1
|
Park H, Lee CH. The contribution of the nervous system in the cancer progression. BMB Rep 2024; 57:167-175. [PMID: 38523371 PMCID: PMC11058356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/09/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024] Open
Abstract
Cancer progression is driven by genetic mutations, environmental factors, and intricate interactions within the tumor microenvironment (TME). The TME comprises of diverse cell types, such as cancer cells, immune cells, stromal cells, and neuronal cells. These cells mutually influence each other through various factors, including cytokines, vascular perfusion, and matrix stiffness. In the initial or developmental stage of cancer, neurotrophic factors such as nerve growth factor, brain-derived neurotrophic factor, and glial cell line-derived neurotrophic factor are associated with poor prognosis of various cancers by communicating with cancer cells, immune cells, and peripheral nerves within the TME. Over the past decade, research has been conducted to prevent cancer growth by controlling the activation of neurotrophic factors within tumors, exhibiting a novel attemt in cancer treatment with promising results. More recently, research focusing on controlling cancer growth through regulation of the autonomic nervous system, including the sympathetic and parasympathetic nervous systems, has gained significant attention. Sympathetic signaling predominantly promotes tumor progression, while the role of parasympathetic signaling varies among different cancer types. Neurotransmitters released from these signalings can directly or indirectly affect tumor cells or immune cells within the TME. Additionally, sensory nerve significantly promotes cancer progression. In the advanced stage of cancer, cancer-associated cachexia occurs, characterized by tissue wasting and reduced quality of life. This process involves the pathways via brainstem growth and differentiation factor 15-glial cell line-derived neurotrophic factor receptor alpha-like signaling and hypothalamic proopiomelanocortin neurons. Our review highlights the critical role of neurotrophic factors as well as central nervous system on the progression of cancer, offering promising avenues for targeted therapeutic strategies. [BMB Reports 2024; 57(4): 167-175].
Collapse
Affiliation(s)
- Hongryeol Park
- Department of Tissue Morphogenesis, Max-Planck Institute for Molecular Biomedicine, Muenster D-48149, Germany, Chuncheon 24252, Korea
| | - Chan Hee Lee
- Department of Biomedical Science, Hallym University, Chuncheon 24252, Korea
- Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon 24252, Korea
| |
Collapse
|
2
|
Orlandi P, Banchi M, Vaglini F, Carli M, Aringhieri S, Bandini A, Pardini C, Viaggi C, Lai M, Alì G, Ottani A, Vandini E, Guidi P, Bernardeschi M, La Rocca V, Francia G, Fontanini G, Pistello M, Frenzilli G, Giuliani D, Scarselli M, Bocci G. Melanocortin receptor 4 as a new target in melanoma therapy: Anticancer activity of the inhibitor ML00253764 alone and in association with B-raf inhibitor vemurafenib. Biochem Pharmacol 2024; 219:115952. [PMID: 38036189 DOI: 10.1016/j.bcp.2023.115952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/27/2023] [Indexed: 12/02/2023]
Abstract
The aim of our study is to investigate in vitro and in vivo MC4R as a novel target in melanoma using the selective antagonist ML00253764 (ML) alone and in combination with vemurafenib, a B-rafV600E inhibitor. The human melanoma B-raf mutated A-2058 and WM 266-4 cell lines were used. An MC4R null A-2058 cell line was generated using a CRISPR/Cas9 system. MC4R protein expression was analysed by western blotting, immunohistochemistry, and immunofluorescence. Proliferation and apoptotic assays were performed with ML00253764, whereas the synergism with vemurafenib was evaluated by the combination index (CI) and Loewe methods. ERK1/2 phosphorylation and BCL-XL expression were quantified by western blot. In vivo experiments were performed in Athymic Nude-Foxn1nu male mice, injecting subcutaneously melanoma cells, and treating animals with ML, vemurafenib and their concomitant combination. Comet and cytome assays were performed. Our results show that human melanoma cell lines A-2058 and WM 266-4, and melanoma human tissue, express functional MC4R receptors on their surface. MC4R receptors on melanoma cells can be inhibited by the selective antagonist ML, causing antiproliferative and proapoptotic activity through the inhibition of phosphorylation of ERK1/2 and a reduction of BCL-XL. The concomitant combination of vemurafenib and ML caused a synergistic effect on melanoma cells in vitro and inhibited in vivo tumor growth in a preclinical model, without causing mouse weight loss or genotoxicity. Our original research contributes to the landscape of pharmacological treatments for melanoma, providing MC4R antagonists as drugs that can be added to established therapies.
Collapse
Affiliation(s)
- Paola Orlandi
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Pisa, Italy
| | - Marta Banchi
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Pisa, Italy
| | - Francesca Vaglini
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Pisa, Italy
| | - Marco Carli
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Pisa, Italy
| | - Stefano Aringhieri
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Pisa, Italy
| | - Arianna Bandini
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Pisa, Italy
| | - Carla Pardini
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Pisa, Italy
| | - Cristina Viaggi
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Pisa, Italy
| | - Michele Lai
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Pisa, Italy
| | - Greta Alì
- Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell'Area Critica, Università di Pisa, Pisa, Italy
| | - Alessandra Ottani
- Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze, Sezione di Farmacologia e Medicina Molecolare, Università di Modena e Reggio Emilia, Modena, Italy
| | - Eleonora Vandini
- Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze, Sezione di Farmacologia e Medicina Molecolare, Università di Modena e Reggio Emilia, Modena, Italy
| | - Patrizia Guidi
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Pisa, Italy
| | | | - Veronica La Rocca
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Pisa, Italy; Scuola Superiore Sant'Anna, Pisa, Italy
| | - Giulio Francia
- Border Biomedical Research Center, University of Texas at El Paso (UTEP), El Paso, TX, USA
| | - Gabriella Fontanini
- Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell'Area Critica, Università di Pisa, Pisa, Italy
| | - Mauro Pistello
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Pisa, Italy
| | - Giada Frenzilli
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Pisa, Italy
| | - Daniela Giuliani
- Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze, Sezione di Farmacologia e Medicina Molecolare, Università di Modena e Reggio Emilia, Modena, Italy
| | - Marco Scarselli
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Pisa, Italy
| | - Guido Bocci
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Pisa, Italy.
| |
Collapse
|
3
|
Hernandez CC, Gimenez LE, Cone RD. Automated Patch Clamp Recordings of GPCR-Gated Ion Channels: Targeting the MC4-R/Kir7.1 Potassium Channel Complex. Methods Mol Biol 2024; 2796:229-248. [PMID: 38856905 DOI: 10.1007/978-1-0716-3818-7_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Automated patch clamp recording is a valuable technique in drug discovery and the study of ion channels. It allows for the precise measurement and manipulation of channel currents, providing insights into their function and modulation by drugs or other compounds. The melanocortin 4 receptor (MC4-R) is a G protein-coupled receptor (GPCR) crucial to appetite regulation, energy balance, and body weight. MC4-R signaling is complex and involves interactions with other receptors and neuropeptides in the appetite-regulating circuitry. MC4-Rs, like other GPCRs, are known to modulate ion channels such as Kir7.1, an inward rectifier potassium channel, in response to ligand binding. This modulation is critical for controlling ion flow across the cell membrane, which can influence membrane potential, excitability, and neurotransmission. The MC4-R is the target for the anti-obesity drug Imcivree. However, this drug is known to lack optimal potency and also has side effects. Using high-throughput techniques for studying the MC4-R/Kir7.1 complex allows researchers to rapidly screen many compounds or conditions, aiding the development of drugs that target this system. Additionally, automated patch clamp recording of this receptor-channel complex and its ligands can provide valuable functional and pharmacological insights supporting the development of novel therapeutic strategies. This approach can be generalized to other GPCR-gated ion channel functional complexes, potentially accelerating the pace of research in different fields with the promise to uncover previously unknown aspects of receptor-ion channel interactions.
Collapse
Affiliation(s)
- Ciria C Hernandez
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA.
- Center for Chemical Genomics, Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA.
| | - Luis E Gimenez
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Roger D Cone
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular and Integrative Physiology, School of Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
4
|
Ji RL, Liu T, Hou ZS, Wen HS, Tao YX. Divergent Pharmacology and Biased Signaling of the Four Melanocortin-4 Receptor Isoforms in Rainbow Trout ( Oncorhynchus mykiss). Biomolecules 2023; 13:1248. [PMID: 37627313 PMCID: PMC10452266 DOI: 10.3390/biom13081248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
The melanocortin-4 receptor (MC4R) is essential for the modulation of energy balance and reproduction in both fish and mammals. Rainbow trout (Oncorhynchus mykiss) has been extensively studied in various fields and provides a unique opportunity to investigate divergent physiological roles of paralogues. Herein we identified four trout mc4r (mc4ra1, mc4ra2, mc4rb1, and mc4rb2) genes. Four trout Mc4rs (omMc4rs) were homologous to those of teleost and mammalian MC4Rs. Multiple sequence alignments, a phylogenetic tree, chromosomal synteny analyses, and pharmacological studies showed that trout mc4r genes may have undergone different evolutionary processes. All four trout Mc4rs bound to two peptide agonists and elevated intracellular cAMP levels dose-dependently. High basal cAMP levels were observed at two omMc4rs, which were decreased by Agouti-related peptide. Only omMc4rb2 was constitutively active in the ERK1/2 signaling pathway. Ipsen 5i, ML00253764, and MCL0020 were biased allosteric modulators of omMc4rb1 with selective activation upon ERK1/2 signaling. ML00253764 behaved as an allosteric agonist in Gs-cAMP signaling of omMc4rb2. This study will lay the foundation for future physiological studies of various mc4r paralogs and reveal the evolution of MC4R in vertebrates.
Collapse
Affiliation(s)
- Ren-Lei Ji
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (R.-L.J.); (T.L.)
| | - Ting Liu
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (R.-L.J.); (T.L.)
| | - Zhi-Shuai Hou
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (R.-L.J.); (T.L.)
| | - Hai-Shen Wen
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266100, China;
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (R.-L.J.); (T.L.)
| |
Collapse
|
5
|
Garnsey MR, Smith AC, Polivkova J, Arons AL, Bai G, Blakemore C, Boehm M, Buzon LM, Campion SN, Cerny M, Chang SC, Coffman K, Farley KA, Fonseca KR, Ford KK, Garren J, Kong JX, Koos MRM, Kung DW, Lian Y, Li MM, Li Q, Martinez-Alsina LA, O'Connor R, Ogilvie K, Omoto K, Raymer B, Reese MR, Ryder T, Samp L, Stevens KA, Widlicka DW, Yang Q, Zhu K, Fortin JP, Sammons MF. Discovery of the Potent and Selective MC4R Antagonist PF-07258669 for the Potential Treatment of Appetite Loss. J Med Chem 2023; 66:3195-3211. [PMID: 36802610 DOI: 10.1021/acs.jmedchem.2c02012] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
The melanocortin-4 receptor (MC4R) is a centrally expressed, class A GPCR that plays a key role in the regulation of appetite and food intake. Deficiencies in MC4R signaling result in hyperphagia and increased body mass in humans. Antagonism of MC4R signaling has the potential to mitigate decreased appetite and body weight loss in the setting of anorexia or cachexia due to underlying disease. Herein, we report on the identification of a series of orally bioavailable, small-molecule MC4R antagonists using a focused hit identification effort and the optimization of these antagonists to provide clinical candidate 23. Introduction of a spirocyclic conformational constraint allowed for simultaneous optimization of MC4R potency and ADME attributes while avoiding the production of hERG active metabolites observed in early series leads. Compound 23 is a potent and selective MC4R antagonist with robust efficacy in an aged rat model of cachexia and has progressed into clinical trials.
