropharmacology 2021; 185:108445. [PMID: 33383089 PMCID: PMC8344368 DOI: 10.1016/j.neuropharm.2020.108445] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/20/2020] [Accepted: 12/20/2020] [Indexed: 01/04/2023]
Abstract
Effective treatments for chronic pain without abuse liability are urgently needed. One in 5 adults suffer chronic pain and half of these patients report inefficient treatment. Mu opioid receptor agonists (MOP), including oxycodone, tramadol and morphine, are often prescribed to treat chronic pain, however, use of drugs targeting MOP can lead to drug dependency, tolerance and overdose deaths. Kappa opioid receptor (KOP) agonists have antinociceptive effects without abuse potential; however, they have not been utilised clinically due to dysphoria and sedation. We hypothesise that mixed opioid receptor agonists targeting the KOP and delta opioid receptor (DOP) would have a wider therapeutic index, with the rewarding effects of DOP negating the negative effects of KOP. MP1104, an analogue of 3-Iodobenzoyl naltrexamine, is a novel mixed opioid receptor agonist with potent antinociceptive effects mediated via KOP and DOP in mice without rewarding or aversive effects. In this study, we show MP1104 has potent, long-acting antinociceptive effects in the warm-water tail-withdrawal assay in male and female mice and rats; and is longer acting than morphine. In the paclitaxel-induced neuropathic pain model in mice, MP1104 reduced both mechanical and cold allodynia and unlike morphine, did not produce tolerance when administered daily for 23 days. Moreover, MP1104 did not induce sedative effects in the open-field locomotor activity test, respiratory depression in mice using whole-body plethysmography, or have cross-tolerance with morphine. This data supports the therapeutic development of mixed opioid receptor agonists, particularly mixed KOP/DOP agonists, as non-addictive pain medications with reduced tolerance.
Collapse
Affiliation(s)
- Diana Vivian Atigari
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Kelly Frances Paton
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Rajendra Uprety
- Molecular Pharmacology Program and Department of Neurology, Memorial Sloan Kettering Cancer Centre, New York, USA
| | - András Váradi
- Molecular Pharmacology Program and Department of Neurology, Memorial Sloan Kettering Cancer Centre, New York, USA
| | - Amy Frances Alder
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Brittany Scouller
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - John H Miller
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Susruta Majumdar
- Center of Clinical Pharmacology, St. Louis College of Pharmacy and Washington University School of Medicine, St. Louis, MO, USA
| | - Bronwyn Maree Kivell
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand.
| |
Collapse
|
7
|
Paton KF, Atigari DV, Kaska S, Prisinzano T, Kivell BM. Strategies for Developing κ Opioid Receptor Agonists for the Treatment of Pain with Fewer Side Effects. J Pharmacol Exp Ther 2020; 375:332-348. [PMID: 32913006 PMCID: PMC7589957 DOI: 10.1124/jpet.120.000134] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/27/2020] [Indexed: 12/21/2022] Open
Abstract
There is significant need to find effective, nonaddictive pain medications. κ Opioid receptor (KOPr) agonists have been studied for decades but have recently received increased attention because of their analgesic effects and lack of abuse potential. However, a range of side effects have limited the clinical development of these drugs. There are several strategies currently used to develop safer and more effective KOPr agonists. These strategies include identifying G-protein-biased agonists, developing peripherally restricted KOPr agonists without centrally mediated side effects, and developing mixed opioid agonists, which target multiple receptors at specific ratios to balance side-effect profiles and reduce tolerance. Here, we review the latest developments in research related to KOPr agonists for the treatment of pain. SIGNIFICANCE STATEMENT: This review discusses strategies for developing safer κ opioid receptor (KOPr) agonists with therapeutic potential for the treatment of pain. Although one strategy is to modify selective KOPr agonists to create peripherally restricted or G-protein-biased structures, another approach is to combine KOPr agonists with μ, δ, or nociceptin opioid receptor activation to obtain mixed opioid receptor agonists, therefore negating the adverse effects and retaining the therapeutic effect.
Collapse
Affiliation(s)
- Kelly F Paton
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand (K.P., D.V.A., B.M.K.) and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky (S.K., T.P.)
| | - Diana V Atigari
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand (K.P., D.V.A., B.M.K.) and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky (S.K., T.P.)
| | - Sophia Kaska
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand (K.P., D.V.A., B.M.K.) and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky (S.K., T.P.)
| | - Thomas Prisinzano
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand (K.P., D.V.A., B.M.K.) and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky (S.K., T.P.)
| | - Bronwyn M Kivell
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand (K.P., D.V.A., B.M.K.) and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky (S.K., T.P.)
| |
Collapse
|
8
|
Xu D, Sun Q, Lin J, Sun W. Ligand regulation for manganese-catalyzed enantioselective epoxidation of olefins without acid. Chem Commun (Camb) 2020; 56:13101-13104. [PMID: 32974625 DOI: 10.1039/d0cc04440g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel manganese catalyst bearing an l-proline-derived N4 ligand has been developed for enabling acid-free asymmetric epoxidation of olefins with tert-butyl hydroperoxide as the oxidant. A variety of olefins that are well-matched in size with the ligand pocket can be transformed to epoxides with excellent enantioselectivities. The smaller ligand pocket is also beneficial to the enantioselective epoxidation of simple olefins. Cryospray ionization mass spectrometry experiments reveal that a MnIV[double bond, length as m-dash]O species serves as an active epoxidizing species.
Collapse
Affiliation(s)
- Daqian Xu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Department, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China.
| | | | | | | |
Collapse
|
9
|
Design, Synthesis and Functional Analysis of Cyclic Opioid Peptides with Dmt-Tic Pharmacophore. Molecules 2020; 25:molecules25184260. [PMID: 32957550 PMCID: PMC7570497 DOI: 10.3390/molecules25184260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 11/17/2022] Open
Abstract
The opioid receptors are members of the G-protein-coupled receptor (GPCR) family and are known to modulate a variety of biological functions, including pain perception. Despite considerable advances, the mechanisms by which opioid agonists and antagonists interact with their receptors and exert their effect are still not completely understood. In this report, six new hybrids of the Dmt-Tic pharmacophore and cyclic peptides, which were shown before to have a high affinity for the µ-opioid receptor (MOR) were synthesized and characterized pharmacologically in calcium mobilization functional assays. All obtained ligands turned out to be selective antagonists of the δ-opioid receptor (DOR) and did not activate or block the MOR. The three-dimensional structural determinants responsible for the DOR antagonist properties of these analogs were further investigated by docking studies. The results indicate that these compounds attach to the DOR in a slightly different orientation with respect to the Dmt-Tic pharmacophore than Dmt-TicΨ[CH2-NH]Phe-Phe-NH2 (DIPP-NH2[Ψ]), a prototypical DOR antagonist peptide. Key pharmacophoric contacts between the DOR and the ligands were maintained through an analogous spatial arrangement of pharmacophores, which could provide an explanation for the predicted high-affinity binding and the experimentally observed functional properties of the novel synthetic ligands.
Collapse
|
10
|
Wtorek K, Piekielna-Ciesielska J, Janecki T, Janecka A. The search for opioid analgesics with limited tolerance liability. Peptides 2020; 130:170331. [PMID: 32497566 DOI: 10.1016/j.peptides.2020.170331] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/03/2020] [Accepted: 05/14/2020] [Indexed: 01/01/2023]
Abstract
Reducing the well-known side effects of opioids prescribed to treat chronic pain remains unresolved, despite extensive research in this field. Among several options to tackle this problem the synthesis of multifunctional compounds containing hybridized structures gained a lot of interest. Recently, extensively investigated are combinations of opioid agonist and antagonist pharmacophores embodied in a single molecule. To this end, agonism at the μ opioid receptor (MOR) with simultaneous antagonism at the δ opioid receptor (DOR) emerged as a promising avenue to obtaining novel analogs devoid of serious adverse effects associated with morphine-based analgesics. In this review we covered up-to-date research on the synthesis of peptide-based ligands with MOR agonist/DOR antagonist profile.
Collapse
Affiliation(s)
- Karol Wtorek
- Department of Biomolecular Chemistry, Medical University of Lodz, Lodz, Poland
| | | | - Tomasz Janecki
- Institute of Organic Chemistry, Lodz University of Technology, Lodz, Poland
| | - Anna Janecka
- Department of Biomolecular Chemistry, Medical University of Lodz, Lodz, Poland.
| |
Collapse
|
11
|
Discovery of dihydropyrazino-benzimidazole derivatives as metabotropic glutamate receptor-2 (mGluR2) positive allosteric modulators (PAMs). Eur J Med Chem 2020; 186:111881. [DOI: 10.1016/j.ejmech.2019.111881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/05/2019] [Accepted: 11/11/2019] [Indexed: 11/17/2022]
|
12
|
Structure-Activity Relationships of 7-Substituted Dimethyltyrosine-Tetrahydroisoquinoline Opioid Peptidomimetics. Molecules 2019; 24:molecules24234302. [PMID: 31779072 PMCID: PMC6930500 DOI: 10.3390/molecules24234302] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 02/07/2023] Open
Abstract
The opioid receptors modulate a variety of biological functions, including pain, mood, and reward. As a result, opioid ligands are being explored as potential therapeutics for a variety of indications. Multifunctional opioid ligands, which act simultaneously at more than one type of opioid receptor, show promise for use in the treatment of addiction, pain, and other conditions. Previously, we reported the creation of bifunctional kappa opioid receptor (KOR) agonist/mu opioid receptor (MOR) partial agonist ligands from the classically delta opioid receptor (DOR) antagonist selective dimethyltyrosine-tetrahydroisoquinoline (Dmt-Tiq) scaffold through the addition of a 7-benzyl pendant on the tetrahydroisoquinoline ring. This study further explores the structure–activity relationships surrounding 7-position pendants on the Dmt-Tiq scaffold. Some analogues maintain a KOR agonist/MOR partial agonist profile, which is being explored in the development of a treatment for cocaine addiction. Others display a MOR agonist/DOR antagonist profile, which has potential to be used in the creation of a less addictive pain medication. Ultimately, we report the synthesis and in vitro evaluation of novel opioid ligands with a variety of multifunctional profiles.