Collapse
Affiliation(s)
| | - Aaron C Smith
- Pfizer, Incorporated, Groton, Connecticut 06340, United States
| | - Jana Polivkova
- Pfizer, Incorporated, Groton, Connecticut 06340, United States
| | - Autumn L Arons
- Pfizer, Incorporated, Cambridge, Massachusetts 02139, United States
| | - Guoyun Bai
- Pfizer, Incorporated, Groton, Connecticut 06340, United States
| | | | - Markus Boehm
- Pfizer, Incorporated, Cambridge, Massachusetts 02139, United States
| | - Leanne M Buzon
- Pfizer, Incorporated, Groton, Connecticut 06340, United States
| | - Sarah N Campion
- Pfizer, Incorporated, Groton, Connecticut 06340, United States
| | - Matthew Cerny
- Pfizer, Incorporated, Groton, Connecticut 06340, United States
| | - Shiao-Chi Chang
- Pfizer, Incorporated, Cambridge, Massachusetts 02139, United States
| | - Karen Coffman
- Pfizer, Incorporated, Groton, Connecticut 06340, United States
| | | | - Kari R Fonseca
- Pfizer, Incorporated, Cambridge, Massachusetts 02139, United States
| | - Kristen K Ford
- Pfizer, Incorporated, Groton, Connecticut 06340, United States
| | - Jeonifer Garren
- Pfizer, Incorporated, Cambridge, Massachusetts 02139, United States
| | - Jimmy X Kong
- Pfizer, Incorporated, Cambridge, Massachusetts 02139, United States
| | - Martin R M Koos
- Pfizer, Incorporated, Groton, Connecticut 06340, United States
| | - Daniel W Kung
- Pfizer, Incorporated, Groton, Connecticut 06340, United States
| | - Yajing Lian
- Pfizer, Incorporated, Groton, Connecticut 06340, United States
| | - Monica M Li
- Pfizer, Incorporated, Cambridge, Massachusetts 02139, United States
| | - Qifang Li
- Pfizer, Incorporated, Groton, Connecticut 06340, United States
| | | | | | - Kevin Ogilvie
- Pfizer, Incorporated, Groton, Connecticut 06340, United States
| | - Kiyoyuki Omoto
- Pfizer, Incorporated, Cambridge, Massachusetts 02139, United States
| | - Brian Raymer
- Pfizer, Incorporated, Cambridge, Massachusetts 02139, United States
| | - Matthew R Reese
- Pfizer, Incorporated, Groton, Connecticut 06340, United States
| | - Tim Ryder
- Pfizer, Incorporated, Groton, Connecticut 06340, United States
| | - Lacey Samp
- Pfizer, Incorporated, Groton, Connecticut 06340, United States
| | | | | | - Qingyi Yang
- Pfizer, Incorporated, Cambridge, Massachusetts 02139, United States
| | - Kaicheng Zhu
- Pfizer, Incorporated, Groton, Connecticut 06340, United States
| | | | | |
Collapse
|
6
|
Yuan XC, Tao YX. Ligands for Melanocortin Receptors: Beyond Melanocyte-Stimulating Hormones and Adrenocorticotropin. Biomolecules 2022; 12:biom12101407. [PMID: 36291616 PMCID: PMC9599618 DOI: 10.3390/biom12101407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/25/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
The discovery of melanocortins in 1916 has resulted in more than 100 years of research focused on these peptides. Extensive studies have elucidated well-established functions of melanocortins mediated by cell surface receptors, including MSHR (melanocyte-stimulating hormone receptor) and ACTHR (adrenocorticotropin receptor). Subsequently, three additional melanocortin receptors (MCRs) were identified. Among these five MCRs, MC3R and MC4R are expressed primarily in the central nervous system, and are therefore referred to as the neural MCRs. Since the central melanocortin system plays important roles in regulating energy homeostasis, targeting neural MCRs is emerging as a therapeutic approach for treating metabolic conditions such as obesity and cachexia. Early efforts modifying endogenous ligands resulted in the development of many potent and selective ligands. This review focuses on the ligands for neural MCRs, including classical ligands (MSH and agouti-related peptide), nonclassical ligands (lipocalin 2, β-defensin, small molecules, and pharmacoperones), and clinically approved ligands (ACTH, setmelanotide, bremelanotide, and several repurposed drugs).
Collapse
Affiliation(s)
- Xiao-Chen Yuan
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230061, China
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
- Correspondence:
| |
Collapse
|
7
|
Tao YX. Mutations in melanocortin-4 receptor: From fish to men. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 189:215-257. [PMID: 35595350 DOI: 10.1016/bs.pmbts.2022.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Melanocortin-4 receptor (MC4R), expressed abundantly in the hypothalamus, is a critical regulator of energy homeostasis, including both food intake and energy expenditure. Shortly after the publication in 1997 of the Mc4r knockout phenotypes in mice, including increased food intake and severe obesity, the first mutations in MC4R were reported in humans in 1998. Studies in the subsequent two decades have established MC4R mutation as the most common monogenic form of obesity, especially in early-onset severe obesity. Studies in animals, from fish to mammals, have established the conserved physiological roles of MC4R in all vertebrates in regulating energy balance. Drug targeting MC4R has been recently approved for treating morbid genetic obesity. How the MC4R can be exploited for animal production is highly worthy of active investigation.
Collapse
Affiliation(s)
- Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States.
| |
Collapse
|
8
|
Ulloa-Aguirre A, Zariñán T, Jardón-Valadez E. Misfolded G Protein-Coupled Receptors and Endocrine Disease. Molecular Mechanisms and Therapeutic Prospects. Int J Mol Sci 2021; 22:ijms222212329. [PMID: 34830210 PMCID: PMC8622668 DOI: 10.3390/ijms222212329] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 11/30/2022] Open
Abstract
Misfolding of G protein-coupled receptors (GPCRs) caused by mutations frequently leads to disease due to intracellular trapping of the conformationally abnormal receptor. Several endocrine diseases due to inactivating mutations in GPCRs have been described, including X-linked nephrogenic diabetes insipidus, thyroid disorders, familial hypocalciuric hypercalcemia, obesity, familial glucocorticoid deficiency [melanocortin-2 receptor, MC2R (also known as adrenocorticotropin receptor, ACTHR), and reproductive disorders. In these mutant receptors, misfolding leads to endoplasmic reticulum retention, increased intracellular degradation, and deficient trafficking of the abnormal receptor to the cell surface plasma membrane, causing inability of the receptor to interact with agonists and trigger intracellular signaling. In this review, we discuss the mechanisms whereby mutations in GPCRs involved in endocrine function in humans lead to misfolding, decreased plasma membrane expression of the receptor protein, and loss-of-function diseases, and also describe several experimental approaches employed to rescue trafficking and function of the misfolded receptors. Special attention is given to misfolded GPCRs that regulate reproductive function, given the key role played by these particular membrane receptors in sexual development and fertility, and recent reports on promising therapeutic interventions targeting trafficking of these defective proteins to rescue completely or partially their normal function.
Collapse
Affiliation(s)
- Alfredo Ulloa-Aguirre
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición SZ, Mexico City 14080, Mexico;
- Correspondence:
| | - Teresa Zariñán
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición SZ, Mexico City 14080, Mexico;
| | - Eduardo Jardón-Valadez
- Departamento de Recursos de la Tierra, Universidad Autónoma Metropolitana-Lerma, Lerma de Villada 52005, Estado de México, Mexico;
| |
Collapse
|
9
|
Yang Z, Liang XF, Li GL, Tao YX. Biased signaling in fish melanocortin-4 receptors (MC4Rs): Divergent pharmacology of four ligands on spotted scat (Scatophagus argus) and grass carp (Ctenopharyngodon idella) MC4Rs. Mol Cell Endocrinol 2020; 515:110929. [PMID: 32615281 DOI: 10.1016/j.mce.2020.110929] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/19/2020] [Accepted: 06/24/2020] [Indexed: 12/24/2022]
Abstract
The melanocortin-4 receptor (MC4R) plays a critical role in the regulation of energy homeostasis in both mammals and fish. Several fish MC4Rs recently characterized have high constitutive activities, potentially associated with food intake and growth rate. In the present study, we systematically investigated the effects of four human MC4R (hMC4R) antagonists, including agouti-related peptide (AgRP), Ipsen 5i, ML00253764, and MCL0020, on the cAMP and ERK1/2 signaling of two fish MC4Rs: spotted scat (Scatophagus argus) MC4R (saMC4R) and grass carp (Ctenopharyngodon idella) MC4R (ciMC4R), with hMC4R as a control. We showed that both saMC4R and ciMC4R were constitutively active with significantly increased basal cAMP levels. AgRP acted as an inverse agonist in cAMP signaling pathway in both fish MC4Rs whereas MCL0020 functioned as an inverse agonist for ciMC4R but a weak neutral antagonist for saMC4R. Ipsen 5i and MCL0020 behaved as neutral allosteric modulators in the cAMP signaling of fish MC4Rs. The saMC4R and ciMC4R had similar basal pERK1/2 levels as hMC4R and the pERK1/2 levels of the two fish MC4Rs were significantly increased upon stimulation with all four ligands. In summary, our studies demonstrated the existence of biased signaling in fish MC4R. We also showed dramatic pharmacological differences of human and fish MC4Rs with synthetic ligands. Our data provided novel insights and led to a better understanding of fish MC4R pharmacology.
Collapse
Affiliation(s)
- Zhao Yang
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, 36849, United States
| | - Xu-Fang Liang
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Hubei Collaborative Innovation Center for Freshwater Aquaculture, Wuhan, Hubei, 430070, China
| | - Guang-Li Li
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, 36849, United States.
| |
Collapse
|
10
|
Structural Complexity and Plasticity of Signaling Regulation at the Melanocortin-4 Receptor. Int J Mol Sci 2020; 21:ijms21165728. [PMID: 32785054 PMCID: PMC7460885 DOI: 10.3390/ijms21165728] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/03/2020] [Accepted: 08/06/2020] [Indexed: 02/06/2023] Open
Abstract
The melanocortin-4 receptor (MC4R) is a class A G protein-coupled receptor (GPCR), essential for regulation of appetite and metabolism. Pathogenic inactivating MC4R mutations are the most frequent cause of monogenic obesity, a growing medical and socioeconomic problem worldwide. The MC4R mediates either ligand-independent or ligand-dependent signaling. Agonists such as α-melanocyte-stimulating hormone (α-MSH) induce anorexigenic effects, in contrast to the endogenous inverse agonist agouti-related peptide (AgRP), which causes orexigenic effects by suppressing high basal signaling activity. Agonist action triggers the binding of different subtypes of G proteins and arrestins, leading to concomitant induction of diverse intracellular signaling cascades. An increasing number of experimental studies have unraveled molecular properties and mechanisms of MC4R signal transduction related to physiological and pathophysiological aspects. In addition, the MC4R crystal structure was recently determined at 2.75 Å resolution in an inactive state bound with a peptide antagonist. Underpinned by structural homology models of MC4R complexes simulating a presumably active-state conformation compared to the structure of the inactive state, we here briefly summarize the current understanding and key players involved in the MC4R switching process between different activity states. Finally, these perspectives highlight the complexity and plasticity in MC4R signaling regulation and identify gaps in our current knowledge.
Collapse
|
11
|
Gawliński D, Gawlińska K, Frankowska M, Filip M. Maternal high-sugar diet changes offspring vulnerability to reinstatement of cocaine-seeking behavior: Role of melanocortin-4 receptors. FASEB J 2020; 34:9192-9206. [PMID: 32421249 DOI: 10.1096/fj.202000163r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/16/2020] [Accepted: 04/21/2020] [Indexed: 12/20/2022]
Abstract
Maternal diet significantly influences the proper development of offspring in utero. Modifications of diet composition may lead to metabolic and mental disorders that may predispose offspring to a substance use disorder. We assessed the impact of a maternal high-sugar diet (HSD, rich in sucrose) consumed during pregnancy and lactation on the offspring phenotype in the context of the rewarding and motivational effects of cocaine and changes within the central melanocortin (MC) system. Using an intravenous cocaine self-administration model, we showed that maternal HSD leads to increased relapse of cocaine-seeking behavior in male offspring. In addition, we demonstrated that cocaine induces changes in the level of MC-4 receptors in the offspring brain, and these changes depend on maternal diet. These studies also reveal that an MC-4 receptor antagonist reduces the reinstatement of cocaine-seeking behavior, and offspring exposed to maternal HSD are more sensitive to its effects than offspring exposed to the maternal control diet. Taken together, the results suggest that a maternal HSD and MC-4 receptors play an important role in cocaine relapse.
Collapse
Affiliation(s)
- Dawid Gawliński
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland
| | - Kinga Gawlińska
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland
| | - Małgorzata Frankowska
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland
| | - Małgorzata Filip
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
12
|
Marinko J, Huang H, Penn WD, Capra JA, Schlebach JP, Sanders CR. Folding and Misfolding of Human Membrane Proteins in Health and Disease: From Single Molecules to Cellular Proteostasis. Chem Rev 2019; 119:5537-5606. [PMID: 30608666 PMCID: PMC6506414 DOI: 10.1021/acs.chemrev.8b00532] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Indexed: 12/13/2022]
Abstract
Advances over the past 25 years have revealed much about how the structural properties of membranes and associated proteins are linked to the thermodynamics and kinetics of membrane protein (MP) folding. At the same time biochemical progress has outlined how cellular proteostasis networks mediate MP folding and manage misfolding in the cell. When combined with results from genomic sequencing, these studies have established paradigms for how MP folding and misfolding are linked to the molecular etiologies of a variety of diseases. This emerging framework has paved the way for the development of a new class of small molecule "pharmacological chaperones" that bind to and stabilize misfolded MP variants, some of which are now in clinical use. In this review, we comprehensively outline current perspectives on the folding and misfolding of integral MPs as well as the mechanisms of cellular MP quality control. Based on these perspectives, we highlight new opportunities for innovations that bridge our molecular understanding of the energetics of MP folding with the nuanced complexity of biological systems. Given the many linkages between MP misfolding and human disease, we also examine some of the exciting opportunities to leverage these advances to address emerging challenges in the development of therapeutics and precision medicine.
Collapse
Affiliation(s)
- Justin
T. Marinko
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Hui Huang
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Wesley D. Penn
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - John A. Capra
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
- Department
of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37245, United States
| | - Jonathan P. Schlebach
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Charles R. Sanders
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
| |
Collapse
|
13
|
Wang W, Guo DY, Lin YJ, Tao YX. Melanocortin Regulation of Inflammation. Front Endocrinol (Lausanne) 2019; 10:683. [PMID: 31649620 PMCID: PMC6794349 DOI: 10.3389/fendo.2019.00683] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/19/2019] [Indexed: 12/18/2022] Open
Abstract
Adrenocorticotropic hormone (ACTH), and α-, β-, and γ-melanocyte-stimulating hormones (α-, β-, γ-MSH), collectively known as melanocortins, together with their receptors (melanocortin receptors), are components of an ancient modulatory system. The clinical use of ACTH in the treatment of rheumatoid arthritis started in 1949, originally thought that the anti-inflammatory action was through hypothalamus-pituitary-adrenal axis and glucocorticoid-dependent. Subsequent decades have witnessed extensive attempts in unraveling the physiology and pharmacology of the melanocortin system. It is now known that ACTH, together with α-, β-, and γ-MSHs, also possess glucocorticoid-independent anti-inflammatory and immunomodulatory effects by activating the melanocortin receptors expressed in the brain or peripheral immune cells. This review will briefly introduce the melanocortin system and highlight the action of melanocortins in the regulation of immune functions from in vitro, in vivo, preclinical, and clinical studies. The potential therapeutic use of melanocortins are also summarized.
Collapse
Affiliation(s)
- Wei Wang
- Department of Clinical Laboratory, Xiamen Huli Guoyu Clinic, Co., Ltd., Xiamen, China
| | - Dong-Yu Guo
- Department of Clinical Laboratory, Xiamen Huli Guoyu Clinic, Co., Ltd., Xiamen, China
- *Correspondence: Dong-Yu Guo
| | - Yue-Jun Lin
- Department of Clinical Laboratory, Xiamen Huli Guoyu Clinic, Co., Ltd., Xiamen, China
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Ya-Xiong Tao
| |
Collapse
|
14
|
Wang W, Guo DY, Tao YX. Therapeutic strategies for diseases caused by loss-of-function mutations in G protein-coupled receptors. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 161:181-210. [DOI: 10.1016/bs.pmbts.2018.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
15
|
Blough B, Namjoshi O. Small Molecule Neuropeptide S and Melanocortin 4 Receptor Ligands as Potential Treatments for Substance Use Disorders. Handb Exp Pharmacol 2019; 258:61-87. [PMID: 31628605 DOI: 10.1007/164_2019_313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There is a vital need for novel approaches and biological targets for drug discovery and development. Treatment strategies for substance use disorders (SUDs) to date have been mostly ineffective other than substitution-like therapeutics. Two such targets are the peptide G-protein-coupled receptors neuropeptide S (NPS) and melanocortin 4 (MC4). Preclinical evidence suggests that antagonists, inverse agonists, or negative allosteric modulators of these receptors might be novel therapeutics for SUDs. NPS is a relatively unexplored receptor with high potential for treating SUD. MC4 has a strong link to early-onset obesity, and emerging evidence suggests significant overlap between food-maintained and drug-maintained behaviors making MC4 an intriguing target for SUD. This chapter provides an overview of the literature in relation to the roles of NPS and MC4 in drug-seeking behaviors and then provides a medicinal chemistry-based survey of the small molecule ligands for each receptor.
Collapse
Affiliation(s)
- Bruce Blough
- Center for Drug Discovery, RTI International, Research Triangle Park, NC, USA.
| | - Ojas Namjoshi
- Center for Drug Discovery, RTI International, Research Triangle Park, NC, USA
| |
Collapse
|
16
|
Yi TL, Yang LK, Ruan GL, Yang DQ, Tao YX. Melanocortin-4 receptor in swamp eel (Monopterus albus): Cloning, tissue distribution, and pharmacology. Gene 2018; 678:79-89. [PMID: 30075196 DOI: 10.1016/j.gene.2018.07.056] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/14/2018] [Accepted: 07/23/2018] [Indexed: 01/10/2023]
Abstract
Melanocortin-4 receptor (MC4R) plays critical roles in the regulation of various physiological processes, such as energy homeostasis, reproduction and sexual function, cardiovascular function, and other functions in mammals. Although the functions of the MC4R in fish have not been extensively studied, the importance of MC4R in regulation of piscine energy expenditure and sexual functions is emerging. Swamp eel (Monopterus albus) is an economically and evolutionarily important fish widely distributed in tropics and subtropics. We cloned swamp eel mc4r (mamc4r), consisting of a 981 bp open reading frame encoding a protein of 326 amino acids. The sequence of maMC4R was homologous to those of several teleost MC4Rs. Phylogenetic and chromosomal synteny analyses showed that maMC4R was closely related to piscine MC4Rs. qRT-PCR revealed that mc4r transcripts were highly expressed in brain and gonads of swamp eel. The maMC4R was further demonstrated to be a functional receptor by pharmacological studies. Four agonists, α-melanocyte stimulating hormone (α-MSH), β-MSH, [Nle4, D-Phe7]-α-MSH (NDP-MSH), and adrenocorticotropin, could bind to maMC4R and induce intracellular cAMP production dose-dependently. Small molecule agonist THIQ allosterically bound to maMC4R and exerted its effect. Similar to other fish MC4Rs, maMC4R also exhibited significantly increased basal activity compared with that of human MC4R. The high basal activity of maMC4R could be decreased by inverse agonist ML00253764, suggesting that maMC4R was indeed constitutively active. The availability of maMC4R and its pharmacological characteristics will facilitate the investigation of its function in regulating diverse physiological processes in swamp eel.
Collapse
Affiliation(s)
- Ti-Lin Yi
- School of Animal Science, Yangtze University, Jingzhou 434020, Hubei, China
| | - Li-Kun Yang
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States
| | - Guo-Liang Ruan
- School of Animal Science, Yangtze University, Jingzhou 434020, Hubei, China
| | - Dai-Qin Yang
- School of Animal Science, Yangtze University, Jingzhou 434020, Hubei, China
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States.
| |
Collapse
|
17
|
Hou ZS, Ulloa-Aguirre A, Tao YX. Pharmacoperone drugs: targeting misfolded proteins causing lysosomal storage-, ion channels-, and G protein-coupled receptors-associated conformational disorders. Expert Rev Clin Pharmacol 2018; 11:611-624. [DOI: 10.1080/17512433.2018.1480367] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Zhi-Shuai Hou
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| | - Alfredo Ulloa-Aguirre
- Red de Apoyo a la Investigación (RAI), Universidad Nacional Autónoma de México (UNAM) and Instituto Nacional de Ciencias Médicas y Nutrición SZ, Mexico City, Mexico
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
18
|
Vaglini F, Pardini C, Di Desidero T, Orlandi P, Pasqualetti F, Ottani A, Pacini S, Giuliani D, Guarini S, Bocci G. Melanocortin Receptor-4 and Glioblastoma Cells: Effects of the Selective Antagonist ML00253764 Alone and in Combination with Temozolomide In Vitro and In Vivo. Mol Neurobiol 2017; 55:4984-4997. [DOI: 10.1007/s12035-017-0702-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/31/2017] [Indexed: 12/13/2022]
|
19
|
Huang H, Wang W, Tao YX. Pharmacological chaperones for the misfolded melanocortin-4 receptor associated with human obesity. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2496-2507. [PMID: 28284973 DOI: 10.1016/j.bbadis.2017.03.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 02/28/2017] [Accepted: 03/01/2017] [Indexed: 01/01/2023]
Abstract
The melanocortin-4 receptor (MC4R) plays a vital role in regulating energy homeostasis. Mutations in the MC4R cause early-onset severe obesity. The majority of loss of function MC4R mutants are retained intracellularly, many of which are not terminally misfolded and can be stabilized and targeted to the plasma membrane by different chaperones. Some of the mutants might be functional once coaxed to the cell surface. Molecular chaperones and chemical chaperones correct the misfolding of some mutant MC4Rs. However, their therapeutic application is very limited due to their non-specific mechanism of action and, for chemical chaperone, high dosage needed to be effective. Several pharmacological chaperones have been identified for the MC4R and Ipsen 5i and Ipsen 17 are the most potent and efficacious. Here we provide a comprehensive review on how different approaches have been applied to rescue misfolded MC4R mutants. This article is part of a Special Issue entitled: Melanocortin Receptors - edited by Ya-Xiong Tao.