Collapse
|
13
|
Montgomery D, Anand JP, Griggs NW, Fernandez TJ, Hartman JG, Sánchez-Santiago AA, Pogozheva ID, Traynor JR, Mosberg HI. Novel Dimethyltyrosine-Tetrahydroisoquinoline Peptidomimetics with Aromatic Tetrahydroisoquinoline Substitutions Show in Vitro Kappa and Mu Opioid Receptor Agonism. ACS Chem Neurosci 2019; 10:3682-3689. [PMID: 31199621 DOI: 10.1021/acschemneuro.9b00250] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The dimethyltyrosine-tetrahydroisoquinoline (Dmt-Tiq) scaffold was originally developed in the production of selective delta opioid receptor (DOR) antagonists. Installation of a 7-benzyl pendant on the tetrahydroisoquinoline core of this classic opioid scaffold introduced kappa opioid receptor (KOR) agonism. Further modification of this pendant resulted in retention of KOR agonism and the addition of mu opioid receptor (MOR) partial agonism, a bifunctional profile with potential to be used in the treatment of cocaine addiction.
Collapse
Affiliation(s)
- Deanna Montgomery
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jessica P. Anand
- Department of Pharmacology, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
- Edward F. Domino Research Center, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Nicholas W. Griggs
- Department of Pharmacology, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Thomas J. Fernandez
- Department of Pharmacology, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Joshua G. Hartman
- Department of Pharmacology, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ashley A. Sánchez-Santiago
- Department of Pharmacology, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Irina D. Pogozheva
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - John R. Traynor
- Department of Pharmacology, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
- Edward F. Domino Research Center, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Henry I. Mosberg
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
- Edward F. Domino Research Center, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
14
|
Atigari DV, Uprety R, Pasternak GW, Majumdar S, Kivell BM. MP1104, a mixed kappa-delta opioid receptor agonist has anti-cocaine properties with reduced side-effects in rats. Neuropharmacology 2019; 150:217-228. [PMID: 30768946 DOI: 10.1016/j.neuropharm.2019.02.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/23/2019] [Accepted: 02/09/2019] [Indexed: 01/02/2023]
Abstract
Kappa opioid receptor (KOPr) agonists have preclinical anti-cocaine and antinociceptive effects. However, adverse effects including dysphoria, aversion, sedation, anxiety and depression limit their clinical development. MP1104, an analogue of 3-iodobenzoyl naltrexamine, is a potent dual agonist at KOPr and delta opioid receptor (DOPr), with full agonist efficacy at both these receptors. In this study, we evaluate the ability of MP1104 to modulate cocaine-induced behaviors and side-effects preclinically. In male Sprague-Dawley rats trained to self-administer cocaine, MP1104 (0.3 and 1 mg/kg) reduced cocaine-primed reinstatement of drug-seeking behavior and caused significant downward shift of the dose-response curve in cocaine self-administration tests (0.3 and 0.6 mg/kg). The anti-cocaine effects exerted by MP1104 are in part due to increased dopamine (DA) uptake by the dopamine transporter (DAT) in the dorsal striatum (dStr) and nucleus accumbens (NAc). MP1104 (0.3 and 0.6 mg/kg) showed no significant anxiogenic effects in the elevated plus maze, pro-depressive effects in the forced swim test, or conditioned place aversion. Furthermore, pre-treatment with a DOPr antagonist, led to MP1104 producing aversive effects. This data suggests that the DOPr agonist actions of MP1104 attenuate the KOPr-mediated aversive effects of MP1104. The overall results from this study show that MP1104, modulates DA uptake in the dStr and NAc, and exerts potent anti-cocaine properties in self-administration tests with reduced side-effects compared to pure KOPr agonists. This data supports the therapeutic development of dual KOPr/DOPr agonists to reduce the side-effects of selective KOPr agonists. This article is part of the Special Issue entitled 'Opioid Neuropharmacology: Advances in treating pain and opioid addiction'.
Collapse
Affiliation(s)
- Diana V Atigari
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Rajendra Uprety
- Molecular Pharmacology Program and Department of Neurology, Memorial Sloan Kettering Cancer Centre, New York, USA
| | - Gavril W Pasternak
- Molecular Pharmacology Program and Department of Neurology, Memorial Sloan Kettering Cancer Centre, New York, USA
| | - Susruta Majumdar
- Molecular Pharmacology Program and Department of Neurology, Memorial Sloan Kettering Cancer Centre, New York, USA; Center for Clinical Pharmacology, St Louis College of Pharmacy and Washington University School of Medicine, St Louis, MO, USA
| | - Bronwyn M Kivell
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand.
| |
Collapse
|
15
|
Willemse T, Eiselt E, Hollanders K, Schepens W, van Vlijmen HWT, Chung NN, Blais V, Holleran B, Longpré JM, Schiller PW, Maes BUW, Sarret P, Gendron L, Ballet S. Chemical space screening around Phe 3 in opioid peptides: Modulating µ versus δ agonism by Suzuki-Miyaura cross-couplings. Bioorg Med Chem Lett 2018; 28:2320-2323. [PMID: 29853330 PMCID: PMC6005765 DOI: 10.1016/j.bmcl.2018.05.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/04/2018] [Accepted: 05/07/2018] [Indexed: 01/10/2023]
Abstract
In this study, affinities and activities of derivatized analogues of Dmt-dermorphin[1-4] (i.e. Dmt-d-Ala-Phe-GlyNH2, Dmt = 2',6'-dimethyl-(S)-tyrosine) for the µ opioid receptor (MOP) and δ opioid receptor (DOP) were evaluated using radioligand binding studies, functional cell-based assays and isolated organ bath experiments. By means of solid-phase or solution-phase Suzuki-Miyaura cross-couplings, various substituted regioisomers of the phenylalanine moiety in position 3 of the sequence were prepared. An 18-membered library of opioid tetrapeptides was generated via screening of the chemical space around the Phe3 side chain. These substitutions modulated bioactivity, receptor subtype selectivity and highly effective ligands with subnanomolar binding affinities, contributed to higher functional activities and potent analgesic actions. In search of selective peptidic ligands, we show here that the Suzuki-Miyaura reaction is a versatile and robust tool which could also be deployed elsewhere.
Collapse
Affiliation(s)
- Tom Willemse
- Research Group of Organic Chemistry, Departments of Bioengineering Sciences and Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; Organic Synthesis Division, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Emilie Eiselt
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du CHUS, Université de Sherbrooke, 3001 12(e)Avenue Nord, Sherbrooke, Quebec J1H 5N4, Canada
| | - Karlijn Hollanders
- Research Group of Organic Chemistry, Departments of Bioengineering Sciences and Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; Organic Synthesis Division, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Wim Schepens
- Discovery Sciences, Janssen Research and Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Herman W T van Vlijmen
- Discovery Sciences, Janssen Research and Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Nga N Chung
- Laboratory of Chemical Biology and Peptide Research, Montreal Clinical Research Institute, 110 avenue des Pins Ouest, Montreal, Quebec H2W 1R7, Canada
| | - Véronique Blais
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du CHUS, Université de Sherbrooke, 3001 12(e)Avenue Nord, Sherbrooke, Quebec J1H 5N4, Canada
| | - Brain Holleran
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du CHUS, Université de Sherbrooke, 3001 12(e)Avenue Nord, Sherbrooke, Quebec J1H 5N4, Canada
| | - Jean-Michel Longpré
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du CHUS, Université de Sherbrooke, 3001 12(e)Avenue Nord, Sherbrooke, Quebec J1H 5N4, Canada
| | - Peter W Schiller
- Laboratory of Chemical Biology and Peptide Research, Montreal Clinical Research Institute, 110 avenue des Pins Ouest, Montreal, Quebec H2W 1R7, Canada
| | - Bert U W Maes
- Organic Synthesis Division, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Philippe Sarret
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du CHUS, Université de Sherbrooke, 3001 12(e)Avenue Nord, Sherbrooke, Quebec J1H 5N4, Canada.
| | - Louis Gendron
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du CHUS, Université de Sherbrooke, 3001 12(e)Avenue Nord, Sherbrooke, Quebec J1H 5N4, Canada.
| | - Steven Ballet
- Research Group of Organic Chemistry, Departments of Bioengineering Sciences and Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium.
| |
Collapse
|
16
|
Anand JP, Kochan KE, Nastase AF, Montgomery D, Griggs NW, Traynor JR, Mosberg HI, Jutkiewicz EM. In vivo effects of μ-opioid receptor agonist/δ-opioid receptor antagonist peptidomimetics following acute and repeated administration. Br J Pharmacol 2018; 175:2013-2027. [PMID: 29352503 DOI: 10.1111/bph.14148] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 12/18/2017] [Accepted: 12/19/2017] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND AND PURPOSE Agonists at μ-opioid receptors (μ-receptors) are used for pain management but produce adverse effects including tolerance, dependence and euphoria. The co-administration of a μ-receptor agonist with a δ-opioid receptor (δ-receptor) antagonist has been shown to produce antinociception with reduced development of some side effects. We characterized the effects of three μ-receptor agonist/δ-receptor antagonist peptidomimetics in vivo after acute and repeated administration to determine if this profile provides a viable alternative to traditional opioid analgesics. EXPERIMENTAL APPROACH Three μ-receptor agonist / δ-receptor antagonist peptidomimetics, AAH8, AMB46 and AMB47, and morphine were evaluated for the development of tolerance and dependence after 5 days of twice daily treatment with escalating doses of drug (10-50 mg·kg-1 ). Antinociceptive effects were measured in the warm water tail withdrawal assay before and after repeated drug treatment. Physical dependence was evaluated by naltrexone-precipitated withdrawal jumping. The rewarding effects of AAH8 were evaluated using a conditioned place preference (CPP) assay with twice daily conditioning sessions performed for 5 days. KEY RESULTS Morphine, AAH8, AMB47 and AMB46 all demonstrated acute antinociceptive effects, but repeated administration only produced tolerance in animals treated with morphine and AMB46. Injection of naltrexone precipitated fewer jumps in mice treated repeatedly with AAH8 as compared with morphine, AMB47 or AMB46. Conditioning with morphine, but not AAH8, produced significant CPP. CONCLUSIONS AND IMPLICATIONS AAH8 may be a better alternative than traditional opioid analgesics, producing antinociception with less development of tolerance and dependence and may be less rewarding than morphine.
Collapse
Affiliation(s)
- Jessica P Anand
- Department of Pharmacology, Medical School, University of Michigan, Ann Arbor, MI, USA.,Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| | - Kelsey E Kochan
- Department of Pharmacology, Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Anthony F Nastase
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| | - Deanna Montgomery
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| | - Nicholas W Griggs
- Department of Pharmacology, Medical School, University of Michigan, Ann Arbor, MI, USA
| | - John R Traynor
- Department of Pharmacology, Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Henry I Mosberg
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| | - Emily M Jutkiewicz
- Department of Pharmacology, Medical School, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
17
|
Abstract
The opioid receptor system plays a major role in the regulation of mood, reward, and pain. The opioid receptors therefore make attractive targets for the treatment of many different conditions, including pain, depression, and addiction. However, stimulation or blockade of any one opioid receptor type often leads to on-target adverse effects that limit the clinical utility of a selective opioid agonist or antagonist. Literature precedent suggests that the opioid receptors do not act in isolation and that interactions among the opioid receptors and between the opioid receptors and other proteins may produce clinically useful targets. Multifunctional ligands have the potential to elicit desired outcomes with reduced adverse effects by allowing for the activation of specific receptor conformations and/or signaling pathways promoted as a result of receptor oligomerization or crosstalk. In this chapter, we describe several classes of multifunctional ligands that interact with at least one opioid receptor. These ligands have been designed for biochemical exploration and the treatment of a wide variety of conditions, including multiple kinds of pain, depression, anxiety, addiction, and gastrointestinal disorders. The structures, pharmacological utility, and therapeutic drawbacks of these classes of ligands are discussed.
Collapse
Affiliation(s)
- Jessica P Anand
- Department of Pharmacology, Medical School and the Edward F. Domino Research Center, University of Michigan, Ann Arbor, MI, USA.
| | - Deanna Montgomery
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
18
|
Gendron L, Cahill CM, von Zastrow M, Schiller PW, Pineyro G. Molecular Pharmacology of δ-Opioid Receptors. Pharmacol Rev 2017; 68:631-700. [PMID: 27343248 DOI: 10.1124/pr.114.008979] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Opioids are among the most effective analgesics available and are the first choice in the treatment of acute severe pain. However, partial efficacy, a tendency to produce tolerance, and a host of ill-tolerated side effects make clinically available opioids less effective in the management of chronic pain syndromes. Given that most therapeutic opioids produce their actions via µ-opioid receptors (MOPrs), other targets are constantly being explored, among which δ-opioid receptors (DOPrs) are being increasingly considered as promising alternatives. This review addresses DOPrs from the perspective of cellular and molecular determinants of their pharmacological diversity. Thus, DOPr ligands are examined in terms of structural and functional variety, DOPrs' capacity to engage a multiplicity of canonical and noncanonical G protein-dependent responses is surveyed, and evidence supporting ligand-specific signaling and regulation is analyzed. Pharmacological DOPr subtypes are examined in light of the ability of DOPr to organize into multimeric arrays and to adopt multiple active conformations as well as differences in ligand kinetics. Current knowledge on DOPr targeting to the membrane is examined as a means of understanding how these receptors are especially active in chronic pain management. Insight into cellular and molecular mechanisms of pharmacological diversity should guide the rational design of more effective, longer-lasting, and better-tolerated opioid analgesics for chronic pain management.
Collapse
Affiliation(s)
- Louis Gendron
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de Recherche du CHU de Sherbrooke, Centre d'excellence en neurosciences de l'Univeristé de Sherbrooke, and Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada (L.G.); Québec Pain Research Network, Sherbrooke, Quebec, Canada (L.G.); Departments of Anesthesiology and Perioperative Care and Pharmacology, University of California, Irvine, California (C.M.C.); Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.M.C.); Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco, California (M.v.Z.); Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montréal, Montreal, Quebec, Canada (P.W.S.); and Departments of Psychiatry, Pharmacology, and Neurosciences, Faculty of Medicine, University of Montréal and Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada (G.P.)
| | - Catherine M Cahill
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de Recherche du CHU de Sherbrooke, Centre d'excellence en neurosciences de l'Univeristé de Sherbrooke, and Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada (L.G.); Québec Pain Research Network, Sherbrooke, Quebec, Canada (L.G.); Departments of Anesthesiology and Perioperative Care and Pharmacology, University of California, Irvine, California (C.M.C.); Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.M.C.); Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco, California (M.v.Z.); Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montréal, Montreal, Quebec, Canada (P.W.S.); and Departments of Psychiatry, Pharmacology, and Neurosciences, Faculty of Medicine, University of Montréal and Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada (G.P.)
| | - Mark von Zastrow
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de Recherche du CHU de Sherbrooke, Centre d'excellence en neurosciences de l'Univeristé de Sherbrooke, and Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada (L.G.); Québec Pain Research Network, Sherbrooke, Quebec, Canada (L.G.); Departments of Anesthesiology and Perioperative Care and Pharmacology, University of California, Irvine, California (C.M.C.); Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.M.C.); Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco, California (M.v.Z.); Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montréal, Montreal, Quebec, Canada (P.W.S.); and Departments of Psychiatry, Pharmacology, and Neurosciences, Faculty of Medicine, University of Montréal and Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada (G.P.)
| | - Peter W Schiller
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de Recherche du CHU de Sherbrooke, Centre d'excellence en neurosciences de l'Univeristé de Sherbrooke, and Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada (L.G.); Québec Pain Research Network, Sherbrooke, Quebec, Canada (L.G.); Departments of Anesthesiology and Perioperative Care and Pharmacology, University of California, Irvine, California (C.M.C.); Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.M.C.); Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco, California (M.v.Z.); Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montréal, Montreal, Quebec, Canada (P.W.S.); and Departments of Psychiatry, Pharmacology, and Neurosciences, Faculty of Medicine, University of Montréal and Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada (G.P.)
| | - Graciela Pineyro
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de Recherche du CHU de Sherbrooke, Centre d'excellence en neurosciences de l'Univeristé de Sherbrooke, and Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada (L.G.); Québec Pain Research Network, Sherbrooke, Quebec, Canada (L.G.); Departments of Anesthesiology and Perioperative Care and Pharmacology, University of California, Irvine, California (C.M.C.); Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.M.C.); Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco, California (M.v.Z.); Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montréal, Montreal, Quebec, Canada (P.W.S.); and Departments of Psychiatry, Pharmacology, and Neurosciences, Faculty of Medicine, University of Montréal and Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada (G.P.)
| |
Collapse
|
19
|
Singh G, Singh G, Bhatti R, Gupta V, Mahajan A, Singh P, Singh Ishar MP. Rationally designed benzopyran fused isoxazolidines and derived β 2,3,3-amino alcohols as potent analgesics: Synthesis, biological evaluation and molecular docking analysis. Eur J Med Chem 2016; 127:210-222. [PMID: 28063353 DOI: 10.1016/j.ejmech.2016.12.052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 11/27/2016] [Accepted: 12/24/2016] [Indexed: 12/14/2022]
Abstract
Based on structure activity analysis of morphine related opiates, we have synthesized some novel benzopyran fused isoxazolidines (2a-e) and derived conformationally constrained β2,3,3-amino alcohols (3a-e), which were evaluated in vivo for their anti-nociceptive activity through acetic acid induced writhing test (peripheral) and formalin induced algesia (central). Results showed that, compound 2a possesses significant opioid agonist activity. Further, molecular docking analysis reveals that compound 2a binds to δ-opioid receptor (DOR) with comparatively better D-score than to μ (MOR) and κ (KOR) receptors. Compound 2a did not show any toxicity up to a 2000 mg kg-1 dose.