Collapse
Affiliation(s)
- Hui Huang
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States
| | - Wei Wang
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States.
| |
Collapse
|
20
|
Ohsawa M, Murakami T, Kume K. Possible Involvement of Insulin Resistance in the Progression of Cancer Cachexia in Mice. YAKUGAKU ZASSHI 2016; 136:687-92. [DOI: 10.1248/yakushi.15-00262-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Masahiro Ohsawa
- Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University
| | - Tomoyasu Murakami
- Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University
| | - Kazuhiko Kume
- Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University
| |
Collapse
|
21
|
Tao YX. Constitutive activity in melanocortin-4 receptor: biased signaling of inverse agonists. ADVANCES IN PHARMACOLOGY 2015; 70:135-54. [PMID: 24931195 DOI: 10.1016/b978-0-12-417197-8.00005-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The melanocortin-4 receptor (MC4R) is a critical regulator of energy homeostasis, including both energy intake and energy expenditure. It mediates the actions of a number of hormones on energy balance. The endogenous ligands for MC4R include peptide agonists derived from processing of proopiomelanocortin and the antagonist Agouti-related peptide (AgRP). Wild-type MC4R has some basal (constitutive) activity. Naturally occurring and laboratory-generated mutations have been identified, which results in either increased or decreased basal activities. Impaired basal signaling has been suggested to be a cause of dysregulated energy homeostasis and early-onset obesity, although several constitutively active mutations have also been identified from obese patients. AgRP and several small-molecule antagonists have been shown to be inverse agonists in the Gs-cAMP pathway. However, in the extracellular signal-regulated kinase (ERK) 1/2 pathway, we showed that these inverse agonists are potent agonists, demonstrating convincingly that they are biased ligands. We also showed that some mutations that do not cause constitutive activation in the Gs-cAMP pathway cause constitutive activation in the ERK1/2 pathway, suggesting that they are biased receptors. The physiological and potential pathophysiological relevance of the biased constitutive signaling in MC4R and therapeutic potential remain to be investigated.
Collapse
Affiliation(s)
- Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA.
| |
Collapse
|
22
|
Wang XH, Wang HM, Zhao BL, Yu P, Fan ZC. Rescue of defective MC4R cell-surface expression and signaling by a novel pharmacoperone Ipsen 17. J Mol Endocrinol 2014; 53:17-29. [PMID: 24780838 DOI: 10.1530/jme-14-0005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Melanocortin 4 receptor (MC4R) is a key factor in regulating energy homeostasis, and null mutations occurring in the gene encoding MC4R cause severe early-onset morbid obesity in humans. Many obesity-causing mutations affecting MC4R clinically identified so far lead to failure of mutant receptors to shuttle to the plasma membrane. In this study, we show that a novel human MC4R antagonist, Ipsen 17, acted as an pharmacological chaperone of human MCR4. As tested with 12 obesity-causing human MC4R variants including S58C, E61K, N62S, I69T, P78L, C84R, G98R, T162I, R165W, W174C, C271Y, and P299H, Ipsen 17 was found to be the most universal pharmacological chaperone of MC4R reported so far because it can completely rescue nearly all mutant receptors (except P299H) with the highest potency (an EC50 value of approximately 10(-8) M) and efficiency when compared with results for other tested pharmacological chaperones of MC4R including ML00253764, PBA, MTHP, PPPone, MPCI, DCPMP, and NBP described in the literature. Once restored to the plasma membrane, defective human MC4R variants responded to α-MSH stimulation with an EC50 value of approximately 10(-8) M and displayed dramatically enhanced signaling ability (except for G98R) in a mutant-specific efficacy and potency profile. Taken together, these results indicate that Ipsen 17 represents a candidate for the development of a targeted treatment of severe early-onset morbid obesity caused by a large subset of inherited mutations in the human MC4R gene.
Collapse
Affiliation(s)
- Xiao-Hua Wang
- Key Laboratory of Food Nutrition and Safety (Tianjin University of Science and Technology)College of Food Engineering and Biotechnology, Ministry of Education, No. 29 13rd Road, Tianjin Economy-and-Technology Development Area, Tianjin 300457, People's Republic of ChinaObesita and Algaegen LLCCollege Station, Texas 77845, USACollege of BiotechnologyTianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Hao-Meng Wang
- Key Laboratory of Food Nutrition and Safety (Tianjin University of Science and Technology)College of Food Engineering and Biotechnology, Ministry of Education, No. 29 13rd Road, Tianjin Economy-and-Technology Development Area, Tianjin 300457, People's Republic of ChinaObesita and Algaegen LLCCollege Station, Texas 77845, USACollege of BiotechnologyTianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Bao-Lei Zhao
- Key Laboratory of Food Nutrition and Safety (Tianjin University of Science and Technology)College of Food Engineering and Biotechnology, Ministry of Education, No. 29 13rd Road, Tianjin Economy-and-Technology Development Area, Tianjin 300457, People's Republic of ChinaObesita and Algaegen LLCCollege Station, Texas 77845, USACollege of BiotechnologyTianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Peng Yu
- Key Laboratory of Food Nutrition and Safety (Tianjin University of Science and Technology)College of Food Engineering and Biotechnology, Ministry of Education, No. 29 13rd Road, Tianjin Economy-and-Technology Development Area, Tianjin 300457, People's Republic of ChinaObesita and Algaegen LLCCollege Station, Texas 77845, USACollege of BiotechnologyTianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Zhen-Chuan Fan
- Key Laboratory of Food Nutrition and Safety (Tianjin University of Science and Technology)College of Food Engineering and Biotechnology, Ministry of Education, No. 29 13rd Road, Tianjin Economy-and-Technology Development Area, Tianjin 300457, People's Republic of ChinaObesita and Algaegen LLCCollege Station, Texas 77845, USACollege of BiotechnologyTianjin University of Science and Technology, Tianjin 300457, People's Republic of ChinaKey Laboratory of Food Nutrition and Safety (Tianjin University of Science and Technology)College of Food Engineering and Biotechnology, Ministry of Education, No. 29 13rd Road, Tianjin Economy-and-Technology Development Area, Tianjin 300457, People's Republic of ChinaObesita and Algaegen LLCCollege Station, Texas 77845, USACollege of BiotechnologyTianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| |
Collapse
|
23
|
Misra M. Obesity pharmacotherapy: current perspectives and future directions. Curr Cardiol Rev 2013; 9:33-54. [PMID: 23092275 PMCID: PMC3584306 DOI: 10.2174/157340313805076322] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 07/31/2012] [Accepted: 08/27/2012] [Indexed: 02/06/2023] Open
Abstract
The rising tide of obesity and its related disorders is one of the most pressing health concerns worldwide, yet existing medicines to combat the problem are disappointingly limited in number and effectiveness. Recent advances in mechanistic insights into the neuroendocrine regulation of body weight have revealed an expanding list of molecular targets for novel, rationally designed antiobesity pharmaceutical agents. Antiobesity drugs act via any of four mechanisms: 1) decreasing energy intake, 2) increasing energy expenditure or modulating lipid metabolism, 3) modulating fat stores or adipocyte differentiation, and 4) mimicking caloric restriction. Various novel drug candidates and targets directed against obesity are currently being explored. A few of them are also in the later phases of clinical trials. This review discusses the development of novel antiobesity drugs based on current understanding of energy homeostasis
Collapse
Affiliation(s)
- Monika Misra
- Department of Pharmacology, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India.
| |
Collapse
|
24
|
Mo XL, Tao YX. Activation of MAPK by inverse agonists in six naturally occurring constitutively active mutant human melanocortin-4 receptors. Biochim Biophys Acta Mol Basis Dis 2013; 1832:1939-48. [PMID: 23791567 DOI: 10.1016/j.bbadis.2013.06.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 05/17/2013] [Accepted: 06/05/2013] [Indexed: 01/14/2023]
Abstract
The melanocortin-4 receptor (MC4R) is a G protein-coupled receptor that plays an essential role in regulating energy homeostasis. Defects in MC4R are the most common monogenic form of obesity, with about 170 distinct mutations identified in human. In addition to the conventional Gs-stimulated adenylyl cyclase pathway, it has been recently demonstrated that MC4R also activates mitogen-activated protein kinases, extracellular signal-regulated kinases 1 and 2 (ERK1/2). Herein, we investigated the potential of four MC4R ligands that are inverse agonists at the Gs-cAMP signaling pathway, including agouti-related peptide (AgRP), MCL0020, Ipsen 5i and ML00253764, to regulate ERK1/2 activation (pERK1/2) in wild type and six naturally occurring constitutively active mutant (CAM) MC4Rs. We showed that these four inverse agonists acted as agonists for the ERK1/2 signaling cascade in wild type and CAM MC4Rs. Three mutants (P230L, L250Q and F280L) had significantly increased pERK1/2 level upon stimulation with all four inverse agonists, with maximal induction ranging from 1.6 to 4.2-fold. D146N had significantly increased pERK1/2 level upon stimulation with AgRP, MCL0020 or ML00253764, but not Ipsen 5i. The pERK1/2 levels of H76R and S127L were significantly increased only upon stimulation with AgRP or MCL0020. In summary, our studies demonstrated for the first time that MC4R inverse agonists at the Gs-cAMP pathway could serve as agonists in the MAPK pathway. These results suggested that there were multiple activation states of MC4R with ligand-specific and/or mutant-specific conformations capable of differentially coupling the MC4R to distinct signaling pathways.