Collapse
Affiliation(s)
- Gagandeep Singh
- Bio-Organic and Photochemistry Laboratory, Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143 005, Punjab, India
| | - Gurjit Singh
- Bio-Organic and Photochemistry Laboratory, Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143 005, Punjab, India
| | - Rajbir Bhatti
- Bio-Organic and Photochemistry Laboratory, Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143 005, Punjab, India
| | - Vivek Gupta
- Post-Graduate Department of Physics & Electronics, University of Jammu, Jammu Tawi, 180 006, India
| | - Ajay Mahajan
- Cancer Pharmacology Division, Indian Institute of Integrative Medicine (CSIR), Jammu, 180001, India
| | - Palwinder Singh
- Department of Chemistry, UGC Sponsored Centre for Advanced Studies, Guru Nanak Dev University, Amritsar, 143 005, Punjab, India
| | - Mohan Paul Singh Ishar
- Bio-Organic and Photochemistry Laboratory, Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143 005, Punjab, India.
| |
Collapse
|
20
|
The behavioral effects of a mixed efficacy antinociceptive peptide, VRP26, following chronic administration in mice. Psychopharmacology (Berl) 2016; 233:2479-87. [PMID: 27117141 PMCID: PMC5068912 DOI: 10.1007/s00213-016-4296-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 04/07/2016] [Indexed: 01/08/2023]
Abstract
RATIONALE VRP26 displays mu opioid receptor agonist and delta opioid receptor antagonist activity in vitro, a pharmacological profile purported to produce reduced tolerance, dependence, and rewarding effects. We hypothesized that VRP26 would display reduced adverse effects after chronic administration as compared with the traditional opioid analgesic fentanyl. OBJECTIVE The aim of this study is to explore the development of tolerance, dependence, and conditioned place preference of VRP26 as compared with the traditional opioid analgesic fentanyl. METHODS The antinociceptive effects of VRP26 and fentanyl were assessed using the mouse warm water tail withdrawal (WWTW) assay. Measurement of antinociceptive tolerance and physical dependence occurred after 7 days of continuous administration of either fentanyl (0.3 mg/kg/day) or VRP26 (10 mg/kg/day); tolerance was measured by a shift in the antinociceptive dose response curve in the WWTW assay. Physical dependence was determined by observation of withdrawal symptoms after precipitated withdrawal. Rewarding effects were measured by the ability of VRP26 or fentanyl to produce conditioned place preference. RESULTS Fentanyl produced significant tolerance and dependence, as well as significant conditioned place preference. VRP26 produced neither tolerance nor physical dependence, nor did it produce significant conditioned place preference. CONCLUSIONS These results suggest that chronic treatment with VRP26 may produce less tolerance or physical dependence than chronic treatment with clinically available mu opioid analgesics such as fentanyl. Additionally, VRP26 produces less rewarding effects than fentanyl. This desirable in vivo profile may be due to the mixed efficacy nature of VRP26 and could provide the framework for safer opioid analgesics.
Collapse
|
21
|
Shen S, Benoy V, Bergman JA, Kalin JH, Frojuello M, Vistoli G, Haeck W, Van Den Bosch L, Kozikowski AP. Bicyclic-Capped Histone Deacetylase 6 Inhibitors with Improved Activity in a Model of Axonal Charcot-Marie-Tooth Disease. ACS Chem Neurosci 2016; 7:240-58. [PMID: 26599234 DOI: 10.1021/acschemneuro.5b00286] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Charcot-Marie-Tooth (CMT) disease is a disorder of the peripheral nervous system where progressive degeneration of motor and sensory nerves leads to motor problems and sensory loss and for which no pharmacological treatment is available. Recently, it has been shown in a model for the axonal form of CMT that histone deacetylase 6 (HDAC6) can serve as a target for the development of a pharmacological therapy. Therefore, we aimed at developing new selective and activity-specific HDAC6 inhibitors with improved biochemical properties. By utilizing a bicyclic cap as the structural scaffold from which to build upon, we developed several analogues that showed improved potency compared to tubastatin A while maintaining excellent selectivity compared to HDAC1. Further screening in N2a cells examining both the acetylation of α-tubulin and histones narrowed down the library of compounds to three potent and selective HDAC6 inhibitors. In mutant HSPB1-expressing DRG neurons, serving as an in vitro model for CMT2, these inhibitors were able to restore the mitochondrial axonal transport deficits. Combining structure-based development of HDAC6 inhibitors, screening in N2a cells and in a neuronal model for CMT2F, and preliminary ADMET and pharmacokinetic profiles, resulted in the selection of compound 23d that possesses improved biochemical, functional, and druglike properties compared to tubastatin A.
Collapse
Affiliation(s)
- Sida Shen
- Drug
Discovery Program, University of Illinois at Chicago, 833 S. Wood
St., Chicago, Illinois 60612, United States
| | - Veronick Benoy
- Laboratory of Neurobiology, Vesalius Research Center (VIB) and Leuven Research Institute for Neuroscience and Disease (LIND), KU Leuven, O&N4 Herestraat 49, B-3000 Leuven, Belgium
| | - Joel A. Bergman
- Drug
Discovery Program, University of Illinois at Chicago, 833 S. Wood
St., Chicago, Illinois 60612, United States
| | - Jay H. Kalin
- Drug
Discovery Program, University of Illinois at Chicago, 833 S. Wood
St., Chicago, Illinois 60612, United States
| | - Mariana Frojuello
- Drug
Discovery Program, University of Illinois at Chicago, 833 S. Wood
St., Chicago, Illinois 60612, United States
| | - Giulio Vistoli
- Dipartimento
di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milano, Italy
| | - Wanda Haeck
- Laboratory of Neurobiology, Vesalius Research Center (VIB) and Leuven Research Institute for Neuroscience and Disease (LIND), KU Leuven, O&N4 Herestraat 49, B-3000 Leuven, Belgium
| | - Ludo Van Den Bosch
- Laboratory of Neurobiology, Vesalius Research Center (VIB) and Leuven Research Institute for Neuroscience and Disease (LIND), KU Leuven, O&N4 Herestraat 49, B-3000 Leuven, Belgium
| | - Alan P. Kozikowski
- Drug
Discovery Program, University of Illinois at Chicago, 833 S. Wood
St., Chicago, Illinois 60612, United States
| |
Collapse
|
22
|
Huynh AS, Estrella V, Stark VE, Cohen AS, Chen T, Casagni TJ, Josan JS, Lloyd MC, Johnson J, Hruby VJ, Vagner J, Morse DL. Tumor Targeting and Pharmacokinetics of a Near-Infrared Fluorescent-Labeled δ-Opioid Receptor Antagonist Agent, Dmt-Tic-Cy5. Mol Pharm 2016; 13:534-44. [PMID: 26713599 PMCID: PMC4936951 DOI: 10.1021/acs.molpharmaceut.5b00760] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Fluorescence molecular imaging can be employed for the development of novel cancer targeting agents. Herein, we investigated the pharmacokinetics (PK) and cellular uptake of Dmt-Tic-Cy5, a delta-opioid receptor (δOR) antagonist-fluorescent dye conjugate, as a tumor-targeting molecular imaging agent. δOR expression is observed normally in the CNS, and pathologically in some tumors, including lung liver and breast cancers. In vitro, in vivo, and ex vivo experiments were conducted to image and quantify the fluorescence signal associated with Dmt-Tic-Cy5 over time using in vitro and intravital fluorescence microscopy and small animal fluorescence imaging of tumor-bearing mice. We observed specific retention of Dmt-Tic-Cy5 in tumors with maximum uptake in δOR-expressing positive tumors at 3 h and observable persistence for >96 h; clearance from δOR nonexpressing negative tumors by 6 h; and systemic clearance from normal organs by 24 h. Live-cell and intravital fluorescence microscopy demonstrated that Dmt-Tic-Cy5 had sustained cell-surface binding lasting at least 24 h with gradual internalization over the initial 6 h following administration. Dmt-Tic-Cy5 is a δOR-targeted agent that exhibits long-lasting and specific signal in δOR-expressing tumors, is rapidly cleared from systemic circulation, and is not retained in non-δOR-expressing tissues. Hence, Dmt-Tic-Cy5 has potential as a fluorescent tumor imaging agent.
Collapse
Affiliation(s)
- Amanda Shanks Huynh
- Department of Cancer Imaging & Metabolism, H. Lee Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL 33612
| | - Veronica Estrella
- Department of Cancer Imaging & Metabolism, H. Lee Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL 33612
| | - Valerie E. Stark
- Department of Cancer Imaging & Metabolism, H. Lee Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL 33612
| | - Allison S. Cohen
- Department of Cancer Imaging & Metabolism, H. Lee Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL 33612
| | - Tingan Chen
- Analytic Microscopy Core, H. Lee Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL 33612
| | - Todd J. Casagni
- Department of Comparative Medicine, H. Lee Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive Tampa, FL 33612
| | - Jatinder S. Josan
- Department of Chemistry, The University of Arizona, 1306 E University Blvd., Tucson, AZ 85719
| | - Mark C. Lloyd
- Analytic Microscopy Core, H. Lee Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL 33612
| | - Joseph Johnson
- Analytic Microscopy Core, H. Lee Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL 33612
| | - Victor J. Hruby
- Department of Chemistry, The University of Arizona, 1306 E University Blvd., Tucson, AZ 85719
| | - Josef Vagner
- The BIO5 Research Institute, University of Arizona, 1657 E Helen Street, Tucson, Arizona 85721
| | - David L. Morse
- Department of Cancer Imaging & Metabolism, H. Lee Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL 33612
| |
Collapse
|
23
|
Multitarget opioid ligands in pain relief: New players in an old game. Eur J Med Chem 2015; 108:211-228. [PMID: 26656913 DOI: 10.1016/j.ejmech.2015.11.028] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 02/23/2015] [Accepted: 11/18/2015] [Indexed: 11/21/2022]
Abstract
Still nowadays pain is one of the most common disabling conditions and yet it remains too often unsolved. Analgesic opioid drugs, and mainly MOR agonists such as morphine, are broadly employed for pain management. MOR activation, however, has been seen to cause not only analgesia but also undesired side effects. A potential pain treatment option is represented by the simultaneous targeting of different opioid receptors. In fact, ligands possessing multitarget capabilities led to an improved pharmacological fingerprint. This review focuses on the examination of multitarget opioid ligands which have been distinguished in peptide and non-peptide and further listed as bivalent and bifunctional ligands. Moreover, the potential of these compounds, both as analgesic drugs and pharmacological tools to explore heteromer receptors, has been stressed.