Collapse
Affiliation(s)
- Xiu-Lei Mo
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | | |
Collapse
|
25
|
Steinman J, DeBoer MD. Treatment of cachexia: melanocortin and ghrelin interventions. VITAMINS AND HORMONES 2013; 92:197-242. [PMID: 23601426 DOI: 10.1016/b978-0-12-410473-0.00008-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cachexia is a condition typified by wasting of fat and LBM caused by anorexia and further endocrinological modulation of energy stores. Diseases known to cause cachectic symptoms include cancer, chronic kidney disease, and chronic heart failure; these conditions are associated with increased levels of proinflammatory cytokines and increased resting energy expenditure. Early studies have suggested the central melanocortin system as one of the main mediators of the symptoms of cachexia. Pharmacological and genetic antagonism of these pathways attenuates cachectic symptoms in laboratory models; effects have yet to be studied in humans. In addition, ghrelin, an endogenous orexigenic hormone with receptors on melanocortinergic neurons, has been shown to ameliorate symptoms of cachexia, at least in part, by an increase in appetite via melanocortin modulation, in addition to its anticatabolic and anti-inflammatory effects. These effects of ghrelin have been confirmed in multiple types of cachexia in both laboratory and human studies, suggesting a positive future for cachexia treatments.
Collapse
Affiliation(s)
- Jeremy Steinman
- Division of Pediatric Endocrinology, Department of Pediatrics, P.O. Box 800386, University of Virginia, Charlottesville, Virginia, USA
| | | |
Collapse
|
26
|
Abstract
The melanocortin-4 receptor (MC4R) is a critical regulator of energy homeostasis and has emerged as a premier target for obesity treatment. Numerous mutations in transmembrane domain 6 (TM6) of MC4R resulting in functional alterations have been identified in obese patients. Several mutagenesis studies also provided some data suggesting the importance of this domain in receptor function. To gain a better understanding of the structure-function relationship of the receptor, we performed alanine-scanning mutagenesis in TM6 to determine the functions of side chains. Of the 31 residues, two were important for cell surface expression, five were indispensable for α-melanocyte-stimulating hormone (α-MSH) and β-MSH binding, and six were important for signaling in the Gs-cAMP-PKA pathway. H264A, targeted normally to the plasma membrane, was undetectable by competitive binding assay and severely defective in basal and stimulated cAMP production and ERK1/2 phosphorylation. Nine mutants had decreased basal cAMP signaling. Seven mutants were constitutively active in cAMP signaling and their basal activities could be inhibited by two MC4R inverse agonists, Ipsen 5i and ML00253764. Five mutants were also constitutively active in the MAPK pathway with enhanced basal ERK1/2 phosphorylation. In summary, our study provided comprehensive data on the structure-function relationship of the TM6 of MC4R. We identified residues that are important for cell surface expression, ligand binding, cAMP generation, and residues for maintaining the WT receptor in active conformation. We also reported constitutive activation of the MAPK pathway and biased signaling. These data will be useful for rationally designing MC4R agonists and antagonists for treatment of eating disorders.
Collapse
MESH Headings
- Blotting, Western
- Cell Line
- Cyclic AMP/metabolism
- Humans
- Imidazoles/pharmacology
- Immunohistochemistry
- Microscopy, Confocal
- Mutagenesis, Site-Directed
- Protein Binding/genetics
- Protein Binding/physiology
- Protein Structure, Tertiary/genetics
- Protein Structure, Tertiary/physiology
- Receptor, Melanocortin, Type 4/agonists
- Receptor, Melanocortin, Type 4/chemistry
- Receptor, Melanocortin, Type 4/genetics
- Receptor, Melanocortin, Type 4/metabolism
Collapse
Affiliation(s)
- Hui Huang
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, 212 Greene Hall, Auburn, Alabama 36849, USA
| | | |
Collapse
|
27
|
Ulloa-Aguirre A, Michael Conn P. Pharmacoperones: a new therapeutic approach for diseases caused by misfolded G protein-coupled receptors. ACTA ACUST UNITED AC 2012; 5:13-24. [PMID: 22074574 DOI: 10.2174/187221411794351851] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 11/13/2010] [Indexed: 01/10/2023]
Abstract
G Protein-coupled receptors (GPCRs) are cell membrane proteins that recognize specific chemical signals such as drugs and hormones and transduce these signals into cellular responses by activating G-proteins. As is the case for all newly synthesized proteins, GPCRs are subjected to conformational scrutiny at the endoplasmic reticulum prior to processing and trafficking to the cell surface membrane. Because of this stringent quality control screening mechanism, mutations that result in protein misfolding frequently lead to retention in the endoplasmic reticulum, aggregation or other misrouting and, eventually, to disease. This article reviews some patents and new therapeutic opportunities based on the misfolding and retention of otherwise functional GPCRs that represent promising approaches to correct conformational abnormalities leading to distinct disease states.
Collapse
Affiliation(s)
- Alfredo Ulloa-Aguirre
- Research Unit in Reproductive Medicine, Hospital de Ginecobstetricia Luis Castelazo Ayala, Instituto Mexicano del Seguro Social, Av. Rio Magdalena 289, 60. piso, Col. Tizapan San Angel, C.P. 01090, Mexico D.F., Mexico.
| | | |
Collapse
|
28
|
Pharmacological chaperones correct misfolded GPCRs and rescue function: protein trafficking as a therapeutic target. Subcell Biochem 2012; 63:263-89. [PMID: 23161143 DOI: 10.1007/978-94-007-4765-4_14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
G-protein-coupled receptors (GPCRs) are a large superfamily of plasma membrane proteins that play central roles in transducing endocrine, neural and -sensory signals. In humans, more than 30 disorders are associated with mutations in GPCRs and these proteins are common drug development targets, with 30-50% of drugs targeting them. GPCR mutants are frequently misfolded, recognized as defective by the cellular quality control system, retained in the endoplasmic reticulum and do not traffic to the plasma membrane. The use of small molecules chaperones (pharmacological chaperones or "pharmacoperones") to rescue misfolded GPCRs has provided a new approach for treatment of human diseases caused by misfolding and misrouting. This chapter provides an overview of the molecular basis of this approach using the human gonadotropin-releasing hormone receptor (hGnRHR) as model for treatment of conformational diseases provoked by -misfolded GPCRs.
Collapse
|
29
|
Chang JE, Shim WS, Yang SG, Kwak EY, Chong S, Kim DD, Chung SJ, Shim CK. Liver cancer targeting of Doxorubicin with reduced distribution to the heart using hematoporphyrin-modified albumin nanoparticles in rats. Pharm Res 2011; 29:795-805. [PMID: 21971829 DOI: 10.1007/s11095-011-0603-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2011] [Accepted: 09/21/2011] [Indexed: 11/26/2022]
Abstract
PURPOSE To evaluate the usefulness of hematoporphyrin (HP)-modification of the surface of doxorubicin (DOX)-loaded bovine serum albumin (BSA) nanoparticles (NPs) in the liver cancer-selective delivery of DOX. METHODS HP-modified NPs (HP-NPs) were prepared by conjugation of amino groups on the surface of NPs with HP, a ligand for low density lipoprotein (LDL) receptors on the hepatoma cells. In vitro cellular accumulation of DOX, in vivo biodistribution of DOX, safety, and anti-tumor efficacy were evaluated for HP-NPs. RESULTS Cytotoxicity and accumulation of DOX were in the order of HP-NPs>NPs>solution form (SOL). Cellular uptake from HP-NPs was proportional to the expression level of LDL receptors on the cells, indicating possible involvement of LDL receptor-mediated endocytosis (RME) in uptake. The "merit index," an AUC ratio of DOX in liver (target organ) to DOX in heart (major side effect organ) following iv administration of HP-NPs to hepatoma rats, was 132.5 and 4 times greater compared to SOL and NPs, respectively. The greatest suppression of body weight decrease and tumor size increase was observed for iv-administered HP-NPs in tumor-bearing mice. CONCLUSIONS HP modification appears to be useful in selective delivery of NP-loaded DOX to tumors.
Collapse
Affiliation(s)
- Ji-Eun Chang
- National Research Laboratory for Transporters Targeted Drug Design Research Institute of Pharmaceutical Sciences College of Pharmacy, Seoul National University, Seoul, 151-742, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Melanocortin system in cancer-related cachexia. Open Med (Wars) 2011. [DOI: 10.2478/s11536-011-0057-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AbstractThe melanocortin system plays a pivotal role in the regulation of appetite and energy balance. It was recognized to play an important role in the development of cancer-related cachexia, a debilitating condition characterized by progressive body wasting associated with anorexia, increased resting energy expediture and loss of fat as well as lean body mass that cannot be simply prevented or treated by adequate nutritional support.The recent advances in understanding of mechanisms underlying cancer-related cachexia led to consequent recognition of the melanocortin system as an important potential therapeutic target. Several molecules have been made available for animal experiments, including those with oral bioavailability, that act at various checkpoints of the melanocortin system and that might confer singificant benefits for the patients suffering from cancer-related cachexia. The application of melanocortin 4 receptor antagonists/agouti-related peptide agonists has been however restricted to animal models and more pharmacological data will be necessary to progress to clinical trials on humans. Still, pharmacological targeting of the melanocortin system seem to represent an elegant and promising way of treatment of cancer-related cachexia.
Collapse
|
31
|
Dallmann R, Weyermann P, Anklin C, Boroff M, Bray-French K, Cardel B, Courdier-Fruh I, Deppe H, Dubach-Powell J, Erb M, Haefeli RH, Henneböhle M, Herzner H, Hufschmid M, Marks DL, Nordhoff S, Papp M, Rummey C, Santos G, Schärer F, Siendt H, Soeberdt M, Sumanovski LT, Terinek M, Mondadori C, Güven N, Feurer A. The orally active melanocortin-4 receptor antagonist BL-6020/979: a promising candidate for the treatment of cancer cachexia. J Cachexia Sarcopenia Muscle 2011; 2:163-174. [PMID: 21966642 PMCID: PMC3177041 DOI: 10.1007/s13539-011-0039-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 08/16/2011] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND: Under physiological conditions, the melanocortin system is a crucial part of the complex network regulating food intake and energy expenditure. In pathological states, like cachexia, these two parameters are deregulated, i.e., food intake is decreased and energy expenditure is increased-a vicious combination leading to catabolism. Agouti-related protein (AgRP), the endogenous antagonist at the melanocortin-4 receptor (MC-4R), was found to increase food intake and to reduce energy expenditure. This qualifies MC-4R blockade as an attractive mode of action for the treatment of cachexia. Based on this rationale, a novel series of small-molecule MC-4R antagonists was designed, from which the orally active compound BL-6020/979 (formerly known as SNT207979) emerged as the first promising development candidate showing encouraging pre-clinical efficacy and safety properties which are presented here. METHODS AND RESULTS: BL-6020/979 is an orally available, selective and potent MC-4R antagonist with a drug-like profile. It increased food intake and decreased energy expenditure in healthy wild-type but not in MC-4R deficient mice. More importantly, it ameliorated cachexia-like symptoms in the murine C26 adenocarcinoma model; with an effect on body mass and body composition and on the expression of catabolic genes. Moreover, BL-6020/979 showed antidepressant-like properties in the chronic mild stress model in rats and exhibits a favorable safety profile. CONCLUSION: The properties of BL-6020/979 demonstrated in animal models and presented here make it a promising candidate suitable for further development towards a first-in-class treatment option for cachexia that potentially opens up the opportunity to treat two hallmarks of the disease, i.e., decreased food intake and increased energy expenditure, with one drug.