Collapse
|
24
|
Váradi A, Palmer TC, Haselton N, Afonin D, Subrath JJ, Le Rouzic V, Hunkele A, Pasternak GW, Marrone GF, Borics A, Majumdar S. Synthesis of Carfentanil Amide Opioids Using the Ugi Multicomponent Reaction. ACS Chem Neurosci 2015; 6:1570-7. [PMID: 26148793 DOI: 10.1021/acschemneuro.5b00137] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We report a novel approach to synthesize carfentanil amide analogues utilizing the isocyanide-based four-component Ugi multicomponent reaction. A small library of bis-amide analogues of carfentanil was created using N-alkylpiperidones, aniline, propionic acid, and various aliphatic isocyanides. Our lead compound showed high affinity for mu (MOR) and delta opioid receptors (DOR) with no appreciable affinity for kappa (KOR) receptors in radioligand binding assays. The compound was found to be a mixed MOR agonist/partial DOR agonist in [(35)S]GTPγS functional assays, and it showed moderate analgesic potency in vivo. The compound showed no visible signs of physical dependence or constipation in mice. In addition, it produced less respiratory depression than morphine. Most mixed MOR/DOR opioids reported in the literature are peptides and thereby systemically inactive. Our approach utilizing a multicomponent reaction has the promise to deliver potent and efficacious small-molecule analgesics with potential clinical utility.
Collapse
Affiliation(s)
- András Váradi
- Department
of Neurology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
| | - Travis C. Palmer
- Department
of Neurology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
| | - Nathan Haselton
- Department
of Neurology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
| | - Daniel Afonin
- Department
of Neurology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
| | - Joan J. Subrath
- Department
of Neurology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
| | - Valerie Le Rouzic
- Department
of Neurology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
| | - Amanda Hunkele
- Department
of Neurology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
| | - Gavril W. Pasternak
- Department
of Neurology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
| | - Gina F. Marrone
- Department
of Neurology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
| | - Attila Borics
- Institute
of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, Szeged, Hungary H-6726
| | - Susruta Majumdar
- Department
of Neurology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
| |
Collapse
|
25
|
Loriga G, Lazzari P, Manca I, Ruiu S, Falzoi M, Murineddu G, Bottazzi MEH, Pinna G, Pinna GA. Novel diazabicycloalkane delta opioid agonists. Bioorg Med Chem 2015; 23:5527-38. [DOI: 10.1016/j.bmc.2015.07.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 07/17/2015] [Accepted: 07/19/2015] [Indexed: 12/19/2022]
|
26
|
Synthesis and biological evaluations of novel endomorphin analogues containing α-hydroxy-β-phenylalanine (AHPBA) displaying mixed μ/δ opioid receptor agonist and δ opioid receptor antagonist activities. Eur J Med Chem 2015; 92:270-81. [DOI: 10.1016/j.ejmech.2014.12.049] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 12/28/2014] [Indexed: 12/29/2022]
|
27
|
Bird MF, Vardanyan RS, Hruby VJ, Calò G, Guerrini R, Salvadori S, Trapella C, McDonald J, Rowbotham DJ, Lambert DG. Development and characterisation of novel fentanyl-delta opioid receptor antagonist based bivalent ligands. Br J Anaesth 2015; 114:646-56. [PMID: 25680364 DOI: 10.1093/bja/aeu454] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Opioid tolerance is a limiting factor in chronic pain. Delta opioid peptide (DOP)(δ) receptor antagonism has been shown to reduce tolerance. Here, the common clinical mu opioid peptide (MOP)(µ) receptor agonist fentanyl has been linked to the DOP antagonist Dmt-Tic (2',6'-dimethyl-L-tyrosyl-1,2,3,4-tetrahydrisoquinoline-3-carboxylic acid) to create new bivalent compounds. METHODS Binding affinities of bivalents(#9, #10, #11, #12 and #13) were measured in Chinese hamster ovary (CHO) cells expressing recombinant human MOP, DOP, Kappa opioid peptide (KOP)(κ) and nociceptin/orphanin FQ opioid peptide (NOP) receptors. Functional studies, measuring GTPγ[(35)S] or β-arrestin recruitment, were performed in membranes or whole cells respectively expressing MOP and DOP. RESULTS The new bivalents bound to MOP (pKi : #9:7.31; #10:7.58; #11:7.91; #12:7.94; #13:8.03) and DOP (#9:8.03; #10:8.16; #11:8.17; #12:9.67; #13:9.71). In GTPγ[(35)S] functional assays, compounds #9(pEC50:6.74; intrinsic activity:0.05) #10(7.13;0.34) and #11(7.52;0.27) showed weak partial agonist activity at MOP. Compounds #12 and #13, with longer linkers, showed no functional activity at MOP. In antagonist assays at MOP, compounds #9 (pKb:6.87), #10(7.55) #11(7.81) #12(6.91) and #13(7.05) all reversed the effects of fentanyl. At DOP, all compounds showed antagonist affinity (#9:6.85; #10:8.06; #11:8.11; #12:9.42; #13:9.00), reversing the effects of DPDPE ([D-Pen(2,5)]enkephalin). In β-arrestin assays, compared with fentanyl (with response at maximum concentration (RMC):13.62), all compounds showed reduced ability to activate β-arrestin (#9 RMC:1.58; #10:2.72; #11:2.40; #12:1.29; #13:1.58). Compared with fentanyl, the intrinsic activity was: #9:0.12; #10:0.20; #11:0.18; #12:0.09 and #13:0.12. CONCLUSIONS The addition of a linker between fentanyl and Dmt-Tic did not alter the ability to bind to MOP and DOP, however a substantial loss in MOP functional activity was apparent. This highlights the difficulty in multifunctional opioid development.
Collapse
Affiliation(s)
- M F Bird
- Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester LE2 7LX, UK
| | - R S Vardanyan
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - V J Hruby
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - G Calò
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara and Italian Institute of Neuroscience, Ferrara, Italy
| | - R Guerrini
- Department of Chemical and Pharmaceutical Sciences and LTTA (Laboratorio per le Tecnologie delle Terapie Avanzate), University of Ferrara, Ferrara, Italy
| | - S Salvadori
- Department of Chemical and Pharmaceutical Sciences and LTTA (Laboratorio per le Tecnologie delle Terapie Avanzate), University of Ferrara, Ferrara, Italy
| | - C Trapella
- Department of Chemical and Pharmaceutical Sciences and LTTA (Laboratorio per le Tecnologie delle Terapie Avanzate), University of Ferrara, Ferrara, Italy
| | - J McDonald
- Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester LE2 7LX, UK
| | - D J Rowbotham
- Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester LE2 7LX, UK
| | - D G Lambert
- Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester LE2 7LX, UK
| |
Collapse
|
28
|
Jida M, Betti C, Schiller PW, Tourwé D, Ballet S. One-pot isomerization-cross metathesis-reduction (ICMR) synthesis of lipophilic tetrapeptides. ACS COMBINATORIAL SCIENCE 2014; 16:342-51. [PMID: 24906051 PMCID: PMC4140390 DOI: 10.1021/co500020a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
An efficient, versatile and rapid
method toward homologue series
of lipophilic tetrapeptide derivatives (herein, the opioid peptides
H-TIPP-OH and H-DIPP-OH) is reported. High atom economy and a minimal
number of synthetic steps resulted from a one-pot tandem isomerization-cross
metathesis-reduction sequence (ICMR), applicable both in solution
and solid phase methodology. The broadly applicable synthesis proceeds
with short reaction times and simple work-up, as illustrated in this
work for alkylated opioid tetrapeptides.
Collapse
Affiliation(s)
- Mouhamad Jida
- Department
of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Cecilia Betti
- Department
of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Peter W. Schiller
- Department
of Chemical Biology and Peptide Research, Clinical Research Institute of Montreal, 110 Avenue Des Pins Ouest, Montreal, Quebec H2W 1R7, Canada
| | - Dirk Tourwé
- Department
of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Steven Ballet
- Department
of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| |
Collapse
|
29
|
Mosberg HI, Yeomans L, Anand JP, Porter V, Sobczyk-Kojiro K, Traynor JR, Jutkiewicz EM. Development of a bioavailable μ opioid receptor (MOPr) agonist, δ opioid receptor (DOPr) antagonist peptide that evokes antinociception without development of acute tolerance. J Med Chem 2014; 57:3148-53. [PMID: 24641190 PMCID: PMC3993928 DOI: 10.1021/jm5002088] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have previously described a cyclic tetrapeptide, 1, that displays μ opioid receptor (MOPr) agonist and δ opioid receptor (DOPr) antagonist activity, a profile associated with a reduced incidence of opioid tolerance and dependence. Like many peptides, 1 has poor bioavailability. We describe here an analogue of 1 with an added C-terminal β-glucosylserine residue, Ser(β-Glc)NH2, a modification that has previously been shown to improve bioavailability of opioid peptides. The resulting peptide, 4, exhibits full antinociceptive efficacy in the mouse warm water tail withdrawal assay after intraperitoneal administration with potency similar to that of morphine. Further, 4 does not give rise to acute tolerance and thus represents a promising lead for the development of opioid analgesics with reduced side effects.