Collapse
Affiliation(s)
- R. Dallmann
- Santhera Pharmaceuticals (Switzerland) Ltd.; Hammerstr. 49 4410 Liestal
- Institute of Pharmacology and Toxicology; University of Zurich; Winterthurerstr. 190 8057 Zurich
| | - P. Weyermann
- Santhera Pharmaceuticals (Switzerland) Ltd.; Hammerstr. 49 4410 Liestal
| | - C. Anklin
- Santhera Pharmaceuticals (Switzerland) Ltd.; Hammerstr. 49 4410 Liestal
| | - M. Boroff
- Santhera Pharmaceuticals (Switzerland) Ltd.; Hammerstr. 49 4410 Liestal
| | - K. Bray-French
- Santhera Pharmaceuticals (Switzerland) Ltd.; Hammerstr. 49 4410 Liestal
| | - B. Cardel
- Santhera Pharmaceuticals (Switzerland) Ltd.; Hammerstr. 49 4410 Liestal
| | - I. Courdier-Fruh
- Santhera Pharmaceuticals (Switzerland) Ltd.; Hammerstr. 49 4410 Liestal
| | - H. Deppe
- Santhera Pharmaceuticals (Switzerland) Ltd.; Hammerstr. 49 4410 Liestal
| | - J. Dubach-Powell
- Santhera Pharmaceuticals (Switzerland) Ltd.; Hammerstr. 49 4410 Liestal
| | - M. Erb
- Santhera Pharmaceuticals (Switzerland) Ltd.; Hammerstr. 49 4410 Liestal
| | - R. H. Haefeli
- Santhera Pharmaceuticals (Switzerland) Ltd.; Hammerstr. 49 4410 Liestal
| | - M. Henneböhle
- Santhera Pharmaceuticals (Switzerland) Ltd.; Hammerstr. 49 4410 Liestal
| | - H. Herzner
- Santhera Pharmaceuticals (Switzerland) Ltd.; Hammerstr. 49 4410 Liestal
| | - M. Hufschmid
- Santhera Pharmaceuticals (Switzerland) Ltd.; Hammerstr. 49 4410 Liestal
| | - D. L. Marks
- Department of Pediatric Endocrinology, Vollum Institute; Oregon Health Sciences University; Portland
| | - S. Nordhoff
- Santhera Pharmaceuticals (Switzerland) Ltd.; Hammerstr. 49 4410 Liestal
| | - M. Papp
- Institute of Pharmacology; Polish Academy of Sciences; Krakow
| | - C. Rummey
- Santhera Pharmaceuticals (Switzerland) Ltd.; Hammerstr. 49 4410 Liestal
| | - G. Santos
- Santhera Pharmaceuticals (Switzerland) Ltd.; Hammerstr. 49 4410 Liestal
| | - F. Schärer
- Santhera Pharmaceuticals (Switzerland) Ltd.; Hammerstr. 49 4410 Liestal
| | - H. Siendt
- Santhera Pharmaceuticals (Switzerland) Ltd.; Hammerstr. 49 4410 Liestal
| | - M. Soeberdt
- Santhera Pharmaceuticals (Switzerland) Ltd.; Hammerstr. 49 4410 Liestal
| | - L. T. Sumanovski
- Santhera Pharmaceuticals (Switzerland) Ltd.; Hammerstr. 49 4410 Liestal
| | - M. Terinek
- Santhera Pharmaceuticals (Switzerland) Ltd.; Hammerstr. 49 4410 Liestal
| | - C. Mondadori
- Santhera Pharmaceuticals (Switzerland) Ltd.; Hammerstr. 49 4410 Liestal
| | - N. Güven
- Santhera Pharmaceuticals (Switzerland) Ltd.; Hammerstr. 49 4410 Liestal
| | - A. Feurer
- Santhera Pharmaceuticals (Switzerland) Ltd.; Hammerstr. 49 4410 Liestal
| |
Collapse
|
32
|
Abstract
The melanocortin-4 receptor (MC4R) was cloned in 1993 by degenerate PCR; however, its function was unknown. Subsequent studies suggest that the MC4R might be involved in regulating energy homeostasis. This hypothesis was confirmed in 1997 by a series of seminal studies in mice. In 1998, human genetic studies demonstrated that mutations in the MC4R gene can cause monogenic obesity. We now know that mutations in the MC4R are the most common monogenic form of obesity, with more than 150 distinct mutations reported thus far. This review will summarize the studies on the MC4R, from its cloning and tissue distribution to its physiological roles in regulating energy homeostasis, cachexia, cardiovascular function, glucose and lipid homeostasis, reproduction and sexual function, drug abuse, pain perception, brain inflammation, and anxiety. I will then review the studies on the pharmacology of the receptor, including ligand binding and receptor activation, signaling pathways, as well as its regulation. Finally, the pathophysiology of the MC4R in obesity pathogenesis will be reviewed. Functional studies of the mutant MC4Rs and the therapeutic implications, including small molecules in correcting binding and signaling defect, and their potential as pharmacological chaperones in rescuing intracellularly retained mutants, will be highlighted.
Collapse
Affiliation(s)
- Ya-Xiong Tao
- Department of Anatomy, Physiology, and Pharmacology, Auburn University, Alabama 36849-5519, USA.
| |
Collapse
|
33
|
Granell S, Mohammad S, Ramanagoudr-Bhojappa R, Baldini G. Obesity-linked variants of melanocortin-4 receptor are misfolded in the endoplasmic reticulum and can be rescued to the cell surface by a chemical chaperone. Mol Endocrinol 2010; 24:1805-21. [PMID: 20631012 DOI: 10.1210/me.2010-0071] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Melanocortin-4 receptor (MC4R) is a G protein-coupled receptor expressed in the brain where it controls food intake. Many obesity-linked MC4R variants are poorly expressed at the plasma membrane and are retained intracellularly. We have studied the intracellular localization of four obesity-linked MC4R variants, P78L, R165W, I316S, and I317T, in immortalized neurons. We find that these variants are all retained in the endoplasmic reticulum (ER), are ubiquitinated to a greater extent than the wild-type (wt) receptor, and induce ER stress with increased levels of ER chaperones as compared with wt-MC4R and appearance of CCAAT/enhancer-binding protein homologous protein (CHOP). Expression of the X-box-binding-protein-1 (XBP-1) with selective activation of a protective branch of the unfolded protein response did not have any effect on the cell surface expression of MC4R-I316S. Conversely, the pharmacological chaperone 4-phenyl butyric acid (PBA) increased the cell surface expression of wt-MC4R, MC4R-I316S, and I317T by more than 40%. PBA decreased ubiquitination of MC4R-I316S and prevented ER stress induced by expression of the mutant, suggesting that the drug functions to promote MC4R folding. MC4R-I316S rescued to the cell surface is functional, with a 52% increase in agonist-induced cAMP production, as compared with untreated cells. Also direct inhibition of wt-MC4R and MC4R-I316S ubiquitination by a specific inhibitor of the ubiquitin-activating enzyme 1 increased by approximately 40% the expression of the receptors at the cell surface, and the effects of PBA and ubiquitin-activating enzyme 1 were additive. These data offer a cell-based rationale that drugs that improve MC4R folding or decrease ER-associated degradation of the receptor may function to treat some forms of hereditary obesity.
Collapse
Affiliation(s)
- Susana Granell
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Slot 516, 4301 West Markham, Little Rock, AR 72205, USA
| | | | | | | |
Collapse
|
34
|
Tao YX, Huang H, Wang ZQ, Yang F, Williams JN, Nikiforovich GV. Constitutive activity of neural melanocortin receptors. Methods Enzymol 2010; 484:267-79. [PMID: 21036237 DOI: 10.1016/b978-0-12-381298-8.00014-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The two neural melanocortin receptors (MCRs), melanocortin-3 and -4 receptors (MC3R and MC4R), are G protein-coupled receptors expressed primarily in the brain that regulate different aspects of energy homeostasis. The MCRs are unique in having endogenous antagonists, agouti and agouti-related protein (AgRP). These antagonists were later shown to be inverse agonists. The MC3R has little or no constitutive activity, whereas the MC4R has significant constitutive activity that can easily be detected. We describe herein methods for detecting constitutive activities in these receptors and small molecule ligands as inverse agonists. AgRP is an inverse agonist for both MC3R and MC4R. We also provide models for the constitutively active MC4R mutants.
Collapse
Affiliation(s)
- Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| | | | | | | | | | | |
Collapse
|
35
|
DeBoer MD. Update on melanocortin interventions for cachexia: progress toward clinical application. Nutrition 2009; 26:146-51. [PMID: 20004082 DOI: 10.1016/j.nut.2009.07.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 07/07/2009] [Indexed: 11/24/2022]
Abstract
Cachexia is a devastating syndrome of body wasting that is associated with multiple common chronic diseases including cancer, chronic kidney disease, and chronic heart failure. These underlying diseases are associated with increased levels of inflammatory cytokines and result in anorexia, increased resting energy expenditure, and loss of fat and lean body mass. Prior experiments have implicated the central melanocortin system in the hypothalamus with the propagation of these symptoms of cachexia. Pharmacologic blockade of this system using melanocortin antagonists causes attenuation of the signs of cachexia in laboratory models. Recent advances in our knowledge of this disease process have involved further elucidation of the pathophysiology of melanocortin activation and demonstration of the efficacy of melanocortin antagonists in new models of cachexia, including cardiac cachexia. In addition, small molecule antagonists of the melanocortin-4 receptor continue to be introduced, including ones with oral bioavailability. These developments generate optimism that melanocortin antagonism will be used to treat humans with disease-associated cachexia. However, to date, human application has remained elusive and it is unclear when we will know whether humans with cachexia would benefit from treatment with these compounds.
Collapse
Affiliation(s)
- Mark Daniel DeBoer
- Division of Pediatric Endocrinology, University of Virginia, Charlottesville, Virginia, USA.
| |
Collapse
|
36
|
Yang Y, Hruby VJ, Chen M, Crasto C, Cai M, Harmon CM. Novel binding motif of ACTH analogues at the melanocortin receptors. Biochemistry 2009; 48:9775-84. [PMID: 19743876 DOI: 10.1021/bi900634e] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The melanocortin receptor (MCR) subtype family is a member of the GPCR superfamily, and each of them has a different pharmacological profile with regard to the relative potency of the endogenous and synthetic melanocortin peptides. Alpha-MSH and ACTH are endogenous nonselective agonists for MC1R, MC3R, MC4R, and MC5R. In this study, we examined the role of Phe(7) in ACTH on human (h) MC1R, MC3R, and MC4R binding and signaling. Our results indicate that substitution of Phe(7) with d-Nal(2')(7) in ACTH1-24 yields a pharmacological profile different from that for substitution of Phe(7) with d-Nal(2')(7) in MSH in hMC1R, hMC3R, and hMC4R. N-d-Nal(2')(7)-ACTH1-24 is an agonist at hMC3R and hMC4R which did not change the peptide from an agonist to an antagonist at hMC3R and hMC4R. Further experiments indicate that N-d-Nal(2')(7)-ACTH1-17 is the minimal peptide required for hMC3R and hMC4R activation. Single-amino acid substitution studies of d-Nal(2')(7)-ACTH1-17 indicate that amino acid residues 15-17 in N-d-Nal(2')(7)-ACTH1-17 are crucial for hMC3R and hMC4R activation. Substitutions of these amino acid residues reduced or abolished agonist activity at hMC3R and hMC4R. Conformational studies revealed a new beta-turn (Arg(8)-Trp(9)-Gly(10)-Lys(11)) in N-d-Nal(2')(7)-ACTH1-17, compared to the beta-turn-like structure at NDP-alpha-MSH (His(6)-d-Phe(7)-Arg(8)-Trp(9)). Our results suggest that NDP-alpha-MSH and N-d-Nal(2')(7)-ACTH1-17 do not share the same binding site; the highly basic C-terminal fragment (Lys(15)-Lys(16)-Arg(17)) of N-d-Nal(2')(7)-ACTH1-17 induced a new beta-turn, and this shift contributed the selective agonist activity at hMC3R and hMC4R.