Collapse
Affiliation(s)
- Henry I Mosberg
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan , Ann Arbor, Michigan 48109, United States
| | | | | | | | | | | | | |
Collapse
|
30
|
Anand JP, Porter-Barrus VR, Waldschmidt HV, Yeomans L, Pogozheva ID, Traynor JR, Mosberg HI. Translation of structure-activity relationships from cyclic mixed efficacy opioid peptides to linear analogues. Biopolymers 2014; 102:107-14. [PMID: 24436042 PMCID: PMC4132888 DOI: 10.1002/bip.22437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 09/17/2013] [Accepted: 10/11/2013] [Indexed: 11/11/2022]
Abstract
Most opioid analgesics used in the treatment of pain are mu opioid receptor (MOR) agonists. While effective, there are significant drawbacks to opioid use, including the development of tolerance and dependence. However, the coadministration of a MOR agonist with a delta opioid receptor (DOR) antagonist slows the development of MOR-related side effects, while maintaining analgesia. We have previously reported a series of cyclic mixed efficacy MOR agonist/DOR antagonist ligands. Here we describe the transfer of key features from these cyclic analogs to linear sequences. Using the linear MOR/DOR agonist, Tyr-DThr-Gly-Phe-Leu-Ser-NH2 (DTLES), as a lead scaffold, we replaced Phe(4) with bulkier and/or constrained aromatic residues shown to confer DOR antagonism in our cyclic ligands. These replacements failed to confer DOR antagonism in the DTLES analogs, presumably because the more flexible linear ligands can adopt binding poses that will fit in the narrow binding pocket of the active conformations of both MOR and DOR. Nonetheless, the pharmacological profile observed in this series, high affinity and efficacy for MOR and DOR with selectivity relative to KOR, has also been shown to reduce the development of unwanted side effects. We further modified our lead MOR/DOR agonist with a C-terminal glucoserine to improve bioavailability. The resulting ligand displayed high efficacy and potency at both MOR and DOR and no efficacy at KOR.
Collapse
Affiliation(s)
- Jessica P Anand
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109
| | | | | | | | | | | | | |
Collapse
|
31
|
Lee YS, Qu H, Davis P, Ma SW, Vardanyan R, Lai J, Porreca F, Hruby VJ. Chiral Effect of a Phe Residue in Position 3 of the Dmt 1-L(or D)-Tic 2 Analogues on Opioid Functional Activities. ACS Med Chem Lett 2013; 4:656-659. [PMID: 24648867 DOI: 10.1021/ml400115n] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
In this letter, we describe a structure-activity relationships study, specifically related to the chirality of third amino acid residue in our H-Dmt-L(or D)-Tic analogues, of which C-terminus is attached to a piperidinyl moiety. Observed selectivities and functional activities of these analogues demonstrated that the chiralities of the second and third position residues are crucial for determining whether these ligands act as antagonists or agonists at the δ opioid receptor, but not at the μ opioid receptor.
Collapse
Affiliation(s)
- Yeon Sun Lee
- Department
of Chemistry and Biochemistry and ‡Department of Pharmacology, University of Arizona, Tucson, Arizona 85721, United
States
| | - HongChang Qu
- Department
of Chemistry and Biochemistry and ‡Department of Pharmacology, University of Arizona, Tucson, Arizona 85721, United
States
| | - Peg Davis
- Department
of Chemistry and Biochemistry and ‡Department of Pharmacology, University of Arizona, Tucson, Arizona 85721, United
States
| | - Shou-Wu Ma
- Department
of Chemistry and Biochemistry and ‡Department of Pharmacology, University of Arizona, Tucson, Arizona 85721, United
States
| | - Ruben Vardanyan
- Department
of Chemistry and Biochemistry and ‡Department of Pharmacology, University of Arizona, Tucson, Arizona 85721, United
States
| | - Josephine Lai
- Department
of Chemistry and Biochemistry and ‡Department of Pharmacology, University of Arizona, Tucson, Arizona 85721, United
States
| | - Frank Porreca
- Department
of Chemistry and Biochemistry and ‡Department of Pharmacology, University of Arizona, Tucson, Arizona 85721, United
States
| | - Victor J. Hruby
- Department
of Chemistry and Biochemistry and ‡Department of Pharmacology, University of Arizona, Tucson, Arizona 85721, United
States
| |
Collapse
|
32
|
Etayo P, Vidal-Ferran A. Rhodium-catalysed asymmetric hydrogenation as a valuable synthetic tool for the preparation of chiral drugs. Chem Soc Rev 2013; 42:728-54. [PMID: 23132556 DOI: 10.1039/c2cs35410a] [Citation(s) in RCA: 302] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
During the last few decades, rhodium-catalysed asymmetric hydrogenation of diverse alkene classes has emerged as a powerful synthetic tool in the pharmaceutical industry, contributing to the manufacturing of chiral drugs, recent drug candidates for clinical trials, and major synthetic precursors of drugs. Numerous efficient chiral rhodium complexes, most of which are derived from enantiopure phosphorus ligands, have been employed for the preparation of chiral drugs and intermediates thereof. This review article is intended to provide an updated overview of the most striking contributions in this field, organised according to substrate class: acrylate derivatives, itaconate derivatives, α-substituted enamides, α-arylenol acetates, and minimally functionalised olefins.
Collapse
Affiliation(s)
- Pablo Etayo
- Institute of Chemical Research of Catalonia (ICIQ), Avgda. Països Catalans 16, E-43007 Tarragona, Spain
| | | |
Collapse
|
33
|
Mosberg HI, Yeomans L, Harland AA, Bender AM, Sobczyk-Kojiro K, Anand JP, Clark MJ, Jutkiewicz EM, Traynor JR. Opioid peptidomimetics: leads for the design of bioavailable mixed efficacy μ opioid receptor (MOR) agonist/δ opioid receptor (DOR) antagonist ligands. J Med Chem 2013; 56:2139-49. [PMID: 23419026 DOI: 10.1021/jm400050y] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We have previously described opioid peptidomimetic, 1, employing a tetrahydroquinoline scaffold and modeled on a series of cyclic tetrapeptide opioid agonists. We have recently described modifications to these peptides that confer a μ opioid receptor (MOR) agonist, δ opioid receptor (DOR) antagonist profile, which has been shown to reduce the development of tolerance to the analgesic actions of MOR agonists. Several such bifunctional ligands have been reported, but none has been demonstrated to cross the blood-brain barrier. Here we describe the transfer of structural features that evoked MOR agonist/DOR antagonist behavior in the cyclic peptides to the tetrahydroquinoline scaffold and show that the resulting peptidomimetics maintain the desired pharmacological profile. Further, the 4R diastereomer of 1 was fully efficacious and approximately equipotent to morphine in the mouse warm water tail withdrawal assay following intraperitoneal administration and thus a promising lead for the development of opioid analgesics with reduced tolerance.
Collapse
Affiliation(s)
- Henry I Mosberg
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Anand JP, Purington LC, Pogozheva ID, Traynor JR, Mosberg HI. Modulation of opioid receptor ligand affinity and efficacy using active and inactive state receptor models. Chem Biol Drug Des 2012; 80:763-70. [PMID: 22882801 DOI: 10.1111/cbdd.12014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mu opioid receptor (MOR) agonists are widely used for the treatment of pain; however, chronic use results in the development of tolerance and dependence. It has been demonstrated that coadministration of a MOR agonist with a delta opioid receptor (DOR) antagonist maintains the analgesia associated with MOR agonists, but with reduced negative side-effects. Using our newly refined opioid receptor models for structure-based ligand design, we have synthesized several pentapeptides with tailored affinity and efficacy profiles. In particular, we have obtained pentapeptides 8, Tyr-c(S-S)[DCys-1Nal-Nle-Cys]NH(2), and 12, Tyr-c(S-S)[DCys-1Nal-Nle-Cys]OH, which demonstrates high affinity and full agonist behavior at MOR, high affinity but very low efficacy for DOR, and minimal affinity for the kappa opioid receptor (KOR). Functional properties of these peptides as MOR agonists/DOR antagonists lacking undesired KOR activity make them promising candidates for future in vivo studies of MOR/DOR interactions. Subtle structural variation of 12, by substituting D-Cys(5) for L-Cys(5), generated analog 13, which maintains low nanomolar MOR and DOR affinity, but which displays no efficacy at either receptor. These results demonstrate the power and utility of accurate receptor models for structure-based ligand design, as well as the profound sensitivity of ligand function on its structure.
Collapse
Affiliation(s)
- Jessica P Anand
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, MI 48109, USA
| | | | | | | | | |
Collapse
|
35
|
A DFT and semiempirical model-based study of opioid receptor affinity and selectivity in a group of molecules with a morphine structural core. INTERNATIONAL JOURNAL OF MEDICINAL CHEMISTRY 2012; 2012:682495. [PMID: 25379287 PMCID: PMC4207423 DOI: 10.1155/2012/682495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 09/20/2012] [Indexed: 12/12/2022]
Abstract
We report the results of a search for model-based relationships between mu, delta, and kappa opioid receptor binding affinity and molecular structure for a group of molecules having in common a morphine structural core. The wave functions and local reactivity indices were obtained at the ZINDO/1 and B3LYP/6-31G∗∗ levels of theory for comparison. New developments in the expression for the drug-receptor interaction energy expression allowed several local atomic reactivity indices to be included, such as local electronic chemical potential, local hardness, and local electrophilicity. These indices, together with a new proposal for the ordering of the independent variables, were incorporated in the statistical study. We found and discussed several statistically significant relationships for mu, delta, and kappa opioid receptor binding affinity at both levels of theory. Some of the new local reactivity indices incorporated in the theory appear in several equations for the first time in the history of model-based equations. Interaction pharmacophores were generated for mu, delta, and kappa receptors. We discuss possible differences regulating binding and selectivity in opioid receptor subtypes. This study, contrarily to the statistically backed ones, is able to provide a microscopic insight of the mechanisms involved in the binding process.
Collapse
|
36
|
Dietis N, McDonald J, Molinari S, Calo G, Guerrini R, Rowbotham DJ, Lambert DG. Pharmacological characterization of the bifunctional opioid ligand H-Dmt-Tic-Gly-NH-Bzl (UFP-505). Br J Anaesth 2011; 108:262-70. [PMID: 22194444 DOI: 10.1093/bja/aer377] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND While producing good-quality analgesia, µ-opioid (MOP) receptor activation produces a number of side-effects including tolerance. Simultaneous blockade of δ-opioid (DOP) receptors has been shown to reduce tolerance to morphine. Here, we characterize a prototype bifunctional opioid H-Dmt-Tic-Gly-NH-Bzl (UFP-505). METHODS We measured receptor binding affinity in Chinese hamster ovary (CHO) cells expressing recombinant human MOP, DOP, k-opioid (KOP), nociceptin/orphanin (NOP) receptors. For activation, we measured the binding of GTPγ(35)S to membranes from CHO(hMOP), CHO(hDOP), rat cerebrocortex, and rat spinal cord. In addition, we assessed 'end organ' responses in the guinea pig ileum and mouse vas deferens. RESULTS UFP-505 bound to CHO(hMOP) and CHO(hDOP) with (binding affinity) pK(i) values of 7.79 and 9.82, respectively. There was a weak interaction at KOP and NOP (pK(i) 6.29 and 5.86). At CHO(hMOP), UFP-505 stimulated GTPγ(35)S binding with potency (pEC(50)) of 6.37 and in CHO(hDOP) reversed the effects of a DOP agonist with affinity (pK(b)) of 9.81 (in agreement with pK(i) at DOP). UFP-505 also stimulated GTPγ(35)S binding in rat cerebrocortex and spinal cord with pEC(50) values of 6.11-6.53. In the guinea pig ileum (MOP-rich preparation), UFP-505 inhibited contractility with pEC(50) of 7.50 and in the vas deferens (DOP-rich preparation) reversed the effects of a DOP agonist with an affinity (pA(2)) of 9.15. CONCLUSIONS We have shown in a range of preparations and assays that UFP-505 behaves as a potent MOP agonist and DOP antagonist; a MOP/DOP bifunctional opioid. Further studies in dual expression systems and whole animals with this prototype are warranted.
Collapse
Affiliation(s)
- N Dietis
- Department of Cardiovascular Sciences, University of Leicester, Leicester Royal Infirmary, Leicester LE1 5WW, UK.
| | | | | | | | | | | | | |
Collapse
|
37
|
Purington LC, Sobczyk-Kojiro K, Pogozheva ID, Traynor JR, Mosberg HI. Development and in vitro characterization of a novel bifunctional μ-agonist/δ-antagonist opioid tetrapeptide. ACS Chem Biol 2011; 6:1375-81. [PMID: 21958158 DOI: 10.1021/cb200263q] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The development of tolerance to and dependence on opioid analgesics greatly reduces their long-term usefulness. Previous studies have demonstrated that co-administration of a μ-opioid receptor (MOR) agonist and δ-opioid receptor (DOR) antagonist can decrease MOR agonist-induced tolerance and dependence development after chronic exposure. Clinically, a single ligand displaying multiple efficacies (e.g., MOR agonism concurrently with DOR antagonism) would be of increased value over two drugs administered simultaneously. Guided by modeling of receptor-ligand complexes we have developed a series of potent non-selective opioid tetrapeptides that have differing efficacy at MOR and DOR. In particular, our lead peptide (KSK-103) binds with equal affinity to MOR and DOR but acts as a MOR agonist with similar efficacy but greater potency than morphine and a DOR antagonist in cellular assays measuring both G protein stimulation and adenylyl cyclase inhibition.
Collapse
Affiliation(s)
- Lauren C. Purington
- Medical School and College of Pharmacy, Departments of †Pharmacology and ‡Medicinal Chemistry, and §Substance Abuse Research Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Katarzyna Sobczyk-Kojiro
- Medical School and College of Pharmacy, Departments of †Pharmacology and ‡Medicinal Chemistry, and §Substance Abuse Research Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Irina D. Pogozheva
- Medical School and College of Pharmacy, Departments of †Pharmacology and ‡Medicinal Chemistry, and §Substance Abuse Research Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - John R. Traynor
- Medical School and College of Pharmacy, Departments of †Pharmacology and ‡Medicinal Chemistry, and §Substance Abuse Research Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Henry I. Mosberg
- Medical School and College of Pharmacy, Departments of †Pharmacology and ‡Medicinal Chemistry, and §Substance Abuse Research Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
38
|
Vandormael B, Fourla DD, Gramowski-Voss A, Kosson P, Weiss DG, Schröder OHU, Lipkowski A, Georgoussi Z, Tourwé D. Superpotent [Dmt¹] dermorphin tetrapeptides containing the 4-aminotetrahydro-2-benzazepin-3-one scaffold with mixed μ/δ opioid receptor agonistic properties. J Med Chem 2011; 54:7848-59. [PMID: 21978284 DOI: 10.1021/jm200894e] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Novel dermorphin tetrapeptides are described in which Tyr(1) is replaced by Dmt(1), where d-Ala(2) and Gly(4) are N-methylated, and where Phe(3)-Gly(4) residue is substituted by the constrained Aba(3)-Gly(4) peptidomimetic. Most of these peptidic ligands displayed binding affinities in the nanomolar range for both μ- and δ-opioid receptors but no detectable affinity for the κ-opioid receptor. Measurements of cAMP accumulation, phosphorylation of extracellular signal-regulated kinase (ERK1/2) in HEK293 cells stably expressing each of these receptors individually, and functional screening in primary neuronal cultures confirmed the potent agonistic properties of these peptides. The most potent ligand H-Dmt-NMe-d-Ala-Aba-Gly-NH(2) (BVD03) displayed mixed μ/δ opioid agonist properties with picomolar functional potencies. Functional electrophysiological in vitro assays using primary cortical and spinal cord networks showed that this analogue possessed electrophysiological similarity toward gabapentin and sufentanil, which makes it an interesting candidate for further study as an analgesic for neuropathic pain.
Collapse
Affiliation(s)
- Bart Vandormael
- Department of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Role of 2',6'-dimethyl-l-tyrosine (Dmt) in some opioid lead compounds. Bioorg Med Chem 2010; 18:6024-30. [PMID: 20637637 DOI: 10.1016/j.bmc.2010.06.073] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 06/16/2010] [Accepted: 06/20/2010] [Indexed: 11/22/2022]
Abstract
Here we evaluated how the interchange of the amino acids 2',6'-dimethyl-L-tyrosine (Dmt), 2',6'-difluoro-L-tyrosine (Dft), and tyrosine in position 1 can affect the pharmacological characterization of some reference opioid peptides and pseudopeptides. Generally, Dft and Tyr provide analogues with a similar pharmacological profile, despite different pK(a) values. Dmt/Tyr(Dft) replacement gives activity changes depending on the reference opioid in which the modification was made. Whereas, H-Dmt-Tic-Asp *-Bid is a potent and selective delta agonist (MVD, IC(50)=0.12nM); H-Dft-Tic-Asp *-Bid and H-Tyr-Tic-Asp *-Bid are potent and selective delta antagonists (pA(2)=8.95 and 8.85, respectively). When these amino acids are employed in the synthesis of deltorphin B and its Dmt(1) and Dft(1) analogues, the three compounds maintain a very similar delta agonism (MVD, IC(50) 0.32-0.53 nM) with a decrease in selectivity relative to the Dmt(1) analogue. In the less selective H-Dmt-Tic-Gly *-Bid the replacement of Dmt with Dft and Tyr retains the delta agonism but with a decrease in potency. Antagonists containing the Dmt-Tic pharmacophore do not support the exchange of Dmt with Dft or Tyr.
Collapse
|
40
|
Zhang Y, Feng J, Liu C, Zhang L, Jiao J, Fang H, Su L, Zhang X, Zhang J, Li M, Wang B, Xu W. Design, synthesis and preliminary activity assay of 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid derivatives as novel Histone deacetylases (HDACs) inhibitors. Bioorg Med Chem 2010; 18:1761-72. [PMID: 20171895 DOI: 10.1016/j.bmc.2010.01.060] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2010] [Revised: 01/27/2010] [Accepted: 01/28/2010] [Indexed: 11/24/2022]
|
41
|
Balboni G, Salvadori S, Trapella C, Knapp BI, Bidlack JM, Lazarus LH, Peng X, Neumeyer JL. Evolution of the Bifunctional Lead μ Agonist / δ Antagonist Containing the Dmt-Tic Opioid Pharmacophore. ACS Chem Neurosci 2010; 1:155-164. [PMID: 20352071 DOI: 10.1021/cn900025j] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Based on a renewed importance recently attributed to bi- or multifunctional opioids, we report the synthesis and pharmacological evaluation of some analogues derived from our lead μ agonist / δ antagonist, H-Dmt-Tic-Gly-NH-Bzl. Our previous studies focused on the importance of the C-teminal benzyl function in the induction of such bifunctional activity. The introduction of some substituents in the para position of the phenyl ring (-Cl, -CH(3), partially -NO(2), inactive -NH(2)) was found to give a more potent μ agonist / antagonist effect associated with a relatively unmodified δ antagonist activity (pA(2) = 8.28-9.02). Increasing the steric hindrance of the benzyl group (using diphenylmethyl and tetrahydroisoquinoline functionalities) substantially maintained the μ agonist and δ antagonist activities of the lead compound. Finally and quite unexpectedly D-Tic2, considered as a wrong opioid message now; inserted into the reference compound in lieu of L-Tic, provided a μ agonist / δ agonist better than our reference ligand (H-Dmt-Tic-Gly-NH-Ph) and was endowed with the same pharmacological profile.