Collapse
Affiliation(s)
- Yingkui Yang
- Department of Surgery, University of Alabama, Birmingham, Alabama 35233, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
BACKGROUND: Cachexia is a devastating syndrome of body wasting that worsens quality of life and survival for patients suffering from diseases such as cancer, chronic kidney disease and chronic heart failure. Successful treatments have been elusive in humans, leaving a clear need for the development of new treatment compounds. Animal models of cachexia are able to recapitulate the clinical findings from human disease and have provided a much-needed means of testing the efficacy of prospective therapies. OBJECTIVE: This review focuses on animal models of cachexia caused by cancer, chronic heart failure and chronic kidney disease, including the features of these models, their implementation, and commonly-followed outcome measures. CONCLUSION: Given a dire clinical need for effective treatments of cachexia, animal models will continue a vital role in assessing the efficacy and safety of potential treatments prior to testing in humans. Also important in the future will be the use of animal models to assess the durability of effect from anti-cachexia treatments and their effect on prognosis of the underlying disease states.
Collapse
|
38
|
Fan ZC, Tao YX. Functional characterization and pharmacological rescue of melanocortin-4 receptor mutations identified from obese patients. J Cell Mol Med 2009; 13:3268-82. [PMID: 19298524 PMCID: PMC4516484 DOI: 10.1111/j.1582-4934.2009.00726.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2008] [Accepted: 02/05/2009] [Indexed: 11/27/2022] Open
Abstract
As the most common monogenic form of human obesity, about 130 naturally occurring melanocortin-4 receptor (MC4R) gene mutations have been identified. In this study, we reported detailed functional characterization of 10 novel human MC4R (hMC4R) mutants including R7C, C84R, S127L, S136F, W174C, A219V, P230L, F261S, I317V and L325F. Flow cytometry experiments showed that six mutants, including R7C, C84R, S127L, W174C, P230L and F261S, have decreased cell surface expression. The other four mutants are expressed at similar levels as the wild-type hMC4R. Binding assays showed that the mutants have similar binding affinities for the agonist and endogenous antagonist agouti-related protein. Signalling assays showed that S136F is defective in signalling. Multiple mutagenesis showed that S136 of hMC4R is required for the normal function of the receptor. To identify potential therapeutic approaches for patients with intracellularly retained MC4R mutants, we tested the effect of an MC4R inverse agonist, ML00253764, on C84R and W174C. We showed that ML00253764 could function as a pharmacological chaperone rescuing the mutant MC4Rs to the cell surface. The rescued mutants are functional with increased cAMP production in response to agonist stimulation. In conclusion, of 10 mutants we studied, 6 had decreased cell surface expression. Pharmacological chaperone is a potential approach for treating obesity caused by MC4R mutations that result in intracellular retention.
Collapse
Affiliation(s)
- Zhen-Chuan Fan
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn UniversityAuburn, AL, USA
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn UniversityAuburn, AL, USA
| |
Collapse
|
39
|
Yang Y, Cai M, Chen M, Qu H, McPherson D, Hruby V, Harmon CM. Key amino acid residues in the melanocortin-4 receptor for nonpeptide THIQ specific binding and signaling. REGULATORY PEPTIDES 2009; 155:46-54. [PMID: 19303903 PMCID: PMC3216638 DOI: 10.1016/j.regpep.2009.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Revised: 03/06/2009] [Accepted: 03/07/2009] [Indexed: 11/20/2022]
Abstract
Melanocortin 4 receptor (MC4R) plays an important role in the regulation of food intake and glucose homeostasis. Synthetic nonpeptide compound N- (3R)-1 4-tetrahydroisoquinolinium-3-ylcarbonyl-(1R)-1-(4-chlorobenzyl)-2-4-cyclohexyl-4-(1H-1,2,4-triazol-1-ylmethyl)piperidin-1-yl-2-oxoethylamine (THIQ) is a potent agonist at MC4R but not at hMC2R. In this study, we utilized two approaches (chimeric receptor and site-directed mutagenesis) to narrow down the key amino acid residues of MC4R responsible for THIQ binding and signaling. Cassette substitutions of the second, third, fourth, fifth, and sixth transmembrane regions (TMs) of the human MC4R (hMC4R) with the homologous regions of hMC2R were constructed. Our results indicate that the cassette substitutions of these TMs of the hMC4R with homologous regions of the hMC2R did not significantly alter THIQ binding affinity and potency except the substitution of the hMC4R TM3, suggesting that the conserved amino acid residues in these TMs of the hMC4R are main potential candidates for THIQ binding and signaling while non conserved residues in TM3 of MC4R may also be involved. Nineteen MC4R mutants were then created, including 13 conserved amino acid residues and 6 non-conserved amino acid residues. Our results indicate that seven conserved residue [E100 (TM2), D122 (TM3), D126 (TM3), F254 (TM6), W258 (TM6), F261 (TM6), H264 (TM6)] are important for THIQ binding and three non-conserved residues [N123 (TM3), I129 (TM3) and S131 (TM3)] are involved in THIQ selectivity. In conclusion, our results suggest that THIQ utilize both conserved and non-conserved amino acid residues for binding and signaling at hMC4R and non conserved residues may be responsible for MC4R selectivity.
Collapse
Affiliation(s)
- Yingkui Yang
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35205, USA.
| | | | | | | | | | | | | |
Collapse
|
40
|
Orally available selective melanocortin-4 receptor antagonists stimulate food intake and reduce cancer-induced cachexia in mice. PLoS One 2009. [PMID: 19295909 DOI: 10.1371/journal.pone.0004774.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Cachexia is among the most debilitating and life-threatening aspects of cancer. It represents a metabolic syndrome affecting essential functional circuits involved in the regulation of homeostasis, and includes anorexia, fat and muscle tissue wasting. The anorexigenic peptide alpha-MSH is believed to be crucially involved in the normal and pathologic regulation of food intake. It was speculated that blockade of its central physiological target, the melanocortin (MC)-4 receptor, might provide a promising anti-cachexia treatment strategy. This idea is supported by the fact that in animal studies, agouti-related protein (AgRP), the endogenous inverse agonist at the MC-4 receptor, was found to affect two hallmark features of cachexia, i.e. to increase food intake and to reduce energy expenditure. METHODOLOGY/PRINCIPAL FINDINGS SNT207707 and SNT209858 are two recently discovered, non peptidic, chemically unrelated, orally active MC-4 receptor antagonists penetrating the blood brain barrier. Both compounds were found to distinctly increase food intake in healthy mice. Moreover, in mice subcutaneously implanted with C26 adenocarcinoma cells, repeated oral administration (starting the day after tumor implantation) of each of the two compounds almost completely prevented tumor induced weight loss, and diminished loss of lean body mass and fat mass. CONCLUSIONS/SIGNIFICANCE In contrast to the previously reported peptidic and small molecule MC-4 antagonists, the compounds described here work by the oral administration route. Orally active compounds might offer a considerable advantage for the treatment of cachexia patients.
Collapse
|
41
|
Weyermann P, Dallmann R, Magyar J, Anklin C, Hufschmid M, Dubach-Powell J, Courdier-Fruh I, Henneböhle M, Nordhoff S, Mondadori C. Orally available selective melanocortin-4 receptor antagonists stimulate food intake and reduce cancer-induced cachexia in mice. PLoS One 2009; 4:e4774. [PMID: 19295909 PMCID: PMC2654097 DOI: 10.1371/journal.pone.0004774] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Accepted: 01/23/2009] [Indexed: 12/23/2022] Open
Abstract
Background Cachexia is among the most debilitating and life-threatening aspects of cancer. It represents a metabolic syndrome affecting essential functional circuits involved in the regulation of homeostasis, and includes anorexia, fat and muscle tissue wasting. The anorexigenic peptide α-MSH is believed to be crucially involved in the normal and pathologic regulation of food intake. It was speculated that blockade of its central physiological target, the melanocortin (MC)-4 receptor, might provide a promising anti-cachexia treatment strategy. This idea is supported by the fact that in animal studies, agouti-related protein (AgRP), the endogenous inverse agonist at the MC-4 receptor, was found to affect two hallmark features of cachexia, i.e. to increase food intake and to reduce energy expenditure. Methodology/Principal Findings SNT207707 and SNT209858 are two recently discovered, non peptidic, chemically unrelated, orally active MC-4 receptor antagonists penetrating the blood brain barrier. Both compounds were found to distinctly increase food intake in healthy mice. Moreover, in mice subcutaneously implanted with C26 adenocarcinoma cells, repeated oral administration (starting the day after tumor implantation) of each of the two compounds almost completely prevented tumor induced weight loss, and diminished loss of lean body mass and fat mass. Conclusions/Significance In contrast to the previously reported peptidic and small molecule MC-4 antagonists, the compounds described here work by the oral administration route. Orally active compounds might offer a considerable advantage for the treatment of cachexia patients.
Collapse
Affiliation(s)
- Philipp Weyermann
- Santhera Pharmaceuticals (Switzerland) Ltd., Liestal, Switzerland
- * E-mail:
| | - Robert Dallmann
- Santhera Pharmaceuticals (Switzerland) Ltd., Liestal, Switzerland
| | - Josef Magyar
- Santhera Pharmaceuticals (Switzerland) Ltd., Liestal, Switzerland
| | - Corinne Anklin
- Santhera Pharmaceuticals (Switzerland) Ltd., Liestal, Switzerland
| | | | | | | | - Marco Henneböhle
- Santhera Pharmaceuticals (Switzerland) Ltd., Liestal, Switzerland
| | - Sonja Nordhoff
- Santhera Pharmaceuticals (Switzerland) Ltd., Liestal, Switzerland
| | - Cesare Mondadori
- Santhera Pharmaceuticals (Switzerland) Ltd., Liestal, Switzerland
| |
Collapse
|
42
|
Tao Y. Chapter 6 Mutations in Melanocortin‐4 Receptor and Human Obesity. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 88:173-204. [DOI: 10.1016/s1877-1173(09)88006-x] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
43
|
Tao YX. Constitutive activation of G protein-coupled receptors and diseases: insights into mechanisms of activation and therapeutics. Pharmacol Ther 2008; 120:129-48. [PMID: 18768149 DOI: 10.1016/j.pharmthera.2008.07.005] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Accepted: 07/22/2008] [Indexed: 01/17/2023]
Abstract
The existence of constitutive activity for G protein-coupled receptors (GPCRs) was first described in 1980s. In 1991, the first naturally occurring constitutively active mutations in GPCRs that cause diseases were reported in rhodopsin. Since then, numerous constitutively active mutations that cause human diseases were reported in several additional receptors. More recently, loss of constitutive activity was postulated to also cause diseases. Animal models expressing some of these mutants confirmed the roles of these mutations in the pathogenesis of the diseases. Detailed functional studies of these naturally occurring mutations, combined with homology modeling using rhodopsin crystal structure as the template, lead to important insights into the mechanism of activation in the absence of crystal structure of GPCRs in active state. Search for inverse agonists on these receptors will be critical for correcting the diseases cause by activating mutations in GPCRs. Theoretically, these inverse agonists are better therapeutics than neutral antagonists in treating genetic diseases caused by constitutively activating mutations in GPCRs.
Collapse
Affiliation(s)
- Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, 212 Greene Hall, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
44
|
Bossola M, Pacelli F, Doglietto GB. Cancer cachexia: drugs in the patent literature. Expert Opin Ther Pat 2008. [DOI: 10.1517/13543776.18.7.739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
45
|
Targeting melanocortin receptors: an approach to treat weight disorders and sexual dysfunction. Nat Rev Drug Discov 2008; 7:307-23. [PMID: 18323849 DOI: 10.1038/nrd2331] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The melanocortin system has multifaceted roles in the control of body weight homeostasis, sexual behaviour and autonomic functions, and so targeting this pathway has immense promise for drug discovery across multiple therapeutic areas. In this Review, we first outline the physiological roles of the melanocortin system, then discuss the potential of targeting melanocortin receptors by using MC3 and MC4 agonists for treating weight disorders and sexual dysfunction, and MC4 antagonists to treat anorectic and cachectic conditions. Given the complexity of the melanocortin system, we also highlight the challenges and opportunities for future drug discovery in this area.
Collapse
|
46
|
Nozawa D, Chaki S, Nakazato A. Recent advances in the development of melanocortin-4 receptor ligands. Expert Opin Ther Pat 2008. [DOI: 10.1517/13543776.18.4.403] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
47
|
Chen C, Tucci FC, Jiang W, Tran JA, Fleck BA, Hoare SR, Wen J, Chen T, Johns M, Markison S, Foster AC, Marinkovic D, Chen CW, Arellano M, Harman J, Saunders J, Bozigian H, Marks D. Pharmacological and pharmacokinetic characterization of 2-piperazine-alpha-isopropyl benzylamine derivatives as melanocortin-4 receptor antagonists. Bioorg Med Chem 2008; 16:5606-18. [PMID: 18417348 DOI: 10.1016/j.bmc.2008.03.072] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Revised: 03/25/2008] [Accepted: 03/28/2008] [Indexed: 11/19/2022]
Abstract
A series of 2-piperazine-alpha-isopropylbenzylamine derivatives were synthesized and characterized as melanocortin-4 receptor (MC4R) antagonists. Attaching an amino acid to benzylamines 7 significantly increased their binding affinity, and the resulting compounds 8-12 bound selectively to MC4R over other melanocortin receptor subtypes and behaved as functional antagonists. These compounds were also studied for their permeability using Caco-2 cell monolayers and metabolic stability in human liver microsomes. Most compounds exhibited low permeability and high efflux ratio possibly due to their high molecular weights. They also showed moderate metabolic stability which might be associated with their moderate to high lipophilicity. Pharmacokinetic properties of these MC4R antagonists, including brain penetration, were studied in mice after oral and intravenous administrations. Two compounds identified to possess high binding affinity and selectivity, 10d and 11d, were studied in a murine cachexia model. After intraperitoneal (ip) administration of 1mg/kg dose, mice treated with 10d had significantly more food intake and weight gain than the control animals, demonstrating efficacy by blocking the MC4 receptor. Similar in vivo effects were also observed when 11d was dosed orally at 20mg/kg. These results provide further evidence that a potent and selective MC4R antagonist has potential in the treatment of cancer cachexia.
Collapse
Affiliation(s)
- Chen Chen
- Department of Medicinal Chemistry, Neurocrine Biosciences, Inc., 12790 El Camino Real, San Diego, CA 92130, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Mayorov AV, Cai M, Palmer ES, Dedek MM, Cain JP, Van Scoy AR, Tan B, Vagner J, Trivedi D, Hruby VJ. Structure-activity relationships of cyclic lactam analogues of alpha-melanocyte-stimulating hormone (alpha-MSH) targeting the human melanocortin-3 receptor. J Med Chem 2008; 51:187-95. [PMID: 18088090 PMCID: PMC2587288 DOI: 10.1021/jm070461w] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A variety of dicarboxylic acid linkers introduced between the alpha-amino group of Pro(6) and the -amino group of Lys(10) of the cyclic lactam alpha-melanocyte-stimulating hormone (alpha-MSH)-derived Pro(6)-D-Phe(7)/D-Nal(2')(7)-Arg(8)-Trp(9)-Lys(10)-NH2 pentapeptide template lead to nanomolar range and selective hMC3R agonists and antagonists. Replacement of the Pro(6) residue and the dicarboxylic acid linker with 2,3-pyrazine-dicarboxylic acid furnished a highly selective nanomolar range hMC3R partial agonist (analogue 12, c[CO-2,3-pyrazine-CO-D-Phe-Arg-Trp-Lys]-NH2, EC50 = 27 nM, 70% max cAMP) and an hMC3R antagonist (analogue 13, c[CO-2,3-pyrazine-CO-D-Nal(2')-Arg-Trp-Lys]-NH2, IC50 = 23 nM). Modeling experiments suggest that 2,3-pyrazinedicarboxylic acid stabilizes a beta-turn-like structure with the D-Phe/D-Nal(2') residues, which explains the high potency of the corresponding peptides. Placement of a Nle residue in position 6 produced a hMC3R/hMC5R antagonist (analogue 15, c[CO-(CH 2)2-CO-Nle-D-Nal(2')-Arg-Trp-Lys]-NH2, IC50 = 12 and 17 nM, respectively), similarly to the previously described cyclic gamma-melanocyte-stimulating hormone (gamma-MSH)-derived hMC3R/hMC5R antagonists. These newly developed melanotropins will serve as critical biochemical tools for elucidating the full spectrum of functions performed by the physiologically important melanocortin-3 receptor.
Collapse
MESH Headings
- Binding, Competitive
- Cell Line
- Cyclic AMP/biosynthesis
- Humans
- Lactams/chemical synthesis
- Lactams/pharmacology
- Models, Molecular
- Peptides, Cyclic/chemical synthesis
- Peptides, Cyclic/chemistry
- Peptides, Cyclic/pharmacology
- Radioligand Assay
- Receptor, Melanocortin, Type 3/agonists
- Receptor, Melanocortin, Type 3/antagonists & inhibitors
- Receptor, Melanocortin, Type 3/chemistry
- Structure-Activity Relationship
- alpha-MSH/analogs & derivatives
- alpha-MSH/chemical synthesis
- alpha-MSH/pharmacology
Collapse
Affiliation(s)
| | - Minying Cai
- Department of Chemistry, University of Arizona, Tucson, Arizona 85721
| | - Erin S. Palmer
- Department of Chemistry, University of Arizona, Tucson, Arizona 85721
| | - Matthew M. Dedek
- Department of Chemistry, University of Arizona, Tucson, Arizona 85721
| | - James P. Cain
- Department of Chemistry, University of Arizona, Tucson, Arizona 85721
| | - April R. Van Scoy
- Department of Chemistry, University of Arizona, Tucson, Arizona 85721
| | - Bahar Tan
- Department of Chemistry, University of Arizona, Tucson, Arizona 85721
| | - Josef Vagner
- Department of Chemistry, University of Arizona, Tucson, Arizona 85721
| | - Dev Trivedi
- Department of Chemistry, University of Arizona, Tucson, Arizona 85721
| | - Victor J. Hruby
- Department of Chemistry, University of Arizona, Tucson, Arizona 85721
| |
Collapse
|
49
|
Tran JA, Jiang W, Tucci FC, Fleck BA, Wen J, Sai Y, Madan A, Chen TK, Markison S, Foster AC, Hoare SR, Marks D, Harman J, Chen CW, Arellano M, Marinkovic D, Bozigian H, Saunders J, Chen C. Design, synthesis, in vitro, and in vivo characterization of phenylpiperazines and pyridinylpiperazines as potent and selective antagonists of the melanocortin-4 receptor. J Med Chem 2007; 50:6356-66. [PMID: 17994683 DOI: 10.1021/jm701137s] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Benzylamine and pyridinemethylamine derivatives were synthesized and characterized as potent and selective antagonists of the melanocortin-4 receptor (MC4R). These compounds were also profiled in rodents for their pharmacokinetic properties. Two compounds with diversified profiles in chemical structure, pharmacological activities, and pharmacokinetics, 10 and 12b, showed efficacy in an established murine cachexia model. For example, 12b had a K(i) value of 3.4 nM at MC4R, was more than 200-fold selective over MC3R, and had a good pharmacokinetic profile in mice, including high brain penetration. Moreover, 12b was able to stimulate food intake in the tumor-bearing mice and reverse their lean body mass loss. Our results provided further evidence that a potent and selective MC4R antagonist with appropriate pharmacokinetic properties might potentially be useful for the treatment of cancer cachexia.
Collapse
Affiliation(s)
- Joe A Tran
- Department of Medicinal Chemistry, Neurocrine Biosciences, Inc., 12790 El Camino Real, San Diego, California 92130, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Jiang W, Tucci FC, Tran JA, Fleck BA, Wen J, Markison S, Marinkovic D, Chen CW, Arellano M, Hoare SR, Johns M, Foster AC, Saunders J, Chen C. Pyrrolidinones as potent functional antagonists of the human melanocortin-4 receptor. Bioorg Med Chem Lett 2007; 17:5610-3. [PMID: 17822895 DOI: 10.1016/j.bmcl.2007.07.097] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Revised: 07/26/2007] [Accepted: 07/26/2007] [Indexed: 10/22/2022]
Abstract
A series of pyrrolidinones derived from phenylalaninepiperazines were synthesized and characterized as potent and selective antagonists of the melanocortin-4 receptor. In addition to their high binding affinities, these compounds displayed high functional potencies. 12a had a K(i) of 0.94 nM in binding and IC(50) of 21 nM in functional activity. 12a also demonstrated efficacy in a mouse cachexia model.
Collapse
Affiliation(s)
- Wanlong Jiang
- Department of Medicinal Chemistry, Neurocrine Biosciences, Inc., 12790 El Camino Real, San Diego, CA 92130, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|