Collapse
Affiliation(s)
- Gianfranco Balboni
- Department of Toxicology, University of Cagliari, I-09124, Cagliari, Italy
| | - Severo Salvadori
- Department of Pharmaceutical Sciences and Biotechnology Center, University of Ferrara, I-44100 Ferrara, Italy
| | - Claudio Trapella
- Department of Pharmaceutical Sciences and Biotechnology Center, University of Ferrara, I-44100 Ferrara, Italy
| | - Brian I. Knapp
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642
| | - Jean M. Bidlack
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642
| | - Lawrence H. Lazarus
- Medicinal Chemistry Group, Laboratory of Pharmacology, National Institute of Environmental Health Sciences, Research Triangle Park, North 6 Carolina 27709
| | - Xuemei Peng
- Alcohol and Drug Abuse Research Center, McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont, Massachusetts 02478
| | - John L. Neumeyer
- Alcohol and Drug Abuse Research Center, McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont, Massachusetts 02478
| |
Collapse
|
42
|
Purington LC, Pogozheva ID, Traynor JR, Mosberg HI. Pentapeptides displaying mu opioid receptor agonist and delta opioid receptor partial agonist/antagonist properties. J Med Chem 2009; 52:7724-31. [PMID: 19788201 DOI: 10.1021/jm9007483] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chronic use of mu-opioid agonists has been shown to cause neurochemical adaptations resulting in tolerance and dependence. While the analgesic effects of these drugs are mediated by mu-opioid receptors (MOR), several studies have shown that antagonism or knockdown of delta-opioid receptors (DOR) can lessen or prevent development of tolerance and dependence. On the basis of computational modeling of putative active and inactive conformations of MOR and DOR, we have synthesized a series of pentapeptides with the goal of developing a MOR agonist/DOR antagonist peptide with similar affinity at both receptors as a tool to probe functional opioid receptor interaction(s). The eight resulting naphthylalanine-substituted cyclic pentapeptides displayed variable mixed-efficacy profiles. The most promising peptide (9; Tyr-c(S-CH(2)-S)[D-Cys-Phe-2-Nal-Cys]NH(2)) displayed a MOR agonist and DOR partial agonist/antagonist profile and bound with equipotent affinity (K(i) approximately 0.5 nM) to both receptors, but also showed kappa opioid receptor (KOR) agonist activity.
Collapse
Affiliation(s)
- Lauren C Purington
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109-5632, USA
| | | | | | | |
Collapse
|
43
|
Diao X, Wang Y, Jiang Y, Ma D. Assembly of substituted 1H-benzimidazoles and 1,3-dihydrobenzimidazol-2-ones via CuI/L-proline catalyzed coupling of aqueous ammonia with 2-iodoacetanilides and 2-iodophenylcarbamates. J Org Chem 2009; 74:7974-7. [PMID: 19775088 DOI: 10.1021/jo9017183] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
CuI/l-proline catalyzed coupling of aqueous ammonia with 2-iodoacetanilides and 2-iodophenylcarbamates affords the aryl amination products at room temperature, which undergo in situ additive cyclization under acidic conditions or heating to give substituted 1H-benzimidazoles and 1,3-dihydrobenzimidazol-2-ones, respectively. A wide range of functional groups including ketone, nitro, iodo, bromo, and ester are tolerated under these reaction conditions, providing these heterocycles with great diversity.
Collapse
Affiliation(s)
- Xiaoqiong Diao
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | | | | | | |
Collapse
|
44
|
Balboni G, Trapella C, Sasaki Y, Ambo A, Marczak ED, Lazarus LH, Salvadori S. Influence of the Side Chain Next to C-Terminal Benzimidazole in Opioid Pseudopeptides Containing the Dmt-Tic Pharmacophore. J Med Chem 2009; 52:5556-9. [DOI: 10.1021/jm900686q] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Gianfranco Balboni
- Department of Toxicology, University of Cagliari, I-09124, Cagliari, Italy
| | - Claudio Trapella
- Department of Pharmaceutical Sciences and Biotechnology Center, University of Ferrara, I-44100 Ferrara, Italy
| | - Yusuke Sasaki
- Department of Pharmacology, Tohoku Pharmaceutical University, 4-1 Komatsushima 4-chome, Aoba-Ku, Sendai 981-8558, Japan
| | - Akihiro Ambo
- Department of Pharmacology, Tohoku Pharmaceutical University, 4-1 Komatsushima 4-chome, Aoba-Ku, Sendai 981-8558, Japan
| | - Ewa D. Marczak
- Medicinal Chemistry Group, Laboratory of Pharmacology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
| | - Lawrence H. Lazarus
- Medicinal Chemistry Group, Laboratory of Pharmacology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
| | - Severo Salvadori
- Department of Pharmaceutical Sciences and Biotechnology Center, University of Ferrara, I-44100 Ferrara, Italy
| |
Collapse
|
45
|
|
46
|
Dietis N, Guerrini R, Calo G, Salvadori S, Rowbotham D, Lambert D. Simultaneous targeting of multiple opioid receptors: a strategy to improve side-effect profile. Br J Anaesth 2009; 103:38-49. [DOI: 10.1093/bja/aep129] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
47
|
Schiller PW. Bi- or multifunctional opioid peptide drugs. Life Sci 2009; 86:598-603. [PMID: 19285088 DOI: 10.1016/j.lfs.2009.02.025] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Revised: 02/12/2009] [Accepted: 02/25/2009] [Indexed: 11/15/2022]
Abstract
Strategies for the design of bi- or multifunctional drugs are reviewed. A distinction is made between bifunctional drugs interacting in a monovalent fashion with two targets and ligands containing two distinct pharmacophores binding in a bivalent mode to the two binding sites in a receptor heterodimer. Arguments are presented to indicate that some of the so-called "bivalent" ligands reported in the literature are unlikely to simultaneously interact with two binding sites. Aspects related to the development of bi- or multifunctional drugs are illustrated with examples from the field of opioid analgesics. The drug-like properties of the tetrapeptide Dmt(1)[DALDA] with triple action as a micro opioid agonist, norepinephrine uptake inhibitor and releaser of endogenous opioid peptides to produce potent spinal analgesia are reviewed. Rationales for the development of opioid peptides with mixed agonist/antagonist profiles as analgesics with reduced side effects are presented. Progress in the development of mixed micro opioid agonist/delta opioid antagonists with low propensity to produce tolerance and physical dependence is reviewed. Efforts to develop bifunctional peptides containing a micro opioid agonist and a cholecystokinin antagonist or an NK1 receptor antagonist as analgesics expected to produce less tolerance and dependence are also reviewed. A strategy to improve the drug-like properties of bifunctional opioid peptide analgesics is presented.
Collapse
Affiliation(s)
- Peter W Schiller
- Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montreal, 110 Pine Avenue West, Montreal, Quebec, Canada H2W 1R7.
| |
Collapse
|
48
|
Li Y, Ding K, Sandoval CA. Hybrid NH2-Benzimidazole Ligands for Efficient Ru-Catalyzed Asymmetric Hydrogenation of Aryl Ketones. Org Lett 2009; 11:907-10. [DOI: 10.1021/ol802766u] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yuehui Li
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Kuiling Ding
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Christian A. Sandoval
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
49
|
Balboni G, Fiorini S, Baldisserotto A, Trapella C, Sasaki Y, Ambo A, Marczak ED, Lazarus LH, Salvadori S. Further studies on lead compounds containing the opioid pharmacophore Dmt-Tic. J Med Chem 2008; 51:5109-17. [PMID: 18680274 DOI: 10.1021/jm800587e] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Some reference opioids containing the Dmt-Tic pharmacophore, especially the delta agonists H-Dmt-Tic-Gly-NH-Ph (1) and H-Dmt-Tic-NH-(S)CH(CH2-COOH)-Bid (4) (UFP-512) were evaluated for the influence of the substitution of Gly with aspartic acid, its chirality, and the importance of the -NH-Ph and N(1)H-Bid hydrogens in the inductions of delta agonism. The results provide the following conclusions: (i) Asp increases delta selectivity by lowering the mu affinity; (ii) -NH-Ph and N(1)H-Bid nitrogens methylation transforms the delta agonists into delta antagonists; (iii) the substitution of Gly with L-Asp/D-Asp in the delta agonist H-Dmt-Tic-Gly-NH-Ph gave delta antagonists; the same substitution in the delta agonist H-Dmt-Tic-NH-CH2-Bid yielded more selective agonists, H-Dmt-Tic-NH-(S)CH(CH2-COOH)-Bid and H-Dmt-Tic-NH-(R)CH(CH2-COOH)-Bid; (iv) L-Asp seems important only in functional bioactivity, not in receptor affinity; (v) H-Dmt-Tic-NH-(S)CH(CH2-COOH)-Bid(N(1)-Me) (10) evidenced analgesia similar to 4, which was reversed by naltrindole only in the tail flick. 4 and 10 had opposite behaviours in mice; 4 caused agitation, 10 gave sedation and convulsions.
Collapse
Affiliation(s)
- Gianfranco Balboni
- Department of Toxicology, University of Cagliari, I-09124 Cagliari, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
The nociceptin/orphanin FQ receptor: a target with broad therapeutic potential. Nat Rev Drug Discov 2008; 7:694-710. [DOI: 10.1038/nrd2572] [Citation(s) in RCA: 284] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|